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Abstract

This paper studies an Eulerian diffuse interface model for the simulation of compressible multifluid and two-phase

flow problems. We first show how to derive this model from a seven equation, two pressure, two velocity model of

Baer–Nunziato type using an asymptotic analysis in the limit of zero relaxation time. We then study the mathematical

properties of the system, the structure of the waves, the expression of the Riemann�s invariants and the existence of a

mathematical entropy. We also describe two different numerical approximation schemes for this system. The first one

relies on a linearized Riemann solver while the second uses more heavily the mathematical structure of the system and

relies on a linearization of the characteristic relations. Finally, we present some numerical experiments and comparisons

with the results obtained by the two pressure, two velocity model as well as some test cases and comparisons with

another five equation model recently proposed for interface computations between compressible fluids.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Modelling of two-phase flows is typically based on averaging procedures ([8,6]). In their most gen-

eral form, these averaging techniques produce models characterized by two different velocities and
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pressures for each phase supplemented by one or several topological equations. Thus, in one dimen-

sion and for non-isentropic flows, a two-phase model of this type consists of at least seven equations

(two mass conservation equations, two momentum equations, two energy (or pressure) equations plus

one topological equation). These type of models have been known for a long time [3,15,19], but have

been seldom used due to their complexity. However, some recent works [16] have shown that they pos-
sess several advantages over the more classical 6 equation system: these models are unconditionally

hyperbolic, they are able to treat multiphase mixtures as well as interface problems between pure fluids

and they allow the treatment of fluids characterized by very different thermodynamics because each

fluid uses its own equation of state. However these models are numerically complex to solve because

of the large number of waves they contain and of the sensibility of the results with respect to the

relaxation procedures. These facts motivate the research of cheaper models. In particular, there is now-

adays a growing interest in the application of two phase flows models to the simulation of interfaces

between two immiscible compressible fluid by Eulerian diffuse interface methods. In these methods,
numerical diffusion is responsible for the creation of an artificial transition region between the pure

fluids. A mixture model has thus to be used to compute the flow inside this region. A sound physical

modelling of this mixture region is to consider it as a true multiphase region. However, at the present

time, the adequate level of complexity of the models used in this region is still a matter of debate. In

[16], a seven equation complex model of Baer–Nunziato type was used. On the opposite, a very simple

four equation multicomponent Euler system as in [1] can also be employed and as usual, a delicate

balance between the complexity of the model and its performance have to be found. This work, thus

explores the possibility to use an average way between these two extremes by constructing a five equa-
tion model suitable for some two-phase problems. In this respect, this contribution is similar in spirit

to the works of Massoni et al. [12] and Allaire et al. [2] who recently proposed five equation models

for the simulation of interfaces between compressible interfaces. However, in contrast with these pre-

vious works, we derive the five equation model by an asymptotic analysis of the seven equation model

in the limit of zero relaxation times instead of using a priori closures. The procedure we use in this

paper is therefore similar to the one proposed for detonation studies in [9]. The rationale for this ap-

proach is that we believe that due to a lack of computer resources, many interface computations are

actually done with a poor spatial resolution with the results that the artificial diffusion zones can be
quite large. In these situations, it may be safer to use a model that carries a maximum of physical

informations.

The summary of this work is as follows. In Section 2, we give a brief description of the seven equa-

tion model. Then we perform an asymptotic analysis of this model for zero relaxation times and ob-

tain a limit system characterized in one dimension by five partial differential equations. In Section 3,

we study the mathematical properties of this reduced model; in particular we show that it is an uncon-

ditional hyperbolic system whatever the state laws of the pure fluids are. We study its mathematical

structure and prove that the system contains fields which are either genuinely non linear or linearly
degenerate and finally, we give the expression of the Riemann�s invariants. Then in Section 4, we study

two numerical procedures to solve this system. These numerical techniques do not require any hypoth-

esis on the equation of state of each fluid. The first one of VFRoe-ncv type (see [4]) is based on the

solution of a linearized Riemann�s problem written in ‘‘entropic’’ variables. The second numerical

scheme uses more heavily the mathematical structure of the reduced system and is an extension of

the acoustic solver described for instance in [20] for the Euler system of gas dynamics. With respect

to the different numerical test, the acoustic solver seems to be more robust than the VFRoe-ncv one

when computing low Mach number two-phase flows. Finally in Section 5, the model have been ap-
plied to several difficult physical problems. In each case, the method provides reliable results, is able

to compute strong shock waves, and to deal with interface problems occurring in compressible multi-

fluid flows.
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2. Derivation of the model

2.1. The seven equation model

The starting point of this study is the seven equation model presented in [16] which is a slight variation of
the Baer–Nunziato 1986 model [3]. In term of conservative variables t(akqk,akqkuk,akqkek,a2), this model

can be written:
oa1q1

ot
þ divða1q1u1Þ ¼ 0; ð1:1Þ

oa1q1u1
ot

þ divða1q1u1 � u1Þ þ ra1p1 ¼ pIra1 þ kðu2 � u1Þ; ð1:2Þ

oa1q1e1
ot

þ divða1q1e1 þ a1p1Þu1 ¼ pI
oa2
ot

þ kuI � ðu2 � u1Þ; ð1:3Þ

oa2q2

ot
þ divða2q2u2Þ ¼ 0; ð1:4Þ

oa2q2u2
ot

þ divða2q2u2 � u2Þ þ ra2p2 ¼ pIra2 � kðu2 � u1Þ; ð1:5Þ

oa2q2e2
ot

þ divða2q2e2 þ a2p2Þu2 ¼ �pI
oa2
ot

� kuI � ðu2 � u1Þ; ð1:6Þ

oa2
ot

þ uI � ra2 ¼ lðp2 � p1Þ: ð1:7Þ
The notations are classical. ak are the volume fractions of each phase (a1 + a2 = 1), qk the phase densities, uk
the vector velocities, pk the pressures and ek ¼ ek þ u2k=2 the specific total energies, with ek the specific inter-
nal energies. On the other hand, pI and uI stand for the interfacial pressure and velocity. In the Baer–Nunz-

iato 1986 model [3], these variables are chosen as pI = p2 and uI = u1. But other choices are possible and for

instance in [16], Saurel and Abgrall take the following interfacial values:
uI ¼
X2
k¼1

akqkuk

,X2
k¼1

akqk and pI ¼
X2
k¼1

akpk: ð2Þ
We note that the choice of interfacial velocity and pressure can have a deep impact on the structure of

the waves present in this model and on the fulfilment of entropy inequalities (see [5]). However, in this paper

as we will assume that the phase pressures and velocities relax to a common value, these choices are not

important and will not affect the derivation of the reduced model. Actually, the model (1) contains relax-

ation parameters k and l > 0 that determine the rates at which the velocities and pressures of the two-
phases reach equilibrium. The rationale for the introduction of such terms is discussed for instance in

[16]. Here we are interested in situations where the relaxation times are small compared with the others

characteristic times of the flow. Thus we set k = k 0/e and l = l 0/e where k 0 and l 0 are Oð1Þ and we will ana-

lyse the case e! 0. This analysis can be performed directly on the system (1) with the conservative variables
t(akqk,akqkuk,akqkek,a2), however it is more convenient to work with the set of variables t(sk,uk,pk,a2) where
sk are the phase entropies and to use the quasi-linear form of the equations. This is the purpose of the fol-

lowing section.
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2.2. Quasi-linear ‘‘entropic’’ form of the model

In the sequel, the material derivative of a quantity / with respect to the velocities uk of each phase k as

well as the interfacial velocity uI will be denoted by
Dk/
Dt

¼ o/
ot

þ uk � r/ for k ¼ 1; 2 and k ¼ I: ð3Þ
Using this notation, the momentum Eqs. (1.2)–(1.5) and the mass conservation Eqs. (1.1)–(1.4), it is easily

seen that the velocities uk obey the following equations:
a1q1

D1u1
Dt

þra1p1 ¼ pIra1 þ kðu2 � u1Þ; ð4:1Þ

a2q2

D2u2
Dt

þra2p2 ¼ pIra2 � kðu2 � u1Þ ð4:2Þ
from which we deduce the equations for the kinetic energies u2k=2 of each phase:
a1q1

D1u
2
1=2

Dt
þ u1 � ra1p1 ¼ pIu1 � ra1 þ ku1 � ðu2 � u1Þ; ð5:1Þ

a2q2

D2u
2
2=2

Dt
þ u2 � ra2p2 ¼ pIu2 � ra2 � ku2 � ðu2 � u1Þ: ð5:2Þ
From (5.1) and (5.2), using ek ¼ ek þ u2k=2 and the total energy Eqs. (1.3)–(1.6), we get the equations for the

specific internal energies ek:
a1q1

D1e1
Dt

þ a1p1divu1 ¼ pIðuI � u1Þ � ra1 þ lpIðp2 � p1Þ þ kðuI � u1Þ � ðu2 � u1Þ; ð6:1Þ

a2q2

D2e2
Dt

þ a2p2divu2 ¼ pIðuI � u2Þ � ra2 � lpIðp2 � p1Þ � kðuI � u2Þ � ðu2 � u1Þ: ð6:2Þ
Next, using the volume fraction Eq. (1.7), it is easily seen that we can rewrite the mass conservation Eqs.

