1111模組13-16班 微積分2 期考解答和評分標準

- 1. Let $G(x) = \int_1^{e^{2x}} f(t) dt$ where f(x) is a continuous function.
 - (a) (5%) Compute G'(x).
 - (b) (5%) Suppose that $G(x) = \ln(1 + x^4)$. Find $f(e^2)$.

Solution:

(a) $G'(x) = f(e^{2x}) \cdot 2 \cdot e^{2x}$

Wrong answers with corresponding credits $G'(x) = f(e^{2x}) \cdot e^{2x}$ 3 pts $G'(x) = f(e^{2x})e^{2x} \cdot 2 - f(1)$ 3 pts $G'(x) = f(e^{2x})$ 1 pt

$$G'(x) = f(e^{2x}) \cdot e^{2x}$$
 3 pts

$$G'(x) = f(e^{2x})e^{2x} \cdot 2 - f(1)$$
 3 p

$$G'(x) = f(e^{2x})$$
 1 pt

- (b) $G'(x) = f(e^{2x}) \cdot 2 \cdot e^{2x} = \frac{4x^3}{1+x^4}$ 2 pts for differentiating $\ln(1+x^4)$.

Let
$$x = 1$$
, $G'(1) = f(e^2) \cdot 2 \times e^2 = \frac{4}{2}$
1 pt for plugging in $x = 1$.
Hence $f(e^2) = \frac{1}{e^2}$.
2 pts for the final answer.

Hence
$$f(e^2) = \frac{1}{e^2}$$
.

- 2. (a) (10%) Compute $\int_0^1 x^2 \tan^{-1} x \, dx$.
 - (b) (10%) Compute $\int_{1}^{\frac{3}{2}} \sqrt{1-(x-1)^2} dx$.

(a)

$$\int_0^1 x^2 \tan^{-1} x \, dx = \frac{1}{3} \int_0^1 \tan^{-1} x \, d(x^3) = \left[\frac{x^3}{3} \tan^{-1} x \right]_0^1 - \frac{1}{3} \int_0^1 \frac{x^3}{1 + x^2}$$
$$= \frac{\pi}{12} - \frac{1}{3} \int_0^1 \left(x - \frac{x}{1 + x^2} \right) \, dx = \frac{\pi}{12} - \frac{1}{3} \left[\frac{x^2}{2} - \frac{1}{2} \ln(1 + x^2) \right]_0^1$$
$$= \frac{\pi}{12} - \frac{1}{6} + \frac{\ln 2}{6}$$

(b)

$$\int_{1}^{3/2} \sqrt{1 - (x - 1)^2} \ dx = \int_{1}^{3/2} \sqrt{1 - (x - 1)^2} \ d(x - 1) = \int_{0}^{1/2} \sqrt{1 - u^2} \ du$$

Set $u = \sin \theta$, $du = \cos \theta \ d\theta$, $-\pi/2 \le \theta \le \pi/2$

$$= \int_0^{\pi/6} \cos^2 \theta \ d\theta = \frac{1}{2} \int_0^{\pi/6} 1 + \cos(2\theta) \ d\theta = \frac{\pi}{12} + \frac{\sqrt{3}}{8}$$

Grading:

There are many ways for the student to get the correct answer. Read their work, -2% for each minor mistake. -3% for any antiderivative mistake.

If the student did not arrive at the correct answer (unfinished or major mistake), they get +3% for the first correct integration technique and +1% for the first correct antiderivative.

If the student mis-copied the problem, determine if the new integral is of similar difficulty. Grade normally if it is, otherwise max 5%.

3. Let
$$f(x) = \frac{-8x^2 - 7x + 3}{(x+1)(x+2)(x^2+1)}$$
.

(a) (6%) Write
$$f(x)$$
 as $\frac{A}{x+1} + \frac{B}{x+2} + \frac{Cx+D}{x^2+1}$. Find constants A, B, C, D .

