
TEST CASES FOR LOW MACH NUMBER FLOWSN. BOTTAy AND S. ROLLERzContents1. Introdution 12. Advetion of a vortex. 12.1. Governing equations. 12.2. Domain. 22.3. Exat solution, initial ondition. 22.4. Boundary onditions 32.5. Test ases 42.6. Output 42.7. Example 41. IntrodutionWhen attempting to ompute unsteady, variable density ows at very small orzero Mah number using standard �nite volume ompressible ow solvers one faesat least the following diÆulties: (i) Spatial pressure variations vanish as the Mahnumber M �! 0, but they do a�et the veloity �eld at leading order; (ii) theresulting spatial homogeneity of the leading order pressure implies an ellipti di-vergene onstraint for the energy ux; (iii) violations of this onstraint ruiallya�et the transport of mass, preventing a ode to properly advet even a onstantdensity distribution. We propose a suite of test problems for low Mah numbervariable density ows. These problems are designed to assess the auray and theeÆieny of numerial methods and test their apability to ope with the abovementioned diÆulties. For these test problems either the exat solution or at leastsome properties of the exat solution are known. This allows a meaningful validationof new omputational approahes and the omparison of numerial results obtainedwith di�erent methods. All test problems an be run with trivial geometries andstraight-forward boundary onditions.2. Advetion of a vortex.2.1. Governing equations. The governing equations are the ompressible Eulerequations for a alorially perfet gas:�t +r � (�~v) = 0(�~v)t +r � (�~vÆ~v) +rp = 0(�e)t +r � ((�e+ p)~v) = 0p = ( � 1)(�e� 12�~v �~v)(1)y Potsdam Institute for Climate Impat Researh.z Institut f�ur Aerodynamik und Gasdynamik, Stuttgart.1



2 N. BOTTAy AND S. ROLLERzThese equations support speial two-dimensional solutions onsisting of a single\vortex" adveted at onstant speed:U(~x; t) = U(~x� ~vat; 0)We use U to indiate a solution omponent or a set of solution omponents of thegoverning equations, e.g., U := p or U := f�;~vg. ~x := (x; y) and t are the spae andthe time oordinate, respetively, and ~va is the advetion veloity. Vortex solutionsU of (1) an be onstruted as follows. Let ~x;0 be the position of the vortex enterat time ~s = 0. At any time~x(t) = (x(t); y(t)) = ~x;0 + ~vat(2)and U only depends on ~x� ~x. In partiular, U depends on the distane r between~x and the enter of the vortex ~x and on the angle � between some �xed diretionand the diretion of ~x� ~x. Taking the diretion assoiated to the x-oordinate as�xed diretion one hasr(~x;~s) :=p(x� x(t))2 + (y � y(t))2 �(~x;~s) := artan y � y(t)x� x(t)(3) �(~x; t) =�r(r)~v(~x; t) =~va + ur(r)(� sin �; os �)p(~x; t) =pr(r)(4)For given funtions �r and ur, the pressure pr is solution of the ordinary di�erentialequation ddr pr = �r(r)ur(r)2r(5)with boundary onditions, e.g., at the enter of the vortex. In priniple �r and urare arbitrary the only restrition beeing that (5) is integrable.In pratie it is onvenient to onsider ases in whih �r is either onstant ora monotonially inreasing funtion of r and ur has a ompat support. The �rstondition is required to avoid the solution undergoing Rayleigh-Taylor instability.The seond ondition allows one to de�ne meaningful boundary onditions on a�nite domain.2.2. Domain. We onsider exat and approximate solutions of (1) on the retan-gular domain 
 := f~x 2 R2 : 0 � x � 4 0 � y � 1g2.3. Exat solution, initial ondition. The exat solution onsists of a vortexof radius R = 0:4. At time ~s = 0 the vortex is loated at the left end of 
 at~x;0 = (0:5; 0:5)(6)The advetion veloity ~va is in the horizontal diretion~va = (ua; 0)and the tangential veloity ur(r) is de�ned as followsur(r) = ua8><>:2r=R if 0 � r < R=2;2(1� r=R) if R=2 � r < R;0 if R � r:With the above equations and (2), (3), (4) the exat veloity �eld only dependson the parameter ua and on the time t. The veloity �eld at t = 0 is the initialondition.