(1.1)–(1.4) in term of phasic densities qk under the form:
a1
D1q1

Dt
þ a1q1divu1 ¼ q1ðuI � u1Þ � ra1 þ lq1ðp2 � p1Þ; ð7:1Þ

a2
D2q2

Dt
þ a2q2divu2 ¼ q2ðuI � u2Þ � ra2 � lq2ðp2 � p1Þ: ð7:2Þ
To obtain the equations for the phase entropies sk, we use the Gibb�s relation for each phase k
dek ¼ T kdsk þ
pk
q2
k

dqk for k ¼ 1; 2; ð8Þ
where Tk is the temperature of phase k. Taking the material derivative of the Gibb�s relation (8) and mul-

tiplying by akqk we get
akqkT k
Dksk
Dt

¼ akqk
Dkek
Dt

� akpk
qk

Dkqk

Dt
for k ¼ 1; 2 ð9Þ
from which we deduce with (6.1)–(7.2) the equations for the phase entropies sk:
a1q1T 1

D1s1 ¼ ðpI � p1ÞðuI � u1Þ � ra1 þ lðpI � p1Þðp2 � p1Þ þ kðuI � u1Þ � ðu2 � u1Þ; ð10:1Þ

Dt
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a2q2T 2

D2s2
Dt

¼ ðpI � p2ÞðuI � u2Þ � ra2 � lðpI � p2Þðp2 � p1Þ � kðuI � u2Þ � ðu2 � u1Þ: ð10:2Þ
Finally, to get the equations for the pressures pk of each phase, we write that pk = pk(qk,sk) and obtain the
following expression for the differential dpk:
dpk ¼
opk
oqk

� �
sk

dqk þ
opk
osk

� �
qk

dsk for k ¼ 1; 2: ð11Þ
Now introducing the coefficients vk = (oek/oqk)pk and jk = (oek/opk)qk
, we write the differential of the specific

internal energies ek under the following form:
dek ¼ vkdqk þ jkdpk for k ¼ 1; 2: ð12Þ

Writing the equality of (8) and (12), solving for the differential of the pressure and comparing with (11) we

get the well-known relations
a2k ¼
opk
oqk

� �
sk

¼ 1

jk

pk
q2
k

� vk

� �
and

opk
osk

� �
qk

¼ T k

jk
for k ¼ 1; 2; ð13Þ
where ak denotes the sound speed of each phase. Now from (11)–(13) and after multiplication by the vol-

ume fraction ak, we obtain the relation
ak
Dkpk
Dt

¼ ak
jk

pk
q2
k

� vk

� �
Dkqk

Dt
þ akT k

jk

Dksk
Dt

for k ¼ 1; 2 ð14Þ
from which we deduce with (7.1), (7.2), (10.1) and (10.2) the equations for the pressures pk of each phase:
a1
D1p1
Dt

þ a1q1a
2
1divu1 ¼

q1

j1

pI
q2
1

� v1

� �
ðuI � u1Þ � ra1 þ l

q1

j1

pI
q2
1

� v1

� �
ðp2 � p1Þ

þ k
j1q1

ðuI � u1Þ � ðu2 � u1Þ; ð15:1Þ

a2
D2p2
Dt

þ a2q2a
2
2divu2 ¼

q2

j2

pI
q2
2

� v2

� �
ðuI � u2Þ � ra2 � l

q2

j2

pI
q2
2

� v2

� �
ðp2 � p1Þ

� k
j2q2

ðuI � u2Þ � ðu2 � u1Þ: ð15:2Þ
Finally introducing the notation a2kI ¼ ðpI=q2
k � vkÞ=jk, where akI stands for the sound speed of the phase k

at the interface, we can rewrite Eqs. (15.1) and (15.2) under the form:
a1
D1p1
Dt

þ a1q1a
2
1divu1 ¼ q1a

2
1I ðuI � u1Þ � ra1 þ lq1a

2
1I ðp2 � p1Þ þ

k
j1q1

ðuI � u1Þ � ðu2 � u1Þ; ð16:1Þ

a2
D2p2
Dt

þ a2q2a
2
2divu2 ¼ q2a

2
2I ðuI � u2Þ � ra2 � lq2a

2
2I ðp2 � p1Þ �

k
j2q2

ðuI � u2Þ � ðu2 � u1Þ: ð16:2Þ
Let us summarize the results of this section. In term of ‘‘entropic’’ variables t(sk,uk,pk,a2), the seven equation
model (1) can be written under the quasi-linear form:
a1q1T 1

D1s1
Dt

¼ ðpI � p1ÞðuI � u1Þ � ra1 þ lðpI � p1Þðp2 � p1Þ þ kðuI � u1Þ � ðu2 � u1Þ; ð17:1Þ

a2q2T 2

D2s2
Dt

¼ ðpI � p2ÞðuI � u2Þ � ra2 � lðpI � p2Þðp2 � p1Þ � kðuI � u2Þ � ðu2 � u1Þ; ð17:2Þ
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a1q1

D1u1
Dt

þra1p1 ¼ pIra1 þ kðu2 � u1Þ; ð17:3Þ

a2q2

D2u2
Dt

þra2p2 ¼ pIra2 � kðu2 � u1Þ; ð17:4Þ

a1
D1p1
Dt

þ a1q1a
2
1divu1 ¼ q1a

2
1I ðuI � u1Þ � ra1 þ lq1a

2
1I ðp2 � p1Þ þ

k
j1q1

ðuI � u1Þ:ðu2 � u1Þ; ð17:5Þ

a2
D2p2
Dt

þ a2q2a
2
2divu2 ¼ q2a

2
2I ðuI � u2Þ � ra2 � lq2a

2
2I ðp2 � p1Þ �

k
j2q2

ðuI � u2Þ:ðu2 � u1Þ; ð17:6Þ

DIa2
Dt

¼ lðp2 � p1Þ: ð17:7Þ
2.3. Derivation of a reduced model

In this section, to simplify the notation, we present only the one dimensional case or alternatively the

expression A(U)oU/ox can be understood as a shorthand notation for
Pd

j¼1AjðUÞoU=oxj.
The derivation of the model can be presented briefly as follows: Consider an hyperbolic system with stiff

source term
oU

ot
þ AðUÞ oU

ox
¼ RðUÞ

e
: ð18Þ
In this equation U = U(x,t) the state vector belongs to X, some open subset of RN. We assume that (18) is

hyperbolic, i.e., for any U 2 X, the matrix A(U) is diagonalizable in R and possesses a complete set of

eigenvectors.

We are interested in the behavior of the solutions of (18) when the relaxation time e goes to zero. There-
fore, we expect these solutions to be close to E the subset of RN defined by
E ¼ fU 2 RN;RðUÞ ¼ 0g: ð19Þ

We make the following assumption:

Assumption 1. The set of equations R(U) = 0 defines a smooth manifold of dimension n. Moreover, for any
U 2 E we explicitly know a parametrization M from x an open subset of Rn on V a neighborhood of U in

E.

We call E the equilibrium manifold while in reference to the Boltzmann equation, the smooth diffeomor-

phismM will be called the ‘‘Maxwellian’’. We note that for any u 2 x the Jacobian matrix dMu is a full rank
matrix. Moreover we have the following result:

Proposition 1. The column vectors of dMu form a basis of ker R 0(M(u)).

