1. (15%) Find the limit or show that it doesn't exist.

(a) (6%) 
$$\lim_{x \to 0} \frac{\sqrt{4+x}-2}{|x^2-x|}$$
 (b) (4%)  $\lim_{x \to -\infty} \tan^{-1} \left(\frac{2x^3-x^{\frac{1}{3}}}{x^2+1}\right)$  (c) (5%)  $\lim_{x \to 0} \sin(2x)\cot(3x)$ 

Solution:

(a)

$$\lim_{x \to 0^{+}} \frac{\sqrt{4+x} - 2}{|x^{2} - x|} = \lim_{x \to 0^{+}} \frac{\sqrt{4+x} - 2}{x - x^{2}} = \lim_{x \to 0^{+}} \frac{x}{(x - x^{2})(\sqrt{4+x} + 2)}$$

$$= \lim_{x \to 0^{+}} \frac{1}{(1-x)(\sqrt{4+x} + 2)} = \frac{1}{4} \cdot (2\%)$$

$$\lim_{x \to 0^{-}} \frac{\sqrt{4+x} - 2}{|x^{2} - x|} = \lim_{x \to 0^{-}} \frac{\sqrt{4+x} - 2}{x^{2} - x} = \lim_{x \to 0^{-}} \frac{x}{(x^{2} - x)(\sqrt{4+x} + 2)}$$

$$= \lim_{x \to 0^{+}} \frac{1}{(x-1)(\sqrt{4+x} + 2)} = -\frac{1}{4}.(2\%)$$

Since  $\lim_{x\to 0^+} \frac{\sqrt{4+x}-2}{|x^2-x|} \neq \lim_{x\to 0^-} \frac{\sqrt{4+x}-2}{|x^2-x|}$ , we have  $\lim_{x\to 0} \frac{\sqrt{4+x}-2}{|x^2-x|}$  does not exist. (2%)

(b)

$$\lim_{x \to -\infty} \tan^{-1} \left( \frac{2x^3 - x^{\frac{1}{3}}}{x^2 + 1} \right) = \tan^{-1} \left( \lim_{x \to -\infty} \frac{2x^3 - x^{\frac{1}{3}}}{x^2 + 1} \right)$$
$$= \tan^{-1} \left( \lim_{x \to -\infty} \frac{2x - x^{-5/3}}{1 + \frac{1}{x^2}} \right)$$
$$= \frac{-\pi}{2}.$$

(2 points for computing  $\lim_{x\to-\infty} \frac{2x^3 - x^{\frac{1}{3}}}{x_{\pi}^2 + 1} = -\infty$ , 2 points for the final answer is

(c) Sol 1:

$$\lim_{x \to 0} \sin(2x) \cot(3x) = \lim_{x \to 0} \sin(2x) \frac{\cos(3x)}{\sin(3x)} = \lim_{x \to 0} \frac{\sin(2x)}{\sin(3x)} \cos(3x) \quad (1 \text{ pt})$$

$$= \lim_{x \to 0} \frac{\sin 2x \cos 3x}{\sin 3x} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0} \frac{2\cos 2x \cos 3x - 3\sin 2x \sin 3x}{3\cos 3x} = \frac{2}{3}$$

$$\therefore \lim_{x \to 0} \frac{\sin(2x)}{\sin(3x)} = \lim_{x \to 0} \frac{\sin(2x)}{2x} \cdot \frac{3x}{\sin(3x)} \cdot \frac{2}{3} = \left(\lim_{x \to 0} \frac{\sin(2x)}{2x}\right) \cdot \left(\lim_{x \to 0} \frac{3x}{\sin(3x)}\right) \cdot \frac{2}{3} = \frac{2}{3} \quad (3 \text{ pts})$$
and  $\lim_{x \to 0} \cos(3x) = 1$ 

$$\lim_{x \to 0} \sin(2x) \cot(3x) = \lim_{x \to 0} \frac{\sin(2x)}{\sin(3x)} \cos(3x) = \frac{2}{3} \times 1 = \frac{2}{3} \quad (1 \text{ pt})$$

Sol 2:

$$\lim_{x \to 0} \sin(2x) \cot(3x) = \lim_{x \to 0} \frac{\sin(2x)}{\tan(3x)}$$
 (1 pt)

$$\lim_{x \to 0} \sin(2x) \cot(3x) = \lim_{x \to 0} \frac{\sin(2x)}{\tan(3x)} \quad (1 \text{ pt})$$

$$\frac{\frac{0}{0}}{\sin x} \lim_{x \to 0} \frac{2\cos(2x)}{3\sec^2(3x)} \quad (1 \text{ pt for using L'Hospital's Rule. 1 pt for } (\sin 2x)'. 1 \text{ pt for } (\tan(3x))'.)$$

$$= \frac{2}{3} \quad (1 \text{ pt})$$

2. (14%) Consider

$$f(x) = \begin{cases} \frac{x^2}{1 - e^x} & , \text{ if } x \neq 0 \\ L & , \text{ if } x = 0 \end{cases}, \text{ where } L \text{ is a constant.}$$

Suppose that f(x) is continuous at x = 0.

