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Hermite-Lindemann-Weierstrass

In value distribution theory the exponential function ez is a key.

This fuction also enjoys the following extraordinary properties:

(Hermite-Lindemann-Weierstrass 1880) For α 6= 0 ∈ Q,

eα is transcendental. Moreover, if algebraic numbers α1, . . . , αn
are linearly independent over Q then eα1 , . . . , eαn are algebraically

independent, i.e. for any polynomial P 6= 0 ∈ Q(x1, . . . , xn),

P (eα1 , . . . , eαn) 6= 0

Tools for proving this come from Complex Analysis.

Let H be the complex upper half plane.

We are also interested in values of “natural”holomorphic functions

taking at “algebraic points”of H.
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Siegel-Schneider

The modular function j : SL2(Z)\H ∼= C which parametrizes

isomorphism classes of complex elliptic curves.

This function j can be employed for proving the Picard theorem.

This j also has beautiful transcendence property:

(Siegel-Schneider 1930) If α ∈ Q ∩H and α is not quadratic,

then j(α) is transcendental.

If α is (imaginary) quadratic, then j(α) is actually an algebraic

integer, as known to Kronecker.

Call α ∈ H algebraic point if j(α) ∈ Q. Thus unless an algebraic

point α ∈ H is imaginary quadratic number, it must be a

transcendental number.

Elliptic curves correspond to algebraic points can all be defined

over Q.
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Arithmetic modular forms

(Meromorphic) Modular form f : H −→ C ∪ {∞}, of weight k,

here k is a fixed integer, satisfying for all z ∈ H

f(
az + b

cz + d
) = (cz + d)kf(z),

∀

(
a b

c d

)
∈ SL2(Z).

Modular forms are required to be meromorphic at ∞, i.e. with

Fourier expansion:

f(z) =
∞∑

n=n0

ane
2πinz.

Call f arithmetic modular form if all coefficients an ∈ Q.

Note one can replace SL2(Z) by its congruence subgroups Γ ,

and requiring f to be meromorphic at all “cusps”.
Jing Yu, NTU, Taiwan Values at Algebraic Points



Arithmetic modular forms

(Meromorphic) Modular form f : H −→ C ∪ {∞}, of weight k,

here k is a fixed integer, satisfying for all z ∈ H

f(
az + b

cz + d
) = (cz + d)kf(z),

∀

(
a b

c d

)
∈ SL2(Z).

Modular forms are required to be meromorphic at ∞, i.e. with

Fourier expansion:

f(z) =
∞∑

n=n0

ane
2πinz.

Call f arithmetic modular form if all coefficients an ∈ Q.

Note one can replace SL2(Z) by its congruence subgroups Γ ,

and requiring f to be meromorphic at all “cusps”.
Jing Yu, NTU, Taiwan Values at Algebraic Points



Values at algebraic points

Reformulating works of Siegel-Schneider, one has

Theorem. Let f be arithmetic modular form of nonzero weight k.

Let α ∈ H is an algebraic point which is neither zero nor pole of f ,

then f(α) is transcendental.

Open Problem.Let f as above, α1, . . . , αn ∈ H be algebraic

points which are neither zeros nor poles of f . Suppose that the

αi are pairwise non-isogenous, are the values f(α1), . . . , f(αn)

algebraically independent?

Here α and β ∈ H are said to be non-isogenous, if the elliptic

curves they correspond are not isogenous.

Note that the value f(α) is always an algebraic multiple of the

k-th power of a period (of the elliptic curve corresponding to α)

dividing by π.

Can prove the linearly independence over Q of these values.
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World of Positive characteristic

Fq := the finite field of q elements.

k := Fq(θ) := the rational function field in the variable θ over Fq.
k̄ := fixed algebraic closure of k.

k∞ := Fq((1
θ )), completion of k with respect to the infinite place.

k∞ := a fixed algebraic closure of k∞ containing k̄.

C∞ := completion of k∞ with respect to the canonical extension

of the infinite place.

Non-archimedean analytic function theory on C∞, and on

Drinfeld upper-half space H∞ which is C∞ − k∞.

Natural non-archimedean analytic functions come from

Drinfeld modules theory.
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Drinfeld modules

Let τ : x 7→ xq be the Frobenius endomorphism of Ga/Fq.

Let C∞[τ ] be the twisted polynomial ring :

τc = cqτ, for all c ∈ C∞.

A Drinfeld Fq[t]-module ρ of rank r (over C∞) is a Fq-linear ring

homomorphism (Drinfeld 1974) ρ : Fq[t]→ C∞[τ ] given by

(∆ 6= 0)

ρt = θ + g1τ + · · ·+ gr−1τ
r−1 + ∆τ r,

Drinfeld exponential expρ(z) =
∑∞

h=0 chz
qh , ch ∈ k̄, on C∞

linearizes this t-action :

C∞
expρ−−−−→ Ga(C∞) = C∞

θ(·)
y yρt
C∞

expρ−−−−→ Ga(C∞) = C∞
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Transcendence theory

Analogue of Hermite-Lindemann-Weierstrass, and Siegel-Schneider:

Theorem 1.(Yu 1986) Let ρ be a Drinfeld Fq[t]-module defined

over k̄, with associated exponential map expρ(z) on C∞.

If α 6= 0 ∈ k̄, then expρ(α) is transcendental over k.

