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Abstract

For single phase fluid models, like the Euler equations of compressible gas dynamics, upwind finite volume schemes suffer from a loss
of accuracy when computing flows in the near incompressible regime. Preconditioning of the numerical dissipation is necessary to recover
results consistent with the asymptotic behaviour of the continuous model. In this paper, we examine this situation for a two-phase flow
model. We show that as in the single phase case, the numerical approximation has to be done carefully in the near incompressible regime.
We propose to adapt the preconditioning strategy used for single phase problems and present numerical results that show the efficiency of
this approach.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Although two phase and multifluid flows are encoun-
tered in a large number of situations from hypersonic to
almost zero velocity flows, in many cases, the computation
of these flows is a low Mach problem. This is true for
instance in the nuclear or petroleum industry in nominal
conditions when one of the two phases is a liquid with very
small compressibility coefficient forcing the flow velocity to
be small. The modeling of these flows is an extremely diffi-
cult task and nowadays, there is no universal model to take
into account all the experimental conditions. Instead a
large collection of different type of models co-exist. In this
paper, we are interested in modelings of the type described
for instance in [12,9] in which the convective part of the
model is described by an hyperbolic system. This includes
a large variety of different models ranging from simple
homogeneous [2] or drift flux models to sophisticated two
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pressure, two velocity models [9,1,10]. With a few excep-
tions, from a theoretical point of view, the behaviour for
vanishing Mach number of these two-phase flows models
is unknown. A consequence of this absence of understand-
ing of the behaviour of these models when the Mach num-
ber goes to zero is that the numerical approximation
methods used to solve them is generally based on standard
finite volume or finite difference methods. The efficiency of
these methods is well assessed for the numerical approxi-
mation of hyperbolic systems in transonic and supersonic
regimes. However, for very subsonic flows, when these dis-
cretization methods are applied to standard one phase
models as the Euler or Navier–Stokes equations, it is
now well known that they suffer from efficiency and accu-
racy problems. Actually, it has even been proved in the case
of the Euler equations that the numerical approximations
produced by standard finite volume (FV) schemes of
upwind type do not converge to the correct incompressible
limit [5,4]. There is no reason to believe that the situation is
different for hyperbolic two-phase flow models and that in
the low Mach number regime, standard discretization can
be used safely to compute these flows.

Indeed, for one of the simplest two-phase flows model,
namely the homogeneous equilibrium model, it has been
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shown in [2,16] that FV upwind schemes exhibit the same
type of accuracy problems than in the one phase context.
In this paper, we investigate this situation for a more com-
plex two-phase flow model, namely the five-equation model
introduced in [6,8]. This model has been used for detona-
tion studies in [6,17]. In [8], we have shown that it can also
be used for some low Mach interface and two-phase flows
problems. Our aim, here is to show that in the low Mach
number regime, the numerical approximation of this model
has to be done carefully if one wants to avoid a loss of
accuracy. Fortunately, we will also show that due to the
mathematical structure of this model, the same recipe than
in the case of the one-phase Euler equations can be applied
and that preconditioning the numerical dissipation allows
to recover a correct asymptotic behaviour when the Mach
number goes to zero.

For the more complex non-equilibrium two-pressure
and two velocity models of the type described for instance
in [9,1,10], the situation is far from being understood.
Actually, in contrast with the single velocity and pressure
model considered in this paper, these models are governed
by several (at least 4) non-dimensional numbers and there-
fore can experience a large number of different asymptotic
regimes. The present work is therefore a step in the com-
prehension of the low Mach number behaviour of two-
phase models but a lot of complex questions remain
unanswered.

The summary of this work is as follows. In Section 2, we
perform an asymptotic analysis of the model in the low
Mach number limit. The purpose of this section is to iden-
tify the correct limit equation that the solutions satisfy
when the Mach number goes to zero. Using a single time
asymptotic analysis, we show that for this incompressible
limit, as for the one-phase Euler equations, pressure fluctu-
ations scale with the square of the Mach number. Then in
Section 3, we propose an implicit numerical scheme based
on a Godunov type solver. This numerical scheme uses
the solution of a preconditioned Riemann solver to enable
a correct asymptotic behaviour of the numerical solution.
Following the recipe proposed for the Euler equations in
[5,4], this preconditioned Riemann solver is built using
the close similarity between the mathematical structure of
this model and the one of the one-phase Euler equations.
Finally in Section 4, we present a set of numerical experi-
ments which show that this preconditioning strategy allows
to recover accurate results when computing low Mach
number flows with this model.

2. The continuous problem

The purpose of this section is to identify the limit equa-
tions and the asymptotic behaviour of the solutions of a
two phase one-velocity, one-pressure model in the limit
of vanishing low Mach number. Although this model
describes the two phase medium by a single velocity and
a single pressure, it retains two phase densities and a vol-
ume fraction for the description of the thermodynamical
state of the fluid. Consequently, this model possesses two
entropies (and two temperatures). This allows a richer
description of the fluid than with the classical multicompo-
nent Euler equations (that possesses a single temperature)
and can have some advantages when the thermodynamics
of the two fluids are very different. In term of conservative
variables tða1q1; a2q2; qu; qe; a1Þ, this system can be written
as

oa1q1

ot
þ divða1q1uÞ ¼ 0 ð1:1Þ

oa2q2

ot
þ divða2q2uÞ ¼ 0 ð1:2Þ

oqu

ot
þ divðqu� uÞ þ rp ¼ 0 ð1:3Þ

oqe
ot
þ divðqeþ pÞu ¼ 0 ð1:4Þ

oa1

ot
þ u � ra1 ¼ a1a2

q2a2
2 � q1a2

1P2
k¼1ak0qka2

k

divu ð1:5Þ

Notations are classical. k ¼ ð1; 2Þ stand for the two phases
and k0 ¼ ð2; 1Þ for k ¼ ð1; 2Þ. Then ak are the volume frac-
tions ða1 þ a2 ¼ 1Þ; qk the phase densities, u the vector
velocity, and p the pressure. Then q ¼

P2
k¼1akqk stands

for the mixture density and e the specific total energy is de-
fined by e ¼ eþ u2=2 while the specific internal energy e is
given by the relation qe ¼

P2
k¼1akqkekðp; qkÞ.

This model has been proposed for instance in [12,17,8]
and can be obtained from an asymptotic analysis in the
limit of zero relaxation time of the Baer–Nunziato two
velocity, two-pressure model (see for instance [8]). Its
mathematical properties are studied in [8] where it is shown
that its structure is very close to the one of the one-phase
Euler equations. Our aim, now is to perform an asymptotic
analysis of this system when the Mach number tends to
zero. Before that, let us recall the situation for the one-
phase Euler equations: if the initial pressure field scales
with the square of the Mach number: pðx; 0Þ ¼ p0þ
Ma2

�p
2ðxÞ, and if the velocity at time t ¼ 0 is close to a

divergence free field in the sense that uðx; 0Þ ¼ u0ðxÞþ
Ma�u1ðxÞ with divu0 ¼ 0, then it is known that solutions
of the Euler equations for compressible flows remain uni-
formly bounded as the Mach number tends to zero, and
the limit solutions satisfy the equations for incompressible
flows:

q
ou

ot
þ divðu� uÞ

� �
þrp ¼ 0 ð2:1Þ

divðuÞ ¼ 0 ð2:2Þ

In the sequel, we will establish the same type of results for
the model (1). For the sake of simplicity, we first rewrite
system (1) using the pressure as independent variable in-
stead of the total energy. The equation governing the evo-
lution of the pressure is

op
ot
þ u � rp þ qâ2divu ¼ 0 ð3Þ
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In this last equation, we have introduced the averaged
sound speed â defined by (see for instance [12,17,8])

1

qâ2
¼
X2

k¼1

ak

qka2
k

ð4Þ

Formula (4) is the celebrated Wallis (or Woods) equilib-
rium sound speed well known in the two-phase flow litera-
ture (see e.g [12]).

