1．Let $G(x)=\int_{1}^{e^{2 x}} f(t) d t$ where $f(x)$ is a continuous function．
（a）(5%) Compute $G^{\prime}(x)$ ．
（b）(5%) Suppose that $G(x)=\ln \left(1+x^{4}\right)$ ．Find $f\left(e^{2}\right)$ ．

Solution：

（a）$G^{\prime}(x)=f\left(e^{2 x}\right) \cdot 2 \cdot e^{2 x}$
Wrong answers with corresponding credits
$G^{\prime}(x)=f\left(e^{2 x}\right) \cdot e^{2 x} \quad 3 \mathrm{pts}$
$G^{\prime}(x)=f\left(e^{2 x}\right) e^{2 x} \cdot 2-f(1) \quad 3 \mathrm{pts}$
$G^{\prime}(x)=f\left(e^{2 x}\right) \quad 1 \mathrm{pt}$
（b）$G^{\prime}(x)=f\left(e^{2 x}\right) \cdot 2 \cdot e^{2 x}=\frac{4 x^{3}}{1+x^{4}}$
2 pts for differentiating $\ln \left(1+x^{4}\right)$ ．
Let $x=1, G^{\prime}(1)=f\left(e^{2}\right) \cdot 2 \times e^{2}=\frac{4}{2}$
1 pt for plugging in $x=1$ ．
Hence $f\left(e^{2}\right)=\frac{1}{e^{2}}$ ．
2 pts for the final answer．
2. (a) (10%) Compute $\int_{0}^{1} x^{2} \tan ^{-1} x d x$.
(b) (10%) Compute $\int_{1}^{\frac{3}{2}} \sqrt{1-(x-1)^{2}} d x$.

Solution:

(a)

$$
\begin{gathered}
\int_{0}^{1} x^{2} \tan ^{-1} x d x=\frac{1}{3} \int_{0}^{1} \tan ^{-1} x d\left(x^{3}\right)=\left[\frac{x^{3}}{3} \tan ^{-1} x\right]_{0}^{1}-\frac{1}{3} \int_{0}^{1} \frac{x^{3}}{1+x^{2}} \\
=\frac{\pi}{12}-\frac{1}{3} \int_{0}^{1}\left(x-\frac{x}{1+x^{2}}\right) d x=\frac{\pi}{12}-\frac{1}{3}\left[\frac{x^{2}}{2}-\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{1} \\
=\frac{\pi}{12}-\frac{1}{6}+\frac{\ln 2}{6}
\end{gathered}
$$

(b)

$$
\int_{1}^{3 / 2} \sqrt{1-(x-1)^{2}} d x=\int_{1}^{3 / 2} \sqrt{1-(x-1)^{2}} d(x-1)=\int_{0}^{1 / 2} \sqrt{1-u^{2}} d u
$$

Set $u=\sin \theta, d u=\cos \theta d \theta,-\pi / 2 \leq \theta \leq \pi / 2$

$$
=\int_{0}^{\pi / 6} \cos ^{2} \theta d \theta=\frac{1}{2} \int_{0}^{\pi / 6} 1+\cos (2 \theta) d \theta=\frac{\pi}{12}+\frac{\sqrt{3}}{8}
$$

Grading:

There are many ways for the student to get the correct answer. Read their work, -2% for each minor mistake. -3% for any antiderivative mistake.

If the student did not arrive at the correct answer (unfinished or major mistake), they get $+3 \%$ for the first correct integration technique and $+1 \%$ for the first correct antiderivative.
If the student mis-copied the problem, determine if the new integral is of similar difficulty. Grade normally if it is, otherwise max 5%.
3. Let $f(x)=\frac{-8 x^{2}-7 x+3}{(x+1)(x+2)\left(x^{2}+1\right)}$.
(a) (6%) Write $f(x)$ as $\frac{A}{x+1}+\frac{B}{x+2}+\frac{C x+D}{x^{2}+1}$. Find constants A, B, C, D.
(b) (8%) Compute $\int f(x) d x$.
(c) (6%) Compute $\int_{0}^{\infty} f(x) d x$.

