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Talk objective
-

Describe a unified-coordinate moving grid approach for
numerical approximation of first-order hyperbolic system

N
5+ B 0

with discontinuous initial data in general N > 1 geometry

® 7= (x1,20,...,xy). Spatial vector, ¢ time
#® ¢ € R": vector of m state quantities
& A, c R™™: m x m matrix, f; ¢ R™: flux vector

Model is assumed to be hyperbolic, where > «;A; or
sz.v_l o, (0f;/0q) 1S diagonalizable with real e-values, o; ¢ R J
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Talk outline

Preliminary

» Sample models in Cartesian coordinates
s Cartesian cut-cell method & results

Mathematical model in unified coordinates

» Basic physical equations
» Moving grid condition & geometric conservation law

Finite volume approximation

» Riemann problem & approximate solution
s Godunov-type method

Numerical examples
Future work J

Department of Applied Mathematics, Ta-Tung University, April 23, 2009 — p. 3/73



Preliminary: model equations

-

#® Acoustics in heterogeneous media

P 0 K 0 P 0 0 K P
0 vlip 0 o] = N I =0
ot b /,0 0331 b (9:132 b -
U9 0 0 0 U9 1/p 0 0 U9

# Shallow water equations with bottom topography

N
hu; 0
a Ej 1 _ Ci=1,....N
=1 < 0 hu;uj + 5gh®d;; —ghg—ﬁ

p. pressure, p: density, K bulk modulus, wu;: z;-velocity
h: water height, ¢;;: Kronecker delta, B5: bottom topo.

Lg: gravitational constant J
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Model equations (Cont.)

-

# Compressible Euler equations

o (" N 7
a¢ | Pwi +Z&L’ puu; +pdy; | =0, 1=1,.... N
E =1 Eu; + pu;

E = pe—l—pzj ] 3/2 total energy, e(p,p): internal energy

Note constitutive law for p is required to complete the
model, for example,

# Polytropic gas: p= (v — 1)pe
o Stiffened gas: p= (v — 1)pe — B
L.. van der Waals gas: p = = (pe + ap?) — ap? J
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Model equations (Cont.)

-

#® Compressible reduced 2-phase flow model
» Proposed by Murrone & Guillard (JCP 2005)

s Derive from Baer & Nunziato’s model by assuming
1-pressure & 1-velocity across interfaces

(1) [ aupry; )

0 | azp2 al 0 Q2 P2U 4
el _|_Z_ g =0, 2=1,...,N
ot PU; j=1 0z PU;U; + D04

\ E ) \ E’LLj —I—puj )

N N

0 0 2 _ o2 Ou.
St = e (e )57 0
(975 =1 (9:183 ZkZl &kpkck =1 &L'j

aj. volume fraction for phase k, a3 +as =1, ¢
L sound speed, p = ajp; + agp2: Mixture (total) density J
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Reduced2-phase model (Cont.) )

- o

-

# Mixture equation of state: p = p(as, ai1p1, asps, pe)
® Isobaric closure: p; = py =1p

s For aclass of EOS, explicit formula for p is available

s For some complex EOS, from (a3, p1, p2, pe) In model
equations we recover p by solving

2
p1(p1, pre1) = p2(p2, p2e2) & Z%Pkek = pe€
k=1

# Shyue (JCP 1998) & Allaire et al. (JCP 2002) proposed

o |
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Preliminary: model problem

-

# Moving cylindrical vessel with 4, = (1,0)

Initial condition

e

medial | media 2




Model problem: grid system

-

# Typical discrete grid systems for cylindrical vessel

o Quadrilateral grid ) Cartesian grid
adl [
06 i = M i T ~ -
04r 0.5 . .
7 \
0.2 i \
/ \
S S
-0.2} \ £
\ /
AN /
-0.4¢} -0.5
~0.6} B RNEEEREEEENE
-0.8 ' ' -1
-0.5 0 0.5 -1 -0.5 0 0.5 1

o h h |
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Model problem: Cartesian results )

=)

W9 #

-

#® Compressible flow case with air-helium interface

Initial condition

e

air helium




3 %h
|

Model problem: Cartesian results

=)

W *

-

#® Compressible flow case with air-helium interface
o Solution attime t = 0.25

Density Pressure



Model problem: Cartesian results

-

-

#® Compressible flow case with air-helium interface
s Solutionattime ¢t =10.5




Model problem: Cartesian results )

M. *
g

- N

#® Compressible flow case with air-helium interface
o Solution attime t =0.75



Model problem: Cartesian results )

=)

W9

-

#® Compressible flow case with air-helium interface
s Solutionattimet =1



Cartesian cut-cell method

fFinite volume formulation of wave propagation method, @)% T
gives approximate value of cell average of solution ¢ over
cell S at time ¢,