The first step of the analysis is to perform a change of
variables using non-dimensional variables instead of dimen-
sional ones. Let qref ¼max½qðx;0Þ�;u2

ref ¼max½u2ðx;0Þ� and
let the sound speed scale âref be defined by: âref ¼
max½âðx;0Þ�.

Introducing the non-dimensionalized variables:

~qk ¼
qk

qref

~u ¼ u

uref

~p ¼ p
qref â

2
ref

~ak ¼ ak ~x ¼ x

dref

~t ¼ turef

dref

ð5Þ

with dref an arbitrary length scale, system (1) becomes:

o~a1~q1

ot
þ divð~a1~q1~uÞ ¼ 0 ð6:1Þ

o~a2~q2

ot
þ divð~a2~q2~uÞ ¼ 0 ð6:2Þ

o~q~u

ot
þ divð~q~u� ~uÞ þ 1

Ma2
�
r~p ¼ 0 ð6:3Þ

o~p
ot
þ ~u � r~p þ ~q~̂a2div~u ¼ 0 ð6:4Þ

o~a1

ot
þ ~u � r~a1 ¼ ~a1~a2

~q2~a2
2 � ~q1~a2

1P2
k¼1~ak0~qk~a2

k

div~u ð6:5Þ

where Ma� ¼ uref=âref is the reference Mach number.
And we now look for solution of system (6) in the form

of asymptotic expansion in power of the Mach number
Ma�:

ð~:Þ ¼ ð~:Þ0 þMa�ð~:Þ1 þMa2
�ð~:Þ

2 þ � � � ð7Þ

Introducing these expressions into system (6) and collecting
terms with equal power of Ma�, we obtain at order 1=Ma2

�
and 1=Ma� (in the sequel, we have dropped the subscripts ~:
for convenience)

rp0 ¼ 0 ð8:1Þ
rp1 ¼ 0 ð8:2Þ
These equations imply that the pressure is constant in space
up to fluctuations of order Ma2

�. Thus we may write

pðx; tÞ ¼ p0ðtÞ þMa2
�p

2ðx; tÞ ð9Þ

and this situation is then identical to the one obtained for
the one-phase Euler equation.

Then introducing these results in the order 1 system, we
get
oa0
1q

0
1

ot
þ divða0

1q
0
1u0Þ ¼ 0 ð10:1Þ

oa0
2q

0
2

ot
þ divða0

2q
0
2u0Þ ¼ 0 ð10:2Þ

oq0u0

ot
þ divðq0u0 � u0Þ þ rp2 ¼ 0 ð10:3Þ

dp0

dt
þ q0ðâ0Þ2divu0 ¼ 0 ð10:4Þ

oa0
1

ot
þ u0 � ra0

1 ¼ a0
1a

0
2

q0
2ða0

2Þ
2 � q0

1ða0
1Þ

2P2
k¼1a

0
k0q

0
kða0

kÞ
2

divu0 ð10:5Þ

To simplify, these equations, we note that in the presence
of open boundaries, the thermodynamic pressure p0 will
be imposed and be equal to the exterior pressure. For the
sake of simplicity, we assume that the exterior pressure
does not change with time, and thus, the pressure p0 will
be a constant in space and time:

dpExt

dt
¼ dp0

dt
¼ 0 ð11Þ

and the pressure equation (10.4) degenerates into:

divu0 ¼ 0 ð12Þ

Again, this situation is totally identical to the one of the
one-phase Euler equation. Now, introducing relation (12)
into the mass conservation equations (10.1) and (10.2)
and the volume fraction equation (10.5), we get

oq0
k

ot
þ u0 � rq0

k ¼ 0 and
oa0

1

ot
þ u0 � ra0

1 ¼ 0 ð13Þ

Assuming that all particle paths come from regions with
the same phase densities, we conclude that q0

k ¼ Cte and
thus the set of equations that governs the evolution of
the variables tða1q1; a2q2; qu; qe; a1Þ is asymptotically in
the limit Ma� ! 0

q1 ¼ Cte ð14:1Þ
q2 ¼ Cte ð14:2Þ
ou

ot
þ divðu� uÞ þ 1

qða1Þ
rp ¼ 0 ð14:3Þ

divu ¼ 0 ð14:4Þ
oa1

ot
þ u � ra1 ¼ 0 ð14:5Þ

where the mixture density qða1Þ ¼ a1q1 þ ð1� a1Þq2 de-
pends only on the volume fraction a1 which is simply ad-
vected at the velocity u of the flow. Note the close
similarity with the one phase incompressible Euler equa-
tion (2).
3. Numerical approximation

System (1) is not a conservative system due to the evolu-
tion equation for the volume fraction
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oa1

ot
þ u � ra1 ¼ a1a2

q2a2
2 � q1a2

1P2
k¼1ak0qka2

k

divu ð15Þ

where k0 ¼ ð2; 1Þ for k ¼ ð1; 2Þ. In the numerical approxi-
mation used in this paper, we rewrite this equation as

oa1

ot
þ divða1uÞ þ BðQÞdivu ¼ 0 with BðQÞ ¼ �a1q2a2

2P2
k¼1ak0qka2

k

ð16Þ
Then let Q¼tða1q1; a2q2; qu; qe; a1Þ be the set of ‘‘conserva-
tive”1 variables. With this definition, the system (1) can be
written as

oQ

ot
þ divFðQÞ þ divuBðQÞ ¼ 0 ð17Þ

where BðQÞ ¼ tð0; 0; 0; 0;BðQÞÞ. Integrating this equation
on a cell Ci gives

Ai
oQi

ot
þ
Z

oCi

FðQÞ � ndlþ
Z

Ci

BðQÞdivudX

¼ 0 for i 2 f1; . . . ;Ng ð18Þ

where N is the number of cells and Ai is the volume of the
cell Ci. Defining vðiÞ as the set of cells Cj that share an edge
with Ci and defining oCij ¼ oCi \ oCj, we approximate (18)
by the following expression:

Ai
oQi

ot
þ
X
j2vðiÞ

Z
oCij

FðQÞ � ndlþ hBii
X
j2vðiÞ

Z
oCij

u � ndl ¼ 0

ð19Þ
where hBii is some average of B on the cell Ci. In this work,
we have used hBii ¼ BðQiÞ or hBii ¼

P
j2vðiÞBðQ

�
ijÞ=
P

j2vðiÞ1
with no noticeable difference. Then the surface integrals
appearing in (19) are computed by a one-point formula
to yield

Ai
oQi

ot
þ
X
j2vðiÞ
knijkðhFðQÞ � niij þ hBiihu � niijÞ ¼ 0 ð20Þ

where nij ¼
R

oCij
ndl is the integral of the normal vector of

the interface and hFðQÞ � niij (resp. hu � niij) denotes some
averages of FðQÞ � n (resp. u � n) on oCij. In this work, we
use a Godunov type solver and define these average values
by

hFðQÞ � niij ¼ FðQ�ijÞ � gij

hu � niij ¼ u�ij � gij

ð21Þ

where gij ¼ nij=knijk and Q�ij is the exact or approximate
solution of an approximate Riemann problem between
the states Qi and Qj and u�ij � gij is the corresponding nor-
mal velocity. In low Mach number situations, the correct
definition of this Riemann problem is crucial for the accu-
racy of the numerical approximation. In the following sec-
tion, we describe how this Riemann problem is set.
1 Although a1 is not a conserved quantity, we will use this terminology
for convenience.
3.1. Preconditioned Riemann problem

