| 15-a-1 | a. Line integrals - (i) By parameterizing curves | 0.475 | 0.699 | 10.968 | 15 | 0.937 | 0.462 | For $y>0$, let \begin{align*} \textbf{F}(x,y,z)&=(e^{-x}\ln y-z)\textbf{i}+\left(2yz-e^{-x}/y\right)\textbf{j}+(y^2-x)\textbf{k}\mbox{ and}\\ \textbf{G}(x,y,z)&=e^{-x}\ln y\,\textbf{i}+\left(2yz-e^{-x}/y\right)\textbf{j}-x~\textbf{k}. \end{align*} 
				Show that the vector function $\textbf{F}$ is a gradient on $\{(x,y,z)|~y>0\}$ by finding an $f$ such that $\nabla f=\textbf{F}$.Evaluate the line integral $\displaystyle\int_C\textbf{G}(\textbf{r})\cdot \textbf{dr}$, where $C$ is the curve given by $\textbf{r}(u)=(1+u^2)\textbf{i}+e^u\textbf{j}+(1+u)\textbf{k}$, $u\in[0,1]$. | 
		
			| 15-a-2 | a. Line integrals - (i) By parameterizing curves | 0.548 | 0.355 | 4.185 | 12 | 0.629 | 0.081 | Find the line integral \[ \int_{{\cal C}}\,(2 x \sin(\pi y) - e^{z})\,dx + (\pi x^2 \cos(\pi y) - 3 e^{z})\,dy - x e^z\,dz\] $\mbox{along the curve}\;\;{\cal C} = \left\{(x, y, z) | z = \ln \sqrt{1 + x^2},\; y = x,\; 0 \le x \le 1 \right\}. $ | 
		
			| 15-a-3 | a. Line integrals - (i) By parameterizing curves | 0.398 | 0.417 | 4.170 | 10 | 0.616 | 0.218 | Let $C$ be the upper half of the curve $(x^2+y^2)^2=x^2-y^2$. Evaluate $\displaystyle\int_{C}y\,ds$.圖
 | 
		
			| 15-a-4 | a. Line integrals - (i) By parameterizing curves | 0.432 | 0.746 | 11.570 | 15 | 0.962 | 0.531 | 
				Find a scalar function $f(x,y,z)$ such that $\nabla f=\sin y\,{\bf i}+x\cos y\,{\bf j}-\sin z\,{\bf k}$.Find the line integral $\displaystyle\int_C\sin y\,dx+x\cos y\,dy+(y-\sin z)dz$, where $C:\ {\bf r}(t)=\left\langle t,\frac{\pi}{2}\cos t,\frac{\pi}{2}\sin t\right\rangle$, $0\leq t\leq \pi$. | 
		
			| 15-a-5 | a. Line integrals - (i) By parameterizing curves | 0.605 | 0.439 | 6.280 | 16 | 0.741 | 0.136 | Let $S$ be a toroidal shell (not a solid torus!) obtained by rotating about the $z$-axis the circle $C$ in the plane $y=0$ of radius $a$ centred at $(b,0,0)$, where $0 < a < b\:$. It can be parametrized by$ \textbf r(\theta, \alpha) = \left\langle\:(b +a\cos\alpha) \cos\theta , (b +a\cos\alpha) \sin\theta , a\sin\alpha \right\rangle$,
 $0 \leq \theta, \alpha \leq 2\pi$.
 Suppose that the temperature at each point of the surface is proportional to its distance from the plane $z=0\:$, i.e., the temperature $T(x,y,z)$ for every point $(x,y,z) \in S$ is given by $T(x,y,z) = \lambda |z|$ for some constant $\lambda >0$.
 圖
 
				Find the average temperature along the circle $C$ which is $\frac{\displaystyle\int_C T \ ds}{\displaystyle\int_C 1\ ds}$.Find the area of $S$, $A(S)$. Then evaluate the average temperature of the toroidal shell $S$ which is $\displaystyle\frac{\iint_S T\ dS}{A(S)}$. | 
		
			| 15-a-6 | a. Line integrals - (i) By parameterizing curves | 0.502 | 0.361 | 3.720 | 10 | 0.612 | 0.109 | Let $C$ be the curve of intersection of $x^2+y^2+z^2=4$, $x^2+y^2=2x$, $z\geq 0$, oriented $C$ to be counterclockwise when viewed from above. Evaluate $\displaystyle\int_Cy^2dx+z^2dy+x^2dz$. | 
		
			| 15-a-7 | a. Line integrals - (i) By parameterizing curves | 0.642 | 0.573 | 7.540 | 13 | 0.894 | 0.252 | Compute the line integral \[ \int_Cz^2\,\mathrm{d}x-x^2\,\mathrm{d}y+2yz\,\mathrm{d}z, \] where $C$ is the curve of intersection of the upper half sphere $z=\sqrt{4-x^2-y^2}$ and the circular cylinder $x^2+y^2=2y$, orientated counterclockwise viewed from the above, as Figure.圖
 | 
		
			| 15-a-8 | a. Line integrals - (i) By parameterizing curves | 0.654 | 0.442 | 4.720 | 12 | 0.769 | 0.115 | Let $C$ be the polar curve defined by $r^2=\cos 2\theta$ in the first quadrant. Evaluate $\displaystyle{\int_Cy\ ds}$.圖
 | 
		
			| 15-a-9 | a. Line integrals - (i) By parameterizing curves | 0.543 | 0.451 | 4.250 | 9 | 0.722 | 0.179 | Let $C$ be the closed curve formed by $y=x^2$, where $0\leq x\leq 1$, and $x=y^2$, where $0\leq y\leq 1$. Given $C$ the counterclockwise orientation, evaluate $\displaystyle\int_C xy\,ds$ and $\displaystyle\oint_C xy \,dx$. | 
		
			| 15-a-10 | a. Line integrals - (ii) By the fundamental theorem for line integrals (conservative vector fields) | 0.475 | 0.699 | 10.968 | 15 | 0.937 | 0.462 | For $y>0$, let \begin{align*} \textbf{F}(x,y,z)&=(e^{-x}\ln y-z)\textbf{i}+\left(2yz-e^{-x}/y\right)\textbf{j}+(y^2-x)\textbf{k}\mbox{ and}\\ \textbf{G}(x,y,z)&=e^{-x}\ln y\,\textbf{i}+\left(2yz-e^{-x}/y\right)\textbf{j}-x~\textbf{k}. \end{align*} 
				Show that the vector function $\textbf{F}$ is a gradient on $\{(x,y,z)|~y>0\}$ by finding an $f$ such that $\nabla f=\textbf{F}$.Evaluate the line integral $\int_C\textbf{G}(\textbf{r})\cdot \textbf{dr}$, where $C$ is the curve given by $\textbf{r}(u)=(1+u^2)\textbf{i}+e^u\textbf{j}+(1+u)\textbf{k}$, $u\in[0,1]$. | 
		
