
1102 Calculus 4 (Applications in Economics and Management) Final Exam Solution

June 4, 2022

There are SIX questions in this examination.

1. (12%) Determine whether each statement is true or false. If true, mark ”O”. If false, mark ”X”. You DON’T need

to explain your answers.

(a) (2%) The determinant of a n × n matrix is unchanged after applying a basic row operation.

(b) (2%) For a n × n matrix A, A has full rank if and only if A is invertible.

(c) (2%) If a matrix A has the reduced echelon form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 0 −1 0

0 0 1 2 0

0 0 0 0 1

0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, then the vector (0,0,1,0,0) is in the row

space of A.

(d) (2%) If A is a n × n positive definite symmetric matrix, then A + kIn is also positive definite for all k > 0.

(e) (2%) If A is a 2 × 2 positive definite symmetric matrix, then
⎛

⎝

1 2

2 4

⎞

⎠
A

⎛

⎝

1 2

2 4

⎞

⎠
is also positive definite.

(f) (2%) If v1, v2 are eigenvectors of a n × n matrix A corresponding to different eigenvalues, then v1, v2 are

linearly independent.

Solution:

(a) False. The determinant is different by −1 if we exchange any two rows or two columns.

(b) True.

(c) False. The basis of the row space of A is {[1 2 0 −1 0] , [0 0 1 2 0] , [0 0 0 0 1] .}. It is

obvious that x1 [1 2 0 −1 0] + x2 [0 0 1 2 0] + x3 [0 0 0 0 1] = [0 0 1 0 0] which is

the same as x1 = 0,2x1 = 0, x2 = 1,−x1 + 2x2 = 0, x3 = 0 has no solution.

(d) True.

(e) False. Let P =
⎛

⎝

1 2

2 4

⎞

⎠
. Then det(P ) = 4−4 = 0. So there exists x ≠ 0 such that Px = 0. Then xTPTAPx = 0.

So PTAP is not positive definite.

(f) True. Suppose Av1 = λ1v1 and Av2 = λ2v2. Suppose v1, v2 are linearly dependent. We can find c1 ≠ 0 and

c2 ≠ 0 such that c1v1 + c2v2 = 0. Then v2 = −
c1
c2
v1. Since λ1 ≠ λ2. Thus Av1 = λ1v1 and A(v2) = A(− c1

c2
v1) =

− c1
c2
λ1v1 = λ1v2. This contradicts with Av2 = λ2v2 with λ1 ≠ λ2.

2. (14%) Use Sylvester Criterion to determine the definiteness of the following two quadratic forms.

(a) (7%) Q(x1, x2, x3) = −x
2
1 − 4x22 − 6x23 + 2x1x3 + 4x2x3

(b) (7%) Q(x1, x2, x3) = x
2
1 + 2x22 + 2x23 + 2x1x3 + 4x2x3

Solution:

(a) Q(x1, x2, x3) = x
T

⎛
⎜
⎜
⎜
⎝

−1 0 1

0 −4 2

1 2 −6

⎞
⎟
⎟
⎟
⎠

x. Let A =

⎛
⎜
⎜
⎜
⎝

−1 0 1

0 −4 2

1 2 −6

⎞
⎟
⎟
⎟
⎠

.

The leading principle minor of order one is −1 < 0.
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The leading principle minor of order two is det
⎛

⎝

−1 0

0 −4

⎞

⎠
= 4 > 0.

The leading principle minor of order three is det

⎛
⎜
⎜
⎜
⎝

−1 0 1

0 −4 2

1 2 −6

⎞
⎟
⎟
⎟
⎠

= −24 − 2 + 4 + 4 = −18 < 0. So it is negative

definite

(b) Q(x1, x2, x3) = x
T

⎛
⎜
⎜
⎜
⎝

1 0 1

0 2 2

1 2 2

⎞
⎟
⎟
⎟
⎠

x. Let A =

⎛
⎜
⎜
⎜
⎝

1 0 1

0 2 2

1 2 2

⎞
⎟
⎟
⎟
⎠

.

The leading principle minor of order one is 1 > 0.

The leading principle minor of order two is det
⎛

⎝

1 0

0 2

⎞

⎠
= 2 > 0.

The leading principle minor of order three is det

⎛
⎜
⎜
⎜
⎝

1 0 1

0 2 2

1 2 2

⎞
⎟
⎟
⎟
⎠

= 4 − 2 − 4 = −2 < 0. So it is indefinite

3. (20%) Consider the optimization problem :

maximize f(x, y) = ln(x2y) − x − y subject to x + y ≤ 4, x ≥ 1, y ≥ 1.

