1．(15%) Find the limit or show that it doesn＇t exist．
（a）$(6 \%) \lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{\left|x^{2}-x\right|}$
（b）$(4 \%) \lim _{x \rightarrow-\infty} \tan ^{-1}\left(\frac{2 x^{3}-x^{\frac{1}{3}}}{x^{2}+1}\right)$
（c）$(5 \%) \lim _{x \rightarrow 0} \sin (2 x) \cot (3 x)$

Solution：

（a）

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{\sqrt{4+x}-2}{\left|x^{2}-x\right|}=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{4+x}-2}{x-x^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x}{\left(x-x^{2}\right)(\sqrt{4+x}+2)} \\
= & \lim _{x \rightarrow 0^{+}} \frac{1}{(1-x)(\sqrt{4+x}+2)}=\frac{1}{4} \cdot(2 \%) \\
& \lim _{x \rightarrow 0^{-}} \frac{\sqrt{4+x}-2}{\left|x^{2}-x\right|}=\lim _{x \rightarrow 0^{-}} \frac{\sqrt{4+x}-2}{x^{2}-x}=\lim _{x \rightarrow 0^{-}} \frac{1}{\left(x^{2}-x\right)(\sqrt{4+x}+2)} \\
= & \lim _{x \rightarrow 0^{+}} \frac{1}{(x-1)(\sqrt{4+x}+2)}=-\frac{1}{4} .(2 \%)
\end{aligned}
$$

Since $\lim _{x \rightarrow 0^{+}} \frac{\sqrt{4+x}-2}{\left|x^{2}-x\right|} \neq \lim _{x \rightarrow 0^{-}} \frac{\sqrt{4+x}-2}{\left|x^{2}-x\right|}$ ，we have $\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{\left|x^{2}-x\right|}$ does not exist．（2\％）
（b）

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \tan ^{-1}\left(\frac{2 x^{3}-x^{\frac{1}{3}}}{x^{2}+1}\right) & =\tan ^{-1}\left(\lim _{x \rightarrow-\infty} \frac{2 x^{3}-x^{\frac{1}{3}}}{x^{2}+1}\right) \\
& =\tan ^{-1}\left(\lim _{x \rightarrow-\infty} \frac{2 x-x^{-5 / 3}}{1+\frac{1}{x^{2}}}\right) \\
& =\frac{-\pi}{2}
\end{aligned}
$$

（ 2 points for computing $\lim _{x \rightarrow-\infty} \frac{2 x^{3}-x^{\frac{1}{3}}}{x_{\pi}^{2}+1}=-\infty$ ，
2 points for the final answer is $-\frac{\pi}{2}$ ．
（c）Sol 1：
$\lim _{x \rightarrow 0} \sin (2 x) \cot (3 x)=\lim _{x \rightarrow 0} \sin (2 x) \frac{\cos (3 x)}{\sin (3 x)}=\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\sin (3 x)} \cos (3 x) \quad$（1 pt）
$=\lim _{x \rightarrow 0} \frac{\sin 2 x \cos 3 x}{\sin 3 x} \xlongequal{\frac{0}{0}} \lim _{x \rightarrow 0} \frac{2 \cos 2 x \cos 3 x-3 \sin 2 x \sin 3 x}{3 \cos 3 x}=\frac{2}{3}$
$\because \lim _{x \rightarrow 0} \frac{\sin (2 x)}{\sin (3 x)}=\lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x} \cdot \frac{3 x}{\sin (3 x)} \cdot \frac{2}{3}=\left(\lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x}\right) \cdot\left(\lim _{x \rightarrow 0} \frac{3 x}{\sin (3 x)}\right) \cdot \frac{2}{3}=\frac{2}{3} \quad(3 \mathrm{pts})$
and $\lim _{x \rightarrow 0} \cos (3 x)=1$
$\therefore \lim _{x \rightarrow 0} \sin (2 x) \cot (3 x)=\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\sin (3 x)} \cos (3 x)=\frac{2}{3} \times 1=\frac{2}{3} \quad(1 \mathrm{pt})$
Sol 2：
$\lim _{x \rightarrow 0} \sin (2 x) \cot (3 x)=\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\tan (3 x)} \quad$（1 pt）
$\xlongequal{\frac{0}{0}} \lim _{x \rightarrow 0} \frac{2 \cos (2 x)}{3 \sec ^{2}(3 x)}\left(1 \mathrm{pt}\right.$ for using L＇Hospital＇s Rule． 1 pt for $(\sin 2 x)^{\prime} .1 \mathrm{pt}$ for $(\tan (3 x))^{\prime}$ ．）
$=\frac{2}{3} \quad(1 \mathrm{pt})$
2. (14\%) Consider