			| 15-a-11 | a. Line integrals - (ii) By the fundamental theorem for line integrals (conservative vector fields) | 0.548 | 0.355 | 4.185 | 12 | 0.629 | 0.081 | Find the line integral \[ \int_{{\cal C}}\,(2 x \sin(\pi y) - e^{z})\,dx + (\pi x^2 \cos(\pi y) - 3 e^{z})\,dy - x e^z\,dz\] $\mbox{along the curve}\;\;{\cal C} = \left\{(x, y, z) | z = \ln \sqrt{1 + x^2},\; y = x,\; 0 \le x \le 1 \right\}. $ | 
		
			| 15-a-12 | a. Line integrals - (ii) By the fundamental theorem for line integrals (conservative vector fields) | 0.454 | 0.750 | 8.110 | 10 | 0.976 | 0.523 | Evaluate $\displaystyle\int_C(yze^{xyz}+x)\,dx+xze^{xyz}\,dy+xye^{xyz}\,dz$, where $C$ is the curve ${\bf r}(t)=\left\langle t,\,\cos(\pi t),\,\tan^{-1}t\right\rangle$, $0\leq t\leq 1$. | 
		
			| 15-a-13 | a. Line integrals - (ii) By the fundamental theorem for line integrals (conservative vector fields) | 0.490 | 0.584 | 8.450 | 14 | 0.829 | 0.338 | Consider the vector field$\textbf F (x,y)=P(x,y)\,\textbf i +Q(x,y)\,\textbf j=\frac{x+3y}{x^2+y^2}\,\textbf i +\frac{-3x+y}{x^2+y^2}\,\textbf j $.
 
				Show that $\textbf F$ is conservative on the half plane $D=\{(x,y)|x<0\}$.Compute $\displaystyle\int_{C_0}\textbf F \cdot d\textbf r$, where $C_0$ is the unit circle $x^2+y^2=1$ oriented counterclockwise. Is $\textbf F$ conservative on $\mathbb{R}^2\backslash \{(0,0)\}$?Compute $\displaystyle\int_C \textbf F\cdot d\textbf r$, where $C$ is a piecewise smooth path consisting of the ellipse $\frac{x^2}{4}+y^2=1$ and the triangle formed by the lines $x=-3$, $x+y=-2$, and $y-x=2$. The orientation of $C$ is shown in the figure.圖
 | 
		
			| 15-a-14 | a. Line integrals - (ii) By the fundamental theorem for line integrals (conservative vector fields) | 0.295 | 0.238 | 4.740 | 20 | 0.385 | 0.091 | Let $\textbf{F}=\frac{(x-y)^2y}{(x^2+y^2)^2}\textbf{i} +\frac{-(x-y)^2x}{(x^2+y^2)^2}\textbf{j}$. 
				Verify that $\textbf F$ is conservative on the right half plane $x>0$. Find a potential function of $\textbf F$ on the right half plane.Evaluate $\displaystyle\oint_{C_1}\textbf{F}\cdot d\textbf{r}$ where $C_1$ is the ellipse $\frac{x^2}{4}+(y-2)^2=1$.Evaluate $\displaystyle\int_{C_2}\textbf{F}\cdot d\textbf{r}$ where $C_2$ is the curve with polar equation $r=e^{|\theta|}$, $-\frac{9\pi}{4}\leq\theta\leq\frac{9\pi}{4}$.圖
 | 
		
			| 15-a-15 | a. Line integrals - (ii) By the fundamental theorem for line integrals (conservative vector fields) | 0.454 | 0.752 | 9.800 | 12 | 0.979 | 0.524 | 
				Find the potential function of the vector field \[ \mathbf{F}(x,y,z)=\frac{2x(1-\mathrm{e}^y)}{(1+x^2)^2}\,\mathbf{i}+\left(\frac{\mathrm{e}^y}{1+x^2}+(y+1)\mathrm{e}^y\right)\,\mathbf{j}+\mathbf{k}. \]Evaluate $\displaystyle\int_C\mathbf{F}\cdot d\mathbf{r}$, where $C$ is any curve from $(0,0,0)$ to $(1,1,1)$. | 
		
			| 15-a-16 | a. Line integrals - (ii) By the fundamental theorem for line integrals (conservative vector fields) | 0.577 | 0.560 | 10.180 | 18 | 0.848 | 0.271 | Consider the vector field defined by $\textbf{G}(x,y)=(3x^2+y)\textbf{i}+(2x^2y-x)\textbf{j}$, $(x,y)\in\mathbb{R}^2$. 
				Is $\textbf{G}(x,y)$ conservative?Find a function $\mu(x)$ with $\mu(1)=1$ such that $\mu(x)\textbf{G}(x,y)$ is conservative.Set $\textbf{F}(x,y)$ to be the conservative vector field in (b). Find the potential function $f(x,y)$ of $\textbf{F}$ with $f(1,0)=3$.Let $C$ be the curve with defining equation in polar coordinate given by \[r=\sec\theta+\frac{\sqrt{2}}{\pi}\theta,\ \theta\in\left[0,\frac{\pi}{4}\right].\] Evaluate the integral $\displaystyle\int_C\textbf{F}\cdot d\textbf{r}$. | 
		
			| 15-a-17 | a. Line integrals - (ii) By the fundamental theorem for line integrals (conservative vector fields) | 0.456 | 0.548 | 6.870 | 12 | 0.776 | 0.320 | Let $\textbf{F}(x,y)=\frac{y^3}{(x^2+y^2)^2}\textbf{i}-\frac{xy^2}{(x^2+y^2)^2}\textbf{j}$. 
				Show that $\textbf{F}$ is conservative on the domain $D=R^2-\{(0,y)| y\leq 0\}$.Compute $\displaystyle\int_C\textbf{F}\cdot d\textbf{r}$, where $C$ is the part of the polar curve $r=1+\sin\theta$, $0\leq \theta\leq \pi$. | 
		
			| 15-a-18 | a. Line integrals - (ii) By the fundamental theorem for line integrals (conservative vector fields) | 0.324 | 0.828 | 11.390 | 13 | 0.990 | 0.666 | 
				Find the value $\lambda$ such that the vector field$\textbf{F}=(x^2+4xy^\lambda)\textbf{i}+(6x^{\lambda-1}y^2-2y)\textbf{j}$ is conservative.
For this $\lambda$, find a potential function of $\textbf{F}$.For $\lambda$ in (a), evaluate $\displaystyle\int_C\textbf{F}\cdot \mathrm{d}\textbf{r}$, where $C$ is the path described by $\frac{x^2}{9}+(y-1)^2=1$ counterclockwise from $(0,0)$ to $(3,1)$. | 
		