Solution:

(a) (M1) By

$$
\frac{-8 x^{2}-7 x+3}{(x+1)(x+2)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B}{x+2}+\frac{C x+D}{x^{2}+1}
$$

we have

$$
-8 x^{2}-7 x+3=A(x+2)\left(x^{2}+1\right)+B(x+1)\left(x^{2}+1\right)+(C x+D)(x+1)(x+2)(1 \%)
$$

When $x=-1$, we have

$$
-8(-1)^{2}-7(-1)+3=A(-1+2)\left((-1)^{2}+1\right) \Rightarrow A=1(1 \%)
$$

When $x=-2$, we have

$$
-8(-2)^{2}-7(-2)+3=B(-2+1)\left((-2)^{2}+1\right) \Rightarrow B=3(1 \%) .
$$

Then

$$
\begin{aligned}
-8 x^{2}-7 x+3 & =(x+2)\left(x^{2}+1\right)+3(x+1)\left(x^{2}+1\right)+(C x+D)(x+1)(x+2) \\
& =(4+C) x^{3}+(5+3 C+D) x^{2}+(4+2 C+3 D) x+(5+2 D)(1 \%) .
\end{aligned}
$$

So we obtain $C=-4(1 \%)$ and $D=-1(1 \%)$.
(M2) By

$$
\frac{-8 x^{2}-7 x+3}{(x+1)(x+2)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B}{x+2}+\frac{C x+D}{x^{2}+1}
$$

we have

$$
\begin{aligned}
& -8 x^{2}-7 x+3=A(x+2)\left(x^{2}+1\right)+B(x+1)\left(x^{2}+1\right)+(C x+D)(x+1)(x+2) \\
= & (A+B+C) x^{3}+(2 A+B+3 C+D) x^{2}+(A+B+2 C+3 D) x+(2 A+B+2 D)(1 \%) .
\end{aligned}
$$

So

$$
A+B+C=0,2 A+B+3 C+D=-8, A+B+2 C+3 D=-7,2 A+B+2 D=3(1 \%)
$$

Then we obtain that $A=1(1 \%), B=3(1 \%), C=-4(1 \%)$ and $D=-1(1 \%)$.
(b)

$$
\begin{aligned}
\int f(x) d x & =\int \frac{1}{x+1}+\frac{3}{x+2}-\frac{4 x}{x^{2}+1}-\frac{1}{x^{2}+1} d x \\
& =\ln |x+1|(1 \%)+3 \ln |x+2|(1 \%)-2 \ln \left|x^{2}+1\right|(3 \%)-\tan ^{-1} x(2 \%)+C(1 \%)
\end{aligned}
$$

(c)

$$
\begin{aligned}
\int_{0}^{\infty} f(x) d x & =\lim _{b \rightarrow \infty} \int_{0}^{b} f(x) d x(2 \%) \\
& \left.=\lim _{b \rightarrow \infty} \ln \left|\frac{(x+1)(x+2)^{3}}{\left(x^{2}+1\right)^{2}}\right|-\tan ^{-1} x\right]_{0}^{b} \\
& =\lim _{b \rightarrow \infty} \ln \left|\frac{(b+1)(b+2)^{3}}{\left(b^{2}+1\right)^{2}}\right|-\tan ^{-1} b-\ln 8(1 \%)
\end{aligned}
$$

Since

$$
\lim _{b \rightarrow \infty} \frac{(b+1)(b+2)^{3}}{\left(b^{2}+1\right)^{2}}=1(2 \%)
$$

we have

$$
\begin{aligned}
& \int_{0}^{\infty} f(x) d x \\
= & \lim _{b \rightarrow \infty} \ln \left|\frac{(b+1)(b+2)^{3}}{\left(b^{2}+1\right)^{2}}\right|-\tan -1 b-\ln 8=-\frac{\pi}{2}-\ln 8(1 \%)
\end{aligned}
$$

4. Let X be the random variable representing the life-time(years) of a type of light bulb. Suppose that the probability density function of X is $f(x)=\left\{\begin{array}{ll}\frac{1}{5} e^{-x / 5} & \text {, if } x \geq 0 \\ 0 & , \text { if } x<0\end{array}\right.$.
(a) 7%) Compute the expected value, $E(X)=\int_{-\infty}^{\infty} x f(x) d x$.
(b) (4%) Find the probability, $\mathbf{P}(2 X+1 \leq 13)$.
(c) (5%) Let $Y=2 X+1$. Write down the distribution function of $Y, F(y)=\mathbf{P}(Y \leq y)$, as an integral. Find the probability density function of $Y, \frac{d}{d y} F(y)$.