(a) (2%) Explain briefly why the (global) maximum value exists for this problem.

(b) (6%) Write down the classical Lagrangian function and the complete set of first order conditions.

(c) (2%) Verify that NDCQ is satisfied for this problem.

(d) (2%) Show that when x = 1, the constraint x + y ≤ 4 must be binding.

(e) (8%) Find the maximizer and the corresponding maximum value of the optimization problem.

Solution:

(a) The given constraints define a closed and bounded subset on R2. By Extreme Value Theorem, any continuous

functions attain a global maximum on such a subset.

Grading scheme for 3(a)

� 1M for ‘closed’

� 1M for ‘bounded’

(b) L(x, y, λ1, λ2, λ3) = ln(x2y) − x − y − λ1(x + y − 4) − λ2(1 − x) − λ3(1 − y).

First order conditions :

2

x
− 1 − λ1 + λ2 = 0, (1)

1

y
− 1 − λ1 + λ3 = 0, (2)

λ1(x + y − 4) = 0, (3)

λ2(1 − x) = 0, (4)

λ3(1 − y) = 0, (5)

x + y ≤ 4, x ≥ 1, y ≥ 1 (6)

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0 (7)
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Grading scheme for 3(b)

� 2M for correct Lagrangian function

� 0.5M for each of (1), (2), (3), (4), (5), (6)

� 1M for (7)

(c) The ‘full’ Jacobian matrix is

⎛
⎜
⎜
⎜
⎝

1 1

−1 0

0 −1

⎞
⎟
⎟
⎟
⎠

which is of rank 2. Now note that at most two constraints can be

simutaneously binding so NDCQ is satisfied.

Grading scheme for 3(c)

� 1M for students who demonstrate some understandings about NDCQ (e.g. he/she knows that

this means the Jacobian matrix has full rank)

� 1M for any valid argument that NDCQ is valid.

(d) Suppose the constraint x+ y ≤ 4 is not binding. Then (3) implies that λ1 = 0. Together with x = 1, equation

(1) implies 1 + λ2 = 0 which contradicts with (7), which says λ2 ≥ 0.

Grading scheme for 3(d)

� All or nothing. These 2Ms are only awarded to a correct (logical) argument.

(e) Suppose λ2 ≠ 0. Then (4) implies x = 1. Using (d), we have x+ y = 4 and hence y = 3. Therefore, (5) implies

λ3 = 0. But (2) then implies λ1 = −
2
3
< 0 which contradicts with (7).

Therefore, λ2 = 0.

Suppose λ3 ≠ 0. Then (5) implies y = 1. Then (2) implies λ1 = λ3. Therefore, λ1 ≠ 0 which implies x + y = 4.

As y = 1, we have x = 3. (4) then implies λ2 = 0. But (1) then implies λ = − 1
3
.

Therefore, λ3 = 0.

Having proved that λ2 = λ3 = 0, then (2) implies λ1 =
1

y
− 1. Since λ1 ≥ 0, this enforces y = 1. This

implies λ1 = 0. Thus (1) implies x = 2. Therefore, we obtain

(x, y, λ1, λ2, λ3) = (2,1,0,0,0).

This is the unique solution of FOC and hence is the maximizer for the optimization problme. The corre-

sponding maximum value is f(2,1) = ln 4 − 3.

Grading scheme for 3(e)

� 2M for a correct proof that λ2 = 0.

� 2M for a correct proof that λ3 = 0.

� 2M for the solution (x, y, λ1, λ2, λ3) = (2,1,0,0,0)

� 2M for the correct maximum value

4. (18%) The revenue of a company is given by the function R(x, y, z) = x(yz + 1), where x, y, z refers to the units of

input in labour, capital and advertising. The manager of the company wants to maximize the revenue but maintaining

an upper bound on the total cost, that is to :

maximize R(x, y, z) subject to x + y2 + z2 ≤ 9, x ≥ 0, y ≥ 0, z ≥ 0.
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(a) (6%) Write down the Kuhn-Tucker’s Lagrangian and first order conditions for this optimization problem.

(b) (2%) Check that the Kuhn-Tucker’s version NDCQ is satisfied.

(c) (2%) Explain why at any solution to the first order conditions, the constraint x + y2 + z2 ≤ 9 is binding.

(d) (8%) Find the maximizer of the optimization problem.

Solution:

(a) Kuhn-Tucker’s Lagrangian : L̃(x, y, z, λ) = xyz + x − λ(x + y2 + z2 − 9).