			| 15-a-19 | a. Line integrals - (ii) By the fundamental theorem for line integrals (conservative vector fields) | 0.468 | 0.673 | 8.220 | 12 | 0.907 | 0.438 | Let $\displaystyle\mathbf{F}(x,y)=\frac{x+y}{x^2+y^2}\,\mathbf{i}+\frac{-x+y}{x^2+y^2}\,\mathbf{j}$. 
				Is $\mathbf{F}(x,y)$ conservative on the half plane $D=\{(x,y)|x>0\}$?Evaluate the line integral $\displaystyle\int_{C_1}\mathbf{F}\cdot\mathrm{d}\mathbf{r}$, where $C_1$ is the part of the parabola $y=(x-2)^2$ from $(2,0)$ to $(4,4)$.Evaluate the line integral $\displaystyle\int_{C_2}\mathbf{F}\cdot\mathrm{d}\mathbf{r}$, where $C_2$ is the unit circle $x^2+y^2=1$ oriented counterclockwise. Is $\mathbf{F}(x,y)$ conservative on $\mathbb{R}^2-\{(0,0)\}$? | 
		
			| 15-a-20 | a. Line integrals - (ii) By the fundamental theorem for line integrals (conservative vector fields) | 0.163 | 0.889 | 10.120 | 11 | 0.970 | 0.807 | Let $\textbf{F}=z\cos(xz)\textbf{i}+ze^{yz}\textbf{j} +(x\cos(xz)+ye^{yz})\textbf{k}$. 
				Find a scalar function $\varphi(x,y,z)$ such that $\nabla \varphi=\textbf{F}$.Evaluate $\displaystyle\int_C\textbf{F}\cdot d\textbf{r}$, where $C$ is the curve ${\bf r}(t)=(\cos (\pi t^2), \ln (t+1) ,\tan^{-1}(t)), 0\leq t\leq 1.$ | 
		
			| 15-a-21 | a. Line integrals - (ii) By the fundamental theorem for line integrals (conservative vector fields) | 0.573 | 0.539 | 8.800 | 16 | 0.825 | 0.252 | Let $\textbf F(x,y)=P(x,y)\ \textbf i+Q(x,y)\ \textbf j$, where $P(x,y)=\frac{xy}{\sqrt{x^2+y^2}}$, $Q(x,y)=\frac{x^2+2y^2}{\sqrt{x^2+y^2}}$. 
				Compute $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$. Is $\textbf F$ conservative on the right half plane $D=\{(x,y)|x>0\}$? Justify your answer.Compute $\displaystyle\int_C\textbf F\cdot d\textbf r $, where $C$ is any curve in the right half plane $D$ from $(1,1)$ to $(2,2)$.Compute $\displaystyle\oint_C\textbf F\cdot d\textbf r$, where $C$ is a positively oriented circle centered at $(0,0)$ with radius $r>0$.Compute $\displaystyle\oint_C \textbf F{\bf\cdot} d\textbf r $, where $C$ is any positively oriented simple closed curve, $C\subset \mathbb{R}^2\backslash\{(0,0)\}$.(Hint: You need to discuss whether $C$ encloses $(0,0)$ or not.)
Is $\textbf F$ conservative on $\mathbb{R}^2\backslash\{(0,0)\}$? Justify your answer. | 
		
			| 15-a-22 | a. Line integrals - (iii) By Green's theorem | 0.521 | 0.718 | 11.836 | 15 | 0.978 | 0.458 | Let $C$ be a piecewise-smooth Jordan curve that does not pass through the origin.Evaluate $\displaystyle\oint_C \frac{-y^5}{(x^2+y^2)^3} dx + \frac{xy^4}{(x^2+y^2)^3} dy $ for the following two cases, where $C$ is traversed in the counterclockwise direction.
 
				$C$ does not enclose the origin.$C$ does enclose the origin. | 
		
			| 15-a--23 | a. Line integrals - (iii) By Green's theorem | 0.449 | 0.676 | 7.173 | 10 | 0.901 | 0.452 | Evaluate $\displaystyle\oint_{r=1-\cos\theta}(x^2y+y)dx-(xy^2-x)dy$ with the curve oriented counterclockwise. | 
		
			| 15-a-24 | a. Line integrals - (iii) By Green's theorem | 0.672 | 0.502 | 5.510 | 10 | 0.838 | 0.167 | Let the vector field ${\bf F}(x,y)=\frac{x^2y}{(x^2+y^2)^2}\,{\bf i}-\frac{x^3}{(x^2+y^2)^2}\,{\bf j}$, $C_1$ be the curve $|x|+|y|=1$ and $C_2$ be the curve $x^2+(y-2)^2=1$. Find $\displaystyle\oint_{C_1}{\bf F}\cdot d{\bf r}$ and $\displaystyle\oint_{C_2}{\bf F}\cdot d{\bf r}$. | 
		
			| 15-a-25 | a. Line integrals - (iii) By Green's theorem | 0.272 | 0.860 | 13.650 | 15 | 0.996 | 0.724 | Let $D$ be the bounded region in the first quadrant enclosed by $y=0$, $x=1$, and $y=\sqrt{x}$ with positively oriented boundary $C$ (i.e. counter clockwise.). Evaluate\begin{align*}\oint_{C}\left[9x^2y(x^3+1)^{\frac{1}{2}}-xy^2(x^3+1)^{\frac{3}{2}}\right]dx \\ +\left[2(x^3+1)^{\frac{3}{2}}+2(y^3+1)^{\frac{3}{2}}\right]dy.\end{align*}
 | 
		
			| 15-a-26 | a. Line integrals - (iii) By Green's theorem | 0.586 | 0.602 | 8.790 | 14 | 0.894 | 0.309 | 
				Evaluate the line integral $\displaystyle I_1=\int_{C_1}(-\sin x+\mathrm{e}^y)\,\mathrm{d}x+(2x+x\mathrm{e}^y)\,\mathrm{d}y$, where $C_1$ is the line segment from $(0,0)$ to $(2,2)$.圖
Find the area of the region between $C_1$ and $C_2$, where $C_2$ is a curve from $(0,0)$ to $(2,2)$ parameterized by \[ \mathbf{r}(t)=\frac2\pi(t-\sin t)\,\mathbf{i}+(1-\cos t)\,\mathbf{j},\quad 0\leq t\leq \pi. \] (c) Evaluate the line integral $\displaystyle I_2=\int_{C_2}(-\sin x+\mathrm{e}^y)\,\mathrm{d}x+(2x+x\mathrm{e}^y)\,\mathrm{d}y$. | 
		
