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1. INTRODUCTION

When attempting to compute unsteady, variable density flows at very small or
zero Mach number using standard finite volume compressible flow solvers one faces
at least the following difficulties: (i) Spatial pressure variations vanish as the Mach
number M — 0, but they do affect the velocity field at leading order; (ii) the
resulting spatial homogeneity of the leading order pressure implies an elliptic di-
vergence constraint for the energy flux; (iii) violations of this constraint crucially
affect the transport of mass, preventing a code to properly advect even a constant
density distribution. We propose a suite of test problems for low Mach number
variable density flows. These problems are designed to assess the accuracy and the
efficiency of numerical methods and test their capability to cope with the above
mentioned difficulties. For these test problems either the exact solution or at least
some properties of the exact solution are known. This allows a meaningful validation
of new computational approaches and the comparison of numerical results obtained
with different methods. All test problems can be run with trivial geometries and
straight-forward boundary conditions.

2. ADVECTION OF A VORTEX.

2.1. Governing equations. The governing equations are the compressible Euler
equations for a calorically perfect gas:
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These equations support special two-dimensional solutions consisting of a single
“yortex” advected at constant speed:

UF,t) = UF — Tat, 0)

We use U to indicate a solution component or a set of solution components of the
governing equations, e.g., U := p or U := {p,0}. ¥ := (z,y) and ¢ are the space and
the time coordinate, respectively, and ¥, is the advection velocity. Vortex solutions
U of (1) can be constructed as follows. Let Z. ¢ be the position of the vortex center
at time § = 0. At any time

(2) fC(t) = (wc(t)vyc(t)) = 5670 + Tt

and U only depends on Z — Z.. In particular, i/ depends on the distance r between
Z and the center of the vortex Z. and on the angle # between some fixed direction
and the direction of ¥ — Z.. Taking the direction associated to the z-coordinate as
fixed direction one has

() (@9 = v - w2 F = 5D ewswzammn%}%%%
p(@,t) =py(r)

(4) (%, t) =t + u,(r)(—sin b, cos )
p(f, t) =Pr (T‘)

For given functions p, and u,., the pressure p, is solution of the ordinary differential
equation
u(r)

) e = (1)

with boundary conditions, e.g., at the center of the vortex. In principle p, and wu,
are arbitrary the only restriction beeing that (5) is integrable.

In practice it is convenient to consider cases in which p, is either constant or
a monotonically increasing function of r and u, has a compact support. The first
condition is required to avoid the solution undergoing Rayleigh-Taylor instability.
The second condition allows one to define meaningful boundary conditions on a
finite domain.

2.2. Domain. We consider exact and approximate solutions of (1) on the rectan-
gular domain

Q:={ZecR:0<2z<4 0<y<1}

2.3. Exact solution, initial condition. The exact solution consists of a vortex
of radius R = 0.4. At time § = 0 the vortex is located at the left end of Q at

(6) Zeo = (0.5,0.5)
The advection velocity ¢, is in the horizontal direction
Vo = (Ua,0)
and the tangential velocity u,(r) is defined as follows
2r/R if0<r<R/2,
ur(r) =uq ¢ 2(1—r/R) if R/2<r <R,
0 if R<r.

With the above equations and (2), (3), (4) the exact velocity field only depends
on the parameter u, and on the time ¢. The velocity field at ¢ = 0 is the initial
condition.
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To complete the construction of the exact solution (and of the initial condition)
the density and the pressure fields must be specified. Two problems are considered:
one with constant density and one with variable density.

2.3.1. Constant density case. In this case p,(r) := pg := 1 and the pressure is
obtained by integrating (5) with boundary condition p,(R) := pr := 1/v. This
yields

Po + 2pou Ly if0<r < R/2,
pr(r): pl-{—pgug (2%—8%+410gr) lfR/QST<Ra

where the integration constants py and p; are
po = PR + 2pou; (1 — 2log 2) p1 = PR + 6pou — 4pou log R
2.3.2. Variable density case. In this case

o) if0< .
= e Ko<
PR ifR<r.