1

Qs ~ W/SQ(X,tn)dV

M(S): measure (area in 2D or volume in 3D) of cell S

G | H
& NUF
c D

o |
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Cartesian cut-cell method (Cont.)({x)

-

# First order version: Piecewise constant wave update

» Godunov-type method: Solve Riemann problem at
each cell interface in normal direction & use resulting
waves to update cell averages

QU = QZ“—M%I?S? 5) R,, R, beingjump from RP
Vo
" _|
(i T

l
N

| -
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,.;*’:r L= \Zh*.;

Cartesian cut-cell method (Cont.){x))
-

® First order version: Transverse-wave included

» Use transverse portion of equation, solve Riemann
problem in transverse direction, & use resulting
waves to update cell averages as usual

s Stability of method is typically improved, while
conservation of method is maintained

7
| | ] |
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Cartesian cut-cell method (Cont.))

q.#,.._!*a_a

# High resolution version: Piecewise linear wave update

wave before propagation

after propagation

b)

d)

= - J
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Embedded boundary conditions )

fFor tracked segments representing rigid (solid wall)
boundary (stationary or moving), reflection principle is used
to assign states for fictitious subcells in each time step:

<C ‘— XE (Z — P, D, Oé)

i =g — 2(idp - 7)it + 2(idy - 7)

up. Moving boundary velocity

P!
=

Q T

o T |
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Cylinder lift-off problem
=

# Moving speed of cylinder is governed by Newton’s law
# Pressure contours are shown with a 1000 x 200 grid

=0

 t=0.1641s

"= 0.30085s

| |
0.8 0.9
T T T T
[
r%

0.15 .
0.1f .
0.05 ‘ .
0 I I \m/ ! ! ! ! L L !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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" ~ o \BY

Shock-Bubble Interaction Problem()

e

-

# Cartesian grid results

. /
5 air k,ﬁf

o |
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& i

Shock-Bubble Interaction Problem

W g

-

# Cartesian grid results

Tracking Capturing
time=55us

air




P
- Py
P

Shock-Bubble Interaction Problem{#))

-

# Cartesian grid results

time=111ps




[

Shock-Bubble Interaction Problent{}

>

% &

-

# Cartesian grid results

timE=1q5|.L5
|




;,-i' :‘u;g 7 &
= oy
_Jt«

Shock-Bubble Interaction Problem({)

-

# Cartesian grid results

time=187ys



Shock-Bubble Interaction Problem{))

-

# Cartesian grid results

time=247us




a6
_'ﬁg Le?

Shock-Bubble Interaction Problem

oA v/ 4
W —

-

# Cartesian grid results

time=318us




;,-i' :‘u;g 7 &
= oy
_Jt«

Shock-Bubble Interaction Problem({)

-

# Cartesian grid results

time=342us /




;,-i' :‘u;g 7 &
= oy
_Jt«

Shock-Bubble Interaction Problem({)

-

# Cartesian grid results

timE=41?|.L5




;,-i' :‘u;g 7 &
= oy
_Jt«

Shock-Bubble Interaction Problem({)

-

# Cartesian grid results

time=1020ys

1 /
: /
f j
| l
: \

: \
. ™




Shock-Bubble Interaction (cont.)

f.p Approximate locations of interfaces

time=55pus

air

time=115us

time=135us

time=187us

time=247us

time=200pus

time=342us

time=417us

time=1020ys:

§

B

[

F
r

|
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Cartesian cut-cell: Remarks

-

# Small cell problems
o Stability
» Accuracy

# Numerical implementation
» Challenging task for embedded 3D geometry

» Challenging task for interface tracking in general
geometry (even in 2D)

o |
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Cartesian cut-cell: Remarks

-

# Small cell problems
o Stability
» Accuracy

# Numerical implementation
» Challenging task for embedded 3D geometry

» Challenging task for interface tracking in general
geometry (even in 2D)

This work is aimed at devising a more robust moving grid
method than the aforementioned Cartesian cut-cell method

# To begin with, take unified coordinate method proposed
L by Hui & coworkers (JCP 1999, 2001) J
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Model system in unified coord. ¢

ek

E

0 begin with, consider a general non-rectangular domain €2
(N = 2 shown below) & introduce coordinate change

(7, t) — (&, 7) via

—

€:(€17€27'°'7€N)7 ‘szgj(fvt)? T =1,

that maps a physical domain 2 to a logical one
logical domain

physical domain

0 -0.5
mapping
Q05 0N — & -1 0O
-1 & =&z, x2) 15
-1.5 §2 = a(w1, @2)
-1 0 1 ol
L1
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Unified coord. model (Cont.)