			| 15-a-27 | a. Line integrals - (iii) By Green's theorem | 0.430 | 0.544 | 6.420 | 12 | 0.759 | 0.329 | Determine whether the statement is true of false. Fill $\textbf T$ (true) or $\textbf F$ (false) in the blanks. If the statement is false, write down a reason, or give a correct statement, or find a counterexample. 
				Let $\mathbf{F}(x,y)=P(x,y)\,\mathbf{i}+Q(x,y)\,\mathbf{j}$. If $\displaystyle\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ throughout the domain of $\mathbf{F}(x,y)$, then the line integrals of $\mathbf{F}(x,y)$ is independent of path on the domain.Let $f(x,y)$ be a smooth function. Suppose that a smooth curve $C$ gives an orientation from initial point $p$ to terminal point $q$. If $-C$ denotes the curve consisting of the same points as $C$ but with the opposite orientation (from initial point $q$ to terminal point $p$), then $\displaystyle\int_{-C}f(x,y)\,\mathrm{d}s=-\int_Cf(x,y)\,\mathrm{d}s$.For a unit circle $C: x^2+y^2=1$, we have $\displaystyle\oint_Cx\,\mathrm{d}y=0$ by symmetry.Any smooth function $f(x,y,z)$ satisfies $\mathrm{div}(\nabla f)=0$. | 
		
			| 15-a-28 | a. Line integrals - (iii) By Green's theorem | 0.623 | 0.620 | 7.700 | 12 | 0.931 | 0.308 | Find the value $k\in\mathbb{R}$ such that the line integral \[ I(k)=\int_{C_k}(1+y^2+y\,\mathrm{e}^{xy})\,\mathrm{d}x+(2x+y+x\,\mathrm{e}^{xy})\,\mathrm{d}y \] achieves the minimum value, where $C_k$ is the curve $y=k\sin x$ from $(0,0)$ to $(\pi,0)$. | 
		
			| 15-a-29 | a. Line integrals - (iii) By Green's theorem | 0.392 | 0.738 | 9.350 | 12 | 0.934 | 0.542 | Evaluate $\displaystyle\oint_C(x^2y^2+y)dx-(2xy^3-3x)dy$, where $C$ is described by the polar equation $r=1-\cos\theta$ oriented counterclockwise. | 
		
			| 15-a-30 | a. Line integrals - (iii) By Green's theorem | 0.506 | 0.626 | 7.820 | 12 | 0.879 | 0.373 | Evaluate the line integral $\displaystyle\int_C\sin \pi x\ dx+(e^{y^2}+x^2)dy$ along the following choices of the curve $C$.圖
 
				$C=C_0$ is the line segment from $(-1,0)$ to $(0,0)$.$C=C_1\cup C_2$, where $C_1$ is the polar curve $r=2\sin\theta$, $0\leq\theta\leq\frac{\pi}{2}$ and $C_2$ is the cardioid $r=1+\sin\theta$, $\frac{\pi}{2}\leq\theta\leq \pi$. | 
		
			| 15-a-31 | a. Line integrals - (iii) By Green's theorem | 0.548 | 0.567 | 8.640 | 15 | 0.841 | 0.293 | Evaluate the line integral $\displaystyle\int_C\left(-x-y+\frac{y^2}{2}\right)dx+(x+2xy+3)dy$, where $C$ consists of the arc $C_1$ of the quarter circle $x^2+y^2=1, x\geq 0, y\leq 0$, from $(0,-1)$ to $(1,0)$ followed by the arc $C_2$ of the quarter ellipse $4x^2+y^2=4$, $x\geq 0$, $y\geq 0$, from $(1,0)$ to $(0,2)$. (Hint: You may use Green's Theorem, but note that $C$ is not closed.) | 
		
			| 15-b-1 | b. Surface integrals  | 0.660 | 0.544 | 8.670 | 15 | 0.874 | 0.214 | 
				Find the area of the part of the sphere $x^2+y^2+z^2=2$ that lies above the plane $z=1$.Let the canopy be the part of the upper hemisphere $x^2+y^2+z^2=2$ that lies above the square $-1\leq x\leq 1$, $-1\leq y\leq 1$, and let $C$ be the boundary of canopy oriented counterclockwise when viewed from above. Evaluate $\displaystyle\oint_C{\bf F}\cdot d{\bf r}$, where ${\bf F}(x,y,z)=(xz+\tan x^2)\,{\bf i}+(\sin x\cos y+e^{y^2})\,{\bf j}+\left(-\frac{y^2}{2}+\sin\sqrt{z}\right)\,{\bf k}$.圖
 | 
		
			| 15-b-2 | b. Surface integrals - (i) By parameterizing surfaces | 0.616 | 0.538 | 8.250 | 15 | 0.846 | 0.230 | Let $S$ be the triangular region with vertices $(0,0,0)$, $(a,0,0)$, and $(a,a,a)$, $a>0$, with upward unit normal $\textbf{n}$, and $C$ be the positively oriented boundary of $S$. Let \[\textbf{F}=\left(y-z\cos(x^2)\right)\textbf{i} +\left(2x-\sin(z^2)\right)\textbf{j} +\left(3z-\tan(y^2)\right)\textbf{k}.\] 
				Find a parametrization of $S$ and find the upward unit normal $\textbf{n}$. (Hint. Consider the projection of $S$ to $xy$-plane.)Evaluate $\nabla\times\textbf{F}$.Evaluate $\displaystyle\oint_{C}\textbf{F}\cdot \textbf{dr}$. | 
		
			| 15-b-3 | b. Surface integrals - (i) By parameterizing surfaces | 0.726 | 0.512 | 7.181 | 15 | 0.875 | 0.149 | Let $S_1$ be the surface $\{(x,y,z)|~z=x^2+y^2,~z\leq y\}$, $S_2$ be the surface $\{(x,y,z)|~z=y,~x^2+y^2\leq z\}$, and $\textbf{V}(x,y,z)=-y\textbf{i}+x\textbf{j}+z\textbf{k}$. 
				Compute directly the downward flux of $\textbf{V}$ across $S_1$.Use the divergence theorem to compute the upward flux of $\textbf{V}$ across $S_2$. | 
		
			| 15-b-4 | b. Surface integrals - (i) By parameterizing surfaces | 0.592 | 0.663 | 8.576 | 12 | 0.959 | 0.367 | Evaluate the surface integral $\displaystyle\iint\limits_{S}(x^2+y^2)zd\sigma$, where $S$ is the part of the plane $z=4+x+y$ that lies inside the cylinder $x^2+y^2=4$. | 
		