In standard upwind method, the Riemann problem
defining the state Q�ij is based on the original differential
system (1). Thus, let q ¼ qðQÞ denote some change of vari-
ables such that R ¼ oq=oQ is invertible and define a local
basis ðgLR; g

?
LRÞ of unit vectors, respectively, normal and

tangential to the interface. In term of these new variables,
the Riemann problem between the states Qi ¼ QL and
Qj ¼ QR that will allow to compute Q�ij ¼ Qðx=t ¼
0; Qi;QjÞ is defined by

o~q

ot
þ Aeð~qÞ

o~q

ox
¼ 0

~qðx; 0Þ ¼
~qL if x < 0

~qR if x > 0

�
ð22Þ

where ~q ¼ hq is the projection of the vector q in the local
basis ðgLR; g

?
LRÞ and where Ae ¼ R½oðFðQÞ � gLRÞ=oQþ

BðQÞoðu � gLRÞ=oQ�R�1. However, in the low Mach number
limit, for the one-phase Euler equations, this strategy leads
to numerical schemes that do not have the correct asymp-
totic behaviour. This situation is explained in detail in [4]
where it is shown that the trouble comes from the fact that
the interface pressure computed by the Riemann solver
based on (22) contains pressure fluctuations of order Mach
even if the initial data contain fluctuations that scale with
the square of the Mach number. In [4], to overcome this
difficulty, we proposed to solve instead of the Riemann
problem (22) based on the original differential system, to
solve a preconditioned Riemann problem. We propose here
to apply the same strategy to the system (1). The transpo-
sition of this strategy to system (1) is greatly simplified by
the fact that the mathematical structure of this model is
very close to the one of the Euler equations. Actually, it
is shown in [8] that in term of ‘‘entropic” variables
q ¼ tðp; u; s1; s2; Y 1Þ system (1) can be written as

Dp
Dt
þ qâ2divu ¼ 0 ð23:1Þ

Du

Dt
þ 1

q
rp ¼ 0 ð23:2Þ

Ds1

Dt
¼ 0 ð23:3Þ

Ds2

Dt
¼ 0 ð23:4Þ

DY 1

Dt
¼ 0 ð23:5Þ

where we have introduced sk for the phase entropies,
Y k ¼ akqk=q for the mass fraction and the notation
D=Dt ¼ o=ot þ u � r for the material derivative. The
expressions of the matrices R et R�1 when q is the entropic
vector variables are given in Appendix B.

Using this form of the equations, it becomes obvious
that the only change with the one-phase Euler equations
is that we have now three linearly degenerate fields instead
of a single one. However, the formal structure of the two
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systems are identical. Therefore, extending the method
used in [4], we define a ‘‘Turkel” preconditioner [14] by
P eðbÞ ¼ diagðb2; Idn; 1; 1; 1Þ ð24Þ
where Idn is the n-dimensional identity matrix (n is the
space dimension) and b a parameter of the order of the
Mach number. For the one-phase Euler equations, we re-
call that the Turkel preconditioner in entropic variables is
defined by P eðbÞ ¼ diagðb2; Idn; 1Þ. With this definition,
as in [4], instead of solving (22), we will solve a precondi-

tioned Riemann problem defined as
o~q

ot
þ P eðbÞAeð~qÞ

o~q

ox
¼ 0

~qðx; 0Þ ¼
~qL if x < 0

~qR if x > 0

�
ð25Þ
Note that using b ¼ 1 i.e P eðbÞ ¼ Id will simply result in a
non-preconditioned scheme, this allows to recover a stan-
dard approximation for transonic flows.

The matrix P eðbÞAeð~qÞ is given by
P eðbÞAeð~qÞ ¼

b2vn b2qâ2 0 0 0 0

1=q vn 0 0 0 0

0 0 vnIdn�1 0 0 0

0 0 0 vn 0 0

0 0 0 0 vn 0

0 0 0 0 0 vn

0
BBBBBBBB@

1
CCCCCCCCA
ð26Þ
where vn ¼ u � gLR. This matrix is diagonalizable. In 2-D,
for instance, forming the characteristic equation ðvn � kÞ4
ðk2 � ð1þ b2Þvnkþ b2ðv2

n � â2ÞÞ ¼ 0, we get three distinct
real eigenvalues:
k1ð~qÞ ¼ 1
2
ð1þ b2Þvn �

ffiffiffiffi
X
p� �

k2ð~qÞ ¼ k3ð~qÞ ¼ k4ð~qÞ ¼ k5ð~qÞ ¼ vn

k6ð~qÞ ¼ 1
2
ð1þ b2Þvn þ

ffiffiffiffi
X
p� �

8><
>: ð27Þ
where we have introduced the parameter X ¼½ð1�b2Þvn�2þ
4b2â2. The associated right eigenvectors rið~qÞ (for
i2f1; . . . ;6g), that verify the relation P eðbÞAeð~qÞrið~qÞ¼
kið~qÞrið~qÞ can be, respectively, chosen as
r1ð~qÞ ¼

1
�s

b2qâ2

0

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA

r2ð~qÞ ¼

0

0

1

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA

r3ð~qÞ ¼

0

0

0

1

0

0

0
BBBBBBBB@

1
CCCCCCCCA

r4ð~qÞ ¼

0

0

0

0

1

0

0
BBBBBBBB@

1
CCCCCCCCA

r5ð~qÞ ¼

0

0

0

0

0

1

0
BBBBBBBB@

1
CCCCCCCCA

r6ð~qÞ ¼

1
�r

b2qâ2

0

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA

ð28Þ

where r ¼ k1 � vn and s ¼ k6 � vn. We denote also by lið~qÞ
(for i 2 f1; . . . ; 6g) the left eigenvectors which obey the
relation tP eðbÞAeð~qÞlið~qÞ ¼ kið~qÞlið~qÞ. After normalization
of left and right eigenvectors to have tlið~qÞ:rjð~qÞ ¼ dij, we
get

l1ð~qÞ ¼
�1ffiffiffiffi

X
p

r

b2qâ2

0

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA

l2ð~qÞ ¼

0

0

1

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA

l3ð~qÞ ¼

0

0

0

1

0

0

0
BBBBBBBB@

1
CCCCCCCCA

l4ð~qÞ ¼

0

0

0

0

1

0

0
BBBBBBBB@

1
CCCCCCCCA

l5ð~qÞ ¼

0

0

0

0

0

1

0
BBBBBBBB@

1
CCCCCCCCA

l6ð~qÞ ¼
1ffiffiffiffi
X
p

s

b2qâ2

0

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA

ð29Þ

In the sequel we describe a preconditioned acoustic solver
to approximately solve (25). More specifically, the numer-
ical approximation of the Riemann problem (25) uses an
extension of the acoustic solver described for instance in
[13] for the single phase Euler equations. The idea of this
solver is to use the known structure of the solution of the
Riemann problem and to write linearized characteristic
equations from the two sides of the contact discontinuity.
The computation of the intersection of these linearized
relations allows to get the velocity and pressure at the inter-
face. To be more specific the approximate solution of the
Riemann problem (25) that we consider consists of four
constant states ~qL; ~q