Kuhn-Tucker’s first order conditions :

x(yz + 1 − λ) = 0 (1)

y(xz − λ(2y)) = 0 (2)

z(xy − λ(2z)) = 0 (3)

λ(x + y2 + z2 − 9) = 0 (4)

yz + 1 − λ ≤ 0, xz − λ(2y) ≤ 0, xy − λ(2z) ≤ 0 (5)

x + y2 + z2 ≤ 9, x ≥ 0, y ≥ 0, z ≥ 0 (6)

λ ≥ 0 (7)

Grading scheme for 4(a)

� 2M for correct Kuhn-Tucker’s Lagrangian function

� 0.5M for each of (1), (2), (3), (4), (6), (7)

� 1M for (5)

(b) Suppose g(x, y, z) = x + y2 + z2 = 9.

� If x ≠ 0, then ∂g
∂x

= 1 implies any ‘reduced’ Jacobian matrix would have rank 1 in this case.

� If x = 0 but y, z ≠ 0, then the ‘reduced’ Jacobian matrix is (2y,2z) which has rank 1.

� If x = y = 0, then z = 3 and the ‘reduced’ Jacobian matrix is (6) which has rank 1.

� If x = z = 0, then y = 3 and the ‘reduced’ Jacobian matrix is (6) which has rank 1.

� It is impossible for x = y = z = 0.

In all cases, the ‘reduced’ Jacobian matrix has full rank so Kuhn-Tucker’s NDCQ is satisfied.

Grading scheme for 4(b)

� 1M for demonstrating knowledge of what it means by ‘Kuhn-Tucker’s NDCQ’ (which is to

check the rank (
∂gi
∂xj

)ij where gi comes from binding constraints and xj ≠ 0.

� 1M for any correct and complete argument.

(c) By the first inequality in (5), we have λ ≥ 1 + yz ≥ 1. So λ ≠ 0 and hence (4) implies x + y2 + z2 = 9.

Grading scheme for 4(c)

� All or nothing. These 2Ms are only awarded to a correct (logical) argument.

(d) Compare (2) and (3), we have 2λy2 = 2λz2. By (c), we have λ ≠ 0. Therefore, this implies y = z.

If y = z = 0, then x + y2 + z2 = 9 implies x = 9. Then (1) implies λ = 1. Therefore, we obtain a solu-

tion

(x, y, z, λ) = (9,0,0,1).
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If both y, z ≠ 0, then (2) and (3) becomes xz = λ(2y) and xy = λ(2z). Since y = z and they are non-zero, we

have x = 2λ.

If x = 0, then (2) implies −λ(2y2) = 0 and hence λ = 0. This contradicts with (c). Therefore, x ≠ 0.

Since x ≠ 0, (1) implies yz + 1 = λ and hence y2 = z2 = λ − 1.

Then x + y2 + z2 = 9 becomes 2λ + 2(λ − 1) = 9. Solving gives λ = 11
4

. Thus we obtain

(x, y, z, λ) = ( 11
2
,
√

7
2
,
√

7
2
, 11

4
)

Since f(9,0,0) = 9 and f( 11
2
,
√

7
2
,
√

7
2

) = 121
8

> 9. Therefore, the maximizer is ( 11
2
,
√

7
2
,
√

7
2
, 11

4
).

Grading scheme for 4(d)

� 2M for showing that y = z

� 1M for the solution (9,0,0,1)

� 2M for showing that x ≠ 0

� 1M for showing that if y, z ≠ 0, x = 2λ and y2 = z2 = λ − 1

� 1M for the solution ( 11
2
,
√

7
2
,
√

7
2
, 11

4
)

� 1M for the correct maximizer/maximum value

5. (22%) In a pandemic, a government is planning to subsidize the vaccination for two high-risk populations, x and y

doses respectively. It is estimated that this will reduce f(x, y) = 3
4
x + 1

2
y + 1

32
xy number of severe cases. However,

due to the financial constraint and the size of a population, x, y must satisfy inequalities x + y ≤ 16, y ≤ 12, x ≥ 0,

and y ≥ 0. How could the policymaker maximize f(x, y), i.e. cut down the number of severe cases?

(a) (6%) Write down the classical Lagrangian function and the first order conditions for this optimization problem.

(b) (2%) Verify that NDCQ is satisfied.

(c) (8%) Find the maximum value of f(x, y) under the given constraints.