-

To derive hyperbolic conservation laws, for example, in this

generalized coordinate (¢, ), using chain rule of partial
differentiation, derivatives in physical space become

o N
AN
yielding the equation

dq | <~ [ 0¢; 0q 0¢; 0f; \ _
E+Z<a;agj ;ax]agz>

;i 0 .
f =1,2,...,N
Zaxjagz Or] ) < ’ )

8& 8

j=1

Note this Is not in divergence form, and hence is not
Lc:onservative. J
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Unified coord. model (Cont.)

fTo obtain a strong conservation-law form as

for some G, f;, & 1, we first multiply . = det (aé’/af) to the
aforementioned non-conservative equations, and have

0¢; Oq 96 Of; \ _
Z / ( i €, ¢, Z; O, (%Z) =910
Then use differentiation by parts, « dv = d(uv) — v du, yielding

i of, -
+Za§j v+ G

~ with g = Jg, fJ—J(q 08 4 o 1fk§§;) b=Jy, & G(seenex)
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Unified coord. model (Cont.)

fHere we have

lar & oo oo Y| 0 (o
5=a|5+ 3 (V5) |+ 2 [Zask(*fax)

With the use of basic grid-metric relations, it is known that

o0J 0 o\ . .
— + Z — <Jﬁ) =0 (geometric conservation law)

Yoo [ o¢
Z - (J—k> =0 Vj=1,2,...,N (compatibility condition)
and hence ¢ = 0

o |
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Unified coord. model (Cont.)

-

# Shallow water equations

9 32 hU; - "
or hJu; =1 9¢; hu;U; + %9h25w gij —thS—ﬁ

# Compressible Euler equations

pJ pU,; 0

% 9 o
I pJu; Z 8— pu;U; +Pa = —pJaxz
JE =1 EU; +pU; — pagtj —pJu - Vo

Uj = 0:& + >0, w0,,€;0 contravariant velocity in ¢;-direction
u: gravitational potential J
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Unified coord.: Geometric claw

fWith non-trivial 0.7, we should impose conditions on grid T

metrics 9,¢ & V -£ to have the fulfillment of geometrical
conservation law

N

o] o (.0¢\
o 2ag, (751 ="

j=1

Here we are interested in an approach that is based on the
compatibility condition of 0,.0¢ x; & O¢, 0w, i.e.,

0 (0w o ( Ox;\ o
87<a§j)+a—€j<—&>—0 fori, 7 =1,2,...,N.
for unknowns dx;/0¢;, yielding easy computation of J & V¢;

o |
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Unified coord.:

-

For fluid flow problems, to improve numerical resolution of

Grid movement

iInterfaces (material or slip lines), it is popular to take 0, % as

# lLagrangian case: 0,1 = u (flow velocity)

# Lagrangian-like case: 0,7 = hou (pseudo velocity)
s hg€0,1] (fixed piecewise const.)

#® Unified coordinate case: 0.1 = hu

s h € [0,1] but is determined from a PDE constraint

arising from such as
preserving condition

grid-angle or grid-Jacobian

® ALE-like case: 9.7 = U (arbitrary velocity)

o

|
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Unified coord.: Grid movement

-

For fluid flow problems, to improve numerical resolution of
iInterfaces (material or slip lines), it is popular to take 0, % as
# lLagrangian case: 0,1 = u (flow velocity)
# Lagrangian-like case: 0,7 = hou (pseudo velocity)

s hg€0,1] (fixed piecewise const.)
#® Unified coordinate case: 0.1 = hu

s h € [0,1] but is determined from a PDE constraint
arising from such as grid-angle or grid-Jacobian
preserving condition

® ALE-like case: 9.7 = U (arbitrary velocity)

LFor simplicity, we will focus on Lagrangian-like case J
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Unified coord. model: Summary

-

With 0.7 = hgu, unified coordinate model for single
component compressible flow problems consists of

# Physical balance laws

9 pJ N5 pU; 0
I pJu; Z 0— pu;Uj + 1085‘7 = —pJ gfi
JE = EU; + pU; — p%i —pJit-V¢

® Geometrical conservation laws

0 (0x; 0 0x;
: — (-2 = fori,j=1,2,....N.
aT(agj>+agj( 5%) 0 oy =152,
# pressure law p(p, e)

o |
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&
s

o
A N

Unified coord. model: Remarks (¥

-

For unified coordinate models mentioned above, it is knownT
that

# when hg = 0 (Eulerian case), the model is hyperbolic

# when hy = 1 (Lagrangian case), the model is weakly
hyperbolic (do not possess complete eigenvectors)

® when hy € (0,1) (Lagrangian-like case), the model is
hyperbolic

o |
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Unified coord. model: Remarks

-

For unified coordinate models mentioned above, it is known
that

# when hg = 0 (Eulerian case), the model is hyperbolic

# when hy = 1 (Lagrangian case), the model is weakly
hyperbolic (do not possess complete eigenvectors)

® when hy € (0,1) (Lagrangian-like case), the model is
hyperbolic

If a prescribed velocity w;, for a rigid body motion is included
In the formulation i.e., with 0.7 = hou + 1, we should be able
to use the model to solve some moving body problems as
well.