			| 15-b-5 | b. Surface integrals - (i) By parameterizing surfaces | 0.492 | 0.315 | 4.070 | 15 | 0.561 | 0.069 | Let ${\bf F}(x,y,z)=\frac{1}{\left(x^2+y^2+z^2\right)^{3/2}}(x\,{\bf i}+y\,{\bf j}+z\,{\bf k})$. 
				Let $S_1$ be the part of the sphere $x^2+y^2+z^2=1$ in the first octant bounded by the planes $y=0$, $y=\sqrt{3}x$ and $z=0$, oriented upward. Find the flux of ${\bf F}$ across $S_1$.Let $S_2$ be the part of the surface $\frac{x^2}{4}+\frac{y^2}{9}+\frac{z^2}{16}=1$ in the first octant bounded by the planes $y=0$, $y=\sqrt{3}x$ and $z=0$, oriented upward. Find the flux of ${\bf F}$ across $S_2$.圖
 | 
		
			| 15-b-6 | b. Surface integrals - (i) By parameterizing surfaces | 0.493 | 0.720 | 7.620 | 10 | 0.966 | 0.473 | Find the area of the surface $\{ x^2 + y^2 + z^2 = 4,\,1 \le x^2+y^2 \le 3,\,z\geq 0 \}$. | 
		
			| 15-b-7 | b. Surface integrals - (i) By parameterizing surfaces | 0.605 | 0.439 | 6.280 | 16 | 0.741 | 0.136 | Let $S$ be a toroidal shell (not a solid torus!) obtained by rotating about the $z$-axis the circle $C$ in the plane $y=0$ of radius $a$ centred at $(b,0,0)$, where $0 < a < b\:$. It can be parametrized by$ \textbf r(\theta, \alpha) = \left\langle\:(b +a\cos\alpha) \cos\theta , (b +a\cos\alpha) \sin\theta , a\sin\alpha \right\rangle$,
 $0 \leq \theta, \alpha \leq 2\pi$.
 Suppose that the temperature at each point of the surface is proportional to its distance from the plane $z=0\:$, i.e., the temperature $T(x,y,z)$ for every point $(x,y,z) \in S$ is given by $T(x,y,z) = \lambda |z|$ for some constant $\lambda >0$.
 圖
 
				Find the average temperature along the circle $C$ which is $\frac{\displaystyle\int_C T \ ds}{\displaystyle\int_C 1\ ds}$.Find the area of $S$, $A(S)$. Then evaluate the average temperature of the toroidal shell $S$ which is $\displaystyle\frac{\iint_S T\ dS}{A(S)}$. | 
		
			| 15-b-8 | b. Surface integrals - (i) By parameterizing surfaces | 0.726 | 0.403 | 3.670 | 10 | 0.766 | 0.040 | Let $S$ be the surface $x^2+y^2+z^2=a^2$, $x\geq 0$, $y\geq 0$, $z\geq 0$ ($a>0$), and let $C$ be the boundary of $S$. Find the centroid of $C$. | 
		
			| 15-b-9 | b. Surface integrals - (i) By parameterizing surfaces | 0.625 | 0.451 | 4.190 | 10 | 0.763 | 0.138 | Evaluate $\displaystyle\iint_SxdS$ where $S$ is the part of the cone $z=\sqrt{2(x^2+y^2)}$ that lies below the plane $z=1+x$. | 
		
			| 15-b-10 | b. Surface integrals - (i) By parameterizing surfaces | 0.621 | 0.637 | 6.980 | 10 | 0.947 | 0.326 | Evaluate the surface integral $\displaystyle\iint\limits_S(x^2+y^2)dS$, where $S$ is the surface $z=\sqrt{x^2+y^2}$ with $0\leq z\leq 1$. | 
		
			| 15-b-11 | b. Surface integrals - (i) By parameterizing surfaces | 0.677 | 0.393 | 3.470 | 10 | 0.732 | 0.054 | Let $S$ be a cone has radius $a$ and height $h$ without base. Evaluate the integral of the distance of the points to its axis over $S$. | 
		
			| 15-b-12 | b. Surface integrals - (i) By parameterizing surfaces | 0.583 | 0.499 | 4.890 | 10 | 0.790 | 0.207 | Compute the surface integral \[ \iint_S xz\,\mathrm{d}S, \] where $S$ is the part of the cone $z=\sqrt{x^2+y^2}$ inside the circular cylinder $x^2+y^2=2x$. | 
		
			| 15-b-13 | b. Surface integrals - (i) By parameterizing surfaces | 0.623 | 0.646 | 8.190 | 12 | 0.958 | 0.335 | Evaluate the surface integral $\displaystyle\iint_S\sqrt{x^2+y^2}\,\mathrm{d}S$, where $S$ is the part of the surface $\displaystyle z=\tan^{-1}\left(\frac{y}x\right)$ inside the circular cylinder $x^2+y^2=1$ and in the first octant. | 
		
			| 15-b-14 | b. Surface integrals - (i) By parameterizing surfaces | 0.573 | 0.455 | 5.600 | 12 | 0.741 | 0.169 | Find the area of the sphere $x^2+y^2+z^2=4$ lying inside the cylinder $(x-1)^2+y^2=1$. | 
		
			| 15-b-15 | b. Surface integrals - (i) By parameterizing surfaces | 0.480 | 0.563 | 6.060 | 10 | 0.803 | 0.323 | Find the area of the part of the surface $x^2+y^2+z^2=1$ that lies within the cylinder $x^2+y^2+x=0$ and above $z=0$. | 
		
			| 15-b-16 | b. Surface integrals - (ii) By Stokes' theorem | 0.616 | 0.538 | 8.250 | 15 | 0.846 | 0.230 | Let $S$ be the triangular region with vertices $(0,0,0)$, $(a,0,0)$, and $(a,a,a)$, $a>0$, with upward unit normal $\textbf{n}$, and $C$ be the positively oriented boundary of $S$. Let \[\textbf{F}=\left(y-z\cos(x^2)\right)\textbf{i} +\left(2x-\sin(z^2)\right)\textbf{j} +\left(3z-\tan(y^2)\right)\textbf{k}.\] 
				Find a parametrization of $S$ and find the upward unit normal $\textbf{n}$. (Hint. Consider the projection of $S$ to $xy$-plane.)Evaluate $\nabla\times\textbf{F}$.Evaluate $\displaystyle\oint_{C}\textbf{F}\cdot \textbf{dr}$. | 
		