(d) (6%) Suppose that a better vaccine is developed so that f(x, y) is improved to 3
4
x + 9

16
y + 1

32
xy and the new

constraints are x+y ≤ 17, y ≤ 12, x ≥ 0, y ≥ 0. Estimate the maximum value of new f(x, y) under new constraints.

Solution:

(a) L(x, y, λ1, λ2, λ3, λ4) =
3
4
x + 1

2
y + 1

32
xy − λ1(x + y − 16) − λ2(y − 12) + λ3x + λ4y.

First order conditions are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂x

= 3
4
+ 1

32
y − λ1 + λ3 = 0 (1)

∂L
∂y

= 1
2
+ 1

32
x − λ1 − λ2 + λ4 = 0 (2)

λ1(x + y − 16) = 0 (3)

λ2(y − 12) = 0 (4)

λ3x = 0 (5)

λ4y = 0 (6)

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, λ4 ≥ 0

x + y ≤ 16

y ≤ 12

x ≥ 0

y ≥ 0

(1 pt for L(x, y, λ1, λ2, λ3, λ4), 1 pt for Lx = 0, 1 pt for Ly = 0, 1 pt for equations (3) (4), 1 pt for equations

(5) (6), 1 pt for the rest inequalities.

If students make minor mistakes in computing partial derivatives or list incomplete inequalities, they get
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0.5 point out of each 1 point.

If students derive wrong equations (1) and (2) because they have wrong Lagrangian function, they get 0.5

point out of each 1 point.)

(b) Let g1(x, y) = x + y, g2(x, y) = y, g3(x, y) = −y, g4(x, y) = −x. ∇⃗g1(x, y) = (1,1), ∇⃗g2(x, y) = (0,1),

∇⃗g3(x, y) = (0,−1), ∇⃗g4(x, y) = (−1,0).

The constraints g2 ≤ 12, g3 ≤ 0 can not be both binding. And at most two of the constraints g1 ≤ 16, g2 ≤ 12,

g3 ≤ 0, g4 ≤ 0 are simultaneously binding. Moreover, any two of ∇⃗g1, ∇⃗g2, ∇⃗g3, ∇⃗g4 are linearly independent

except ∇⃗g2 and ∇⃗g3. Hence we conclude that NDCQ is satisfied.

(1 point for computing ∇⃗g1, ∇⃗g2, ∇⃗g3, ∇⃗g4, 1 point for discussing cases and checking NDCQ.)

(c) To solve these first order conditions, we discuss cases.

case 1: λ3 > 0, λ4 > 0

(5),(6) ⇒ x = y = 0, (3),(4) ⇒ λ1 = λ2 = 0

But (1) ⇒ λ3 = −
3
4

contradiction!

case 2: λ3 > 0, λ4 = 0

(5) ⇒ x = 0. Since y ≤ 12, x + y = y < 16. Thus λ1 = 0

(1) ⇒ 3
4
+ 1

32
y + λ3 = 0 ⇒ λ3 < 0 contradiction!

case 3: λ3 = 0, λ4 > 0

(6) ⇒ y = 0, (1) ⇒ λ1 =
3
4
, (3) ⇒ x + y = 16 ⇒ x = 16

(4) ⇒ λ2 = 0, (2) ⇒ λ4 = −
1
4

contradiction!

case 4: λ3 = 0 = λ4

(1) ⇒ λ1 =
3
4
+ 1

32
y ≥ 3

4
> 0. (3) ⇒ x + y = 16.

(4) ⇒ y = 12 or λ2 = 0.

(i) If y = 12, then x = 4. (1) ⇒ λ1 =
9
8

(2) ⇒ λ2 =
1
2
+ 1

8
− 9

8
< 0 contradiction!

(ii) If λ2 = 0, then

(1) ⇒ y = 32λ1 − 24

(2) ⇒ x = 32λ1 − 16

⇒ x = 12, y = 4, λ1 =
7
8

Solution: (x∗, y∗, λ∗1, λ
∗

2, λ
∗

3, λ
∗

4) = (12,4, 7
8
,0,0,0)

The maximum value is f(12,4) = 12.5

(Students may discuss differently according to whether λ1, λ2 are zero or positive. Please check whether

they discuss complete cases. 6 points for full discussions and students can get partial credits depending on

the completeness of their discussions, For example, if they only consider one case out ot four possibilities,

they get 1.5 point out of 6 points. 2 points for the final answer.)

(d) Consider the Lagrangian function

L(x, y, λ⃗;a, b) = (
3

4
x + ay +

1

32
xy) − λ1(x + y − b) − λ2(y − 12) + λ3x + λ4y.