o |
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Unified coord. model: Review

E

# W.H. Huietal. (JCP 1999, 2001): Unified coordinated
system for Euler equations

# W.H. Hui (Comm. Phys. Sci. 2007): Unified coordinate
system in CFD

#® C.Jin & K. Xu (JCP 2007): Moving grid gas-kinetic
method for viscous flow

# P Jiaetal. (Computers and Fluids 2006) Unified
coordinated system for compressible milti-material flow

#® Z.Chenetal (Int J. Numer. Meth Fluids 2007): Wave
speed based moving coordinates for compressible flow

equations
| -
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Finite volume approximation ()

fEmploy finite volume formulation of numerical solution T

1

TETTAG AL AL -/Cjk 11,8265, ™) AV

that gives approximate value of cell average of solution ¢
over cell C;;;, at time 7, (sample case in 2D shown below)

logical domain

physical domain

mapping i1 A&

j“ <_ A€
1
L [ e

L1 = 5131(51752)
Ty = x2(&1,82) g

‘—xl i—1 1 J ‘ Ci;
B i—1 T
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Finite volume (Cont.)

hn three dimensions N = 3, equations to be solved take
sra (&) + X 50t (2. 8) =v (4 €)

A simple dimensional-splitting method based on f-wave
approach of LeVeque et al. Is used for approximation, i.e.,

# Solve one-dimensional Riemann problem normal at
each cell interfaces

# Use resulting jJumps of fluxes (decomposed into each
wave family) of Riemann solution to update cell
averages

# Introduce limited jumps of fluxes to achieve high
resolution o
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Finite volume (Cont.)

-

Basic steps of a dimensional-splitting scheme
® £-sweeps: solve

9 A -
L (a—f,q,w)zo updating Q7 to Qi

® SH-sweeps: solve

8q 0 g : % >k
5+ (a—&,q, Vf) =0 updating Q7,0 Qjjy

#® ¢3-sweeps: solve

0 0 - .
1y J3 (—,q, V§> =0 updating i O Q?j*,;l

L ot 0&3

|
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Finite volume (Cont.)

e

® First order update is

onsider &;-sweeps, for example,

. " AT
Qz’jk: ijk Af [(A+AQ) —1/2,5k (“4 AQ)Hl/lJ’J

with the fluctuations

(ATAQ)?—jx/z,jk — Z (Zl m)? 1/2,5k

m:(Al,m)?—1/2,jk>O

and
(AIAQ)?H/ZM — Z (Zl,m)?—|—1/2,jk

m:(Al,m)?+1/2,jk<0

(M) /2 1 & (Z1,m)] /5 4, @r€ in turn wave speed and f-waves
L for the mth family of the 1D Riemann problem solutions J
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Finite volume (Cont.)

® High resolution correction is

ijk = ijk - AA—; [(ﬁ1>;—1/2,jk a (ﬁlx—l/?aﬂa

maw

. A
with 7

m=1

~

Z, m Is alimited value of Z, ,,

o 1 | .
(F1)il1 /2,56 = 5 > [5|gn (A1,m) (1 T AL |>\1,m|) Z1,m

i—1/2,5k

It is clear that this method belongs to a class of upwind schemes, and is
stable when the typical CFL (Courant-Friedrichs-Lewy) condition:

AT max,, (>\1,m7 >\2,m7 >\3,m) <1
min (A&, A&, AL3) T

V =

o

|
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Finite volume: Riemann problem @

fRiemann problem for our model equations at cell interface
§i—1/2 consists of the equation

qi—1,jk s (6_&’%_1"10 — 0 if &1 < (&1)iz1/2,

) ot
0k 0 .
\ aTJ +h (a—glaqz‘jk> =0 if &1 > (§1)im1/2,

together with piecewise constant initial data

v for <
Q(gl,o) _ { 1,9k 1/2

e for §>& 1)

Gijk = Q| (0,7, 0c,7) ;e & J1(0¢1, Gigi) = J1(Oe1s D (oe, 7, 0c, 7111

o |
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Riemann problem

r

lemann problem attime 7 =0

T

mn
ijk

mn
i—1,5k

&1
Orqr + f1(0¢,,qr) =0 J

L 8TQL+f1 (8517QL):O

Department of Applied Mathematics, Ta-Tung University, April 23, 2009 — p. 40/73



Riemann problem

-

Exact Riemann solution: basic structure

e
1,5k ik
‘ &1
L 8TQL+f1 (8517QL):O ! 87'qR_|_f1 (8517(]1%):0 J
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Riemann problem (G