Theorem 2.(A. Thiery 1995) Suppose the Drinfeld module ρ is of

rank 1. If α1, . . . , αn ∈ k̄ are linearly independent over k , then

expρ(α1), . . . , expρ(αn) are algebraically independent over k.

Drinfeld upper-half space H∞ parametrizes isomorphism classes of

rank 2 Drinfeld modules, let j = gq+1
1 /∆ :

j : GL2(Fq[θ])\H∞ ∼= C∞.

Call α ∈ H∞ algebraic point if j(α) ∈ k̄. Drinfeld modules

corresponding to algebraic points can be defined over k̄.
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The j values and periods

We have the following

Theorem 3.(Yu 1986) If α ∈ k̄ ∩H∞ and α is not quadratic over

k, then j(α) is transcendental over k. Moreover, for those α

quadratic over k, j(α) are integral over Fq[θ].

If Drinfeld module ρ is of rank r, kernel of expρ is a discrete free

Fq[θ]-module Λρ ⊂ C∞ of rank r. Moreover

expρ(z) = z
∏

λ 6=0∈Λρ

(1− z

λ
).

The nonzero elements in Λρ are the periods of the Drinfeld

module ρ. They are all transcendental over k̄ by Theorem 1.

Morphisms of Drinfeld modules f : ρ1 → ρ2 are the twisting

polynomials f ∈ k̄[τ ] satisfying (ρ2)t ◦ f = f ◦ (ρ1)t.
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Algebraic relations among periods

Isomorphisms from ρ1 to ρ2 are given by constant polynomials

f ∈ k̄ ⊂ k̄[τ ] such that f Λρ1 = Λρ2 .

The endomorphism ring of Drinfeld module ρ can be identified with

Rρ = {α ∈ k̄| αΛρ ⊂ Λρ}.

The field of fractions of Rρ, denoted by Kρ, is called the field of

multiplications of ρ. One has that [Kρ : k] always divides the rank

of the Drinfeld module ρ.

Drinfeld module ρ of rank 2 is said to be without Complex

Multiplications if Kρ = k, and with CM if [Kρ : k] = 2.

If ρ has CM, there are non-trivial algebraic relations among its

periods.
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Drinfeld modular forms

Modular form f : H∞ −→ C∞ ∪ {∞}, of weight k and type m,

here k is a fixed integer, m ∈ Z/(q − 1)Z, satisfying for all z ∈ H∞

f(
az + b

cz + d
) = (det γ)m(cz + d)kf(z),

∀γ =

(
a b

c d

)
∈ GL2(Fq[θ]).

Modular forms are required to be “rigid”meromorphic functions,

and at ∞ with “Fourier”expansion:

f(z) =

∞∑
n=n0

anq∞(z)n, q∞(z) =
∑

a∈Fq [θ]

1

z − a
.

Call f arithmetic modular form if all coefficients an ∈ k̄.

Note one can replace GL2(Fq[θ]) by its congruence subgroups Γ ,

and requiring f to be meromorphic at all “cusps”.
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Values at algebraic points

Here one also proves

Theorem.(Yu) Let f be arithmetic modular form of nonzero

weight k. Let α ∈ H∞ is an algebraic point which is neither zero

nor pole of f , then f(α) is transcendental over k.

Open Problem.Let f as above, α1, . . . , αn ∈ H∞ be algebraic

points which are neither zeros nor poles of f . Suppose that the

αi are pairwise non-isogenous, are the values f(α1), . . . , f(αn)

algebraically independent over k?

Here α and β ∈ H∞ are said to be non-isogenous, if the

Drinfeld modules they correspond are not isogenous.

Again the value f(α) is equal to an element of k̄ times k-th power

of a period (of the rank 2 Drinfeld modules defined over k̄

corresponding to α) dividing by the Carlitz period (of rank 1

Drinfeld Fq[t]-module).
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Values at CM points

The CM points are those α ∈ H∞ which are quadratic over k,

hence correspond to Drinfeld modules with CM.

Theorem.(C.-Y. Chang 2010) Let f be arithmetic modular form

of nonzero weight. Let α1, . . . , αn ∈ H∞ be CM points which are

neither zeros nor poles of f . Suppose that the αi are pairwise

non-isogenous, then the values f(α1), . . . , f(αn) are algebraically

independent over k.

Here CM points α and β ∈ H∞ are non-isogenous, precisely when

they belong to different quadratic extension of k.

Method for proving algebraic independence in positive

characteristic, developed in the last 10 years, by Anderson,

Brownawell, Chang, Papanikolas, and Yu. Crucial step by

Papanikolas 2008.
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Motivic transcendence theory

Realizing a program of Grothendieck in positive characteristic.

We are interested in finitely generated extension of k̄ generated by

a set S of special values, denoted by KS . In particular we want to

determine all algebraic relations among elements of S.

From known algebraic relations, one can guess the transcendence

degree of KS over k̄, and the goal is to prove that is indeed the

specific degree in question.

To proceed, we construct a t-motive MS for this purpose, so that

it has the GP property and its “periods”ΨS(θ) from “rigid analytic

trivialization ”generate also the field KS , then computing the

dimension of the motivic Galois (algebraic) group ΓMS
.

GP property of the motive MS requires:

dim ΓMS
= tr.degk̄ k̄(ΨS(θ)).
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The End. Thank You.
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