(a) (4%) Find the value of the constant L.

(b) (5%) Compute 
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$
.

(c) (5%) Find f'(x) for  $x \neq 0$ .

# Solution:

(a) First, we compute that

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^2}{1 - e^x} \frac{\text{L.H.}(1\%)}{\int_{0}^{\pi} (1\%)} \lim_{x \to 0} \frac{2x}{-e^x} = 0. (1\%)$$

Since f(x) is continuous at x = 0, we have  $L = f(0) = \lim_{x \to 0} f(x) = 0$  (1%).

(b)

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{x^2}{1 - e^x} - 0}{x - 0} = \lim_{x \to 0} \frac{x}{1 - e^x} (1\%) \xrightarrow{\text{L.H.} (1\%)}_{\substack{0 \\ 0 \ (1\%)}} \lim_{x \to 0} \frac{1}{-e^x} = -1. (2\%)$$

(c)

$$f'(x) = \left(\frac{x^2}{1 - e^x}\right)' = \frac{(x^2)'(1 - e^x) - x^2(1 - e^x)'}{(1 - e^x)^2} (3\%) = \frac{2x(1 - e^x) + x^2e^x}{(1 - e^x)^2} (2\%).$$

3. (14%) Find f'(x) of the following functions.

(a) 
$$(5\%)$$
  $f(x) = e^{\tan^{-1}(x^2)}$ .

(b) 
$$(9\%)$$
  $f(x) = x^3 \sin(x^2) + x^{\ln x}$ .

# Solution:

(a) 
$$\frac{d}{dx} (e^{\tan^{-1}(x^2)}) = e^{\tan^{-1}(x^2)} \times (\tan^{-1}(x^2))'$$
 (2 pts)  
=  $e^{\tan^{-1}(x^2)} \times \frac{2x}{1+x^4}$  (3 pts)

(b) 
$$(x^3 \cdot \sin(x^2))' = 3x^2 \cdot \sin(x^2) + x^3 \cdot (\sin(x^2))'$$
 (1 pt for product rule)  
 $= 3x^2 \cdot \sin(x^2) + x^3 \cdot \cos(x^2) \cdot 2x$  (2 pts for  $(\sin(x^2))' = 2x \cdot \cos(x^2)$   
 $= 3x^2 \cdot \sin(x^2) + 2x^4 \cdot \cos(x^2)$   
Let  $g(x) = x^{\ln x}$ .  
 $\ln(g(x)) = \ln x \cdot \ln x$  (1 pt)

$$\xrightarrow{\frac{d}{dx}} \frac{g'(x)}{g(x)} = 2\ln x \cdot \frac{1}{x} \quad (2 \text{ pts})$$

Hence 
$$g'(x) = g(x) \cdot 2 \ln x \cdot \frac{1}{x} = 2x^{\ln x} \frac{\ln x}{x}$$
 (2 pts)

Therefore, 
$$f(x) = 3x^2 \sin(x^2) + 2x^4 \cos(x^2) + 2x^{\ln x} \frac{\ln x}{x}$$
 (1 pt for sum rule)

- 4. (16%) There is a curve  $y^2 = x^3 + 2xy + 7$  on the plane.
  - (a) (6%) Find  $\frac{dy}{dx}$  on the curve.
  - (b) (4%) Find all points on the curve such that the slope of the tangent line is 1 when  $x \ge 0$ .
  - (c) (3%) Find the tangent line of the curve at the point (1,4).
  - (d) (3%) The curve is the graph of an implicit function y = f(x) near the point (1,4). Use the linearization of f at x = 1 to estimate f(1.03).

### Solution:

(a) Using implicit differentiation, we have that

$$2y\frac{dy}{dx} = 3x^2 + 2y + 2x\frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{3x^2 + 2y}{2y - 2x}.$$

( 1 points for using implicit differentiation,

3 points for computing  $2y\frac{dy}{dx} = 3x^2 + 2y + 2x\frac{dy}{dx}$ .

2 points for final answer  $\frac{dy}{dx} = \frac{3x^2 + 2y}{2y - 2x}$ .)

(b) From  $\frac{3x^2 + 2y}{2y - 2x} = 1$ , we have  $3x^2 = -2x \Rightarrow x = 0$  or  $x = \frac{-2}{3}$ .

When x = 0,  $y = \pm \sqrt{7}$ .