�
L; ~q

�
R and ~qR where the velocities and

pressures of the two states ~q�L; ~q
�
R are equal: u�L ¼ u�R ¼ u�

and p�L ¼ p�R ¼ p�. To obtain u�; p�, we first transform the
system of partial differential equations into ordinary differ-
ential equations by multiplying them with the left
eigenvectors:

tlið~qÞ �
o~q

ot
þ P eðbÞAeð~qÞ

o~q

ox

� �
¼ 0 ð30Þ
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This last relation can be immediately rewritten as

tlið~qÞ �
o~q

ot
þ kið~qÞ

o~q

ox

� �
¼ 0 ð31Þ

Linearizing (31) with respect to ~qL and ~qR we get

tl6ð~qLÞ � ð~q�L � ~qLÞ ¼ 0
tl1ð~qRÞ � ð~q�R � ~qRÞ ¼ 0

�
ð32Þ

Due to the structure of the Riemann problem, these two
relations can be solved for the common values
u�L ¼ u�R ¼ u� and p�L ¼ p�R ¼ p� of the velocity and pressure
on the two sides of the contact discontinuity. This gives
after some algebraic manipulations:

u� ¼ CLuL þ CRuR

CL þ CR

� pR � pL

CL þ CR

p� ¼ CRpL þ CLpR

CL þ CR

� CLCRðuR � uLÞ
CL þ CR

8>><
>>: ð33Þ

where CL and CR are given by

CL ¼ 1
2
qL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1� b2

LÞuL�2 þ 4b2
Lâ2

L

q
þ ð1� b2

LÞuL

� 	

CR ¼ 1
2
qR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1� b2

RÞuR�2 þ 4b2
Râ2

R

q
� ð1� b2

RÞuR

� 	
8>>><
>>>:

ð34Þ
Note that in the transonic limit b! 1, these formulas re-
duce to the ones given in [8] for non-preconditioned
schemes. Then defining ðs1Þ�L ¼ ðs1ÞL; ðs2Þ�L ¼ ðs2ÞL; ðY 1Þ�L ¼
ðY 1ÞL and ðs1Þ�R ¼ ðs1ÞR; ðs2Þ�R ¼ ðs2ÞR; ðY 1Þ�R ¼ ðY 1ÞR, the
solution of the Riemann problem is given by

~q
x
t
; ~qL; ~qR


 �
¼

~qL if x
t < k1ð~qLÞ

~q�L if k1ð~qLÞ < x
t < u�

~q�R if u� < x
t < k6ð~qRÞ

~qR if k6ð~qRÞ < x
t

8>>><
>>>:

ð35Þ

And we define the solution Q�LR for the Godunov type
scheme (21) by Q�LRð~q�LRÞ with ~q�LR ¼ ~qðx=t ¼ 0; ~qL; ~qRÞ.

3.2. Implicit linearized scheme

Let us define

wðQi;QjÞ ¼ FðQ�ijÞ � gij þ BðQiÞu�ij � gij ð36Þ
CLsgn½k1�
CLþCR

þ CRsgn½k6�
CLþCR

�CLCRsgn½k1�
CLþCR

þ CLCRsgn½k6�
CLþCR

0 0 0 0

�sgn½k1�
CLþCR

þ sgn½k6�
CLþCR

CRsgn½k1�
CLþCR

þ CLsgn½k6�
CLþCR

0 0 0 0

0 0 sgn½u�� 0 0 0

0 0 0 sgn½u�� 0 0

0 0 0 0 sgn½u�� 0

0 0 0 0 0 sgn½u��

0
BBBBBBBBB@

1
CCCCCCCCCA

ð41Þ
where Q�ij is the conservative variable corresponding to the
state ~q�ij ¼ ~qðx=t ¼ 0; ~qi; ~qjÞ defined by Eq. (35) in term of
‘‘entropic” variables. A fully implicit first-order scheme
using this expression would be defined by

Ai
Qnþ1

i �Qn
i

Dt
þ
X
j2vðiÞ
knijkwðQnþ1

i ;Qnþ1
j Þ ¼ 0 ð37Þ

However, this expression defines a non-algebraic system for
Qi. A linear scheme of the same order of accuracy can be
obtained by linearizing this expression around the state
Qn thanks to a Taylor development of the first-order. This
gives the linear first-order scheme

Ai
Qnþ1

i �Qn
i

Dt
þ
X
j2vðiÞ
knijk½wðQn

i ;Q
n
j Þþ

owðQn
i ;Q

n
j Þ

oQn
i

ðQnþ1
i �Qn

i Þ

þ
owðQn

i ;Q
n
j Þ

oQn
j

ðQnþ1
j �Qn

j Þ� ¼ 0 ð38Þ

However, in this equation w is a non-differentiable function
because in (35), ~qðx=t; ~qL; ~qRÞ is a discontinuous function
and thus the linearization (38) is only an approximate
one. This approximate linearization is done in this work
as follows. First, neglecting the derivative of the non-con-
servative term BðQiÞ, we obtain
owðQn
i ;Q

n
j Þ

oQn
i
’ oFðQ�ijÞ�gij

oQ�ij
þ BðQn

i Þ
ou�ij �gij

oQ�ij

h i
oQ�ij
oQn

i
ðaÞ

owðQn
i ;Q

n
j Þ

oQn
j
’ oFðQ�ijÞ�gij

oQ�ij
þ BðQn

i Þ
ou�ij �gij

oQ�ij

h i
oQ�ij
oQn

j
ðbÞ

8><
>: ð39Þ
The expression for the Jacobian matrix oðFðQÞ � gijÞ=oQþ
BðQÞoðu � gijÞ=oQ is given in Appendix A and the only
remaining difficulty is to define oQ�ij=oQi and oQ�ij=oQj.
To approximate these derivatives, we first rewrite (35) for
x=t ¼ 0 under the form:

~q�LR ¼
1

2
~qL þ ~qR þ ND~qLR½ � ð40Þ

where D~qLR ¼ ~qL � ~qR and where N is the 6� 6 matrix
(with discontinuous coefficient given by formula (35))
which can be written under the following form with k1

and k6 standing for k1ð~qLÞ and k6ð~qRÞ:
Taking into account the change of variables between con-
servative variables and ‘‘entropic” ones, we obtain that
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the expression of the conservative variable Q�LR ¼ Qð~q�LRÞ
corresponding to the ‘‘entropic” variable ~q�LR (40) can be
approximated by

Q�LR ’
1

2
QL þQR þ h�1R�1NRhDQLR

� �
ð42Þ

where R ¼ oq=oQ and R�1 ¼ oQ=oq are the change of vari-
ables matrices between conservative variables Q and
‘‘entropic” ones q given in Appendix B, while h and h�1

are the rotation matrices that transform Q in the global
space basis into ~Q ¼ hQ¼tða1q1; a2q2; qvn; qvt; qe; a1Þ in
the local basis ðg; g?Þ with vn ¼ u � g and vt ¼ u � g? the nor-
mal and tangential components of the vector velocity to the
local cell interface. With this approximation and locally
freezing the matrix N, the expressions of oQ�ij=oQi and
oQ�ij=oQj are, respectively, defined by

oQ�ij
oQn

i

’ 1

2
½Id þ h�1R�1NRh� ðaÞ

oQ�ij
oQn

j

’ 1

2
½Id � h�1R�1NRh� ðbÞ

8>>><
>>>:

ð43Þ

where Id stands for the identity matrix. Finally, the first-or-
der implicit backward scheme can be written as

Ai
Qnþ1

i �Qn
i

Dt
þ
X
j2vðiÞ
knijk

1

2

oFðQ�ijÞ � gij

oQ�ij
þ BðQn

i Þ
ou�ij:gij

oQ�ij

" #"