$$
f(x)=\left\{\begin{array}{ll}
\frac{x^{2}}{1-e^{x}} & , \text { if } x \neq 0 \\
L & , \text { if } x=0
\end{array}, \text { where } L\right. \text { is a constant. }
$$

Suppose that $f(x)$ is continuous at $x=0$.
(a) (4%) Find the value of the constant L.
(b) (5%) Compute $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$.
(c) (5%) Find $f^{\prime}(x)$ for $x \neq 0$.

Solution:

(a) First, we compute that

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{x^{2}}{1-e^{x}} \underset{\substack{\frac{0}{0}(1 \%)}}{\text { L.H.(1\%) }} \lim _{x \rightarrow 0} \frac{2 x}{-e^{x}}=0 .(1 \%)
$$

Since $f(x)$ is continuous at $x=0$, we have $L=f(0)=\lim _{x \rightarrow 0} f(x)=0(1 \%)$.
(b)

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\frac{x^{2}}{1-e^{x}}-0}{x-0}=\lim _{x \rightarrow 0} \frac{x}{1-e^{x}}(1 \%) \underset{\frac{0}{0}(1 \%)}{\substack{\text { L.H. } \\=\\ x \rightarrow 0}} \lim _{x \rightarrow 0} \frac{1}{-e^{x}}=-1 .(2 \%)
$$

(c)

$$
f^{\prime}(x)=\left(\frac{x^{2}}{1-e^{x}}\right)^{\prime}=\frac{\left(x^{2}\right)^{\prime}\left(1-e^{x}\right)-x^{2}\left(1-e^{x}\right)^{\prime}}{\left(1-e^{x}\right)^{2}}(3 \%)=\frac{2 x\left(1-e^{x}\right)+x^{2} e^{x}}{\left(1-e^{x}\right)^{2}}(2 \%) .
$$

3. (14%) Find $f^{\prime}(x)$ of the following functions.
(a) $(5 \%) f(x)=e^{\tan ^{-1}\left(x^{2}\right)}$.
(b) $(9 \%) f(x)=x^{3} \sin \left(x^{2}\right)+x^{\ln x}$.

Solution:

(a) $\frac{d}{d x}\left(e^{\tan ^{-1}\left(x^{2}\right)}\right)=e^{\tan ^{-1}\left(x^{2}\right)} \times\left(\tan ^{-1}\left(x^{2}\right)\right)^{\prime} \quad(2 \mathrm{pts})$
$=e^{\tan ^{-1}\left(x^{2}\right)} \times \frac{2 x}{1+x^{4}} \quad(3 \mathrm{pts})$
(b) $\left(x^{3} \cdot \sin \left(x^{2}\right)\right)^{\prime}=3 x^{2} \cdot \sin \left(x^{2}\right)+x^{3} \cdot\left(\sin \left(x^{2}\right)\right)^{\prime} \quad(1 \mathrm{pt}$ for product rule)
$=3 x^{2} \cdot \sin \left(x^{2}\right)+x^{3} \cdot \cos \left(x^{2}\right) \cdot 2 x \quad\left(2 \mathrm{pts}\right.$ for $\left.\left(\sin \left(x^{2}\right)\right)^{\prime}=2 x \cdot \cos x^{2}\right)$
$=3 x^{2} \cdot \sin \left(x^{2}\right)+2 x^{4} \cdot \cos \left(x^{2}\right)$
Let $g(x)=x^{\ln x}$.
$\ln (g(x))=\ln x \cdot \ln x \quad(1 \mathrm{pt})$
$\xrightarrow{\frac{d}{d x}} \frac{g^{\prime}(x)}{g(x)}=2 \ln x \cdot \frac{1}{x} \quad(2 \mathrm{pts})$
Hence $g^{\prime}(x)=g(x) \cdot 2 \ln x \cdot \frac{1}{x}=2 x^{\ln x} \frac{\ln x}{x} \quad(2 \mathrm{pts})$
Therefore, $f(x)=3 x^{2} \sin \left(x^{2}\right)+2 x^{4} \cos \left(x^{2}\right)+2 x^{\ln x} \frac{\ln x}{x} \quad$ (1 pt for sum rule)
4. (16%) There is a curve $y^{2}=x^{3}+2 x y+7$ on the plane.
(a) (6%) Find $\frac{d y}{d x}$ on the curve.
(b) (4%) Find all points on the curve such that the slope of the tangent line is 1 when $x \geq 0$.
(c) (3%) Find the tangent line of the curve at the point $(1,4)$.
(d) (3%) The curve is the graph of an implicit function $y=f(x)$ near the point $(1,4)$. Use the linearization of f at $x=1$ to estimate $f(1.03)$.

Solution:

(a) Using implicit differentiation, we have that

$$
2 y \frac{d y}{d x}=3 x^{2}+2 y+2 x \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{3 x^{2}+2 y}{2 y-2 x} .
$$

(1 points for using implicit differentiation,
3 points for computing $2 y \frac{d y}{d x}=3 x^{2}+2 y+2 x \frac{d y}{d x}$.
2 points for final answer $\frac{d y}{d x}=\frac{3 x^{2}+2 y}{2 y-2 x}$.)
(b) From $\frac{3 x^{2}+2 y}{2 y-2 x}=1$, we have $3 x^{2}=-2 x \Rightarrow x=0$ or $x=\frac{-2}{3}$.

When $x=0, y= \pm \sqrt{7}$.
The slop of tangent line which is 1 are the points $(0, \pm \sqrt{7})$ when $x \geq 0$.
(1 point for $\frac{3 x^{2}+2 y}{2 y-2 x}=1$.
2 points for the solution is $x=0$.
1 point for the final answer is $(0, \pm \sqrt{7})$.)
(c) Thus $\left.\frac{d y}{d x}\right|_{(1,4)}=\frac{11}{6}$. Hence the tangent line is

$$
y-4=\frac{11}{6}(x-1)
$$

(2 points for $\left.\frac{d y}{d x}\right|_{(1,4)}=\frac{11}{6}$.
1 point for the tangent line is $y-4=\frac{11}{6}(x-1)$.)
(d) The linearization $L(x)=4+\frac{11}{6}(x-1)$. Thus

$$
f(1.03) \approx 4+\frac{11}{6}(1.03-1) \approx 4+\frac{11}{6} \cdot \frac{3}{100} \approx 4.055 .
$$

(1 point for the linearization is $L(x)=4+\frac{11}{6}(x-1)$.
2 points for $f(1.03) \approx 4.055$.)
5. (10%) Suppose that the cost function is $C(x)=-30 \ln x+14 x+150$ for $x \geq 1$. Find the absolute minimum of the average cost function $A C(x)=\frac{C(x)}{x}$ on $[1, \infty)$. (You need to justify that the answer you find is indeed the absolute minimum.)

