
scheme. Namely, the time integration has used the three
stage TVD Runge–Kutta discretization described in [11],

Q
ð1Þ
i ¼ Qn

i þ DtLðQn
i Þ ðaÞ

Q
ð2Þ
i ¼ 3

4
Qn

i þ 1
4
Q
ð1Þ
i þ 1

4
DtLðQð1Þi Þ ðbÞ

Qnþ1
i ¼ 1

3
Qn

i þ 2
3
Q
ð2Þ
i þ 2

3
DtLðQð2Þi Þ ðcÞ

8>><
>>: ð57Þ

while the space discretization has used the MUSCL tech-
nique described in Section 3.3, with f ¼ 1=3 and the Spe-
kreijse limiter. The results of this computation are shown
in Fig. 4. Although the results of this fine mesh computa-

tion are not totally identical to those of Fig. 3, one can note
the close similarity between these results and the one ob-
tained with the preconditioned upwind scheme.

4.2. Broken dam problem

Here we present a computation of the well-known bro-
ken dam problem of Martin and Moyce [7]. Initially a
water column with a ¼ 0:06 m wide and g2a ¼ 0:12 m high
is a rest. Under the effect of the gravity g ¼ 9:81 m s�2, the
column collapses. All the boundaries are solid walls. The

Fig. 2. Bubble ascension: isovalues of the volume fraction for the 100 � 100 mesh computation: classical upwind scheme.

Fig. 3. Bubble ascension: isovalues of the volume fraction for the 100 � 100 mesh computation: preconditioned scheme with b ¼ 0:1.
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mesh we have used for this test, is regular with Dx ¼
Dz ¼ 5� 10�3m. The Mach number during the computa-
tion is low and of the order of 1� 10�1. The implicit
scheme has been used with a CFL number equal to 2.5 in
order to compute with a sufficient accuracy the unsteady
pattern of the flow. The linear system is solved by an iter-
ative method with a linear residual h ¼ 1� 10�2. The space
discretization has used the MUSCL technique with f ¼ 1=2

and the Van Albada–Van Leer limiter. We compute the
solution with the standard and the preconditioned method.
For the preconditioned method, the parameter of the Tur-
kel’s matrix b is chosen equal to 0.1 and remains constant
in space and time.

Figs. 5 and 6 show the isovalues of the volume frac-
tion at the different dimensionless times t

ffiffiffiffiffiffiffiffiffiffi
2g=a

p
¼

0; 1:19; 1:98; 2:97; 4:02; 5:09 corresponding to the physical

Fig. 4. Bubble ascension: isovalues of the volume fraction for the 400 � 400 fine mesh explicit computation.

Fig. 5. Broken dam problem: isovalues of the volume fraction: classical
upwind scheme.

Fig. 6. Broken dam problem: isovalues of the volume fraction: precon-
ditioned scheme with b ¼ 0:1.
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times t = 0, 0.066 s, 0.109 s, 0.164 s, 0.222 s, 0.281 s, for the
standard (Fig. 5) and the preconditioned method (Fig. 6).
It is clear that the upwind preconditioned scheme predicts
a faster development of the flow and for instance the front
position at time 0.281 s is clearly in advance with respect to
the results obtained with the standard scheme.

To quantify the difference between the two schemes, we
compare in Fig. 7, the two solutions with the experimental

results of [7], for the front position x=a ¼ F 1 g2; t
ffiffiffiffiffiffiffiffiffiffi
2g=a

p
 �
and the height of the column z=ðg2aÞ ¼ F 2 g2; t

ffiffiffiffiffiffiffiffi
g=a

p
 �
. It

is clear that the preconditioned method is more accurate

than the standard one. For example at time t
ffiffiffiffiffiffiffiffiffiffi
2g=a

p
¼

2:97 the error compared to the experimental data for the
front position is the order of 1% for the preconditioned
method while it is the order of 10% for the classical upwind
scheme.

4.3. Two-phase flow in a nozzle

Finally we present a sequence of computations of two-
phase flows in a symmetric nozzle where the Mach number

tends to zero. These computations are similar to the ones
presented in [4] in single phase situation. The implicit scheme
has been used with a CFL number equal to the inverse of the
nonlinear residual of the mixture density CFL ¼ 1=ResðqÞ
and at maximum equal to 106. The discrete solutions pre-
sented are the one obtained at convergence, i.e., for a resid-
ual equal to 10�9. For the preconditioned method in this
case, the parameter b is not taken as a constant but locally
computed at each interface of the mesh and at each time
step.

In these computations, an air–water two phase mixture
defined by ða11 ¼ 0:5; q11 ¼ 1 kg m�3; q12 ¼ 1000 kg m�3Þ
is injected in the nozzle with an horizontal imposed velocity
equal to u1 ¼ 1 m s�1. The law states (56) for air and water
are the same than previously and a representative Mach
number of the flow is defined by

Ma2
� ¼
ðu1Þ2

ðâ1Þ2
¼ 1

ðâ1Þ2
ð58Þ

Then the inlet pressure is taken as solution of equation
Ma2

� � 1=ðâ1Þ2 ¼ 0 which can be rewritten using the equa-
tions of state of the two fluids:

Ma2
� � ða11 q11 þ ð1� a11 Þq12 Þ

� a11
c1ðp1 þ p1Þ

þ 1� a11
c2ðp1 þ p2Þ

� �
¼ 0 ð59Þ

We are interested in the situation where Ma� tends to zero.
In this case, the asymptotic analysis given in Section 2 ap-
plies and shows that the equations governing the flow are
the two-phase incompressible Euler equations (14). Thus
if we take at time t ¼ 0; a1ðx; 0Þ ¼ 0:5 for all x, we will
get a1ðx; tÞ ¼ 0:5 for all x and t > 0 and (1) is simply the
incompressible Euler equation with a constant density gi-
ven by ðq1 þ q2Þ=2. We then expect that the limit solution
of (1) will be given by an incompressible potential flow of
density ðq1 þ q2Þ=2. In particular, the solution has to be
symmetric with respect to the axis of the nozzle. To test
the preconditioned scheme with respect to the classic
non-preconditioned one, we realize three computations,
respectively, at Ma� ¼ 0:1;Ma� ¼ 0:01 and Ma� ¼ 0:001.

Fig. 8 shows the isovalues of the normalized pressure
p � pmin=pmax � pmin for the discrete stationary solutions
obtained. Fig. 9 shows the profile of pressure in the upper
and lower boundaries of the nozzle. We present from left to
right the results obtained with the classical and the precon-
ditioned scheme.

Fig. 9 shows clearly that the solution given by the clas-
sical discretization is not symmetric and consequently
could not be a reasonable approximation of the incom-
pressible solution. In addition, one can notice that the pres-
sure fluctuations with the classic scheme (of order Ma�) are
larger than which obtained with the preconditioned one (of
order Ma2

�). To illustrate this difference in the behaviour of
the pressure fluctuations, we plot in the first and second
column of Fig. 9 the result for the classic and precondi-
tioned method with the same pressure unit. We could note
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Fig. 7. Comparison between numerical solutions of the classical and
preconditioned scheme and experimental results for the broken dam
problem. Front position (top) and height of the column (bottom).
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