Proof. Denote TUðEÞ the tangent space of E at U. Since M is a diffeomorphism from x onto V � E, dMu is

a bijection from Rn onto TMðuÞðEÞ. Therefore the column vectors of dMu are n independent vectors that

form a basis of TMðuÞðEÞ. But, since the equilibrium manifold E is defined by the implicit Eqs. (19), the result

simply follows by noting that TMðuÞðEÞ is precisely ker R 0(M(u)). h

We will denote the column vectors of dMu; fdM1
u; . . . ; dM

n
ug. Now let {I1, . . . ,IN�n} be a basis of

Rng(R 0(M(u))) the range of R 0(M(u)) and define the N · N matrix S by
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S ¼ ½dM 1
u; . . . ; dM

n
u; I

1; . . . ; IN�n�: ð20Þ

Thanks to Poposition 1, S is an invertible matrix. Let us denote by P and Q the n · N and N�n · N

matrices composed of the first n and last N � n rows respectively of its inverse, we have:

Proposition 2. Let kerðR 0ðMðuÞÞÞ and RngðR 0ðMðuÞÞÞ be equipped, respectively; with the basis

fdM1
u; . . . ; dM

n
ug and {I1, . . . ,IN � n}, then in these basis P and Q are, respectively; the projection on

kerðR 0ðMðuÞÞÞ in the direction of RngðR 0ðMðuÞÞÞ and the projection on RngðR 0ðMðuÞÞÞ in the direction of

kerðR 0ðMðuÞÞÞ.

Proof. Let v 2 Rn, w 2 RN�n and for U 2 RN let us write: h
U ¼
Xn
j¼1

vjdMj
u þ

XN�n

j¼1

wjI j; ð21Þ
then the vectors
Pn

j¼1v
jdMj

u and
PN�n

j¼1 w
jI j are clearly, respectively, the projection on ker(R 0(M(u))) in the

direction of Rng(R 0(M(u))) of U and the projection on Rng(R 0(M(u))) in the direction of ker(R 0(M(u))) of
U. In matrix form (21) can be written
U ¼ S
v

w

� �
ð22Þ
from which we deduce
v

w

� �
¼ S�1U ¼

PU

QU

� �
: ð23Þ
We note the following simple properties:
Proposition 3. We have

1. P Æ dMu = Id(n) where Id(n) is the n · n identity matrix;

2. P Æ R 0(M(u)) = 0.

Proof. The first result follows from S�1 Æ S = Id(N). To prove the second result, we note that for any

U 2 Rn, obviously R 0(M(u))U is in the range of R 0(M(u)). h

Note that Assumption 1 is a very weak one. However, we emphazise that this assumption gives

only the possibility to write a formal asymptotic expansion. In particular, this weak assumption does

not imply that the reduced system is well-posed or hyperbolic nor does it implies that the expansion is
convergent. More stronger assumptions are needed to establish results of this type. For a survey

on some recent results on hyperbolic systems with stiff relaxation terms, the interested reader can

see [14].

Now, to obtain a reduced model, we look for a solution in the form
U ¼ MðuÞ þ eV : ð24Þ
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Introducing this expression in (18) gives
oMðuÞ
ot

þ AðMðuÞÞ oMðuÞ
ox

� R0ðMðuÞÞ � V

þ e
oV

ot
þ AðMðuÞÞ oV

ox
þ oA

oU i
V i

� �
oMðuÞ
ox

� 1

2
R00ðMðuÞÞðV ;VÞ

� �
¼ Oðe2Þ: ð25Þ
Thanks to Proposition 3, multiplying this equation by P gives
ou

ot
þ P � AðMðuÞÞ � dMu

ou

ox
¼ OðeÞ: ð26Þ
The reduced model of (18) is thus obtained by neglecting the terms of order e.

2.4. Application to the seven equation model

The application of the previous asymptotic analysis to the seven equation model (17) is straightforward.

We just need to identify the Maxwellian M(u) and then to compute the Jacobian matrix dMu and the pro-

jection matrix P. Let u ¼ tðs1; s2; u; p; a2Þ 2 R5 the Maxwellian is defined by
u ! U ¼ MðuÞ ¼

s1
s2
u
u
p
p
a2

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

The Jacobian matrix of this transformation is
dMu ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

The linearized source term evaluated on a Maxwellian is
R0ðMðuÞÞ ¼

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 �1 1 0 0 0

0 0 1 �1 0 0 0

0 0 0 0 �1 1 0

0 0 0 0 1 �1 0

0 0 0 0 �1 1 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:
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A basis of the range Rng(R 0(M(u))) of this matrix is the set
I1 ¼

0

0

�1

1

0

0

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; I2 ¼

0

0

0

0

�1

1

�1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

The inversion of the matrix S ¼ ½dM1
u; . . . ; dM

5
u; I

1; I2� thus gives the projection on ker(R 0(M(u)))
P ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1=2 1=2 0 0 0

0 0 0 0 1=2 1=2 0

0 0 0 0 �1=2 1=2 1

0
BBBBBB@

1
CCCCCCA
:

To obtain, the reduced model, we just need now to compute the matrix product P Æ A(M(u)) Æ dMu. After
some straightforward computations, we then get a five equation reduced model written in term of ‘‘entro-

pic’’ variables t(s1,s2,u,p,a2):
Ds1
Dt

¼ 0; ð27:1Þ

Ds2
Dt

¼ 0; ð27:2Þ

Du

Dt
þ 1

q
rp ¼ 0; ð27:3Þ

Dp
Dt

þ qâ2divu ¼ 0; ð27:4Þ

Da2
Dt

¼ a1a2
q1a

2
1 � q2a

2
2P2

k¼1ak0qka
2
k

divu; ð27:5Þ
where we have introduced D//Dt = o//ot + u Æ $/, the mixture density q
q ¼
X2
k¼1

akqk ð28Þ
and also the averaged sound speed â defined by the following formula:
1

qâ2
¼
X2
k¼1

ak
qka

2
k

: ð29Þ
The relation (29) is known in the two phase flow literature as the Wallis sound speed of the mixture and

have been validated by many experiments (see for instance [19] or [6]). Note that system (27) is not new.
It is for example described in term of t(s1,s2,u,q,Y2) variables in ([19], Section 4.1). With additional mass
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transfer terms, this model has been recently tested for detonation studies in [21]. To end this section, we

note that after some algebraic manipulations, the model (27) may be written in term of conservative var-

iables t(a1q1,a2q2,qu,qe,a2) as:
oa1q1

ot
þ divða1q1uÞ ¼ 0; ð30:1Þ

oa2q2

ot
þ divða2q2uÞ ¼ 0; ð30:2Þ

oqu
ot

þ divðqu� uÞ þ rp ¼ 0; ð30:3Þ

oqe
ot

þ divðqeþ pÞu ¼ 0; ð30:4Þ

oa2
ot

þ u � ra2 ¼ a1a2
q1a

2
1 � q2a

2
2P2

k¼1ak0qka
2
k

divu; ð30:5Þ
where e the specific total energy is defined by e = e + u2/2 while the specific internal energy e is given by the

relation qe ¼
P2

k¼1akqkekðp; qkÞ.