-

Shock-only approximate Riemann solution: basic structure

_ n T
Z' = fr(qnp) — fu(QF 1 i) 2% = fr(gmnr) = fr(gL)
)\1 )\() )\2
A3
dmR
?—1,]’!{: Zk
\ &1

Orqr + f1 ((951,%) =0 '« O.qr+ f1 (5517(11%) =0

o |
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o

Shock-only Riemann solver

Rotate velocity vector in Riemann data normal to each cell interface
Find midstate velocity v,,, and pressure p,,, by solving

¢(pm) — UmR(pm) — UmL(pm) =0
derived from Rankine-Hugoniot relation iteratively, where

P —DPL
My, (p)’

P — PR
Mg(p)

Umr(p) = vp — Umr(p) = VR +

Propagation speed of each moving discontinuity is determined by

My (pm
oL (Pm) ]‘VX&‘@ 1/2,5k

(A12);_ 1/2,jk — = (1 _hO)UmWX’fl}i 1/2,jk

()i = | (1= o) =

M
(A1,3)i 1950 = [(1—ho)vm+ AP ]‘ngl‘z 12,5k J

PmR (pm
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Lax’s Riemann problem

-

# l|ldeal gas EOS withy =14
® hy = 0 Eulerian result

® ho = 0.99 Lagrangian-like result
s sharper resolution for contact discontinuity

Exact

0 0.5 1 0 0.5 1 0 0.5 1

B x x I
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Lax’s Riemann problem

-

# Physical grid coordinates at selected times

s Each little dashed line gives a cell-center location of
the proposed Lagrange-like grid system

0.157 L A T AR R RN MR N AN AN AR
O o A A R R R R R A RN NN
O I B A A R R R R R R R AN RN
01— L o A A R R N AN AR R R RN RN RN AN
O R R A A AR R RN NN RRR RN NN AR
LN o A R R R RN RN NN N NN RN AR ANNY
NN AN AR A AR RN RN R RN N NN NN RO AN
O.05 = [ LLEEEEEEEECEEEE TR T LT e rEEE T T
LECEEEEEEEEEEEEEE PR EEEE R EE LR e e e e e e e e e e e e e e e e e e e e e e e
LECCCREEREEEEEEEE e E R R PR LT e e E e e e e e e e e e e e e e e e e e e e
0 — L ||||||| ||||||||||||| ||||||| ||||||||||||| ||||||| ||||||| L ||||||| ||||||| ||||||||||||| ||I|

time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

o |
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Woodward-Colella’s problem
=

# l|deal gas EOS withy =14
® hy = 0 Eulerian result

® hp = 0.99 Lagrangian-like result
s sharper resolution for contact discontinuity

t =0.016 ~ t=0.016 ~ t=0.016
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Woodward-Colella’s problem

-

® hy = 0 Eulerian result

® hp = 0.99 Lagrangian-like result
» sharper resolution for contact discontinuity

t =0.032 t =0.032 t =0.032
20| 15 600 | "

Fine grid | 2
15t o hy=0 10|

400

A h0=0.99

200

© N
f
1
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Woodward-Colella’s problem
=

® hy = 0 Eulerian result

® hp = 0.99 Lagrangian-like result
» sharper resolution for contact discontinuity

t = 0.038 - t=10.038 - t=10.038
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Woodward-Colella’s problem

-

# Physical grid coordinates at selected times

s Each little dashed line gives a cell-center location of
the proposed Lagrange-like grid system

004—=1 | | | | N T T O R e
I . I O O O T e e e
I I T O O A i e e R N R
T e e o o L L IR R R RN
T A L TTAARMTIRNIATHA . (RN R AR R AR
T O 11 A AR RN R AR RN
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2D Riemann problem

-

With initial 4-shock wave pattern

. (0.532) (p\ (1.5\ |
08} 1.206 u |l 0 |-
0 vl | 0|
o\ 03/ | \p/ \135)
(0.138\ (0.532\
1.206 0
1.206 1.206
\0.029/ \ 0.3

1 1 1 1 1 1
04 0.5 0.6 0.7 0.8 0.9 1
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2D Riemann problem

W

# Lagrangian-like result
» Occurrence of simple Mach reflection

ith initial 4-shock wave pattern

Density Physical grid
_ J 0.8f 0.8 s
0.6 0.6
0.4} 0.4 i
0.2 0.2

02 04 06

Department of Applied Mathematics, Ta-Tung University, April 23, 2009 — p. 49/73



2D Riemann problem

W

# Eulerian result
» Poor resolution around simple Mach reflection

ith initial 4-shock wave pattern

Density Pressure Physical grid

————— S ] St

0.8 0.8 (77~ I 0.8¢

.......