(b) (8%) Compute
$$\int f(x) dx$$
.

(c) (6%) Compute
$$\int_0^\infty f(x) dx$$
.

(a) (M1) By

$$\frac{-8x^2 - 7x + 3}{(x+1)(x+2)(x^2+1)} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{Cx+D}{x^2+1},$$

we have

$$-8x^{2} - 7x + 3 = A(x+2)(x^{2}+1) + B(x+1)(x^{2}+1) + (Cx+D)(x+1)(x+2) (1\%).$$

When x = -1, we have

$$-8(-1)^2 - 7(-1) + 3 = A(-1+2)((-1)^2 + 1) \implies A = 1 (1\%).$$

When x = -2, we have

$$-8(-2)^2 - 7(-2) + 3 = B(-2+1)((-2)^2 + 1) \implies B = 3 (1\%).$$

Then

$$-8x^{2} - 7x + 3 = (x+2)(x^{2}+1) + 3(x+1)(x^{2}+1) + (Cx+D)(x+1)(x+2)$$
$$= (4+C)x^{3} + (5+3C+D)x^{2} + (4+2C+3D)x + (5+2D)(1\%).$$

So we obtain C = -4 (1%) and D = -1 (1%). (M2) By

$$\frac{-8x^2 - 7x + 3}{(x+1)(x+2)(x^2+1)} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{Cx + D}{x^2 + 1},$$

we have

$$-8x^{2} - 7x + 3 = A(x+2)(x^{2}+1) + B(x+1)(x^{2}+1) + (Cx+D)(x+1)(x+2)$$

$$= (A+B+C)x^{3} + (2A+B+3C+D)x^{2} + (A+B+2C+3D)x + (2A+B+2D) (1\%).$$

So

$$A + B + C = 0$$
, $2A + B + 3C + D = -8$, $A + B + 2C + 3D = -7$, $2A + B + 2D = 3$ (1%).

Then we obtain that A = 1 (1%), B = 3 (1%), C = -4 (1%) and D = -1 (1%). (b)

$$\int f(x) dx = \int \frac{1}{x+1} + \frac{3}{x+2} - \frac{4x}{x^2+1} - \frac{1}{x^2+1} dx$$

$$= \ln|x+1| (1\%) + 3\ln|x+2| (1\%) - 2\ln|x^2+1| (3\%) - \tan^{-1} x (2\%) + C (1\%)$$

(c)

$$\int_0^\infty f(x) dx = \lim_{b \to \infty} \int_0^b f(x) dx (2\%)$$

$$= \lim_{b \to \infty} \ln \left| \frac{(x+1)(x+2)^3}{(x^2+1)^2} \right| - \tan^{-1} x \Big|_0^b$$

$$= \lim_{b \to \infty} \ln \left| \frac{(b+1)(b+2)^3}{(b^2+1)^2} \right| - \tan^{-1} b - \ln 8 (1\%)$$

Since

$$\lim_{b \to \infty} \frac{(b+1)(b+2)^3}{(b^2+1)^2} = 1 \ (2\%)$$

we have

$$\int_0^\infty f(x) dx$$

$$= \lim_{b \to \infty} \ln \left| \frac{(b+1)(b+2)^3}{(b^2+1)^2} \right| - \tan^{-1} b - \ln 8 = -\frac{\pi}{2} - \ln 8$$
 (1%)

- 4. Let X be the random variable representing the life-time (years) of a type of light bulb. Suppose that the probability density function of X is $f(x) = \begin{cases} \frac{1}{5}e^{-x/5} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$.
 - (a) (7%) Compute the expected value, $E(X) = \int_{-\infty}^{\infty} x f(x) dx$.
 - (b) (4%) Find the probability, $P(2X + 1 \le 13)$.
 - (c) (5%) Let Y = 2X + 1. Write down the distribution function of Y, $F(y) = \mathbf{P}(Y \le y)$, as an integral. Find the probability density function of Y, $\frac{d}{dy}F(y)$.