Solution:

(a)

$$
\begin{aligned}
E(x) & =\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{\infty} x \frac{1}{5} e^{-\frac{x}{5}} d x=\lim _{t \rightarrow \infty}\left(\int_{0}^{t} \frac{x}{5} e^{-\frac{x}{5}} d x\right) \\
& =\lim _{t \rightarrow \infty}\left(-\left.x e^{-\frac{x}{5}}\right|_{0} ^{t}+\int_{0}^{t} e^{-\frac{x}{5}} d x\right) \quad 3 \text { pts for integration by parts } \\
& =\lim _{t \rightarrow \infty}\left(-t e^{-\frac{t}{5}}-\left.5 e^{-\frac{x}{5}}\right|_{0} ^{t}\right) \quad 2 \text { pts for integrating } e^{-\frac{x}{5}} \\
& =\lim _{t \rightarrow \infty}\left(\frac{-t}{e^{t / 5}}-5 e^{-\frac{t}{5}}+5\right)
\end{aligned}
$$

$\lim _{t \rightarrow \infty} \frac{t}{e^{\frac{t}{5}}} \underset{\mathrm{~L}^{\prime} \mathrm{H}}{\stackrel{\infty}{\infty}} \underset{=}{\infty}=\lim _{t \rightarrow \infty} \frac{1}{\frac{1}{5} e^{t / 5}}=0 . \lim _{t \rightarrow \infty} e^{-t / 5}=0$
Hence $E(x)=\lim _{t \rightarrow \infty}\left(\frac{-t}{e^{t / 5}}-5 e^{-t / 5}+5\right)=5 \quad 2$ pts for computing limits
(b)

$$
\begin{aligned}
\mathbf{P}(2 X+1 \leq 13) & =\mathbf{P}(X \leq 6) \quad 1 \mathrm{pt} \\
& =\int_{0}^{6} \frac{1}{5} e^{-\frac{x}{5}} d x=-\left.e^{-\frac{x}{5}}\right|_{0} ^{6} \quad 2 \mathrm{pts} \text { for } \int \frac{1}{5} e^{-\frac{x}{5}} d x=-e^{-\frac{x}{5}}+C \\
& =-e^{-6 / 5}+1 \quad 1 \mathrm{pt} \text { for the final answer }
\end{aligned}
$$

(c) $F(y)=\mathbf{P}(Y \leq y)=\mathbf{P}(2 X+1 \leq y)=\mathbf{P}\left(X \leq \frac{y-1}{2}\right)=\left\{\begin{array}{ll}\int_{0}^{\frac{y-1}{2}} \frac{1}{5} e^{-\frac{x}{5}} d x & \text {, if } y \geq 1 \\ 0 & \text {,if } y<1\end{array} \quad 2 \mathrm{pts}\right.$

Then the probability density function of Y is $\frac{d}{d y} F(y)= \begin{cases}\frac{1}{10} e^{-\frac{y-1}{10}} & , \text { if } y \geq 1 \\ 0 & , \text { if } y<1\end{cases}$
3 pts for applying F.T.C.
If Students do not discuss the case $y<1$, they have 1 pt off.
5. (a) (10%) Assume that the rate of change of the unit price of a commodity is proportional to the difference between the demand and supply, so that $\frac{d p}{d t}=k(D(p)-S(p))$, where $k>0$ is a constant. Suppose that $D(p)=60-3 p$, $S(p)=10+2 p$ and $p(0)=5$. Solve $p(t)$.
(b) (10%) Solve the differential equation $\frac{d y}{d x}+\frac{y}{x \ln x}=\frac{x}{\ln x}$ for $x \geq 3$ with $y(3)=0$.

