臺灣大學數學系

八十八學年度第一學期碩博士班資格考試試題

分析

[回上頁]

*任選五題,但3及10必選

1. Suppose that (Ω,σ,μ) is a measure space and $A_n\in\Sigma$, $n=1,2,3,\cdots$. Let E={ $x\in\Omega:x\in A_n$ for infinitely many n}.

- (i) Show that $E = \bigcap_{k=1}^{\infty} \bigcup_{n \ge k} A_n$.
- (ii) Show that $\mu(\mathsf{E})$ =0 if $\sum_n \mu(A_n) < +\infty$.
- 2. Evaluate $\int_{-\infty}^{\infty} e^{-x^2} dx$ by showing that

$$\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_{\mathbb{R}^2} e^{-(x^2 + y^2)} dx dy = \int_{0}^{\infty} 2\pi t e^{-t^2} dt$$

- 3. Let $\Omega=(0,\infty)\times(0,\infty)$ and $f(x,y)=e^{-xy}, g(x,y)=e^{-xy}\sin x$ for $(x,y)\in\Omega$.
 - (i) Show that both f and g are not Lebesgue integrable on Ω .
 - (ii) From $\int_0^N [\int_0^M e^{-xy} \sin x dy] dx = \int_0^M [\int_0^N e^{-xy} \sin x dx] dy$ for

N>0, M>0. Show that

$$\int_0^N \frac{\sin x}{x} dx = \int_0^\infty \left[\int_0^N e^{-xy} \sin x dx \right] dy$$

(iii) Following (ii) show that

$$\int_0^\infty \frac{\sin x}{x} dx = \int_0^\infty \left[\int_0^\infty e^{-xy} \sin x dx \right] dy$$

(iv) Evaluate $\int_0^\infty e^{-xy} dx$ and show that $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$.

4. Suppose that f is a Lebesgue integrable function on $\mathbb R$ and $\varphi \in C^1(\mathbb R)$. Assume that both φ and φ' are bounded functions. Define

$$F(x) = \int_{-\infty}^{\infty} f(y)\varphi(x - y)dy$$

Show that $F \in C^1(\mathbb{R})$ and

$$F'(x) = \int_{-\infty}^{\infty} f(y)\varphi'(x-y)dy$$

State Hölder's inequality and use it to prove Minkowski's inequality.

6. Let $K \subset C[0,1]$ be a family of absolutely continuous functions. Suppose that

 $1) \sup_{f \in K} |f(0)| < \infty,$

5.

2) $\int_0^1 |f'(x)|^2 dx \le 1$ for all $f \in K$.

Show that K is precompact in C[0, 1].

Let X be a Hilbert space and let $\{e_n\}_{n=1}^\infty$ be an orthonormal system in X. Consider $x=(x_i)_{j=1}^\infty\in l^2$ and for each n let $V_n=\sum_{j=1}^n x_je_j$. Show that $\lim n\infty V_n$ exists in X and $||\lim n\infty V_n||^2=\sum_{j=1}^\infty |x_j|^2$.

- 8. Prove that ``Monotone convergence Theorem'' for integrals is equivalent to ``Fatou's Lemma'' .
- 9. Let f be a function of bounded variation on [0,1].
 - (i) Show that f is measurable.
 - (ii) Is it true that the total variation of f is given by $\int_0^1 |f'(x)| dx$?
- Let $\{f_n(z)\}_{n=1}^\infty$ be a sequence of analytic functions for |z|<1. Suppose that $f_n(z)$ converges uniformly to f(z) on each compact subset of $\{z\in\mathbb{C}:|z|<1\}$. Show that if each f_n is 1-1, then so is f unless f is a constant function.