(a)

$$E(x) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} x \frac{1}{5} e^{-\frac{x}{5}} dx = \lim_{t \to \infty} \left(\int_{0}^{t} \frac{x}{5} e^{-\frac{x}{5}} dx \right)$$

$$= \lim_{t \to \infty} \left(-x e^{-\frac{x}{5}} \Big|_{0}^{t} + \int_{0}^{t} e^{-\frac{x}{5}} dx \right) \qquad \text{3 pts for integration by parts}$$

$$= \lim_{t \to \infty} \left(-t e^{-\frac{t}{5}} - 5 e^{-\frac{x}{5}} \Big|_{0}^{t} \right) \qquad \text{2 pts for integrating } e^{-\frac{x}{5}}$$

$$= \lim_{t \to \infty} \left(\frac{-t}{e^{t/5}} - 5 e^{-\frac{t}{5}} + 5 \right)$$

$$\lim_{t\to\infty}\frac{t}{e^{\frac{t}{5}}}\stackrel{\stackrel{\infty}{=}}{=}\lim_{\mathrm{L'H}}\lim_{t\to\infty}\frac{1}{\frac{1}{5}e^{t/5}}=0.\ \lim_{t\to\infty}e^{-t/5}=0$$

Hence $E(x) = \lim_{t \to \infty} \left(\frac{-t}{e^{t/5}} - 5e^{-t/5} + 5 \right) = 5$

2 pts for computing limits

(b)

$$\mathbf{P}(2X+1 \le 13) = \mathbf{P}(X \le 6) \qquad 1 \text{ pt}$$

$$= \int_0^6 \frac{1}{5} e^{-\frac{x}{5}} dx = -e^{-\frac{x}{5}} \Big|_0^6 \qquad 2 \text{ pts for } \int \frac{1}{5} e^{-\frac{x}{5}} dx = -e^{-\frac{x}{5}} + C$$

$$= -e^{-6/5} + 1 \qquad 1 \text{ pt for the final answer}$$

(c)
$$F(y) = \mathbf{P}(Y \le y) = \mathbf{P}(2X + 1 \le y) = \mathbf{P}(X \le \frac{y-1}{2}) = \begin{cases} \int_0^{\frac{y-1}{2}} \frac{1}{5} e^{-\frac{x}{5}} dx & \text{, if } y \ge 1 \\ 0 & \text{, if } y < 1 \end{cases}$$
Then the probability density function of Y is $\frac{d}{dy} F(y) = \begin{cases} \frac{1}{10} e^{-\frac{y-1}{10}} & \text{, if } y \ge 1 \\ 0 & \text{, if } y < 1 \end{cases}$

3 pts for applying F.T.C.

If Students do not discuss the case y < 1, they have 1 pt off.

- 5. (a) (10%) Assume that the rate of change of the unit price of a commodity is proportional to the difference between the demand and supply, so that $\frac{dp}{dt} = k(D(p) - S(p))$, where k > 0 is a constant. Suppose that D(p) = 60 - 3p, S(p) = 10 + 2p and p(0) = 5. Solve p(t).
 - (b) (10%) Solve the differential equation $\frac{dy}{dx} + \frac{y}{x \ln x} = \frac{x}{\ln x}$ for $x \ge 3$ with y(3) = 0.

(a) From
$$\frac{dp}{dt} = k(D(p) - S(p))$$
, we have $\frac{dp}{dt} = k(50 - 5p)$. Thus

$$\begin{split} \frac{p'}{50-5p} &= k. \\ \Rightarrow & \int \frac{p'}{50-5p} dt = \int k dt \\ \Rightarrow & \frac{-1}{5} \ln|50-5p| = kt + C \\ \Rightarrow & \ln|50-5p| = -5kt + C \\ \Rightarrow & 50-5p = Ae^{-5kt} \text{where } A = \pm e^{-5C} \end{split}$$

Since p(0) = 5, 25 = A. Hence $p(t) = 10 - 5e^{-5kt}$.