Solution:

$A C(x)=\frac{C(x)}{x}=-30 \frac{\ln x}{x}+14+\frac{150}{x}$ for $x \geq 1 \quad(2 \mathrm{pts})$
$\frac{d}{d x} A C(x)=-30\left(\frac{1}{x^{2}}-\frac{\ln x}{x^{2}}\right)-\frac{150}{x^{2}}=\frac{-30}{x^{2}}(6-\ln x)$
(2 pts for $\left(\frac{\ln x}{x}\right)^{\prime} \cdot 1 \mathrm{pt}$ for $\left(\frac{1}{x}\right)^{\prime}$)
$\frac{d}{d x} A C(x)=0 \Leftrightarrow x=e^{6} \quad(2 \mathrm{pts})$
$\because \frac{d}{d x} A C(x)<0$ for $x \in\left(1, e^{6}\right)$ and $\frac{d}{d x} A C(x)>0$ for $x \in\left(e^{6}, \infty\right)$
\therefore we conclude that $A C(x)$ obtains absolute minimum at $x=e^{6}$.
(2 pts. If students use $\left.\frac{d^{2}}{d x^{2}} A C\right|_{x=e^{6}}>0$ to justify that $f\left(e^{6}\right)$ is absolute minimum, they only get 1 pt.)
The absolute minimum is $A C\left(e^{6}\right)=\frac{-30}{e^{6}}+14 \quad(1 \mathrm{pt})$
6. (17%) Let $f(x)=x^{2} \ln x$, for $x>0$.
(a) (3\%) Find $\lim _{x \rightarrow 0^{+}} f(x)$.
(b) (5%) Compute $f^{\prime}(x)$ and find interval(s) of increase and interval(s) of decrease.
(c) (5%) Compute $f^{\prime \prime}(x)$ and discuss concavity of $f(x)$.
(d) (4\%) Sketch the graph of $f(x)$. Label the local extremum and inflection point(s) on the curve $y=f(x)$.

Solution:

(a)

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{2} \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-2}}
$$

We observe that

$$
\lim _{x \rightarrow 0^{+}} \ln x=-\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} x^{-2}=\infty
$$

We can use l'Hospital's Rule for the indeterminate form $\frac{\infty}{\infty}$ to get

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-2}}=\lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-2 x^{-3}}
$$

Then

$$
\lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-2 x^{-3}}=\lim _{x \rightarrow 0^{+}}-\frac{x^{2}}{2}=0
$$

(b) The first derivative (by product rule)

$$
f^{\prime}(x)=2 x \ln x+x=x(2 \ln x+1)
$$

Since we are restricted to $x>0$, we can solve

$$
\begin{aligned}
& f^{\prime}(x)>0 \quad \Rightarrow \quad 2 \ln x+1>0 \quad \Rightarrow \quad x>e^{-1 / 2} \\
& f^{\prime}(x)<0 \quad \Rightarrow \quad 2 \ln x+1<0 \quad \Rightarrow \quad 0<x<e^{-1 / 2}
\end{aligned}
$$

The function is increasing on the interval $\left(e^{-1 / 2}, \infty\right)$ and decreasing on the interval $\left(0, e^{-1 / 2}\right)$.
For sketching convenience, $e^{-1 / 2} \approx 0.6$.
(c) The second derivative (by product rule)

$$
\begin{gathered}
f^{\prime \prime}(x)=2 \ln x+1+2=2 \ln x+3 \\
f^{\prime \prime}(x)>0 \quad \Rightarrow \quad 2 \ln x+3>0 \quad \Rightarrow \quad x>e^{-3 / 2} \\
f^{\prime \prime}(x)<0 \quad \Rightarrow \quad 2 \ln x+3<0 \quad \Rightarrow \quad 0<x<e^{-3 / 2}
\end{gathered}
$$

The function is concave up on the interval $\left(e^{-3 / 2}, \infty\right)$ and concave down on the interval $\left(0, e^{-3 / 2}\right)$.
For sketching convenience, $e^{-3 / 2} \approx 0.22$.
(d)

The points we want to label on the graph will be:
A: the local and absolute minimum point ($\left.e^{-1 / 2},-1 / 2 e\right)$
B: the inflection point $\left(e^{-3 / 2},-3 /\left(2 e^{3}\right)\right)$
Combining all of the above, the sketch