			| 15-b-17 | b. Surface integrals - (ii) By Stokes' theorem | 0.654 | 0.606 | 7.711 | 12 | 0.933 | 0.279 | Let $\textbf{V}=(2x-y)\textbf{i}+(2y+z)\textbf{j}+x^2y^2z^2\textbf{k}$ and let $S$ be the upper half of the ellipsoid $\frac{x^2}{4}+\frac{y^2}{9}+\frac{z^2}{25}=1$. Find the flux of curl$\textbf{V}$ in the direction of the upper unit normal $\textbf{n}$ (pointing away from the origin.). | 
		
			| 15-b-18 | b. Surface integrals - (ii) By Stokes' theorem | 0.727 | 0.603 | 9.790 | 15 | 0.967 | 0.239 | Let $S$ be the part of the sphere $x^2+y^2+(z-2)^2=8$ that lies above the $xy$-plane and that has outward normal (i.e. with ${\bf k}$-component $\geq 0$). Let ${\bf F}(x,y,z)=\left\langle -y^3\cos xz,\,x^3e^{yz},\,-e^{xyz}\right\rangle$. Find $\displaystyle\iint_S\mbox{curl}\,{\bf F}\cdot d{\bf S}$. | 
		
			| 15-b-19 | b. Surface integrals - (ii) By Stokes' theorem | 0.613 | 0.554 | 6.810 | 12 | 0.860 | 0.247 | Let $f(x,y,z)=x + x y + y z + z x$, and $g(x,y,z)=x+2y+3z$. 
				Show by direct calculation that $\mbox{curl}\,(f\,\nabla g)\,=\,\nabla f\,\times\,\nabla g$.Find $\displaystyle\iint_{S}\,(\nabla f\,\times\,\nabla g)\cdot\,\textbf n\,dS$ where $S$ is the surface $z=\sqrt{4 - x^2 - y^2}$, and $\textbf n$ is the unit normal on $S$ pointing upwards. | 
		
			| 15-b-20 | b. Surface integrals - (ii) By Stokes' theorem | 0.074 | 0.424 | 2.050 | 5 | 0.461 | 0.387 | Determine the statement is true ($\bigcirc$) or false ($\times$). 
				If $f(x,y)$ is continuous on the rectangle $R=\{(x,y)|\ a\leq x\leq b,\ c\leq y\leq d\}$ except for finitely many points, then $f(x,y)$ is integrable on $R$ and \[\iint_Rf(x,y)dA=\int_c^d\int_a^bf(x,y)dxdy =\int_a^b\int_c^df(x,y)dydx.\]If $\textbf{F}(x,y)=P(x,y)\textbf{i}+Q(x,y)\textbf{j}$ and $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ on an open connected region $D$, then $\textbf{F}$ is conservative on $D$.If curl$\textbf{F}=$curl$\textbf{G}$ on $\mathbb{R}^3$, then $\displaystyle\int_C\textbf{F}\cdot d\textbf{r}=\int_C\textbf{G}\cdot d\textbf{r}$ for all closed path $C$.If $\textbf{F}$ and $\textbf{G}$ are vector fields and curl$\textbf{F}=$curl$\textbf{G}$, div$\textbf{F}=$div$\textbf{G}$, then $\textbf{F}-\textbf{G}$ is a constant vector field.Let $B$ be a rigid body rotating about the $z$-axis with constant angular speed $\omega$. If $\textbf{v}(x,y,z)$ is the velocity at point $(x,y,z)\in B$, then curl$\textbf{v}$ is parallel to $\textbf{k}$. | 
		
			| 15-b-21 | b. Surface integrals - (ii) By Stokes' theorem | 0.585 | 0.372 | 3.750 | 10 | 0.664 | 0.079 | Evaluate $\displaystyle\int_C(y+\sin^3x)dx+(z^2+\cos^4y)dy +(x^3+\tan^5z)dz$ where $C$ is the curve $\textbf{r}(t)=\sin t\ \textbf{i}+\cos t\ \textbf{j}+\sin 2t\ \textbf{k}$, $0\leq t\leq 2\pi$. (Hint: $C$ lies on the surface $z=2xy$.) | 
		
			| 15-b-22 | b. Surface integrals - (ii) By Stokes' theorem | 0.443 | 0.411 | 4.250 | 10 | 0.633 | 0.190 | Let $C$ be the curve formed by the intersection of the plane $z=x$ and the surface $z=x^2+y^2$. $C$ is oriented counterclockwise when viewed from above. Evaluate $\displaystyle\oint_C(xyz+\tan^{-1}x)dx+(x^2+\sinh y)dy +(xz+\ln z)dz$. | 
		
			| 15-b-23 | b. Surface integrals - (ii) By Stokes' theorem | 0.469 | 0.722 | 11.680 | 15 | 0.957 | 0.488 | 
				Find curl$\textbf{F}$, where $\textbf{F}(x,y,z)=(y^2-z^2)\textbf{i} +(z^2-x^2)\textbf{j}+(x^2-y^2)\textbf{k}$.Compute the line integral \[ \oint_C(y^2-z^2)\,\mathrm{d}x+(z^2-x^2)\,\mathrm{d}y+(x^2-y^2)\,\mathrm{d}z, \] where $C$ is the hexagon which is the boundary of the intersection of the plane $x+y+z=\frac32$ and the unit cube $B=\{(x,y,z)|0\leq x\leq 1,0\leq y\leq 1,0\leq z\leq 1\}$, oriented as pictured.圖
 | 
		
			| 15-b-24 | b. Surface integrals - (ii) By Stokes' theorem | 0.642 | 0.573 | 7.540 | 13 | 0.894 | 0.252 | Compute the line integral \[ \int_Cz^2\,\mathrm{d}x-x^2\,\mathrm{d}y+2yz\,\mathrm{d}z, \] where $C$ is the curve of intersection of the upper half sphere $z=\sqrt{4-x^2-y^2}$ and the circular cylinder $x^2+y^2=2y$, orientated counterclockwise viewed from the above, as Figure.圖
 | 
		
			| 15-b-25 | b. Surface integrals - (ii) By Stokes' theorem | 0.435 | 0.530 | 7.290 | 14 | 0.747 | 0.312 | Compute $\displaystyle\iint_S\text{curl}\textbf{F}\cdot\text{d}\textbf{S}$, where ${\bf F}=e^{xz} {\bf i}+(x^2+z^2){\bf j}+(y+\cos z){\bf k}$ and where $S=\left\{(x,y,z)\Big|\frac{x^2}{4}+\frac{y^2}{9}+z^2=1\ \text{and }x+2z\geq 0\right\}$ oriented so that the boundary is counterclockwise when viewed from above.圖
 | 
		