(1 point for
$$\frac{dp}{dt} = k(50 - 5p)$$
,

- 2 points for $\frac{p'}{50-5p} = k$,
- 2 points for $\ln |50 5p| = -5kt + C$
- 2 points for $50 5p = Ae^{-5kt}$
- 2 points for A = 25.
- 1 point for $p(t) = 10 5e^{-5kt}$

(b) The integrator I(x) is $e^{\int \frac{1}{x \ln x} dx}$. We compute

$$\int \frac{1}{x \ln x} dx = \ln(\ln x) + C.$$

Thus $I(x) = e^{\ln(\ln x)} = \ln x$. We have that $(\ln x \cdot y)' = x \Rightarrow \ln x \cdot y = \frac{1}{2}x^2 + C \Rightarrow y = \frac{x^2}{2\ln x} + \frac{C}{\ln x}$. Since

$$y(3) = 0$$
, $\frac{9}{2 \ln 3} + \frac{C}{\ln 3} = 0 \Rightarrow C = \frac{-9}{2}$. Hence $y = \frac{x^2}{2 \ln x} + \frac{-9}{2 \ln x}$.

- (1 point for $I(x) = e^{\int \frac{1}{x \ln x} dx}$.
- 2 points for $I(x) = \ln x$.
- 2 points for $(\ln x \cdot y)' = x$.
- 2 points for $\ln x \cdot y = \frac{1}{2}x^2 + C$.
- 2 points for $C = \frac{-9}{2}$. 1 point for $y = \frac{x^2}{2 \ln x} + \frac{-9}{2 \ln x}$

- 6. (a) (6%) Write down the Taylor series of $\int_0^x \sin(t^2) dt$ at x = 0, given that $\sin(x) = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} x^{2n+1}$.
 - (b) (4%) Write down the Taylor series of $x \ln(1+2x^2)$ at x=0, given that $\ln(1+x)=\sum_{n=1}^{\infty}(-1)^{n-1}\frac{x^n}{n}$.
 - (c) (4%) Compute $\lim_{x\to 0} \frac{x \ln(1+2x^2)}{\int_0^x \sin(t^2) dt}$

(a)

$$\int_0^x \sin(t^2)dt = \int_0^x \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} (t^2)^{2n+1} dt$$
2 pts for substituting $x = t^2$ in the Taylor series of $\sin x$

$$= \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} \int_0^x t^{4n+2} dt = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} \frac{1}{4n+3} x^{4n+3}$$

4 pts for term-by-term integration

(b)

$$x \cdot \ln(1+2x^2) = x \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (2x^2)^n$$
2 pts for substituting $y = 2x^2$ in the Taylor series of $\ln(1+y)$

$$= \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} 2^n x^{2n+1}$$
2 pts for multiplying x in each term and the final answer

(c)

$$\lim_{x \to 0} \frac{x \ln(1 + 2x^2)}{\int_0^x \sin(t^2) dt} = \lim_{x \to 0} \frac{2x^3 - 2x^5 + \dots}{\frac{1}{3}x^3 - \frac{1}{3!}\frac{1}{7}x^7 + \dots} = \lim_{x \to 0} \frac{2 - 2x^2 + \dots}{\frac{1}{3} - \frac{1}{3!}\frac{1}{7}x^4 + \dots} = \frac{2}{\frac{1}{3}} = 6$$

2 pts for listing first few terms of Taylor series of $x \ln(1+2x^2)$ and $\int_0^x \sin(t^2) dt$.

2 pts for computing the limit as the ratio of coefficients in front of x^3 . If students make mistakes in (a) or (b) but they know that the limit is the ratio of x^3 's coefficients, they have 2 pts for part (c)