� Id þ h�1R�1NRh
�
ðQnþ1

i �Qn
i Þ

�
þ 1

2

oFðQ�ijÞ:gij

oQ�ij
þ BðQn

i Þ
ou�ij � gij

oQ�ij

" #

�
�

Id � h�1R�1NRh

	
ðQnþ1

j �Qn
j Þ
#

¼ �
X
j2vðiÞ
knijk½FðQ�ijÞ � gij þ BðQiÞu�ij � gij� ð44Þ
Downstream and Upstream Triangle

TjiT ij Si Sj

Fig. 1. Definition of upwind and downwind triangle associated to edge
[i, j].
3.3. Extension to second-order space accuracy

Scheme (44) can be written under the form:

ðMDQÞi ¼ �
X
j2vðiÞ
knijkwðQn

i ;Q
n
j Þ ð45Þ

with DQ ¼ Qnþ1 �Qn and M is the matrix defined by Eq.
(44). This scheme is only first-order accurate in time and
space. To increase the order of accuracy of the scheme,
we can change in the definition of the Riemann problem
(25), the interface values QL ¼ Qi and QR ¼ Qj by linearly
reconstructed states according to a MUSCL (Monotonic
Upwind Scheme for Conservation Laws) [15] procedure.
However, this reconstruction will increase the bandwidth
of the matrix M and the linear system (45) will become more
difficult to store and to solve. Therefore, although, formally
the resulting scheme will be still first-order accurate, we will
use instead of (45), the time-advancing scheme:

ðMDQÞi ¼ �
X
j2vðiÞ
knijkwðQn

ij;Q
n
jiÞ ð46Þ
where Qij and Qji are reconstructed values on the two side
of the interface between cells i and j while M is still first-or-
der accurate and defined by Eq. (45). Numerical experi-
ments show that although still formally first-order
accurate, this procedure gives much more accurate results
than the basic first-order scheme (45). The MUSCL proce-
dure used here is the one derived for unstructured triangu-
lation meshes in [3]. Here, instead of using the conservative
variables Q, we choose to reconstruct the primitive vari-
ables W¼tða1q1; a2q2; u; p; a1Þ, thus we set

W ij ¼W i þ 1
2
ðrWÞij � ij ðaÞ

W ji ¼W j � 1
2
ðrWÞji � ij ðbÞ

(
ð47Þ

The approximate nodal gradients ðrWÞij and ðrWÞji are
obtained using a f combination of centered and fully up-
wind gradients:

ðrWÞij � ij ¼ ð1� fÞðrWÞCent
ij � ij þ fðrWÞUpw

ij � ij ð48Þ

The centered gradient ðrWÞCent
ij is defined by

ðrWÞCent
ij � ij ¼W j �W i ð49Þ

The fully upwind gradient is computed according to the
definition of the downstream and upstream triangles which
can be associated with an edge ½Si; Sj�

ðrWÞUpw
ij ¼ rWGT ij ð50Þ

where rWGT ¼
P

k2T W krN T
k is the P1 Galerkin gradient

on triangle T and where T ij and T ji are, respectively, the
upstream and downstream triangles (see Fig. 1). For every
segment ½Si; Sj�, we can define two elements T ij and T ji to be
such that Si þ kij 2 T ij and Sj þ kji 2 T ji provided k is
small enough positive number. One can notice that for
boundary edges, it can occur that the upwind or downwind
triangles do not exist. Our choice has been to keep a first-
order scheme in these particular cases.

Remark. In practice, the definition of these triangles is not
trivial and a simplest approach involves computing the
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gradients ðrWÞij at the node i with the following averaged
formula:
ðrWÞij ¼
1

Ai

X
Ti2T

AðT Þ
3

X
k2T

W krN T
k

which represents an average of the P1 Galerkin gradient on
all triangles which contain the node i. This approach is less
accurate but easier to implement because it does not re-
quire the computation of the upwinding triangles. Unfortu-
nately, this method does not appear very robust for our
problems and especially for interface ones with high den-
sity ratio between the two fluids. This is the reason why
we have adopted the upwinding triangles method.

f is a parameter of upwinding included in interval [0, 1].
In the test cases presented in the sequel, we took either
f ¼ 1=2 or f ¼ 1=3. The scheme described above is not
monotone. It can create extrema particularly in the case
of transonic and supersonic flows. To reduce the oscilla-
tions in the solution a slope limiting procedure can be used.
Here we describe two classical procedures.

Van Albada–Van Leer limiter: This limitation allows to
compute an upwind coefficient flim 2 ½0; 1� which gives a
good compromise between center and upwind gradients.
The approximation writes

W ij ¼W i þ 1
2
Limvavl ðrWÞUpw

ij ; ðrWÞCent
ij


 �
� ij ðaÞ

W ji ¼W j � 1
2
Limvavl ðrWÞUpw

ji ; ðrWÞCent
ji


 �
� ij ðbÞ

8><
>:

ð51Þ
where

Limvavlða; bÞ ¼ flimaþ ð1� flimÞb if ab > 0

Limvavlða; bÞ ¼ 0 if ab < 0 ð52Þ

with

flim ¼ b2 þ e

a2 þ b2 þ 2e
; e� 1 ð53Þ

Spekreijse limiter: This procedure uses the ratio between
centered and upwind gradients. It is defined by

W ij ¼W i þ 1
2
Limspek ðrWÞUpw

ij ; ðrWÞCent
ij


 �
� ij ðaÞ

W ji ¼W j � 1
2
Limspek ðrWÞUpw

ji ; ðrWÞCent
ji


 �
� ij ðbÞ

8><
>:

ð54Þ
where

Limspekða; bÞ

¼ max 0;min 2
bþ e
aþ e

;min fþ ð1� fÞ bþ e
aþ e

; 2

� �� �� �
;

e� 1 ð55Þ

The Van Albada–Van Leer limiter is slightly more diffusive
than the Spekreijse limiter but it is much more robust. In
practice, we have used the Van Albada–Van Leer limiter
with flim ¼ 1=2 for the implicit computations reported in
this paper and the Spekreijse limiter with f ¼ 1=3 for the
reference explicit computation done in Section 4.1.

4. Numerical results

In this section, we present a set of two-dimensional tests
which show that preconditioning reduces the diffusion of
the original upwind scheme and allows to recover a better
accuracy when computing low Mach number two-phase
flows.

4.1. Bubble ascension

The first test shows the ascension of a light air-bubble
under the effect of gravity in a closed box filled with water.
We emphasize that a realistic simulation of this problem
would have required the use of a capillarity model to take
into account the effects of surface tension. However, here,
our goal is not to obtain physically realistic results but
instead to compare preconditioned dissipation with the
classical upwind one. Initially the bubble is at rest and
the pressure field has an hydrostatic profile. The box is
2 m large and 2 m high and the mesh is composed of
100 � 100 points. Although it seems simple, this computa-
tion presents several numerical difficulties. The first one is
that the Mach number in this computation is extremely
low (it is equal to zero at time t = 0 and increases slightly
up to a value of 10�1 in the course of the computation).
The second one is that the density ratio between the two
fluids is equal to 1000. And the last numerical difficulty is
that the equations of state of the two pure fluids are very
different. They are

p¼ðc1�1Þq1e1� c1p1 with c1¼ 1:4 and p1¼ 0 air ðaÞ
p¼ðc2�1Þq2e2� c2p2 with c2¼ 4:4 and p2¼ 6�108

water ðbÞ

8><
>:

ð56Þ

This difficult test will show the effect of the preconditioning
since the flow is very close to the incompressible regime.
Fig. 2 shows the isovalues of the volume fraction at
time = 0 s, 0.15 s, 0.35 s, 0.55 s, 0.75 s, 1.0 s for the classical
upwind scheme while Fig. 3 shows the results at the same
times with the preconditioned numerical method. The im-
plicit time advancing method has been used with a CFL
equal to 2.5. The space discretization has used the MUSCL
technique described in Section 3.3, with f ¼ 1=2 and the
Van Albada–Van Leer limiter. We can observe that very
large differences develop during the course of the simula-
tion. In particular, after time t ¼ 0:55 s, the two results
have almost no resemblance.