Remark. In [2,12], a diffuse interface method for the simulation of interfaces between compressible fluids

was introduced. This model (in the sequel referred to as the ‘‘five equation-transport model’’) is very similar

to (30) except that instead of (30.5), the equation for the volume fraction is simply a transport equation
oa2
ot

þ u � ra2 ¼ 0: ð31Þ
In view of (30.5) and since for interface problems, the zone where the product a1a2 is expected to be

small, the differences between the two models seem unimportant. However, as we will see the mathematical

properties of the two models are quite different. In particular, the ‘‘five equation-transport model’’ of [2,12]

is not compatible with the fact that the material derivatives of the phase entropies are zero. This is quite

obvious from the form (27) of the present reduced model. But it can also be seen as follows: Let us write

the equality of the pressures in the two phases
p1ðs1; q1Þ ¼ p2ðs2; q2Þ ð32Þ

and take the material derivative of this expression to obtain
op1
os1

� �
q1

Ds1
Dt

� op2
os2

� �
q2

Ds2
Dt

¼ op2
oq2

� �
s2

Dq2

Dt
� op1

oq1

� �
s1

Dq1

Dt
: ð33Þ
Now, with (30.1) and (30.2) we have
Dqk

Dt
¼ 1

ak

Dakqk

Dt
� qk

Dak
Dt

� �
¼ � 1

ak
akqkdivuþ qk

Dak
Dt

� �
ð34Þ
and we get from (33)
op1
os1

� �
q1

Ds1
Dt

� op2
os2

� �
q2

Ds2
Dt

þ ðq1a
2
1 � q2a

2
2Þdivu ¼ q2a

2
2

a2
þ q1a

2
1

a1

� �
Da2
Dt

; ð35Þ



674 A. Murrone, H. Guillard / Journal of Computational Physics 202 (2005) 664–698
that shows that Eq. (30.5) is a direct consequence of the assumptions Ds1/Dt = Ds2/Dt = 0 and conversely

that the assumptions Da2/Dt = 0 is not compatible with these relations. Actually, (35) shows that if Da2/
Dt = 0 then the phase entropies must evolve according to the relation
op1
os1

� �
q1

Ds1
Dt

� op2
os2

� �
q2

Ds2
Dt

¼ ðq2a
2
2 � q1a

2
1Þdivu: ð36Þ
3. Mathematical study

For regular solutions, the mathematical study of the model can be performed with any set of independ-

ent variables. Here, for instance, we will use the set of variables t(s1,s2,u,p,Y2) where Yk = akqk/q stand for

the mass fractions of each phase. It is easily seen from the mass conservation Eqs. (30.1) and (30.2) that Yk

obey the equations DYk/Dt = 0 and the five equation reduced model can be written:
Ds1
Dt

¼ 0; ð37:1Þ

Ds2
Dt

¼ 0; ð37:2Þ

Du

Dt
þ 1

q
rp ¼ 0; ð37:3Þ

Dp
Dt

þ qâ2divu ¼ 0; ð37:4Þ

DY 2

Dt
¼ 0; ð37:5Þ
where the mixture density q and the averaged sound speed â have been defined in the previous Section 2. On

the other hand, the system is clearly invariant by rotation. As a consequence for the sake of simplicity, we

can perform the mathematical study for the system written in one dimension.

3.1. Hyperbolicity

So if we set q = t(s1,s2,u,p,Y2), for smooth solutions, the system (37) can be written in one dimension as
oq

ot
þ AðqÞ oq

ox
¼ 0; ð38Þ
where the matrix A(q) is defined by
AðqÞ ¼

u 0 0 0 0

0 u 0 0 0

0 0 u 1=q 0

0 0 qâ2 u 0

0 0 0 0 u

0
BBBBBB@

1
CCCCCCA
: ð39Þ
Since the characteristic equation of A(q) is given by ðu� kÞ3ððu� kÞ2 � â2Þ ¼ 0, we obtain three distinct

eigenvalues for the matrix A(q):



A. Murrone, H. Guillard / Journal of Computational Physics 202 (2005) 664–698 675
k1ðqÞ ¼ u� â;

k2ðqÞ ¼ k3ðqÞ ¼ k4ðqÞ ¼ u;

k5ðqÞ ¼ uþ â;

8><
>: ð40Þ
where â is given by the relation (29). Thus â is clearly real and all the eigenvalues of the matrix A(q) are real.
The expression (29) where the average ‘‘acoustic impedance’’ qâ2 appears as the harmonic average of the

‘‘acoustic impedances’’ of the pure phases qka
2
k implies that the sound speed of a mixture can be less than

the sound speed of either phase. This fact is well-known in the two-phase literature (see for instance [19] or

[6]).

The right eigenvectors ri(q) (for i 2 {1, . . . ,5}) which verify the relation A(q)ri(q) = ki(q)ri(q) can be choo-

sen as:
r1ðqÞ ¼

0

0

â

�qâ2

0

0
BBBBBB@

1
CCCCCCA
; r2ðqÞ ¼

1

0

0

0

0

0
BBBBBB@

1
CCCCCCA
; r3ðqÞ ¼

0

1

0

0

0

0
BBBBBB@

1
CCCCCCA
; r4ðqÞ ¼

0

0

0

0

1

0
BBBBBB@

1
CCCCCCA
; r5ðqÞ ¼

0

0

â

qâ2

0

0
BBBBBB@

1
CCCCCCA
: ð41Þ
We denote also by li(q) (for i 2 {1, . . . ,5}) the left eigenvectors which obey the relation tA(q)li(q) = ki(q)li(q).
After normalization of the left and right eigenvectors to have tli(q) Æ rj(q) = dij, we get:
l1ðqÞ ¼

0

0

1=2â

�1=2qâ2

0

0
BBBBBB@

1
CCCCCCA
; l2ðqÞ ¼

1

0

0

0

0

0
BBBBBB@

1
CCCCCCA
; l3ðqÞ ¼

0

1

0

0

0

0
BBBBBB@

1
CCCCCCA
; l4ðqÞ ¼

0

0

0

0

1

0
BBBBBB@

1
CCCCCCA
; l5ðqÞ ¼

0

0

1=2â

1=2qâ2

0

0
BBBBBB@

1
CCCCCCA
:

ð42Þ

The system is thus clearly hyberbolic since the matrix A(q) is diagonalizable in R and its eigenvectors span

the whole space R5. We note that this system is unconditionally hyperbolic as soon as the sound speed in the

pure fluids are real whatever the state laws of the pure fluids are.

Remark. In the ‘‘five equation-transport model’’ of [2,12], the sound speed is given by the expression
nâ2 ¼
X2
k¼1

nkY ka2k ; ð43Þ
where nk ¼ ðoqkek=opkÞqk and n ¼
P2

k¼1aknk. Thus as in (29), the sound speed of the mixture appears as

some average of the phase sound speeds. However, these averages are different in the two models. In some
extreme cases, for real fluids the coefficients nk can be negative and the formula (43) does not guarantee that

the mixture speed of sound is real while formula (29) will always yield a real speed of sound.

Fig. 1 displays the sound speed of an air–water mixture with respect to the air volume fraction, under

atmospheric conditions, respectively for the five equation reduced model and the ‘‘five equation-transport
model’’. One can notice that the values of the sound speeds are very different in the two models. In partic-

ular, the sound speed given by (43) is always larger than the Wallis sound speed (29). Moreover it is strictly

between the sound speed of the pure fluids in contrast with the Wallis sound speed that is generally lower
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Fig. 1. Sound speed of an air–water mixture under atmospheric conditions for the 5 equation reduced model (solid line) and the 5

equation transport model (dotted line).
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than the sound speed of the pure fluids. For interface computations with adequate resolution, it is possible

that these differences are insignificant, however if the zones of numerical diffusion are not negligeable, these

differences can shown up on the macroscopic level.

3.2. Existence of a mathematical entropy

Since the phase entropies s1, s2 satisfy (37.1) and (37.2), the existence of an entropy for the five equation
reduced system is obvious. The simplest choice is to define S by
qS ¼ a1q1s1 þ a2q2s2 ¼ qY 1s1 þ qY 2s2 ð44Þ

and we have
oqS
ot

þ divðqSuÞ ¼ 0: ð45Þ
3.3. Structure of the waves

In this section, we analyze the structure of the waves. The objective is to show that the system contains
fields which are either genuinely non linear or linearly degenerate (see for instance [7]). So let us start with

the characteristic fields associated to the waves u� â and uþ â.

Proposition 4. The characteristic fields associated to the waves k1ðqÞ ¼ u� â and k5ðqÞ ¼ uþ â are

genuinely non linear, i.e., we have $qk1(q) Æ r1(q) 6¼ 0 and $qk5(q) Æ r5(q) 6¼ 0 for all admissible state vector q.