The slop of tangent line which is 1 are the points  $(0, \pm \sqrt{7})$  when  $x \ge 0$ . (1 point for  $\frac{3x^2 + 2y}{2y - 2x} = 1$ . 2 points for the solution is x = 0.

1 point for the final answer is  $(0, \pm \sqrt{7})$ .)

(c) Thus  $\frac{dy}{dx}|_{(1,4)} = \frac{11}{6}$ . Hence the tangent line is

$$y - 4 = \frac{11}{6}(x - 1).$$

(2 points for  $\frac{dy}{dx}|_{(1,4)} = \frac{11}{6}$ .

1 point for the tangent line is  $y-4=\frac{11}{6}(x-1)$ .)

(d) The linearization  $L(x) = 4 + \frac{11}{6}(x-1)$ . Thus

$$f(1.03) \approx 4 + \frac{11}{6}(1.03 - 1) \approx 4 + \frac{11}{6} \cdot \frac{3}{100} \approx 4.055.$$

(1 point for the linearization is  $L(x) = 4 + \frac{11}{6}(x-1)$ .

2 points for  $f(1.03) \approx 4.055$ .)

5. (10%) Suppose that the cost function is  $C(x) = -30 \ln x + 14x + 150$  for  $x \ge 1$ . Find the absolute minimum of the average cost function  $AC(x) = \frac{C(x)}{x}$  on  $[1, \infty)$ . (You need to justify that the answer you find is indeed the absolute minimum.)

#### Solution:

AC(x) = 
$$\frac{C(x)}{x} = -30 \frac{\ln x}{x} + 14 + \frac{150}{x}$$
 for  $x \ge 1$  (2 pts)
$$\frac{d}{dx}AC(x) = -30 \left(\frac{1}{x^2} - \frac{\ln x}{x^2}\right) - \frac{150}{x^2} = \frac{-30}{x^2}(6 - \ln x)$$
(2 pts for  $\left(\frac{\ln x}{x}\right)'$ . 1 pt for  $\left(\frac{1}{x}\right)'$ )
$$\frac{d}{dx}AC(x) = 0 \Leftrightarrow x = e^6 \quad (2 \text{ pts})$$

$$\therefore \frac{d}{dx}AC(x) < 0 \text{ for } x \in (1, e^6) \text{ and } \frac{d}{dx}AC(x) > 0 \text{ for } x \in (e^6, \infty)$$

$$\therefore \text{ we conclude that } AC(x) \text{ obtains absolute minimum at } x = e^6.$$
(2 pts. If students use  $\frac{d^2}{dx^2}AC\Big|_{x=e^6} > 0$  to justify that  $f(e^6)$  is absolute minimum, they only get 1 pt.)
The absolute minimum is  $AC(e^6) = \frac{-30}{e^6} + 14$  (1 pt)

- 6. (17%) Let  $f(x) = x^2 \ln x$ , for x > 0.
  - (a) (3%) Find  $\lim_{x\to 0^+} f(x)$ .
  - (b) (5%) Compute f'(x) and find interval(s) of increase and interval(s) of decrease.
  - (c) (5%) Compute f''(x) and discuss concavity of f(x).
  - (d) (4%) Sketch the graph of f(x). Label the local extremum and inflection point(s) on the curve y = f(x).

### Solution:

(a)

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 \ln x = \lim_{x \to 0^+} \frac{\ln x}{x^{-2}}$$

We observe that

$$\lim_{x \to 0^+} \ln x = -\infty \quad \text{and} \quad \lim_{x \to 0^+} x^{-2} = \infty.$$

We can use l'Hospital's Rule for the indeterminate form  $\frac{\infty}{\infty}$  to get

$$\lim_{x \to 0^+} \frac{\ln x}{x^{-2}} = \lim_{x \to 0^+} \frac{x^{-1}}{-2x^{-3}}$$

Then

$$\lim_{x \to 0^+} \frac{x^{-1}}{-2x^{-3}} = \lim_{x \to 0^+} -\frac{x^2}{2} = 0$$

(b) The first derivative (by product rule)

$$f'(x) = 2x \ln x + x = x(2 \ln x + 1)$$

Since we are restricted to x > 0, we can solve

$$f'(x) > 0 \implies 2\ln x + 1 > 0 \implies x > e^{-1/2}$$

$$f'(x) < 0 \implies 2 \ln x + 1 < 0 \implies 0 < x < e^{-1/2}$$

The function is increasing on the interval  $(e^{-1/2}, \infty)$  and decreasing on the interval  $(0, e^{-1/2})$ .

For sketching convenience,  $e^{-1/2} \approx 0.6$ .