In order to demonstrate that preconditioning of the
numerical dissipation improves the accuracy of the results,
we have repeated this computation on a finer mesh of
400 � 400 points. Moreover, this fine mesh computation
has been done with an explicit second-order space and time



Fig. 2. Bubble ascension: isovalues of the volume fraction for the 100 � 100 mesh computation: classical upwind scheme.

Fig. 3. Bubble ascension: isovalues of the volume fraction for the 100 � 100 mesh computation: preconditioned scheme with b ¼ 0:1.
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scheme. Namely, the time integration has used the three
stage TVD Runge–Kutta discretization described in [11],

Q
ð1Þ
i ¼ Qn

i þ DtLðQn
i Þ ðaÞ

Q
ð2Þ
i ¼ 3

4
Qn

i þ 1
4
Q
ð1Þ
i þ 1

4
DtLðQð1Þi Þ ðbÞ

Qnþ1
i ¼ 1

3
Qn

i þ 2
3
Q
ð2Þ
i þ 2

3
DtLðQð2Þi Þ ðcÞ

8>><
>>: ð57Þ

while the space discretization has used the MUSCL tech-
nique described in Section 3.3, with f ¼ 1=3 and the Spe-
kreijse limiter. The results of this computation are shown
in Fig. 4. Although the results of this fine mesh computa-
tion are not totally identical to those of Fig. 3, one can note
the close similarity between these results and the one ob-
tained with the preconditioned upwind scheme.
4.2. Broken dam problem

Here we present a computation of the well-known bro-
ken dam problem of Martin and Moyce [7]. Initially a
water column with a ¼ 0:06 m wide and g2a ¼ 0:12 m high
is a rest. Under the effect of the gravity g ¼ 9:81 m s�2, the
column collapses. All the boundaries are solid walls. The



Fig. 4. Bubble ascension: isovalues of the volume fraction for the 400 � 400 fine mesh explicit computation.

Fig. 5. Broken dam problem: isovalues of the volume fraction: classical
upwind scheme.

Fig. 6. Broken dam problem: isovalues of the volume fraction: precon-
ditioned scheme with b ¼ 0:1.
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mesh we have used for this test, is regular with Dx ¼
Dz ¼ 5� 10�3m. The Mach number during the computa-
tion is low and of the order of 1� 10�1. The implicit
scheme has been used with a CFL number equal to 2.5 in
order to compute with a sufficient accuracy the unsteady
pattern of the flow. The linear system is solved by an iter-
ative method with a linear residual h ¼ 1� 10�2. The space
discretization has used the MUSCL technique with f ¼ 1=2
and the Van Albada–Van Leer limiter. We compute the
solution with the standard and the preconditioned method.
For the preconditioned method, the parameter of the Tur-
kel’s matrix b is chosen equal to 0.1 and remains constant
in space and time.

Figs. 5 and 6 show the isovalues of the volume frac-
tion at the different dimensionless times t

ffiffiffiffiffiffiffiffiffiffi
2g=a

p
¼

0; 1:19; 1:98; 2:97; 4:02; 5:09 corresponding to the physical
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Fig. 7. Comparison between numerical solutions of the classical and
preconditioned scheme and experimental results for the broken dam
problem. Front position (top) and height of the column (bottom).
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times t = 0, 0.066 s, 0.109 s, 0.164 s, 0.222 s, 0.281 s, for the
standard (Fig. 5) and the preconditioned method (Fig. 6).
It is clear that the upwind preconditioned scheme predicts
a faster development of the flow and for instance the front
position at time 0.281 s is clearly in advance with respect to
the results obtained with the standard scheme.

To quantify the difference between the two schemes, we
compare in Fig. 7, the two solutions with the experimental

results of [7], for the front position x=a ¼ F 1 g2; t
ffiffiffiffiffiffiffiffiffiffi
2g=a

p
 �
and the height of the column z=ðg2aÞ ¼ F 2 g2; t

ffiffiffiffiffiffiffiffi
g=a

p
 �
. It

is clear that the preconditioned method is more accurate

than the standard one. For example at time t
ffiffiffiffiffiffiffiffiffiffi
2g=a

p
¼

2:97 the error compared to the experimental data for the
front position is the order of 1% for the preconditioned
method while it is the order of 10% for the classical upwind
scheme.

4.3. Two-phase flow in a nozzle

Finally we present a sequence of computations of two-
phase flows in a symmetric nozzle where the Mach number
tends to zero. These computations are similar to the ones
presented in [4] in single phase situation. The implicit scheme
has been used with a CFL number equal to the inverse of the
nonlinear residual of the mixture density CFL ¼ 1=ResðqÞ
and at maximum equal to 106. The discrete solutions pre-
sented are the one obtained at convergence, i.e., for a resid-
ual equal to 10�9. For the preconditioned method in this
case, the parameter b is not taken as a constant but locally
computed at each interface of the mesh and at each time
step.

In these computations, an air–water two phase mixture
defined by ða11 ¼ 0:5; q11 ¼ 1 kg m�3; q12 ¼ 1000 kg m�3Þ
is injected in the nozzle with an horizontal imposed velocity
equal to u1 ¼ 1 m s�1. The law states (56) for air and water
are the same than previously and a representative Mach
number of the flow is defined by

Ma2
� ¼
ðu1Þ2

ðâ1Þ2
¼ 1

ðâ1Þ2
ð58Þ

Then the inlet pressure is taken as solution of equation
Ma2

� � 1=ðâ1Þ2 ¼ 0 which can be rewritten using the equa-
tions of state of the two fluids:

Ma2
� � ða11 q11 þ ð1� a11 Þq12 Þ

� a11
c1ðp1 þ p1Þ

þ 1� a11
c2ðp1 þ p2Þ

� �
¼ 0 ð59Þ

We are interested in the situation where Ma� tends to zero.
In this case, the asymptotic analysis given in Section 2 ap-
plies and shows that the equations governing the flow are
the two-phase incompressible Euler equations (14). Thus
if we take at time t ¼ 0; a1ðx; 0Þ ¼ 0:5 for all x, we will
get a1ðx; tÞ ¼ 0:5 for all x and t > 0 and (1) is simply the
incompressible Euler equation with a constant density gi-
ven by ðq1 þ q2Þ=2. We then expect that the limit solution
of (1) will be given by an incompressible potential flow of
density ðq1 þ q2Þ=2. In particular, the solution has to be
symmetric with respect to the axis of the nozzle. To test
the preconditioned scheme with respect to the classic
non-preconditioned one, we realize three computations,
respectively, at Ma� ¼ 0:1;Ma� ¼ 0:01 and Ma� ¼ 0:001.

Fig. 8 shows the isovalues of the normalized pressure
p � pmin=pmax � pmin for the discrete stationary solutions
obtained. Fig. 9 shows the profile of pressure in the upper
and lower boundaries of the nozzle. We present from left to
right the results obtained with the classical and the precon-
ditioned scheme.