~

NN
N
Y

0.6 0.6 777

A 0.6}

0.4 0.4}

S
QA4 /A A AAAAAS L
AT S A

7 o
0.2} - Q.21 /AP AAAAAAAA A A7 27kt 1t 1] 0.2k

| | | | Wil : : : :
0.2 04 0.6 0.8 0.2 04 06 0.8 0.2 04 0.6 0.8
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Reduced2-phase model

f.ﬁ Physical balance laws

9 pJ N5 pU; 0
0&; _ 0
P pJu; -I-Za—ng pu;U; +pa2t = —pJa;i
JE = EU; +pU; — p%si —pJi-V¢

» Geometric conservation laws

0 ( 0Oz, 0 Ox;
o7 (agj) " g; ( aT) ooty = g

$ \olume fraction transport equation

Z UJ 8{7

\_.. Moving grid condition 0,.Z = hou & pressure law p(p, e, «) J
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Underwater explosions

f.’ Solution Comparison between hg = 0.9 & hg =0 T

air




Underwater explosions

f’ Solution Comparison between hg = 0.9 & hg =0 T

Pressure
h=0.9 h=0
t=0.2ms
water
t=0.4ms

|
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Underwater explosions (Cont.) @

-

Grid system (coarsen by factor 5) with hg = 0.9

time = 0.2ms time = 0.4ms

05¢ 0.5
Of 0
-0.5 ” ggL -0.5
-1 -1
1 0 1 1 0 1
time = 0.8ms timqul..gmms
0.5} 0.5 :-- II:
ofl [ . =S5 ofi He
-0.5¢ -0.5

-1 0 1 -1 0 1
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3D underwater explosions

-

® Numerical schlieren images hg = 0.6, 100° grid

time=0ms

0.5
_1 —
-1 0.5 "
. 0 — -05
. 1 -1
Y x
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3D underwater explosions

-

# Numerical schlieren images o = 0.6, 100° grid

time=0.25ms

0.8 —

0.6 —

0.4 —

0.2 —

-0.2

-0.6 —

-0.8 1
05

-0.5 -0.5
0.5
1A
Y x
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3D underwater explosions

-

# Numerical schlieren images o = 0.6, 100° grid




3D underwater explosions

A 2\
L &
G

-

# Numerical schlieren images o = 0.6, 100° grid




3D underwater explosions

-

# Numerical schlieren images o = 0.6, 100° grid




3D underwater explosions (Cont.){)

-

# Grid system (coarsen by factor 2) with hg = 0.6

time =0

o R B
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# Grid system (coarsen by factor 2) with hg = 0.6

time = 0.25ms

Department of Applied Mathematics, Ta-Tung University, April 23, 2009 — p. 55/73



3D underwater explosions (Cont.){)

-

# Grid system (coarsen by factor 2) with hg = 0.6

time = 0.5ms

B B
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3D underwater explosions (Cont. )

-

# Grid system (coarsen by factor 2) with hg = 0.6

time = 1.0ms
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# Grid system (coarsen by factor 2) with hg = 0.6

time = 1.5ms

777 VO, V0 a0 0%
77777 A 7K A KRS
e SN
‘.0.”0“‘“ SIS
% ZRRR oSS

<>
0‘0‘2‘2“2
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Automatic time-marching grid

-

#® Supersonic NACAOO012 over heavier gas

a)
Grid system Density Pressure
15@% 1.5 - - 1.5 - -
1 1} - 1}
0.5 0.5¢ - 0.5¢
Of | <m— O | <— ' O | ———
-0.5 -0.5¢ 1 -0.5;
. o
-1 -1 1 -1
-15%= ' ' - =1.5 ' ' -1.5
0 1 2 3 0 1 2 3 0 1 2 3

o |
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Automatic time-marching grid

-

#® Supersonic NACAOO12 over heavier gas

b)
Grid system Density Pressure
1.5¢ 15 - - 15 - -
1 1t air 1
0.5 0.57 0.5
OF 0 of »
-
-0.5 . -0.5 -0.5] W
-1 -1 -1
SF6
-1.5 ' ' - =1.5 ' ' -1.5 '
0 1 2 3 0 1 2 3 0 1 2 3
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Automatic time-marching grid

-

#® Supersonic NACAOO12 over heavier gas

c)
. Grid system . . Pressure
1 1t 1t
0.5 0.5 0.5
0 0f 0f
-0.5 -0.5 -0.5
-1 ~1f -1t
o 1 2 3 % 1 2 3 1 2 3
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Conclusion