Proof. We can deduce from the eigenvalues (40) and the right eigenvectors (41) the relation
rqk1ðqÞ � r1ðqÞ ¼ rqk5ðqÞ � r5ðqÞ ¼ âþ qâ2
oâ
op

: ð46Þ
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So the proof consists to show that âþ qâ2oâ=op is always non zero and the principal difficulty is to eval-

uate the term oâ=op. Let us first rewrite, in term of the mass fractions Yk, the mixture density (28) as
1

q
¼
X2
k¼1

Y k

qk
ð47Þ
and also the averaged sound speed (29) under the form
1

ðqâÞ2
¼
X2
k¼1

Y k

ðqkakÞ
2
: ð48Þ
Now let us consider the following differentiation of the sound speed â for an arbitrary variable /
oâ
o/

¼ �â
ðqâÞ2

2

o

o/
1

ðqâÞ2

 !
� q

o

o/
1

q

� �" #
: ð49Þ
Using this relation (49) for / = p and introducing expressions (47) and (48) we get:
âþ qâ2
oâ
op

¼ â� qâ3
ðqâÞ2

2

o

op

X2
k¼1

Y k

ðqkakÞ
2

 !
� q

o

op

X2
k¼1

Y k

qk

 !" #
;

âþ qâ2
oâ
op

¼ â� qâ3
ðqâÞ2

2

X2
k¼1

Y k
o

op
1

ðqkakÞ
2

 !
� q

X2
k¼1

Y k
o

op
1

qk

� �" #
:

ð50Þ
Then introducing the coefficients wk = (oak/opk)sk for each phase and recalling that the definition of the

phase sound speeds implies ðoqk=opkÞsk ¼ 1=a2k , we obtain the following results:
âþ qâ2
oâ
op

¼ â� qâ3 �ðqâÞ2
X2
k¼1

Y kð1þ qkakwkÞ
q3
ka

4
k

þ q
X2
k¼1

Y k

ðqkakÞ
2

" #
;

âþ qâ2
oâ
op

¼ â� qâ3 �ðqâÞ2
X2
k¼1

Y kð1þ qkakwkÞ
q3
ka

4
k

þ 1

qâ2

" #
;

ð51Þ
which give us after simplifications:
âþ qâ2
oâ
op

¼ q3â5
X2
k¼1

Y kð1þ qkakwkÞ
q3
ka

4
k

: ð52Þ
And finally assuming that wk > 0, i.e., the phase sound speed increases with the pressure, when the

entropy is constant, we get (1 + qkakwk) 6¼ 0 and this achieve the proof. h

Remark. We note that if the fluids are governed by the Stiffened–Gas equation of state; the condition

wk > 0 is equivalent to ck > 1 where ck denotes the adiabatic exponent of each phase.

Now let us examine the characteristic field associated to the wave u.

Proposition 5. The characteristic field associated to the wave k2(q) = k3(q) = k4(q) = u is linearly degenerate,

i.e., we have: $qki(q) Æ ri(q) = 0 (for i 2 {2,3,4}) for all admissible state vector q.

Proof. We deduce from the eigenvalues (40) the relation
rqkiðqÞ � riðqÞ ¼ ð0; 0; 1; 0; 0Þ � riðqÞ for i 2 f2; 3; 4g: ð53Þ
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Then introducing the right eigenvectors (41) in the relation (53), it is easily checked that $qki(q) Æ ri(q) = 0

(for i 2 {2,3,4}) and this complete the proof. h
3.4. Riemann�s invariants

In this section we compute the Riemann�s invariants of the system. Let us begin with the Riemann�s
invariants x associated to the eigenvalue k1ðqÞ ¼ u� â. The problem is thus to find x such as

$qx Æ r1(q) = 0. So if we search x such that $qx is collinear with tl2(q),
tl3(q) and

tl4(q), it is easily checked

that s1, s2 and Y2 are three Riemann�s invariants associated to this wave. Now if we search $qx collinear
with tð2âl5Þ ¼ ð0; 0; 1; 1=qâ; 0Þ, we get the last Riemann�s invariant
uþ
Z
p

dp
qâ

:

We note that this last expression for x is formally equivalent to the well-known expression of the Riemann�s
invariant u + 2a/(c � 1) of the Euler equations of gas dynamics. To summarize, the Riemann�s invariants
associated to the wave u� â are defined by
s1; s2; Y 2; uþ
Z
p

dp
qâ

� �
: ð54Þ
After similar algebraic manipulations, it is easily checked that the Riemann�s invariants associated to the

wave uþ â are defined by
s1; s2; Y 2; u�
Z
p

dp
qâ

� �
: ð55Þ
On the other hand, the Riemann�s invariants associated to the wave u are given by
fu; pg: ð56Þ
To close this section, we also note that if the system is written in term of conservative variables, the first

four equations of (30) are in conservative form and give us a set of 4 jump conditions that discontinuities

have to satisfy:
D½a1q1ðu� rÞ� ¼ 0; ð57:1Þ

D½a2q2ðu� rÞ� ¼ 0; ð57:2Þ

D½quðu� rÞ þ p� ¼ 0; ð57:3Þ

D½qeðu� rÞ þ pu� ¼ 0 ð57:4Þ
with D/ = /R � /L and r the velocity of the discontinuity. However, the equation for the volume frac-

tion a2 is not in conservative form and therefore, the system must be supplemented or regularized to

specify the admissible shock waves. As discussed in [9], such a regularization can be obtained by a close

examination of the structure of the large gradient relaxation zones or by a construction of subscale

models of the physical processes occurring within the discontinuities. However, it is doubtful that an
universal jump relation can hold. Thus, in the absence of any informations on the micro-physics occur-

ring inside the shock zone, we had to adopt a simpler approach and to rely on artificial viscosity to

regularize the model.
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4. Numerical approximation

4.1. The VFRoe-ncv scheme

In this section, we describe a quasi-conservative finite volume scheme. The method is based on VFRoe-
ncv type scheme [4], i.e., on the solution of a linearized Riemann�s problem at each interface of the mesh.

Consider the following linearized Riemann�s problem between the states (.)L and (.)R:
oq
ot þ AðhqiÞ oq

ox ¼ 0;

qðx; 0Þ ¼
qL if x < 0;

qR if x > 0:

����
8><
>: ð58Þ
Here, we use the set of variables q = t(s1,s2,vn,vt,p,Y2), where vn, vt are, respectively, the two components of

the vector velocity in the local basis ðgLR; g?LRÞ where gLR is the unit normal vector to the interface. We de-

fine A(Æqæ) by
AðhqiÞ ¼

hvni 0 0 0 0 0

0 hvni 0 0 0 0

0 0 hvni 0 h1=qi 0

0 0 0 hvni 0 0

0 0 hqâ2i 0 hvni 0

0 0 0 0 0 hvni

0
BBBBBBBB@

1
CCCCCCCCA
; ð59Þ
where Æ.æ = ((.)L + (.)R)/2 denotes the arithmetic average between the states (.)L and (.)R. Section 3.1 shows

that the matrix A(Æqæ) is diagonalizable and the solution procedure reduces to the solving of a Riemann�s
problem for a linear hyperbolic system.

We denote by ri(Æqæ) (for i 2 {1, . . . ,6}) the right eigenvectors and by li(Æqæ) (for i 2 {1, . . . ,6}) the left

eigenvectors of the matrix A(Æqæ), satisfying tli(Æqæ) Æ rj(Æqæ) = dij. The solution of the problem which depends

only to the variable x/t is composed, in the (x,t) plane, of constant states separated by characteristic lines.

Here we are interested by the solution at the interface, i.e., on x/t = 0.
The approximate state at the interface, noted here q�LR, is given by
q�LR ¼ q
x
t
¼ 0; qL; qR

� 	
¼

qL þ
P
ki<0

tliðhqiÞ � ðqR � qLÞriðhqiÞ

qR �
P
ki>0

tliðhqiÞ � ðqR � qLÞriðhqiÞ
:

8><
>: ð60Þ
In the sequel we will denote by Q = t(a1q1,a2q2,qu,qv,qe,a2) the set of conservative variables where u,v are

the two-components of the vector velocity u in the global basis corresponding to the vector q written in

entropy variables t(s1,s2,vn,vt,p,Y2). In particular Q�
LR will represent the solution of the linearized Riemann�s

problem (58) written in conservative variables.