			| 15-b-26 | b. Surface integrals - (ii) By Stokes' theorem | 0.468 | 0.444 | 6.260 | 14 | 0.678 | 0.210 | Let $\textbf F = (x-y) \textbf i + (y-z) \textbf j + (z-x) \textbf k$ be a vector field on $\mathbb{R}^3$. 
				Compute $\text{curl} \textbf{F}$ and div$\textbf{F}$ on $\mathbb{R}^3$.Let $S_1$ be the part of paraboloid $z=x^2+(y-1)^2$ that is below the plane $z=5-2y$ with downward orientation. Find the flux of $\textbf{F}$ across $S_1$, $\displaystyle\iint_{S_1} \textbf{F} \cdot d\textbf S$.Let $S_2$ be a surface defined by the equation $\frac{x^2}{9}+\frac{y^2}{36}-z^2=1$ for $z \in [0,1]$ and endowed with the orientation given by the downward normal vector. Find the flux of $\text{curl}\textbf{F}$ across $S_2$, $\displaystyle\iint_{S_2} \text{curl}\textbf{F} \cdot d\textbf S$.圖 1 圖 2
 | 
		
			| 15-b-27 | b. Surface integrals - (ii) By Stokes' theorem | 0.528 | 0.543 | 7.650 | 14 | 0.808 | 0.279 | Let $\textbf F = (x-y) \textbf i + (y-z) \textbf j + (z-x) \textbf k$ be a vector field on $\mathbb{R}^3$. 
				Compute $\text{curl} \textbf{F}$ on $\mathbb{R}^3$.Let $S_1$ be a parametric surface given by $\textbf r(r,\theta) = r \cos\theta \textbf i + 2r \sin\theta \textbf j + (9-r^2) \textbf k$ for $r\in [0,3]$ and $\theta \in [0,2\pi]$, which comes with the standard orientation given by the normal vector $\textbf{r}_r \times \textbf{r}_\theta$. Find the flux of $\text{curl} \textbf{F}$ across $S_1$.Let $S_2$ be a surface defined by the equation $\frac{x^2}{9}+\frac{y^2}{36}-z^2=1$ for $z \in [0,1]$ and endowed with the orientation given by the downward normal vector. Find the flux of $\text{curl}\textbf{F}$ across $S_2$.圖 1 圖 2
 | 
		
			| 15-b-28 | b. Surface integrals - (ii) By Stokes' theorem | 0.630 | 0.513 | 7.490 | 15 | 0.828 | 0.198 | Evaluate $\displaystyle\iint\limits_S \nabla\times\textbf{F}\cdot d\textbf{S}$, where $\textbf{F}(x,y,z)=(y+\sin x)\,\textbf{i}+(z^2+\cos y)\,\textbf{j}+x^3\,\textbf{k}$ and where $S$ is the surface $z=2xy$ inside the cylinder $x^2+y^2=1$ and with the normal pointing in the positive $z$-direction. | 
		
			| 15-b-29 | b. Surface integrals - (iii) By the divergence theorem | 0.726 | 0.512 | 7.181 | 15 | 0.875 | 0.149 | Let $S_1$ be the surface $\{(x,y,z)|~z=x^2+y^2,~z\leq y\}$, $S_2$ be the surface $\{(x,y,z)|~z=y,~x^2+y^2\leq z\}$, and $\textbf{V}(x,y,z)=-y\textbf{i}+x\textbf{j}+z\textbf{k}$. 
				Compute directly the downward flux of $\textbf{V}$ across $S_1$.Use the divergence theorem to compute the upward flux of $\textbf{V}$ across $S_2$. | 
		
			| 15-b-30 | b. Surface integrals - (iii) By the divergence theorem | 0.649 | 0.436 | 4.711 | 12 | 0.760 | 0.111 | Evaluate the flux of \[\textbf{V}(x,y,z)=(z^2x+y^2z)\textbf{i} +\left(\frac{1}{3}y^3+z\tan x\right)\textbf{j}+(x^2z+2y^2+1)\textbf{k}\] across $S$: the upper half sphere $x^2+y^2+z^2=1$, $z\geq 0$ with normal pointing away from the origin. | 
		
			| 15-b-31 | b. Surface integrals - (iii) By the divergence theorem | 0.492 | 0.315 | 4.070 | 15 | 0.561 | 0.069 | Let ${\bf F}(x,y,z)=\frac{1}{\left(x^2+y^2+z^2\right)^{3/2}}(x\,{\bf i}+y\,{\bf j}+z\,{\bf k})$. 
				Let $S_1$ be the part of the sphere $x^2+y^2+z^2=1$ in the first octant bounded by the planes $y=0$, $y=\sqrt{3}x$ and $z=0$, oriented upward. Find the flux of ${\bf F}$ across $S_1$.Let $S_2$ be the part of the surface $\frac{x^2}{4}+\frac{y^2}{9}+\frac{z^2}{16}=1$ in the first octant bounded by the planes $y=0$, $y=\sqrt{3}x$ and $z=0$, oriented upward. Find the flux of ${\bf F}$ across $S_2$.圖
 | 
		
			| 15-b-32 | b. Surface integrals - (iii) By the divergence theorem | 0.642 | 0.642 | 10.720 | 15 | 0.963 | 0.321 | Let ${\bf F}=\left\langle 3xy^2,\,y^3,\,e^{x^2+y^2}\right\rangle$. Let $S$ be the part of the surface $z=1-x^2-y^2$ that lies above $xy$-plane oriented upwards (that is, with normal having ${\bf k}$-component $\geq 0$). Calculate the flux $\displaystyle\int_{S}{\bf F}\cdot d{\bf S}$ of ${\bf F}$ across $S$. Note that $S$ is not closed. | 
		
			| 15-b-33 | b. Surface integrals - (iii) By the divergence theorem | 0.427 | 0.420 | 6.980 | 16 | 0.633 | 0.206 | Consider the unit disk \[ S_1 = \left\{(x,y,z) \in \mathbb{R}^3| x^2 + y^2 \leq 1 , z = 0\right\} \] and the half cone \[ S_2 = \left\{(x,y,z) \in \mathbb{R}^3| 2z = 1-\sqrt{x^2+y^2} , z \geq 0\right\} \; , \] and let $S = S_1 \cup S_2$ be the closed surface of a cone with the positive (outward) orientation. Both $S_1$ and $S_2$ are endowed with the induced orientation from $S$. 
				Let $\textbf F = \left\langle 0 , y^2 , z-2yz\right\rangle\:$. Find $\displaystyle\iint_{S} \textbf F \cdot d\textbf S \:$.Let $\textbf G =\textbf F + \textbf E$, where \[\textbf E = \left\langle\frac x{(x^2 +y^2 +z^2)^{\frac 32}} , \frac y{(x^2 +y^2 +z^2)^{\frac 32}} , \frac z{(x^2 +y^2 +z^2)^{\frac 32}} \right\rangle\:\] defined on $\mathbb{R}^3\backslash \{(0 , 0 , 0)\}$. Find $\displaystyle\iint_{S_2} \textbf G \cdot d\textbf S \:$.(Note that the integral is only over $S_2$.)
 | 
		