-

# Have described a simple unified coordinate moving grid
methods for hyperbolic PDEs

# Have shown results in 1, 2 & 3D to demonstrate
feasibility of method for inviscid compressible flow
problems

o |
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Conclusion

-

# Have described a simple unified coordinate moving grid
methods for hyperbolic PDEs

# Have shown results in 1, 2 & 3D to demonstrate
feasibility of method for inviscid compressible flow
problems

# Future direction
s Efficient & accurate grid movement strategy

Static & Moving 3D geometry problems

Weakly compressible free-surface flow

Viscous flow extension

e o o o

o |
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Conclusion

-

# Have described a simple unified coordinate moving grid
methods for hyperbolic PDEs

# Have shown results in 1, 2 & 3D to demonstrate
feasibility of method for inviscid compressible flow
problems

# Future direction
s Efficient & accurate grid movement strategy
s Static & Moving 3D geometry problems
» Weakly compressible free-surface flow

s Viscous flow extension

X

o Thank You B
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Two-phase flow model (1)

f.’ Baer & Nunziato (J. Multiphase Flow 1986)

aap2tin), + V - (apatia ® Uz) + V(aop2) = poVag — A(d2 — 1)
aopakn), + V - (aapaEatia + aspatio) = —po (a2), — Aip - (U2 — U1)
o), + Up - Voo = 1 (p2 — p1)

o = V3. /V: volume fraction for phase & (a; + a2 = 1)

.. global state for phase £, 0. local interface state
LA: velocity relaxation parameter, (. pressure relaxation J
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Two-phase flow model (II)

f.o Saurel & Gallouet (1998)

(a1p1); + V- (c1prtiy) = m

(a1p1t1), + V- (a1prt; @ U1) + V(aip1) = poVaq + mtig + Fy
(a1p1E1), + V- (a1p1 E1t1 + caprtr) = po (a2), + mly + Fyup + G
(a2p2); + V- (aopatia) = —1h

(aapatin), + V - (a2patia ® U2) + V(aap2) = poVag — miiy — Fy
(a2p2E2), + V - (aopaEatia + aiapatia) = —po (a2), — mEy — Fatip —
(a2); + to - Vag = p(p2 — p1)

m. mass transfer, F}. drag force
()o. convective heat exchange

o |
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P X N
V& Y

Two-phase flow model (cont.) ¢

£
s
Yoo
5,

|

po & 1. Interfacial pressure & velocity

# Baer & Nunziato (1986)
s po=p2, Uy=1U
# Saurel & Abgrall (1999)

® Po= 1_10kDE, U0 =) 11 akﬂkuk/ > 11 OkPK

A & p (> 0): relaxation parameters that determine rates at
which velocities and pressures of two phases reach
equilibrium

o |
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Two-phase flow model: Derivation{s)

f.o Standard way to derive these equations is based on T
averaging theory of Drew (Theory of Multicomponent
Fluids, D.A. Drew & S. L. Passman, Springer, 1999)

Namely, introduce indicator function y; as

1 If M belongs to phase &
M. t) =
Xk (M, 1) {O otherwise
Denote < ¢ > as volume averaged for flow variable v,
W)= [ vav
=v /.

Gauss & Leilbnitz rules

uka¢> = (V) —WVxe) & () = <(Xk¢)t>_<¢(Xk)ﬂ
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Two-phase flow model (cont.) &)

2 7
W,

-

Take product of each conservation law with ;. & perform
averaging process. In case of mass conservation equation,
for example, we have

(XkPr)e + Vo < Xpprty >= (pp(Xk)t + prUk - VXE)
Since y;. Is governed by
(i)t + 70 -Vxe=0  (i: interface velocity),
this leads to mass averaged equation for phase &
(Xkpr)y + V- < xpprty >= (pr (U, — o) - Vi)

Analogously, we may derive averaged equation for
Lmomentum, energy, & entropy (not shown here) J
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two-phase fow model (Cont.)

In summary, averaged model system, we have, are

pr (Ug — Uo) - Vxk)

(XkPr); + V- < Xpprty >=
) = (P Vxk) +

(XkPEUR), + Vo < Xkprir @ Uy > +V (XEDPk
prUy (U — o) - VX&)

prE (U — o) - V)

(
(
(
(XkpPrEr), + V- < XkppErty + Xpprty >= (prUy - VXi) +
(
(i — to) - VX)

(X&) + (Uk - VXE) =

Note: existence of various interfacial source terms
Mathematical as well as numerical modelling of these terms
are important (but difficult) for general multiphase flow
problems

. |
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Reduced two-phase flow model ({x})

&
W

-

# Murrone & Guillard (JCP 2005)
o Assume =\ /e & pu=p /e, X =0(1) & ' = O(1)
» Apply formal asymptotic analysis to Baer &

Nunziato’s model, as ¢ — 0, gives leading order
approximation

(a1p1); +V - (apru) =0

(azp2); +V - (a2p2u) = 0

(pii), + V- (pu @ u) + Vp =0 (mixture momentum)
(pE), +V - (pEU + pu) =0 (mixture total energy)