To deal with the non-conservative equation
oa2
ot

þ u � ra2 ¼ a1a2
q1a

2
1 � q2a

2
2P2

k¼1ak0qka
2
k

divu; ð61Þ
we re-write it under the form
oa2
ot

þ divða2uÞ þ BðQÞdivu ¼ 0 with BðQÞ ¼ �a2q1a
2
1P2

k¼1ak0qka
2
k

ð62Þ
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and we write the five equation reduced model as
oQ

ot
þ divFðQÞ þ divuBðQÞ ¼ 0; ð63Þ
where the vector B(Q) = t(0,0,0,0,0,B(Q)). Integrating this equation on a cell Ci gives
Ai
oQi

ot
þ
Z
oCi

FðQÞ � ndlþ
Z
Ci

BðQÞdivudX ¼ 0 for i 2 f1; . . . ;Ng; ð64Þ
where N is the number of cells and Ai the area of the cell Ci. Then we update variables Qi by the following
expression:
Ai
Qnþ1

i �Qn
i

Dt
þ
X
j2vðiÞ

knijkwðQn
i ;Q

n
j Þ ¼ 0; ð65Þ
where v(i) denote the set of cells Cj that share an edge with Ci and where nij ¼
R
oCij

ndl is the averaged nor-

mal vector of the interface oCij = oCi\oCj. Defining gij = nij/iniji and:
ðvnÞij ¼ uij � gij ¼ uijgxij þ vijg
y
ij; ð66:1Þ

ðvtÞij ¼ uij � g?ij ¼ �uijg
y
ij þ vijgxij; ð66:2Þ
the normal and tangential components of the velocity at the cell interface, we propose the following expres-

sion for wðQn
i ;Q

n
j Þ:
wðQn
i ;Q

n
j Þ ¼ FðQ�

ijÞ � gij þ BðQn
i Þu�ij � gij; ð67Þ
where Q�
ij is the solution (60) of the linearized Riemann�s problem between the states (.)i and (.)j.

The conservative part FðQ�
ijÞ � gij can be explicitly written
FðQ�
ijÞ:gij ¼ tðða1q1vnÞ

�
ij; ða2q2vnÞ

�
ij; ðquvnÞ

�
ij þ p�ijg

x
ij; ðqvvnÞ

�
ij þ p�ijg

y
ij; ððqeþ pÞvnÞ�ij; ða2vnÞ

�
ijÞ; ð68Þ
while the non-conservative part BðQn
i Þu�ij:gij is defined by
BðQn
i Þu�ij � gij ¼ tð0; 0; 0; 0; 0;BðQn

i ÞðvnÞ
�
ijÞ: ð69Þ
4.2. Evolution of a contact discontinuity

As shown in [17], one key point for the simulation of interface problems between compressible fluid is the

capability of the scheme to compute an isolated contact discontinuity without pressure oscillations. In the

following, we thus study the capability of the scheme to preserve a uniform pressure and velocity flow. Con-
sider an initial flow where pressure and velocity have uniform values; ui � 1 = ui = ui + 1 = u and

pi � 1 = pi = pi + 1 = p but other quantities akqk,a2 can be discontinuous. We denote by Qi � 1,Qi,Qi + 1 the

conservative variables vectors. Then if we suppose for instance u > 0, it is easily seen that the solution of

the linearized Riemann�s problem at each interface is given by:
Q�
i�1=2 ¼ Qi�1;

Q�
iþ1=2 ¼ Qi;

Q�
iþ3=2 ¼ Qiþ1:

8><
>: ð70Þ
And thus the only cell whose value is changed between t and t + Dt is the cell downstream of the discon-

tinuity. The value of Q in this cell becomes:
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Qnþ1
iþ1 ¼ Qn

iþ1 � kðFðQ�
iþ3=2Þ � FðQ�

iþ1=2ÞÞ � kBðQn
iþ1Þðu�iþ3=2 � u�iþ1=2Þ;

Qnþ1
iþ1 ¼ Qn

iþ1 � kðFðQiþ1Þ � FðQiÞÞ � kBðQn
iþ1Þðuiþ1 � uiÞ;

Qnþ1
iþ1 ¼ Qn

iþ1 � kðFðQiþ1Þ � FðQiÞÞ
ð71Þ
with k = Dt/Ai. So the mass conservation equations can be written
ðakqkÞ
nþ1

iþ1 ¼ ðakqkÞ
n
iþ1 � ku½ðakqkÞ

n
iþ1 � ðakqkÞ

n
i � for k ¼ 1; 2: ð72Þ
And we get for the evolution of the mixture density q ¼
P2

k¼1akqk
qnþ1
iþ1 ¼ qn

iþ1 � ku½qn
iþ1 � qn

i �: ð73Þ
Now if we look at the momentum conservation equation, we have:
ðquÞnþ1

iþ1 ¼ ðquÞniþ1 � k½qn
iþ1u

2 þ p � qn
i u

2 þ p�;
ðquÞnþ1

iþ1 ¼ ðquÞniþ1 � ku2½qn
iþ1 � qn

i �;
ð74Þ
that together with (73) gives
unþ1
iþ1 ¼ uniþ1 ¼ u: ð75Þ
Then the total energy equation is written
ðqeÞnþ1

iþ1 ¼ ðqeÞniþ1 � ku½ðqeÞniþ1 � ðqeÞni �: ð76Þ
Using the equation for the mixture density (73) and the result unþ1
iþ1 ¼ uniþ1 ¼ u, we get (where e stands for the

internal mixture energy)
ðqeÞnþ1

iþ1 ¼ ðqeÞniþ1 � ku½ðqeÞniþ1 � ðqeÞni �: ð77Þ
Then using the Stiffened–Gas state law for each phase, we have the following expression for the mixture

internal energy:
qe ¼
X2
k¼1

ak
p þ ckpk

ck � 1
: ð78Þ
Solving for the pressure with the volume fraction equation
ða2Þnþ1

iþ1 ¼ ða2Þniþ1 � ku½ða2Þniþ1 � ða2Þni �: ð79Þ
We get
pnþ1
iþ1 ¼ pniþ1 ¼ p: ð80Þ
Therefore, this result guarantee that a contact discontinuity will remain at constant velocity and pressure

(although it will evolve toward a smeared profile due to the numerical diffusion).
4.3. Acoustic solver

The results of the previous section show that the VFRoe-ncv scheme preserve an isolated contact

discontinuity and that the velocity and the pressure must stay constant in this case. Numerical exper-

iment confirm that this is indeed the case except at very low Mach number. This seems surprising be-
cause the previous proof is independent of the Mach number. However, this proof assumes that the

computations are done with exact arithmetic. In practice, this is not the case and round-off errors per-

turbate the computations. In [13] a close examination of this problem was done and has shown that the
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computation of the interface pressure in Eq. (60) is extremely sensible to round-off errors at small

Mach number. This is the reason why we have developed another approximate Riemann solver where

the computation of the pressure appear to be less sensible to small random perturbations. This second

numerical scheme uses more heavily the mathematical structure of the reduced system. It can be under-

stood as an extension of the acoustic solver described for instance in [20] for the Euler equations of gas
dynamics. With respect to the different numerical test, this acoustic solver seems to be very robust with

respect to the Mach number and specially for interface problems. The principle of this solver is to write

linearized characteristic equations starting on the two side of the discontinuity and to compute their

intersection to get the velocity and pressure at the interface. To be more specific we first transform

the system of partial differential equations into ordinary differential equations by multiply them with

the left eigenvectors
tliðqÞ �
oq

ot
þ AðqÞ oq

ox

� �
¼ 0; ð81Þ
which can be immediately rewritten
tliðqÞ �
oq

ot
þ kiðqÞ

oq

ox

� �
¼ 0: ð82Þ
Now, denoting q�L; q
�
R, respectively, the states on the left and right side of the contact discontinuity and line-

arizing (82) with respect to qL and qR we get
tl5ðqLÞ � ðq�L � qLÞ ¼ 0;
tl1ðqRÞ � ðq�R � qRÞ ¼ 0;

�
ð83Þ
which gives after some algebraic manipulations
qLâLðu�L � uLÞ þ ðp�L � pLÞ ¼ 0;

qRâRðu�R � uRÞ � ðp�R � pRÞ ¼ 0:

�
ð84Þ
Then using the fact that u�L ¼ u�R ¼ u� and p�L ¼ p�R ¼ p�, we get the following expressions for u* and p*:
u� ¼ qLâLuLþqR âRuR
qL âLþqRâR