			| 15-b-34 | b. Surface integrals - (iii) By the divergence theorem | 0.621 | 0.602 | 9.430 | 15 | 0.913 | 0.292 | Evaluate the flux integral $\displaystyle\iint\limits_S\mathbf{F}\cdot\mathbf{n}\,dS$, where \[ \mathbf{F}(x,y,z)=(x+z)\,\mathbf{i}-(z+y)\,\mathbf{j}+(y+z^3)\,\mathbf{k}, \] and $S$ is the sphere $(x-2)^2+y^2+z^2=4$ with outward normal. | 
		
			| 15-b-35 | b. Surface integrals - (iii) By the divergence theorem | 0.430 | 0.580 | 6.250 | 10 | 0.795 | 0.365 | Let $S$ be the surface $x^2+y^2+z^2=1$, $x,y,z\geq 0$, an eighth of a sphere, and $\textbf{F}=x^2\textbf{i}+y^2\textbf{j}+z^2\textbf{k}$. Find the outward flux of $\textbf{F}$ across $S$. | 
		
			| 15-b-36 | b. Surface integrals - (iii) By the divergence theorem | 0.451 | 0.725 | 11.290 | 15 | 0.950 | 0.499 | 
				Find div$\textbf{F}$, where $\textbf{F}(x,y,z)=(y^2x+\sin z)\textbf{i}+(x^2y-\cos x)\textbf{j}+\left(\frac{1}{3}z^3+y^2\right)\textbf{k}$.Evaluate $\displaystyle\iint_S\textbf{F}\cdot d\textbf{S}$, where $S$ is the top half of the sphere $\begin{cases} x^2+y^2+z^2=1\\ z\geq 0 \end{cases}$ oriented upward. | 
		
			| 15-b-37 | b. Surface integrals - (iii) By the divergence theorem | 0.741 | 0.449 | 6.400 | 15 | 0.819 | 0.078 | Consider the vector field $\mathbf{F}(\mathbf{x})=\frac{\mathbf{x}}{|\mathbf{x}|^3}$, that is,$ \mathbf{F}(x,y,z)=\frac{x}{(x^2+y^2+z^2)^{\frac32}}\,\mathbf{i}+\frac{y}{(x^2+y^2+z^2)^{\frac32}}\,\mathbf{j}+\frac{z}{(x^2+y^2+z^2)^{\frac32}}\,\mathbf{k}.$
 
				Evaluate $\displaystyle\iint_{S_1}\mathbf{F}\cdot\mathrm{d}\mathbf{S}$, where $S_1$ is the part of the sphere $x^2+y^2+z^2=1$ inside the cone $z=\sqrt{\frac{x^2+y^2}{3}}$ with upward orientation.Evaluate $\displaystyle\iint_{S_2}\mathbf{F}\cdot\mathrm{d}\mathbf{S}$, where $S_2$ is the part of the cone $z=\sqrt{\frac{x^2+y^2}{3}}$ between planes $z=\frac12$ and $z=\frac2{\sqrt{3}}$ with outward orientation.Use the Divergence Theorem to evaluate $\displaystyle\iint_{S_3}\mathbf{F}\cdot\mathrm{d}\mathbf{S}$, where $S_3$ is the part of the paraboloid $z=\frac{6-x^2-y^2}{\sqrt{3}}$ inside the cone $z=\sqrt{\frac{x^2+y^2}{3}}$ with upward orientation. | 
		
			| 15-b-38 | b. Surface integrals - (iii) By the divergence theorem | 0.491 | 0.544 | 9.280 | 16 | 0.789 | 0.299 | Let $E$ be the space region bounded by the surfaces \begin{align*} S_1 &:= \{(x, y, z)|\ z = -1+\sqrt{x^2+y^2},\ z\leq0\},\\ S_2 &:= \{(x, y, z)|\ z = 1-x^2-y^2,\ z\geq0\},\\ \end{align*} and ${\bf V}(x, y, z) = -y{\bf i} + x{\bf j} + z{\bf k}.$圖
 
				Evaluate $\displaystyle\iiint_{\Omega}\text{div}\textbf{V}\, dV$, where $\Omega$ is the solid region enclosed by $S_1\cup S_2$.State the Divergence Theorem and evaluate the total outward flux $\displaystyle\iint_{S_1\cup S_2}\bf{V}\cdot d\bf{S}$.Compute the upward flux of $\bf{V}$ across $S_2$. | 
		
			| 15-b-39 | b. Surface integrals - (iii) By the divergence theorem | 0.211 | 0.155 | 1.400 | 10 | 0.260 | 0.049 | Suppose that $f(x,y,z)$ is a scalar function with continuous second partial derivatives. Fix a point $P_0=(x_0,y_0,z_0)$. Consider spheres $S_\rho$ centered at $P_0$ with radius $\rho>0$. 
				Parametrize $S_\rho$ with spherical coordinates $\textbf r(\varphi,\theta)=(x_0+\rho\sin\varphi\cos\theta, y_0+\rho\sin\varphi\sin\theta, z_0+\rho\cos\varphi)$, $0\leq\varphi\leq\pi$, and $0\leq \theta\leq 2\pi$. Write down the double integral in $\varphi$ and $\theta$ that represents the average value of $f$ on $S_\rho$.Let function $A(\rho)$ be the average value of $f$ on $S_\rho$, for $\rho>0$. Evaluate $A'(\rho)$ in terms of $\displaystyle\iint_{S_\rho}\nabla f\cdot d \textbf S$.If $\nabla^2f=f_{xx}+f_{yy}+f_{zz}$ is always positive, show that $A(\rho)$ is increasing. If $\nabla^2f(x,y,z)=0$ for all $(x,y,z)$, compute $A(\rho)$. | 
		
			| 15-b-40 | b. Surface integrals - (iii) By the divergence theorem | 0.501 | 0.434 | 5.020 | 12 | 0.685 | 0.184 | Let $S$ be the boundary surface of the union of the balls $x^2 + y^2 + z^2 \le 1$ and $x^2 + y^2 +(z-1)^2 \le 1$.圖 1
 
				Use spherical coordinates to parametrize $S$.Find $\displaystyle\iint_S \textbf F \cdot d\textbf S$ where $\textbf F = \textbf i + \textbf j + z^2\,\textbf k$ and $S$ is given the outward orientation. |