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tionWhen attempting to 
ompute unsteady, variable density 
ows at very small orzero Ma
h number using standard �nite volume 
ompressible 
ow solvers one fa
esat least the following diÆ
ulties: (i) Spatial pressure variations vanish as the Ma
hnumber M �! 0, but they do a�e
t the velo
ity �eld at leading order; (ii) theresulting spatial homogeneity of the leading order pressure implies an ellipti
 di-vergen
e 
onstraint for the energy 
ux; (iii) violations of this 
onstraint 
ru
iallya�e
t the transport of mass, preventing a 
ode to properly adve
t even a 
onstantdensity distribution. We propose a suite of test problems for low Ma
h numbervariable density 
ows. These problems are designed to assess the a

ura
y and theeÆ
ien
y of numeri
al methods and test their 
apability to 
ope with the abovementioned diÆ
ulties. For these test problems either the exa
t solution or at leastsome properties of the exa
t solution are known. This allows a meaningful validationof new 
omputational approa
hes and the 
omparison of numeri
al results obtainedwith di�erent methods. All test problems 
an be run with trivial geometries andstraight-forward boundary 
onditions.2. Adve
tion of a vortex.2.1. Governing equations. The governing equations are the 
ompressible Eulerequations for a 
alori
ally perfe
t gas:�t +r � (�~v) = 0(�~v)t +r � (�~vÆ~v) +rp = 0(�e)t +r � ((�e+ p)~v) = 0p = (
 � 1)(�e� 12�~v �~v)(1)y Potsdam Institute for Climate Impa
t Resear
h.z Institut f�ur Aerodynamik und Gasdynamik, Stuttgart.1



2 N. BOTTAy AND S. ROLLERzThese equations support spe
ial two-dimensional solutions 
onsisting of a single\vortex" adve
ted at 
onstant speed:U(~x; t) = U(~x� ~vat; 0)We use U to indi
ate a solution 
omponent or a set of solution 
omponents of thegoverning equations, e.g., U := p or U := f�;~vg. ~x := (x; y) and t are the spa
e andthe time 
oordinate, respe
tively, and ~va is the adve
tion velo
ity. Vortex solutionsU of (1) 
an be 
onstru
ted as follows. Let ~x
;0 be the position of the vortex 
enterat time ~s = 0. At any time~x
(t) = (x
(t); y
(t)) = ~x
;0 + ~vat(2)and U only depends on ~x� ~x
. In parti
ular, U depends on the distan
e r between~x and the 
enter of the vortex ~x
 and on the angle � between some �xed dire
tionand the dire
tion of ~x� ~x
. Taking the dire
tion asso
iated to the x-
oordinate as�xed dire
tion one hasr(~x;~s) :=p(x� x
(t))2 + (y � y
(t))2 �(~x;~s) := ar
tan y � y
(t)x� x
(t)(3) �(~x; t) =�r(r)~v(~x; t) =~va + ur(r)(� sin �; 
os �)p(~x; t) =pr(r)(4)For given fun
tions �r and ur, the pressure pr is solution of the ordinary di�erentialequation ddr pr = �r(r)ur(r)2r(5)with boundary 
onditions, e.g., at the 
enter of the vortex. In prin
iple �r and urare arbitrary the only restri
tion beeing that (5) is integrable.In pra
ti
e it is 
onvenient to 
onsider 
ases in whi
h �r is either 
onstant ora monotoni
ally in
reasing fun
tion of r and ur has a 
ompa
t support. The �rst
ondition is required to avoid the solution undergoing Rayleigh-Taylor instability.The se
ond 
ondition allows one to de�ne meaningful boundary 
onditions on a�nite domain.2.2. Domain. We 
onsider exa
t and approximate solutions of (1) on the re
tan-gular domain 
 := f~x 2 R2 : 0 � x � 4 0 � y � 1g2.3. Exa
t solution, initial 
ondition. The exa
t solution 
onsists of a vortexof radius R = 0:4. At time ~s = 0 the vortex is lo
ated at the left end of 
 at~x
;0 = (0:5; 0:5)(6)The adve
tion velo
ity ~va is in the horizontal dire
tion~va = (ua; 0)and the tangential velo
ity ur(r) is de�ned as followsur(r) = ua8><>:2r=R if 0 � r < R=2;2(1� r=R) if R=2 � r < R;0 if R � r:With the above equations and (2), (3), (4) the exa
t velo
ity �eld only dependson the parameter ua and on the time t. The velo
ity �eld at t = 0 is the initial
ondition.