� pR�pL
qL âLþqR âR

;

p� ¼ qRâRpLþqL âLpR
qLâLþqR âR

� qLâLqR âRðuR�uLÞ
qL âLþqR âR

:

(
ð85Þ
And finally the solution of the Riemann�s problem is given by
q x
t ; qL; qR

 �

¼

qL if x
t < uL � âL;

q�L if uL � âL < x
t < u�;

q�R if u� < x
t < uR þ âR;

qR if uR þ âR < x
t :

8>>><
>>>:

ð86Þ
The same numerical scheme which has been presented in Section 4.1 can be used with this Riemann solver.
We also note that as shown in expression (85), in an isolated contact discontinuity with pL = pR and uL = uR
the interface values of the velocity and pressure will again have this common value. The results of Section

(4.2) thus remain valid when this approximate Riemann solver is used.
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5. Numerical results

5.1. Multifluid/interface problems: validation tests

5.1.1. Pure interface advection

This first validation test is a one dimension interface advection between water and air. The state laws for

the air and the water are given by the Stiffened–Gas formulation:
p ¼ ðc1 � 1Þq1e1 � c1p1 with c1 ¼ 1:4 and p1 ¼ 0 air; ð87:1Þ

p ¼ ðc2 � 1Þq2e2 � c2p2 with c2 ¼ 4:4 and p2 ¼ 6� 108 water: ð87:2Þ

The length of the domain is 1 m and initially the interface is located at x = 0.5 m. The water with density

q2 = 1000 kg m�3 is located on the left side and the air with q1 = 50 kg m�3 is on the right side. Both fluids

have same pressure p = 105 Pa and velocity u = 1000 m s�1 at time 0. A small amount of water (respectively
gas) a2 = 10�8 is initially present in the gas (respectively water) side. The discretization is done on 1000 cells

grid and the CFL number is equal to 0.6. The results are shown at 229 ls. In order to compare the results

with those given by another similar diffuse interface method, Fig. 2 displays the mixture density, the pres-

sure, the velocity and the volume fraction for the present reduced model and also for the ‘‘five equation-

transport model’’ of [2,12]. For this last model, the numerical method used is the one described in [12].

On this simple test case, the two models are perfectly in agreement and display the same capability to

preserve constant velocity and pressure profiles.
5.1.2. Water–air shock tube

We consider a shock tube [�2,2] of 4 m length filled on the left side (x < 0.7) with a high pressure liquid

water and on the right side with air. This test problem consists of a classical shock tube with two fluids and

admits an exact solution. The state laws are the same than in the previous test case. The initial condition
consists in a pressure discontinuity between p = 109 Pa in the liquid side and p = 105 Pa in the gas side. As in

the previous test case, the right and left chambers contain nearly pure fluids: the volume fraction of the gas

in the water chamber is a1 = 10�8 and inversely the water volume fraction is a2 = 10�8 in the gas chamber.

Again, we compare the results of the present five equation reduced model with those obtained with the ‘‘five

equation transport model’’ of [2,12]. Fig. 3 displays for the two models the mixture density, the pressure

and the velocity. The exact solutions are represented on these curves by a dotted line. This computation

uses a mesh with 1000 cells, with a CFL number equal to 0.6 and the results are shown at time 900 ls.
The results for the two models seem to be of comparable accuracy with respect to the exact solution.
However, one can notice that the contact discontinuity seems to be more diffused in the ‘‘five equation re-

duced model’’ while in the ‘‘five equation transport model’’, the shock seems to be slightly in advance with

respect to the analytical solution. Fig. 4 that shows an overmagnified region between x = 1.2 and x = 1.3

shows that this is indeed the case and that the shock speed is not exactly the same for the two models.

We emphasize that in the limit of a zero space step, the two models must give identical results. For the pre-

sent test-case, the contact discontinuity is very close to the shock. Since in the diffusion zone the speeds of

sound given by the two models are very different, this can affect the shock speed. For instance at x = 1.2,

Fig. 4 shows that a = 0.95 and thus the sound speed in the ‘‘five equation transport model’’ is equal to 360
m s�1 while it is only equal to 260 m s�1 in the ‘‘five equation reduced model’’. These results are consistent

with Fig. 1 that shows that the speed of sound given by the ‘‘five equation transport model’’ is always larger

than the one given by the ‘‘five equation reduced model’’.

Although for this problem, these quantities do not have any physical meaning, it can be of interest to

look at the phase quantities qk, ek which, respectively, stand for the phase densities and internal energies

(cf. Fig. 5). If for the mixture variables the two models have the same behaviour, it is clear that large
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Fig. 2. 5 Equation reduced model (left) and 5 equation transport model (right) in the pure interface advection: mixture variables.

Computed solutions with 1000 cells (symbols).
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Fig. 3. 5 Equation reduced model (left) and 5 equation transport model (right) in the water–air shock tube: mixture variables.

Computed solutions with 1000 cells (symbols) and exact solutions (dotted lines).
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Fig. 4. 5 Equation reduced model (left) and 5 equation transport model (right) in the water–air shock tube: zoom of the shock.

Computed solutions with 1000 cells (symbols).
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differences can be noticed on the phase quantities between the two models. Finally let us mention that on

this test problem, the results on the phase variables are in good agreement with those published for the se-
ven equation model in [16] or in [10]. In particular, the sharp gradient in the air density and internal energy

located upstream of the contact discontinuity are also present in the results obtained with the seven equa-

tion model. (Compare Fig. 5 (left) with for instance Fig. 7 of [16]).

5.2. Two-phase flow problems: comparison with the seven equation model

5.2.1. First two-phase flow problem

Our second series of numerical experiments deals with two-phase flow and consider problems where the
two phases are simultaneously present at the same location. The first experiment considers the same prob-

lem than in Section 5.1.2 except that the volume fraction is constant and equal to a1 = 0.5 everywhere in the

domain. On the left side (x < 0.5) the pressure is 109 Pa while it is equal to 105 Pa on the right side. The

velocity is zero at time 0. Again the discretization is done on a 1000 cells grid and the CFL number is fixed

and equal to 0.6. The results are shown at time 200 ls. We compare in Fig. 6 these results with those ob-

tained by the seven equation model of [16]. The numerical method used to solve the seven equation model is

the one described in [16], except that the relaxation procedures have been improved as described in [10]. The

results are in perfect agreement and this confirms that the present five equation model is a correct asymp-
totic limit of the seven equation model in the limit of zero relaxation time. In particular, we observe that
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Fig. 5. 5 Equation reduced model (left) and 5 equation transport model (right) in the water–air shock tube: phase variables. Computed

solutions with 1000 cells (symbols).
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even if the initial composition of the mixture is constant, it evolves in space and time and that this evolution

is the same in the results obtained with the two models.

5.2.2. Second two-phase flow problem

The same problem than previously is now considered except that we allow a change in the composition

of the mixture. We also change the initial density of the gas for q1 = 1 kg m�3. The initial conditions are

thus q1 = 1 kg m�3, q2 = 1000 kg m�3, u = 0 m s�1 everywhere in the domain while:
p ¼ 109 Pa if x < 0:7; p ¼ 105 Pa otherwise;

a1 ¼ 0:2 if x < 0:7; a1 ¼ 0:8 otherwise:

(

The results are shown at time 200 ls (cf. Fig. 7). The pressure and velocity curves computed with the two

models are identical but we notice some differences between the results obtained with the two models in the

volume fraction and mixture density profiles. In particular, the post-shock values of the mixture density and

volume fraction are not the same and the seven equation model shows an oscillation near the contact dis-

continuity zone. At the present time, these differences remains unexplainable. Further experiments done by
changing the relaxation procedures or the hyperbolic solver in the numerical solution of the seven equation

model do not change the results and therefore, it seems that these features are not numerical artifacts but

are indeed present in the solution of the seven equation model.
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Fig. 6. 5 Equation reduced model (left) and 7 equation model (right) in the first two-phase flow problem. Computed solutions with

1000 cells (symbols).
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Fig. 7. 5 Equation reduced model (left) and 7 equation model (right) in the second two-phase flow problem. Computed solutions with

1000 cells (symbols).
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5.2.3. Shock propagation in solid alloys

We now evaluate the model capabilities for the computation of shock waves in a two-phase mixture

for a test problem involving strong shocks. This type of experiment is particularly important if one

want to use the model in DDT studies. Although the model does not admit a full set of Rankine–

Hugoniot relations it is possible to solve the equations in an unsteady regime and to determine a

numerical velocity of the shock. This will be done in simulating an impact situations in a two-phase

mixtures as described in Fig. 8. In order to evaluate the computed results, we will compare them with

those obtained with the seven equation model and with experimental data. Actually, for many material,
the relation between the shock velocity and the impact velocity is a linear relation, intrinsically char-

acteristic of the material and experimentally determined
us ¼ a0 þ sup; ð88Þ

where a0 is the material sound speed under atmospheric conditions, us the shock velocity, up the impact

velocity and s is a dimensionless constant. The relation (88) is experimentally available for some alloys.