Solution:

(a) From $\frac{d p}{d t}=k(D(p)-S(p))$, we have $\frac{d p}{d t}=k(50-5 p)$. Thus

$$
\begin{aligned}
\frac{p^{\prime}}{50-5 p} & =k \\
& \Rightarrow \int \frac{p^{\prime}}{50-5 p} d t=\int k d t \\
& \Rightarrow \frac{-1}{5} \ln |50-5 p|=k t+C \\
& \Rightarrow \ln |50-5 p|=-5 k t+C \\
& \Rightarrow 50-5 p=A e^{-5 k t} \text { where } A= \pm e^{-5 C}
\end{aligned}
$$

Since $p(0)=5,25=A$. Hence $p(t)=10-5 e^{-5 k t}$.
(1 point for $\frac{d p}{d t}=k(50-5 p)$,
2 points for $\frac{p^{\prime}}{50-5 p}=k$,
2 points for $\ln |50-5 p|=-5 k t+C$
2 points for $50-5 p=A e^{-5 k t}$
2 points for $A=25$.
1 point for $p(t)=10-5 e^{-5 k t}$.
(b) The integrator $I(x)$ is $e^{\int \frac{1}{x \ln x} d x}$. We compute

$$
\int \frac{1}{x \ln x} d x=\ln (\ln x)+C
$$

Thus $I(x)=e^{\ln (\ln x)}=\ln x$. We have that $(\ln x \cdot y)^{\prime}=x \Rightarrow \ln x \cdot y=\frac{1}{2} x^{2}+C \Rightarrow y=\frac{x^{2}}{2 \ln x}+\frac{C}{\ln x}$. Since $y(3)=0, \frac{9}{2 \ln 3}+\frac{C}{\ln 3}=0 \Rightarrow C=\frac{-9}{2}$. Hence $y=\frac{x^{2}}{2 \ln x}+\frac{-9}{2 \ln x}$.
(1 point for $I(x)=e^{\int \frac{1}{x \ln x} d x}$.
2 points for $I(x)=\ln x$.
2 points for $(\ln x \cdot y)^{\prime}=x$.
2 points for $\ln x \cdot y=\frac{1}{2} x^{2}+C$.
2 points for $C=\frac{-9}{2}$.
1 point for $y=\frac{x^{2}}{2 \ln x}+\frac{-9}{2 \ln x}$.
6. (a) (6%) Write down the Taylor series of $\int_{0}^{x} \sin \left(t^{2}\right) d t$ at $x=0$, given that $\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$.
(b) (4\%) Write down the Taylor series of $x \ln \left(1+2 x^{2}\right)$ at $x=0$, given that $\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$.
(c) (4\%) Compute $\lim _{x \rightarrow 0} \frac{x \ln \left(1+2 x^{2}\right)}{\int_{0}^{x} \sin \left(t^{2}\right) d t}$.

Solution:

(a)

$$
\begin{aligned}
\int_{0}^{x} \sin \left(t^{2}\right) d t & =\int_{0}^{x} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(t^{2}\right)^{2 n+1} d t \quad 2 \text { pts for substituting } x=t^{2} \text { in the Taylor series of } \sin x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \int_{0}^{x} t^{4 n+2} d t=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \frac{1}{4 n+3} x^{4 n+3} \\
& 4 \text { pts for term-by-term integration }
\end{aligned}
$$

(b)

$$
\begin{aligned}
x \cdot \ln \left(1+2 x^{2}\right) & =x \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}\left(2 x^{2}\right)^{n} \quad 2 \text { pts for substituting } y=2 x^{2} \text { in the Taylor series of } \ln (1+y) \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} 2^{n} x^{2 n+1} \quad 2 \text { pts for multiplying } x \text { in each term and the final answer }
\end{aligned}
$$

(c)

$$
\lim _{x \rightarrow 0} \frac{x \ln \left(1+2 x^{2}\right)}{\int_{0}^{x} \sin \left(t^{2}\right) d t}=\lim _{x \rightarrow 0} \frac{2 x^{3}-2 x^{5}+\cdots}{\frac{1}{3} x^{3}-\frac{1}{3!} \frac{1}{7} x^{7}+\cdots}=\lim _{x \rightarrow 0} \frac{2-2 x^{2}+\cdots}{\frac{1}{3}-\frac{1}{3!} \frac{1}{7} x^{4}+\cdots}=\frac{2}{\frac{1}{3}}=6
$$

2 pts for listing first few terms of Taylor series of $x \ln \left(1+2 x^{2}\right)$ and $\int_{0}^{x} \sin \left(t^{2}\right) d t$.
2 pts for computing the limit as the ratio of coefficients in front of x^{3}. If students make mistakes in (a) or (b) but they know that the limit is the ratio of x^{3} 's coefficients, they have 2 pts for part (c)