Grading:
(a) (3\%) 1 point for recognizing the indeterminate form. 2 points for applying l'Hospital's Rule correctly to find the correct answer. Only -1 in the case they forget to say they are using l'H Rule.
(b) (5\%) 2 points for correct derivative. 3 points for solving the inequalities. They can get the 3 points even if derivative is wrong.
(c) $(5 \%) 2$ points for correct derivative. 3 points for solving the inequalities. They can get the 3 points even if derivative is wrong.
(d) (4%) Check labeled points and the curve connecting them. -1 for each error. This part depends on their answers from (a)-(c). Take points off if the picture doesn't match their answers.
7. (14%) Firm A finds that the total cost $C(x)$ (in dollars) of manufacturing x keyboards/day is given by

$$
C(x)=600-50 x+1.8 x^{2}+0.04 x^{3}
$$

Each keyboard can be sold at price p dollars related to x by the equation $p(x)=190-3 x$. The profit function is $\Pi(x)=x \cdot p(x)-C(x)$.
(a) (8%) Find the daily level of production, x_{1}, that maximizes the profit $\Pi(x)$.
(b) (3%) The inverse function of $p(x)=190-3 x$ is $x=F(p)=\frac{190-p}{3}$. Find the point elasticity $\epsilon=\frac{F^{\prime}(p) \cdot p}{F(p)}$.
(c) (3%) (Continued) In the interval $p \in(0,190)$, find values of p such that $-1<\epsilon<0$ (inelastic) and values of p such that $\epsilon<-1$ (elastic).

Solution:

(a)

$$
\begin{aligned}
\Pi(x) & =x \cdot p(x)-C(x)=x(190-3 x)-\left(600-50 x+1.8 x^{2}+0.04 x^{3}\right) \\
& =-600+240 x-4.8 x^{2}-0.04 x^{3} \quad(1 \mathrm{pt}) \\
\Pi^{\prime}(x) & =240-9.6 x-0.12 x^{2} \quad(2 \mathrm{pts}) \\
& =-0.12\left(x^{2}+80 x-2000\right)=-0.12(x+100)(x-20)
\end{aligned}
$$

$\Pi^{\prime}(x)=0 \Leftrightarrow x=-100$ or $x=20 \quad\left(3 \mathrm{pts}\right.$ for solving $\left.\Pi^{\prime}(x)=0\right)$
However, x can not be negative and $p=190-3 x$ can not be negative. Hence $x \in\left[0, \frac{190}{3}\right]$.
And $x=20$ is the only critical point on $\left(0, \frac{190}{3}\right)$
$\Pi^{\prime}(x)>0$ for $x \in(0,20), \Pi^{\prime}(x)<0$ for $x \in\left(20, \frac{190}{3}\right)$
Hence $\Pi(x)$ obtains absolute maximum at $x=20$.
(2 pts for justifying $\Pi(20)$ is the absolute maximum.)
($\Pi^{\prime \prime}(20)<0$ only shows it's "local" max $\Rightarrow-1$.)
Or students can compare $\Pi(0)=-600, \Pi\left(\frac{190}{3}\right)<0, \Pi(20)=1960$ and conclude that $\Pi(20)$ is the absolute maximum.
(b) $\varepsilon=\frac{F^{\prime}(p) \cdot p}{F(p)}=\frac{\left(-\frac{1}{3}\right) \times p}{\frac{190-p}{3}}=\frac{-p}{190-p}$
(1 pt for $F^{\prime}(p) .2 \mathrm{pts}$ for final answer.)
(c) For $p \in(0,190), 190-p>0$.

Hence $\varepsilon=\frac{-p}{190-p}<-1 \Leftrightarrow-p<-190+p \quad(1 \mathrm{pt})$
$\Leftrightarrow 95<p$ and $p \in(0,190)$
i.e. $\varepsilon<-1 \Leftrightarrow 95<p<190 \quad(1 \mathrm{pt})$

Similarly, $-1<\varepsilon=\frac{-p}{190-p}<0 \Leftrightarrow p-190<-p<0 \Leftrightarrow 0<p<95 \quad$ (1 pt)

