|
|
|
|
|
|
|
|
|
範例 10:旋轉液體的液面 |
|
|
以等角速度ω旋轉的液體,液面的形狀如何求得? |
|
|
《 解答 》 |
|
|
假設它的剖面是一條曲線,Y 軸是轉軸,旋轉面以 Y 軸為對稱軸,此時在液面會得到一正壓力
R,R可以同時提供向心力 ,,和重力
因此
其中 、
都是常數,因此該剖面的曲線是拋物線,液面形狀是該拋物線繞 Y軸的旋轉面。
|
|
|
|
|
|
About
This document |
|
|
This document
was generated using the LaTeX2HTML
translator Version 2K.1beta (1.47)
Copyright © 1993, 1994, 1995, 1996, Nikos
Drakos, Computer Based Learning Unit, University
of Leeds.
Copyright © 1997, 1998, 1999, Ross
Moore, Mathematics Department, Macquarie
University, Sydney.
The command line arguments were:
latex2html -local_icons
-white -notransparent canswer05-html.tex
The translation was initiated
by Shu Cheng-chou on 2003-05-13 |
|
|
|
|
|
|
|
|
|
|