Fig. 9 shows clearly that the solution given by the clas-
sical discretization is not symmetric and consequently
could not be a reasonable approximation of the incom-
pressible solution. In addition, one can notice that the pres-
sure fluctuations with the classic scheme (of order Ma�) are
larger than which obtained with the preconditioned one (of
order Ma2

�). To illustrate this difference in the behaviour of
the pressure fluctuations, we plot in the first and second
column of Fig. 9 the result for the classic and precondi-
tioned method with the same pressure unit. We could note



Standard Method, Mach=0.1 Preconditioned Method, Mach=0.1

Standard Method, Mach=0.01 Preconditioned Method, Mach=0.01

Standard Method, Mach=0.001 Preconditioned Method, Mach=0.001

Fig. 8. Isovalues of the normalized pressure, on a 3277 node mesh at Ma1 ¼ 0:1 (top), Ma1 ¼ 0:01 (middle), Ma1 ¼ 0:001 (bottom). Classic (left) and
preconditioned scheme (right).
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for instance that for Ma� ¼ 10�3 it is difficult to observe the
fluctuations (of order Ma2

�) given by the preconditioned
method. In order to illustrate the behaviour of the precon-
ditioned scheme in the zero Mach number limit, the last
column of Fig. 9 presents the pressure profile with y-scale
adapted to the amplitude of the pressure fluctuations. It
can be seen that the results are almost identical.

As the Mach number decreases, results of the classic
scheme become worse (see Fig. 8) and do not converge to
a reasonable approximation of the incompressible solution.
In contrast the solutions of the preconditioned method
converge to an unique symmetric solution and the pressure
fluctuations scale with the square of the Mach number Ma2

�
in agreement with the asymptotic behaviour of the contin-
uous equations. This shows the necessity of using precondi-
tioning method when computing low Mach two-phase
flows.

5. Conclusion

Since the convective part of hyperbolic models of two-
phase flow derives from the one-phase Euler equations,
one can suspect that a loss of accuracy will affect the results
when trying to solve these models in the low Mach number
regime by standard finite volume upwind procedures. We
have analyzed this situation for a five equation two-phase
flow model proposed in [6,8]. First, an asymptotic analysis
of this model has been performed and has allowed to exhi-
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Fig. 9. Profile pressure in the upper and lower boundaries, on a 3277 node mesh at Ma1 ¼ 0:1 (top), Ma1 ¼ 0:01 (middle), Ma1 ¼ 0:001 (bottom). Classic
(left) and preconditioned scheme (middle). The right column presents a zoom of the middle column results.
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bit the equations that the solutions satisfy in the low Mach
number limit. In particular, we have shown that these limit
equations are very close to the incompressible single phase
equations and that the pressure scales with the square of
the Mach number. From a numerical point of view, we
have proposed an implicit extension of the Godunov type
schemes that we have applied to this model. Then using
the close similarity between the mathematical structure of
this two-phase model and the structure of the single phase
Euler equations, we have used the strategy presented in [4]
to correct the numerical dissipation by solving a precondi-

tioned Riemann problem. The numerical results have
shown that this method clearly improves the accuracy of
upwind finite volume methods in the low Mach regime.
For instance, in the case of the broken dam problem, the
error has been reduced by a factor 10 with respect to the
solution obtained by a classical upwind scheme at virtually
no cost.

The extension of this method to other more general two-
phase flow models would be of great practical and theoret-
ical interest since in general for two-phase flows, at least
one of the fluid (the liquid) is close to the incompressible
limit. However, for hyperbolic models including two veloc-
ities and two pressures, since, several Mach numbers can be
defined, the situation is far from being understood even
from the point of view of formal asymptotic analysis and
a lot of work remains to be done.

Appendix A. Jacobian matrix

The subject of this section is to compute the Jacobian
matrix of model (1) and we first need to compute the differ-
ential of the pressure in term of conservative variables. So
let us write qkek ¼ qkekðqk; pÞ and introduce the coefficients
dk ¼ ðoqkek=oqkÞp and nk ¼ ðoqkek=opÞqk

. The differential
dðqkekÞ writes

dðqkekÞ ¼ dkdqk þ nkdp for k ¼ 1; 2 ðA:1Þ

Then we use the Gibb’s relation for each phase:

dek ¼ T kdsk þ
pk

q2
k

dqk for k ¼ 1; 2 ðA:2Þ

where T k is the temperature of phase k. Introducing
hk ¼ ek þ p=qk which stand for the specific phase enthal-
pies, the Gibb’s relation (A.2) can be rewritten under the
form:
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dðqkekÞ ¼ qkT kdsk þ hkdqk for k ¼ 1; 2 ðA:3Þ
Now writing equality of (A.3)–(A.1), we get the well-
known relations:

a2
k ¼

op
oqk

� �
sk

¼ hk � dk

nk
and

op
osk

� �
qk

¼ qkT k

nk
for k ¼ 1; 2 ðA:4Þ

where ak are the phase sound speeds.
Now let us compute the differential of the pressure.

Using the definition of the internal mixture energy qe ¼P2
k¼1akqkek and summing the differentials (A.1) for the

two phases, we get after some manipulations:

X2

k¼1

aknkdp ¼ �
X2

k¼1

dkdðakqkÞ þ dðqeÞ �
X2

k¼1

ðqkek � qkdkÞdak

ðA:5Þ
Now introducing the new parameter n ¼

P2
k¼1aknk and

also the relation dðqeÞ ¼ u2=2
P2

k¼1dðakqkÞ � u � dðquÞþ
dðqeÞ, we get the differential of the pressure in term of con-
servative variables:

dp ¼
P2
k¼1

1
n ðu

2

2
� dkÞdðakqkÞ � u

n � dðquÞ þ 1
n dðqeÞ

þ 1
n ðq2ðe2 � d2Þ � q1ðe1 � d1ÞÞda1

8><
>: ðA:6Þ

And the purpose is to compute, for all normalized vector
g ¼ tðgx; gyÞ, the eigenelements of the matrix:

DcðQÞ ¼
oFðQÞ � g

oQ
þ BðQÞ ou � g

oQ
ðA:7Þ

So let us consider the rotation matrix h which allows
to pass from Q in the global basis to ~Q ¼ hQ ¼
tða1q1; a2q2;qvn; qvt; qe; a1Þ in the local basis ðg; g?Þ.

vn; vt are, respectively, normal and tangential compo-
nents of the vector velocity and given by

vn ¼ u � g ðaÞ
vt ¼ u � g? ðbÞ

�
ðA:8Þ

After computations, the matrix DcðQÞ can be written under
the form:
Y 2vn �Y 1vn Y 1gx Y 1gy 0 0

�Y 2vn Y 1vn Y 2gx Y 2gy 0 0

B1gx � uvn B2gx � uvn ð1� 1
nÞugx þ vn ð1� 1

nÞvgx � vt
gx
n Mgx

B1gy � vvn B2gy � vvn ð1� 1
nÞugy þ vt ð1� 1

nÞvgy þ vn
gy

n Mgy

ðB1 � HÞvn ðB2 � HÞvn Hgx � uvn

n Hgy � vvn

n ð1þ 1
nÞvn Mvn

�Avn=q �Avn=q Agx=q Agy=q 0 vn

0
BBBBBBBBB@

1
CCCCCCCCCA

ðA:9Þ
where Y k ¼ akqk=q stand for the mass fractions and H ¼P2
k¼1Y kH k ¼ eþ p=q with H k ¼ hk þ u2=2 the specific total

phase enthalpies. Then the other coefficients Bk; M ; A are
defined by
Bk ¼ 1
n ðu

2

2
� dkÞ for k ¼ 1; 2 ðaÞ

M ¼ 1
n ðq2ðe2 � d2Þ � q1ðe1 � d1ÞÞ ðbÞ

A ¼ a1a2
q1a2

1
�q2a2

2P2

k¼1
ak0qk a2

k

ðcÞ

8>>><
>>>:

ðA:10Þ

The matrix DcðQÞ is diagonalizable with three real distinct
eigenvalues:

k1ðQÞ ¼ vn � â

k2ðQÞ ¼ k3ðQÞ ¼ k4ðQÞ ¼ k5ðQÞ ¼ vn

k6ðQÞ ¼ vn þ â

8><
>: ðA:11Þ

where the value of the sound speed â is defined by the
expression:

qâ2 ¼ 1

n

X2

k¼1

aknkqka2
k þMA ðA:12Þ

which is equivalent to the averaged formula (4) given in
Section 2. In effect using expressions (A.10.b) and
(A.10.c) and also introducing q2e2 � q1e1 ¼ q2h2 � q1h1

which is only valid because the two phases have the same
pressure, we get

qâ2 ¼ 1

n

X2

k¼1

aknkqka2
k þ

1

n
ðq2ðh2 � d2Þ � q1ðh1

� d1ÞÞa1a2
q1a2

1 � q2a2
2P2

k¼1ak0qka2
k

ðA:13Þ

Using the relation (A.4) for the phase sound speed
nka2

k ¼ hk � dk, we get

qâ2 ¼ 1

n

X2

k¼1

aknkqka2
k þ

1

n
ðn2q2a2

2 � n1q1a2
1Þa1a2

q1a2
1 � q2a2

2P2
k¼1ak0qka2

k

ðA:14Þ

And after manipulations, we check the following expres-
sion which is clearly equivalent to the averaged formula
(4) given in Section 2:

qâ2 ¼ q1a2
1q2a2

2P2
k¼1ak0qka2

k

ðA:15Þ
Then, the right eigenvectors riðQÞ (for i 2 f1; . . . ; 6g) of the
matrix which verify the relation DcðQÞriðQÞ ¼ kiðQÞriðQÞ
can be chosen as
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r1 ¼

Y 1

Y 2

u� âgx

v� âgy

H � âvn

A=q

0
BBBBBBBB@

1
CCCCCCCCA

r2 ¼

1

0

u

v

u2=2þ d1

0

0
BBBBBBBB@

1
CCCCCCCCA

r3 ¼

0

1

u

v

u2=2þ d2

0

0
BBBBBBBB@

1
CCCCCCCCA

r4 ¼

0

0

�gy

gx

vt

0

0
BBBBBBBB@

1
CCCCCCCCA

r5 ¼

0

0

0

0

�Mn

1

0
BBBBBBBB@

1
CCCCCCCCA

r6 ¼

Y 1

Y 2

uþ agx

vþ âgy

H þ âvn

A=q

0
BBBBBBBB@

1
CCCCCCCCA

ðA:16Þ

We denote also by liðQÞ (for i 2 f1; . . . ; 6g) the left eigen-
vectors which obey the relation tDcðQÞliðQÞ ¼ kiðQÞliðQÞ.
After normalization of the left and right eigenvectors to
have tliðQÞ � rjðQÞ ¼ dij, we get

l1 ¼
1

2â2

B1 þ âvn

B2 þ âvn

�u=n� âgx

�v=n� âgy

1=n

M

0
BBBBBBBB@

1
CCCCCCCCA

l2 ¼
1

â2

â2 � Y 1B1

�Y 1B2

Y 1u=n

Y 1v=n

�Y 1=n

�Y 1M

0
BBBBBBBB@

1
CCCCCCCCA

l3 ¼
1

â2

�Y 2B1

â2 � Y 2B2

Y 2u=n

Y 2v=n

�Y 2=n

�Y 2M

0
BBBBBBBB@

1
CCCCCCCCA

l4 ¼

�vt

�vt

�gy

gx

0

0

0
BBBBBBBB@

1
CCCCCCCCA

l5 ¼
1

qâ2

�AB1

�AB2

Au=n

Av=n

�A=n

qâ2 � AM

0
BBBBBBBB@

1
CCCCCCCCA

l6 ¼
1

2â2

B1 � âvn

B2 � âvn

�u=nþ âgx

�v=nþ âgy

1=n

M

0
BBBBBBBB@

1
CCCCCCCCA
ðA:17Þ
Appendix B. Expression of the matrices R and R�1

Here, we propose to compute the matrices R and R�1

which allow to switch from the ‘‘conservative” Q to the
‘‘entropic” variables q. So let us start with the computation
of the matrix R such as dq ¼ RdQ. If we refer to Appendix
A, we have

dp ¼
X2

k¼1

BkdðakqkÞ �
u

n
� dðquÞ þ 1

n
dðqeÞ þMda1 ðB:1Þ
Now it is easily checked that the differential of the velocity
u is given by

du ¼ � u

q

X2

k¼1

dðakqkÞ þ
1

q
dðquÞ ðB:2Þ

Then in order to compute the differential of the phase
entropies sk, we use the relation qkT kdsk ¼ nkdp � nka2

kdqk

which is a consequence of (A.1)–(A.4). Introducing the dif-
ferential dp in this last relation, we get

dsk ¼ nk
qk T k

P2
k¼1

BkdðakqkÞ �
nk a2

k
akqkT k

dðakqkÞ � nk u
nqk T k
� dðquÞ

þ nk
nqkT k

dðqeÞ þ nk M
qk T k

da1 þ
nk a2

k
ak T k

dak for k ¼ 1; 2

8><
>:

ðB:3Þ
Finally, using the definition of mass fractions qY k ¼ akqk,
we get

qdY 1 ¼ Y 2dða1q1Þ � Y 1dða2q2Þ ðB:4Þ
which complete the computation of the matrix R given by

B1 B2 �u=n �v=n 1=n M

�u=q �u=q 1=q 0 0 0

�v=q �v=q 0 1=q 0 0

n1ða1B1�a2
1
Þ

a1q1T 1

n1B2

q1T 1
� n1u

nq1T 1
� n1v

nq1T 1

n1

nq1T 1

n1n2a2
1
q2a2

2

na1T 1qâ2

n2B1

q2T 2

n2ða2B2�a2
2
Þ

a2q2T 2
� n2u

nq2T 2
� n2v

nq2T 2

n2

nq2T 2

�n1n2q1a2
1
a2

2

na2T 2qâ2

Y 2=q �Y 1=q 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ðB:5Þ
Now the matrix R�1 such as dQ ¼ R�1dq can be obtained
with the same kind of manipulations and we do not give
more details. The matrix R�1 is given by
Y 1

â2 0 0 �a2
1
q1T 1

n1a2
1

�a1a2q1T 2

n2a2
2

q2

q2

Y 2

â2 0 0 �a1a2q2T 1

n1a2
1

�a2
2
q2T 2

n2a2
2

�q2

q1

u
â2 q 0 �a1qT 1u

n1a2
1

�a2qT 2u
n2a2

2

q2 u
q2
� u

q1


 �
v

â2 0 q �a1qT 1v
n1a2

1

�a2qT 2v
n2a2

2

q2 v
q2
� v

q1


 �
H
â2 qu qv a1T 1 q1� qH

n1a2
1


 �
a2T 2 q2� qH

n2a2
2


 �
q2 H1

q2
�H2

q1


 �
A

qâ2 0 0 a1a2T 1

n1a2
1

�a1a2T 2

n2a2
2

q2

q1q2

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

ðB:6Þ

Remark. The matrices R ¼ oq=oQ and R�1 ¼ oQ=oq are
singular for ak ¼ 0 and ak ¼ 1. In practice for the numer-
ical simulations, a pure fluid k is represented by ak ¼ 1� e
with e a small parameter. The result is not sensible to the
choice of e as we have checked numerically.
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