TEST CASES FOR LOW MACH NUMBER FLOWS 3To omplete the onstrution of the exat solution (and of the initial ondition)the density and the pressure �elds must be spei�ed. Two problems are onsidered:one with onstant density and one with variable density.2.3.1. Constant density ase. In this ase �r(r) := �0 := 1 and the pressure isobtained by integrating (5) with boundary ondition pr(R) := pR := 1=. Thisyields pr(r) = 8>><>>:p0 + 2�0u2a r2R2 if 0 � r < R=2;p1 + �0u2a �2 r2R2 � 8 rR + 4 log r� if R=2 � r < R;pR if R � r:where the integration onstants p0 and p1 arep0 = pR + 2�0u2a(1� 2 log 2) p1 = pR + 6�0u2a � 4�0u2a logR2.3.2. Variable density ase. In this ase�r(r) = (�0 + (�R � �0) r2R2 if 0 � r < R;�R if R � r:and (5) with boundary ondition pr(R) := pR := 1= yieldspr(r) = 8>>>>>>>>><>>>>>>>>>:
p0 + 2�0u2a r2R2 + (�R � �0)u2a r4R4 if R=2 � r < R;p1 + 4�0u2a log r + (�R � �0)u2a r4R4� 83(�R � �0)u2a r3R3 + 2�Ru2a r2R2� 8�0u2a rR if R=2 � r < R;pR if R � r:where the integration onstants p0 and p1 arep0 = pR � 16(�R � 13�0)u2a � 4�0u2a log 2p1 = pR � 13(�R � 19�0)u2a � 4�0u2a logR:With the spei�ation of �r, pr and (2), (3), (4) the onstrution of the exatsolution (and of the initial ondition) are ompleted. Notie that pr = pR = 1=for r � R. Thus the Mah number based on the advetion veloity ua and on thespeed of sound outside the vortex (whih is the square root of p=�) is simply equalto ua and one an study the behaviour of numerial solutions of (1) at low Mahnumbers by onsidering di�erent values of the advetion veloity ua.Numerial methods for (1) usually ompute, at some disrete times t0; t1; : : : ; tNnumerial approximations F0;F1; : : : ;FN to some funtion F of an exat solutionU of (1). Finite volume methods, for instane, ompute numerial approximationsto sets of exat ell averages. These methods require mapping the initial onditiononstruted above into a set of ell averages i.e. one has to integrate the initialondition on a subset of 
. This is usually done numerially. The issue is impor-tant (depending on the roughness of the grid and on the smoothness of the initialondition, di�erent quadrature rules may yield quite di�erent initial ell averages)and should be onsidered in the omparison of numerial results.2.4. Boundary onditions. Periodi boundary onditions are imposed on the leftand on the right sides of 
 (0 � [0; 1℄ and 4� [0; 1℄, respetively). On the bottomand on the top sides ([0; 4℄� 0 and [0; 4℄� 1, respetively) the vertial omponentof the veloity is required to be zero.



4 N. BOTTAy AND S. ROLLERz2.5. Test ases. Numerial solutions of (1) with the initial onditions and theboundary onditions desribed above should be omputed for three values of theadvetion veloity (the Mah number): ua = 0:1, ua = 0:01 and ua = 0:001.The numerial integration is to be arried out until the enter of the vortex ~xhas reahed the point (3:5; 0) at the right end of the domain, that is, using (2), (6),until tN := 3=ua.Eah omputation should be run on 3 di�erent grids h1, h2 and h3. For Cartesiangrid methods these are equally spaed grids of 80�20 ells (81�21 nodes), 160�40ells (161�41 nodes) and 320�80 ells (321�81 nodes), respetively. For methodsbased on unstrutured grids h1, h2 and h3 should be uniform with 1600, 6400 and25600 degrees of freedom per unknown, respetively.What one expets to see is that both the eÆieny (measured, for instane,as the number of time steps required for the numerial integration from t = 0to t = tN ) and / or the auray (measured, e.g., through some suitable norm ofFN�F(U(~x; tN))) of standard numerial methods for ompressible ows degenerateas ua is dereased. It would be interesting to see how adaptive grid methods andmethods of order higher than 2 behave with respet to the eÆieny and aurayissues.2.6. Output. For a given test ase, i.e. a pair (ua; h) for either the onstant densityor for the variable density ases, the following output is required:1. Number of iterations needed for the integration over [0; tN ℄, CPU time periteration, CPU type.2. Time history of the error normsE2(f) := kf(Fk)� f(F(U(~x; tk)))k2 = kf(F(U(~x; 0)))k2where kfk is the L2-norm of f , f := f�; �~v; �e; p; ~v; !g and ! is thevortiity: kfk := 0�Z
 f2 dx dy1A 12 ! := �u�y � �v�x3. Contour lines of ! (values at uaf�3; �1; 1; 3; 5; 7g), minimum values of thedensity (onstant density ases) and density ontour lines (variable densityases, values at 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9) at time 0, tN=3, tN2=3 andtN .2.7. Example. Consider, as an example, a variable density ase with ua := 0:1and on a Cartesian equally spaed grid of 80� 20 ells.With a seond order expliit method at �t := tk+1�tk := 0:02; k = 0; 1; : : : ; N�1 it takesN = 1500 time steps to integrate over [0; 30℄ with a CFL number of � 0:83.One single iteration osts about 0:14 CPU seonds on a 400 MHz Pentium Pro.The ontour lines of ! at f�:3; �:1; :1; :3; :5; :7g should look something likeFigure 1.
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Figure 1. Advetion of a vortex: vortiity ontour lines.