(c) The second derivative (by product rule)

$$f''(x) = 2\ln x + 1 + 2 = 2\ln x + 3$$

$$f''(x) > 0 \implies 2\ln x + 3 > 0 \implies x > e^{-3/2}$$

$$f''(x) < 0 \implies 2 \ln x + 3 < 0 \implies 0 < x < e^{-3/2}$$

The function is concave up on the interval  $(e^{-3/2}, \infty)$  and concave down on the interval  $(0, e^{-3/2})$ .

For sketching convenience,  $e^{-3/2} \approx 0.22$ .

(d)

The points we want to label on the graph will be:

A: the local and absolute minimum point  $(e^{-1/2}, -1/2e)$ 

B: the inflection point  $(e^{-3/2}, -3/(2e^3))$ 

Combining all of the above, the sketch



Grading:

(a) (3%) 1 point for recognizing the indeterminate form. 2 points for applying l'Hospital's Rule correctly to find the correct answer. Only -1 in the case they forget to say they are using l'H Rule.

- (b) (5%) 2 points for correct derivative. 3 points for solving the inequalities. They can get the 3 points even if derivative is wrong.
- (c) (5%) 2 points for correct derivative. 3 points for solving the inequalities. They can get the 3 points even if derivative is wrong.
- (d) (4%) Check labeled points and the curve connecting them. -1 for each error. This part depends on their answers from (a)-(c). Take points off if the picture doesn't match their answers.

7. (14%) Firm A finds that the total cost C(x) (in dollars) of manufacturing x keyboards/day is given by

$$C(x) = 600 - 50x + 1.8x^2 + 0.04x^3.$$

Each keyboard can be sold at price p dollars related to x by the equation p(x) = 190 - 3x. The profit function is  $\Pi(x) = x \cdot p(x) - C(x).$ 

- (a) (8%) Find the daily level of production,  $x_1$ , that maximizes the profit  $\Pi(x)$ .
- (b) (3%) The inverse function of p(x) = 190 3x is  $x = F(p) = \frac{190 p}{3}$ . Find the point elasticity  $\epsilon = \frac{F'(p) \cdot p}{F(p)}$ .
- (c) (3%) (Continued) In the interval  $p \in (0, 190)$ , find values of p such that  $-1 < \epsilon < 0$  (inelastic) and values of p such that  $\epsilon < -1$ (elastic).

#### Solution:

(a)

$$\Pi(x) = x \cdot p(x) - C(x) = x(190 - 3x) - (600 - 50x + 1.8x^{2} + 0.04x^{3})$$

$$= -600 + 240x - 4.8x^{2} - 0.04x^{3} \quad (1 \text{ pt})$$

$$\Pi'(x) = 240 - 9.6x - 0.12x^{2} \quad (2 \text{ pts})$$

$$= -0.12(x^{2} + 80x - 2000) = -0.12(x + 100)(x - 20)$$

 $\Pi'(x) = 0 \Leftrightarrow x = -100 \text{ or } x = 20 \quad (3 \text{ pts for solving } \Pi'(x) = 0)$ 

However, x can not be negative and p = 190 - 3x can not be negative. Hence  $x \in [0, \frac{190}{3}]$ .

And x = 20 is the only critical point on  $\left(0, \frac{190}{3}\right)$ 

 $\Pi'(x) > 0 \text{ for } x \in (0, 20) , \Pi'(x) < 0 \text{ for } x \in (20, \frac{190}{2})$ 

Hence  $\Pi(x)$  obtains absolute maximum at x = 20.

(2 pts for justifying  $\Pi(20)$  is the absolute maximum.)

 $(\Pi''(20) < 0 \text{ only shows it's "local" max} \Rightarrow -1.)$ 

Or students can compare  $\Pi(0) = -600$ ,  $\Pi(\frac{190}{3}) < 0$ ,  $\Pi(20) = 1960$  and conclude that  $\Pi(20)$  is the absolute maximum.

(b) 
$$\varepsilon = \frac{F'(p) \cdot p}{F(p)} = \frac{\left(-\frac{1}{3}\right) \times p}{\frac{190 - p}{3}} = \frac{-p}{190 - p}$$
(1 pt for  $F'(p)$ . 2pts for final answer.)

(c) For 
$$p \in (0, 190)$$
,  $190 - p > 0$ .  
Hence  $\varepsilon = \frac{-p}{190 - p} < -1 \Leftrightarrow -p < -190 + p$  (1 pt)

 $\Leftrightarrow 95$ 

i.e. 
$$\varepsilon < -1 \Leftrightarrow 95 < n < 190$$
 (1 pt)

i.e. 
$$\varepsilon < -1 \Leftrightarrow 95 < p < 190$$
 (1 pt)  
Similarly,  $-1 < \varepsilon = \frac{-p}{190 - p} < 0 \Leftrightarrow p - 190 < -p < 0 \Leftrightarrow 0 < p < 95$  (1 pt)