and (5) with boundary condition p,(R) := pg := 1/ yields

2 4 .
'p0+2p0u3%+(p3—p0)u3% if R/2<r <R,
4
r
p1 + 4pou’logr + (pr — pg)u§—4
— 8 r’ r2
o (r) = o _ 2T 2" if R/2<r <R,
p ( ) 3(pR rpO)uaRg +2pRuaR2 / -
2
_8p0u0’E
\pR lfRS Tr.

where the integration constants py and p; are

1
Po = PR — E(PR — 13po)u? — 4pou? log 2

1
P1 = PR — g(PR — 19p0)u2 — 4pou? log R.

With the specification of p,, p, and (2), (3), (4) the construction of the exact
solution (and of the initial condition) are completed. Notice that p, = pp = 1/v
for r > R. Thus the Mach number based on the advection velocity u, and on the
speed of sound outside the vortex (which is the square root of yp/p) is simply equal
to u, and one can study the behaviour of numerical solutions of (1) at low Mach
numbers by considering different values of the advection velocity u,.

Numerical methods for (1) usually compute, at some discrete times t°,#!,...
numerical approximations F9, F', ..., F"N to some function F of an exact solution
U of (1). Finite volume methods, for instance, compute numerical approximations
to sets of exact cell averages. These methods require mapping the initial condition
constructed above into a set of cell averages i.e. one has to integrate the initial
condition on a subset of Q. This is usually done numerically. The issue is impor-
tant (depending on the roughness of the grid and on the smoothness of the initial
condition, different quadrature rules may yield quite different initial cell averages)
and should be considered in the comparison of numerical results.

tN

2.4. Boundary conditions. Periodic boundary conditions are imposed on the left
and on the right sides of © (0 x [0,1] and 4 x [0, 1], respectively). On the bottom
and on the top sides ([0,4] x 0 and [0, 4] x 1, respectively) the vertical component
of the velocity is required to be zero.
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2.5. Test cases. Numerical solutions of (1) with the initial conditions and the
boundary conditions described above should be computed for three values of the
advection velocity (the Mach number): u, = 0.1, u, = 0.01 and u, = 0.001.

The numerical integration is to be carried out until the center of the vortex Z,
has reached the point (3.5, 0) at the right end of the domain, that is, using (2), (6),
until Y := 3/u,.

Each computation should be run on 3 different grids h;, hy and hz. For Cartesian
grid methods these are equally spaced grids of 80 x 20 cells (81 x 21 nodes), 160 x 40
cells (161 x 41 nodes) and 320 x 80 cells (321 x 81 nodes), respectively. For methods
based on unstructured grids hy, hs and hz should be uniform with 1600, 6400 and
25600 degrees of freedom per unknown, respectively.

What one expects to see is that both the efficiency (measured, for instance,
as the number of time steps required for the numerical integration from ¢t = 0
to t = tV) and / or the accuracy (measured, e.g., through some suitable norm of
FN_FU(&,tN))) of standard numerical methods for compressible flows degenerate
as u, is decreased. It would be interesting to see how adaptive grid methods and
methods of order higher than 2 behave with respect to the efficiency and accuracy
issues.

2.6. Output. For a given test case, i.e. a pair (uq, h) for either the constant density
or for the variable density cases, the following output is required:

1. Number of iterations needed for the integration over [0,#"], CPU time per
iteration, CPU type.
2. Time history of the error norms

By (f) = IF(F) = FFUE N, / I (FUE NI,

where ||f|| is the La-norm of f, f := {p, p¥, pe, p, ¥, w} and w is the
vorticity:

7= | [ oy w28
Q

y Oz
3. Contour lines of w (values at u,{—3, —1, 1, 3, 5, 7}), minimum values of the

density (constant density cases) and density contour lines (variable density

cases, values at 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) at time 0, t/¥/3, V2/3 and
tN.

2.7. Example. Consider, as an example, a variable density case with u, := 0.1
and on a Cartesian equally spaced grid of 80 x 20 cells.

With a second order explicit method at At := tF+1—¢tk :=0.02, k=0,1,... , N—
1it takes N = 1500 time steps to integrate over [0, 30] with a CFL number of ~ 0.83.
One single iteration costs about 0.14 CPU seconds on a 400 MHz Pentium Pro.

The contour lines of w at {—.3, —.1, .1, .3, .5, .7} should look something like
Figure 1.
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F1GURE 1. Advection of a vortex: vorticity contour lines.
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