Let (x∗(a, b), y∗(a, b)) are maximizer with multipliers λ∗1(a, b), λ
∗

2(a, b), λ
∗

3(a, b), λ
∗

4(a, b).

Let M(a, b) = f(x∗(a, b), y∗(a, b))

when a = 1
2
, b = 16, (x∗, y∗, λ∗1, λ

∗

2, λ
∗

3, λ
∗

4) = (12,4, 7
8
,0,0,0), M( 1

2
,16) = 12.5.

Moreover, by the envelope theorem,
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∂M
∂a

( 1
2
,16) = ∂L

∂a
= y∗ = 4, ∂M

∂b
( 1
2
,16) = ∂L

∂b
= λ∗1 =

7
8
.

Hence by linear approximation,

M(
9

16
,17) ≈M(

1

2
,16)+

∂M

∂a
(

1

2
,16)(

9

16
−

1

2
)+

∂M

∂b
(

1

2
,16)(17−16) = 12.5+4(

9

16
−

1

2
)+

7

8
(17−16) = 12.5+

9

8

(1 point for knowing envelope theorem, 1.5 point for correct ∂L
∂a

, 1.5 point for correct ∂L
∂b

, 1 point for linear

approximation, 1 pt for final answer.)

6. (14%) Consider f(x, y, z) = x2 − 2y2 − 2z2 + 4xz under constraints x2 + y2 + z2 = 1. We find that ( 1
√

5
,0, −2√

5
) together

with some µ∗ is a critical point of the Lagrangian function

L(x, y, z, µ) = f(x, y, z) − µ(x2 + y2 + z2 − 1)

(a) (4%) Find µ∗.

(b) (4%) Write down the bordered Hessian matrix at (x, y, z, µ) = ( 1
√

5
,0, −2√

5
, µ∗)

(c) (6%) Determine whether f( 1
√

5
,0, −2√

5
) is a local maximum, local minimum or neither on the constraint set.

Solution:

(a) L(x, y, z, µ) = x2 − 2y2 − 2z2 + 4xz − µ(x2 + y2 + z2 − 1)
∂L
∂x

= 2x + 4z − 2xµ, ∂L
∂y

= −4y − 2yµ, ∂L
∂z

= −4z + 4x − 2zµ

At ( 1
√

5
,0, −2√

5
) with µ∗, ∂L

∂x
= ∂L

∂y
= ∂L

∂z
= 0 ⇒ 2

√

5
− 8
√

5
− 2
√

5
µ∗ = 0, 8

√

5
+ 4
√

5
+ 4
√

5
µ∗ = 0 ⇒ µ∗ = −3.

(2 points for computing Lx or Lz correctly. 1 point for plugging in (x, y, z) = ( 1
√

5
,0, −2√

5
). 1 point for solving

µ∗.)

(b) H(x, y, z, µ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2x 2y 2z

2x 2 − 2µ 0 4

2y 0 −4 − 2µ 0

2z 4 0 −4 − 2µ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

At (x, y, z, µ) = ( 1
√

5
,0, −2√

5
,−3), H =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2
√

5
0 −4

√

5
2
√

5
8 0 4

0 0 2 0
−4
√

5
4 0 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

3 points for H(x, y, z, µ):

(i) 1 point for the first row/column. 0.5 point is deducted if the first row is (0,−2x,−2y,−2z).

(ii) 2 points for Lxx, Lyy, Lzz, Lxz, Lxy, Lyz. 0.5 point is deducted for each wrong partial derivatives.

1 point for H( 1
√

5
,0, −2√

5
,−3):

If students compute H(x, y, z, µ) correctly but plug in wrong µ∗, then they get 0.5 point.

(c) Since there are three variables, x, y, z, and one constraint, we need to check the last 2 leading principle

minors of H =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2
√

5
0 −4

√

5
2
√

5
8 0 4

0 0 2 0
−4
√

5
4 0 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

∣H3∣ = det

⎛
⎜
⎜
⎜
⎝

0 2
√

5
0

2
√

5
8 0

0 0 2

⎞
⎟
⎟
⎟
⎠

= − 8
5
, ∣H4∣ = detH = −80

∵ The last two LPM of H has the same sign with (−1)1

∴ f( 1
√

5
,0, −2√

5
) is a local minimum.
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2 points for ∣H3∣, 2 points for ∣H4∣.

2 points for correct conclusion from second order conditions. If students have wrong ∣H3∣ or ∣H4∣ but use

right reasoning to judge the property of f( 1
√

5
,0, −2√

5
), they can get 2 points (full credits) for the conclusion

part.
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