Here, we will consider an epoxy/spinel alloy. The equation of state of the two phases are respectively choo-

sen as:
p ¼ ðc1 � 1Þq1e1 � c1p1 with q1 ¼ 1185 kg m�3; c1 ¼ 2:94 and p1 ¼ 3:2:109 epoxy; ð89:1Þ

p ¼ ðc2 � 1Þq2e2 � c2p2 with q2 ¼ 3622 kg m�3; c2 ¼ 1:62 and p2 ¼ 141:109 spinel: ð89:2Þ

By computing several unsteady problems with variable impact velocity, we will be able to numerically deter-
mine the curve (88) and to compare it with the experimental data. Fig. 9 displays the results at different

time = 30, 60 and 90 ls in a computation where the impact velocity is up = 3000 m s�1 and the proportion

of epoxy is a1 = 0.595. Several computations of this type give the results shown in Fig. 10. All the compu-

tations use a 1000 cells grid and the CFL number is equal to 0.6. We notice a good agreement with the

experimental data. We also show in Fig. 10 the results obtained with the seven equation model. We note

that the present results are of comparable accuracy with those obtained by this model. Finally, although

the five equation model of [2,12] is certainly not suitable for these computations, we have plotted in Fig.

10 the results given by this model. On this test-case, it can clearly be seen that the additional small term
present in Eq. (30.5) with respect to the ‘‘five equation transport model’’ has a tremendous influence. Again,

we note that these results are consistent with the expressions (29) and (43) of the speed of sound. As dis-

cussed in the introduction and in Section 5.1.2, in the case of under-resolved computations, these differences

in the value of the speed of sound can appear even in interface simulations.
5.3. Two dimensional tests

We end these series of numerical experiments by some relevant two-dimensional test-cases. These last
experiments are computed with a second order MUSCL technique for the space discretization. The time

scheme uses the second order, three stage TVD Runge–Kutta discretization described in [18].
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Fig. 9. Results of the 5 equation reduced model for the epoxy/spinel under shock impact at 3000 m/s. Computed solution with 1000

cells.
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5.3.1. First two dimensional test: Bubble ascension

This first test shows the ascension of a light air-bubble under the effect of the gravity in a closed box filled

with water as described in Fig. 11. Initially the bubble is at rest and the pressure field has an hydrostatic

profile. Although it seems simple, this computation presents several numerical difficulties. In particular,

the Mach number in this computation is extremely low (it is equal to zero at time t = 0 and increases slightly

up to a value of 10�1 in the course of the computation) and the density ratio between the two fluids is equal

to 1000. This is for this test-case that we had to build the acoustic Riemann solver described in Section 4.3.
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Fig. 11. Initial configuration for the first two dimensional test: Bubble ascension.
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The box is 2 m large and 2 m high and the mesh is composed of 400 · 400 points. Fig. 12 shows the iso-

values of the air volume fraction at time = 0, 0.15, 0.35, 0.55, 0.75, 1.0 s. Although this computation would

require the introduction of a model of the capillarity forces, the results are very promising. In particular, the

numerical diffusion does not prevent the developmental of interface instabilities, the volume fraction re-

mains bounded and the results are perfectly symmetrical with respect to the x = 1 axis.

5.3.2. Second two dimensional test

The second test-case is an idealized representation of the sudden heating of a sphere of light material
enclosed in a shell of dense one. In opposition with the previous computation, the Mach number in this

test-case is large and reaches 0.8. This test case has been initially considered in [12] and will serve to assess

the robustness of the numerical method for the computation of large Mach number bi-dimensional flows.

In Fig. 13, we present the initial conditions of the problem. The mesh contains 400 · 400 nodes and the



Fig. 12. Isovalues of the volume fraction for the first two dimensional test: Bubble ascension.
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CFL number is equal to 0.8. The mesh is regular. Due to the discretization of the circular interfaces, in

addition to the development of shock waves in the direction normal to the interfaces, hydrodynamical

instabilities of Richtmyer–Meshkov will develop. Fig. 14 shows the isovalues of the volume fraction at

time = 0, 1.58, 2.63 ms. We clearly observe the development of these instabilities, producing an intense mix-

ing of the heavy and light fluid near the interface. We also note that although the present results are not
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totally identical with those obtained in [12], a good agreement with these results is reached. Again, we

emphasize that in the limit where the space step goes to zero, for this interface problems between compress-

ible fluids, the two models have to give exactly the same results. For this computation, a mesh of 400 · 400
thus seems sufficient for this purpose.

5.3.3. The broken dam problem

Finally, we present here a computation of the well known broken dam problem of Martin and Moyce

[11]. This test consists of the simple configuration represented in Fig. 15. Initially a water column with

a = 0.06 m wide and g2a = 0.12 m high is a rest. All the boundaries are solid walls. Under the effect of

the gravity g = 9.81 m s�2, the column collapses. The computation is made with the acoustic solver. The

mesh contains 200 · 60 nodes and the CFL number is equal to 0.8. The experimental results of [11], for
the front position x=a ¼ F 1ðg2; t

ffiffiffiffiffiffiffiffiffiffi
2g=a

p
Þ and the height of the column z=ðg2aÞ ¼ F 2ðg2; t

ffiffiffiffiffiffiffiffi
g=a

p
Þ are used

for comparison (note that in the experimental results, the non-dimensional times are different for the front

position and the water height: we have used the same non-dimensional units in the presentation of the

numerical results to allow a direct comparison with the original publication of [11]). In Fig. 17, are com-

pared the numerical results and the experimental ones for the case g2 = 2. Although, the Mach number is
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very small, we note a good agreement with the experimental results. Fig. 16 shows the isovalues of the vol-

ume fraction at the different dimensionless time t
ffiffiffiffiffiffiffiffiffiffi
2g=a

p
¼ 0; 1:19; 1:98; 2:97; 4:02; 5:09 corresponding to the

physical times t = 0, 0.066, 0.109, 0.164, 0.222, 0.281 s.
6. Conclusion

We have derived a five equation reduced model from an asymptotic analysis in the limit of zero relax-

ation time of a seven equation two velocity, two pressure model. Although, this model cannot be cast in

conservative form, the mathematical structure of the model have been analyzed and shown to be very close

to the structure of the Euler equations of fluid dynamics. This model presents an interesting alternative to

the use of the seven equation model: it is cheaper, simpler to implement and is easily extensible to an arbi-

trary number of materials. For instance, in three dimensions, for a number k of different material, the two
velocity, two pressure model uses 6k � 1 variables while the reduced model will use only 2k + 3 variables.

From a numerical point of view, we have proposed two different approximation schemes of this system.

The first one (VFRoe-ncv) relies on an approximate linearized Riemann solver. The second one, that is use-

ful for the simulation of interface problems in low Mach number flows, uses the mathematical structure of

the model and relies on the linearization of characteristic relations.

The numerical results show that the reduced five equation model is able of accurate computations of

interface problems between compressible material as well as of some two-phase flow problems where pres-

sure and velocity equilibrium between the phases is reached. The numerical methods have been shown to be
efficient and robust for a large range of Mach number from almost zero to 1.9 and for density ratio as large

as 1000. In the future, we plan to improve the efficiency and accuracy of the numerical method for low

Mach number flows by designing implicit and preconditioned schemes for this model. Preliminary results

in this direction are promising [13].
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