TEST CASES FOR LOW MACH NUMBER FLOWS 3To 
omplete the 
onstru
tion of the exa
t solution (and of the initial 
ondition)the density and the pressure �elds must be spe
i�ed. Two problems are 
onsidered:one with 
onstant density and one with variable density.2.3.1. Constant density 
ase. In this 
ase �r(r) := �0 := 1 and the pressure isobtained by integrating (5) with boundary 
ondition pr(R) := pR := 1=
. Thisyields pr(r) = 8>><>>:p0 + 2�0u2a r2R2 if 0 � r < R=2;p1 + �0u2a �2 r2R2 � 8 rR + 4 log r� if R=2 � r < R;pR if R � r:where the integration 
onstants p0 and p1 arep0 = pR + 2�0u2a(1� 2 log 2) p1 = pR + 6�0u2a � 4�0u2a logR2.3.2. Variable density 
ase. In this 
ase�r(r) = (�0 + (�R � �0) r2R2 if 0 � r < R;�R if R � r:and (5) with boundary 
ondition pr(R) := pR := 1=
 yieldspr(r) = 8>>>>>>>>><>>>>>>>>>:
p0 + 2�0u2a r2R2 + (�R � �0)u2a r4R4 if R=2 � r < R;p1 + 4�0u2a log r + (�R � �0)u2a r4R4� 83(�R � �0)u2a r3R3 + 2�Ru2a r2R2� 8�0u2a rR if R=2 � r < R;pR if R � r:where the integration 
onstants p0 and p1 arep0 = pR � 16(�R � 13�0)u2a � 4�0u2a log 2p1 = pR � 13(�R � 19�0)u2a � 4�0u2a logR:With the spe
i�
ation of �r, pr and (2), (3), (4) the 
onstru
tion of the exa
tsolution (and of the initial 
ondition) are 
ompleted. Noti
e that pr = pR = 1=
for r � R. Thus the Ma
h number based on the adve
tion velo
ity ua and on thespeed of sound outside the vortex (whi
h is the square root of 
p=�) is simply equalto ua and one 
an study the behaviour of numeri
al solutions of (1) at low Ma
hnumbers by 
onsidering di�erent values of the adve
tion velo
ity ua.Numeri
al methods for (1) usually 
ompute, at some dis
rete times t0; t1; : : : ; tNnumeri
al approximations F0;F1; : : : ;FN to some fun
tion F of an exa
t solutionU of (1). Finite volume methods, for instan
e, 
ompute numeri
al approximationsto sets of exa
t 
ell averages. These methods require mapping the initial 
ondition
onstru
ted above into a set of 
ell averages i.e. one has to integrate the initial
ondition on a subset of 
. This is usually done numeri
ally. The issue is impor-tant (depending on the roughness of the grid and on the smoothness of the initial
ondition, di�erent quadrature rules may yield quite di�erent initial 
ell averages)and should be 
onsidered in the 
omparison of numeri
al results.2.4. Boundary 
onditions. Periodi
 boundary 
onditions are imposed on the leftand on the right sides of 
 (0 � [0; 1℄ and 4� [0; 1℄, respe
tively). On the bottomand on the top sides ([0; 4℄� 0 and [0; 4℄� 1, respe
tively) the verti
al 
omponentof the velo
ity is required to be zero.



4 N. BOTTAy AND S. ROLLERz2.5. Test 
ases. Numeri
al solutions of (1) with the initial 
onditions and theboundary 
onditions des
ribed above should be 
omputed for three values of theadve
tion velo
ity (the Ma
h number): ua = 0:1, ua = 0:01 and ua = 0:001.The numeri
al integration is to be 
arried out until the 
enter of the vortex ~x
has rea
hed the point (3:5; 0) at the right end of the domain, that is, using (2), (6),until tN := 3=ua.Ea
h 
omputation should be run on 3 di�erent grids h1, h2 and h3. For Cartesiangrid methods these are equally spa
ed grids of 80�20 
ells (81�21 nodes), 160�40
ells (161�41 nodes) and 320�80 
ells (321�81 nodes), respe
tively. For methodsbased on unstru
tured grids h1, h2 and h3 should be uniform with 1600, 6400 and25600 degrees of freedom per unknown, respe
tively.What one expe
ts to see is that both the eÆ
ien
y (measured, for instan
e,as the number of time steps required for the numeri
al integration from t = 0to t = tN ) and / or the a

ura
y (measured, e.g., through some suitable norm ofFN�F(U(~x; tN))) of standard numeri
al methods for 
ompressible 
ows degenerateas ua is de
reased. It would be interesting to see how adaptive grid methods andmethods of order higher than 2 behave with respe
t to the eÆ
ien
y and a

ura
yissues.2.6. Output. For a given test 
ase, i.e. a pair (ua; h) for either the 
onstant densityor for the variable density 
ases, the following output is required:1. Number of iterations needed for the integration over [0; tN ℄, CPU time periteration, CPU type.2. Time history of the error normsE2(f) := kf(Fk)� f(F(U(~x; tk)))k2 = kf(F(U(~x; 0)))k2where kfk is the L2-norm of f , f := f�; �~v; �e; p; ~v; !g and ! is thevorti
ity: kfk := 0�Z
 f2 dx dy1A 12 ! := �u�y � �v�x3. Contour lines of ! (values at uaf�3; �1; 1; 3; 5; 7g), minimum values of thedensity (
onstant density 
ases) and density 
ontour lines (variable density
ases, values at 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9) at time 0, tN=3, tN2=3 andtN .2.7. Example. Consider, as an example, a variable density 
ase with ua := 0:1and on a Cartesian equally spa
ed grid of 80� 20 
ells.With a se
ond order expli
it method at �t := tk+1�tk := 0:02; k = 0; 1; : : : ; N�1 it takesN = 1500 time steps to integrate over [0; 30℄ with a CFL number of � 0:83.One single iteration 
osts about 0:14 CPU se
onds on a 400 MHz Pentium Pro.The 
ontour lines of ! at f�:3; �:1; :1; :3; :5; :7g should look something likeFigure 1.
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Figure 1. Adve
tion of a vortex: vorti
ity 
ontour lines.