2

2
cs — poc
(a2), + - Vaz = ajas p12 1= P2 22 V-u

|
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Reduced two-phase model (Cont i}

R

1. Inthis case, p1 — po & 17 — s, as € — 0, which means
the flow is homogeneous (1-pressure & 1-velocity) with
p,=p&u, =u,t=0,1,2, across interfaces

emarks:

2. Mixture equation of state: p = p(«as, ai1p1, aspa, pe)
3. Isobaric closure: p; = ps = p

#® [For some EQOS, explicit formula for p is available
(examples are given next)

# For some other EOS, p is found by solving coupled
equations

p1(p1, pre1) = p2(p2, p2e2) & aipier + agpaes = pe

o |
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Reduced two-phase model (ContJi})

-

#® Polytropic ideal gas: p, = (v — 1)prex

pe = Z%Pkek —I;Oék% 1 —

/,;%—1

o |
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Reduced two-phase model (Cont )

-

# Polytropic ideal gas: pr = (v — 1) prex
pe = Z%Pkek = Z&k o —1
k=1
/k Tk T 1

® Van der Waals gas: px = (1Zkb;;k )(prer + agpi) — axps

pe = ZO‘W’C@% B Z“k Kl_]ﬁc[; ) (p + axp) —akpi]
N N
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Reduced two-phase model (Cont/

-

# Two-molecular vibrating gas: pr = pr R T (er), T satisfies

RT

RTvib

_|_

As before, we now have

R.T prRE T\
o Z&kpkek _ Z&k (Pk k k) n vib,x
IYk T 1 exp

k=1
2

exXp (TVib/T) —1

(Tvib,k/Tk) -1

(Nonlinear eq.)

|
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Reduced model: Remarks

. It can be shown entropy of each phase S;.. now satisfies

D
ﬁ—(()S]’“er-V‘S‘k:O, for k=12

Dt Ot
. Model system is hyperbolic under suitable
thermodynamic stability condition

. When o, = 0, p;. can not be recovered from «;. & ay.py,
and sotake o € e,1 —¢], e K 1

. Other model systems exist in the literature that are
more robust for homogeneous flow (examples)

. When individual pressure law differs in form (see
below), new mixture pressure law should be devised
first & construct model equations based on that J
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Homogeneous two-phase model{;

-

In summary, mathematical model for compressible
homogeneous two-phase flow:

# Equations of motion

2 2
c5 — pPoc
(a2); + 4 - Vag = ajan '012 1P 22 V-d
Zk:l Ok PEC

L.o Mixture equation of state: p = p(ao, aip1, azp2, pe) J
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Grid-metric relations

fAssume existence of inverse transformation
t =T, xj:a:j(g,t) for 17=1,2,..., N,

To find basic grid-metric relations between different
coordinates, employ elementary differential rule

—

a(r, )

yielding in N = 3 case, for example, as

(1 0 0 0 ) (J 0 0 0)
O&1 0z,&1 05,61 0.8 Jor Ji1 Jor I3
Ola 01,8 05,6 03,8 Joz  Ji2 Joa  J32

L \01553 03,83 02,83 33:353) \Jos Jis Ja3 J33) J
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p—t




fHere

Grid-metric relations (Cont.)

0(x1, 2, T3) 0(x1, 2, T3)
/= 0(&1,62,83) | et 0(81,82,83) )
Ty — 0(x2, x3) Tyt — O(x1,13) Tay — (1, x2)
0(£2,8&3) |’ 0(&3,&2) | 0(&2,83) |’
T — O(xa, w3) Ty — d(r1,73) Tay — O(x1,x2)
0(&3,81) | 9(61,63) | 0(&3,&1) |
Ty — 0(x2, x3) oy — 0(x1,13) oy — 0(x1,x2)
9(&1,82) |’ 9(&2,61) | 9(&1,82) |
Ny
Joj = — Z Jij0- T4, j=1,2,3,
i=1

and so grid-metric relations between different coordinates

Bh

1
atgja fgj) — (at€j7 aml‘fja 8:122€j7 851335]) — j (J0j7 J1j7 J2j7 ‘]33) J

Department of Applied Mathematics, Ta-Tung University, April 23, 2009 — p. 71/73



Grid-metric relations (Cont.)

fNote In two dimensions N = 2, we have

(851 851 8§1> . 1 ( 85131 65132 1 65132 85131 65132 8$1>

ot dzxy’ Oy J\ 01 0& ' 01 0& 08 0&

0 0% 0%\ _ 1 (0 0z Orp0my Oy On
875’ (91’1’ (92132 J ot 851 ot 8617 861’ 051
89@1 8952 8%1 8952

0¢, 0¢, 0 06

J

Thus to have G = 0 fulfilled, grid-metrics should obey

97 8 [ 06\ o [ .06\
aT+ag1(‘]at +6§2(J8t)_0

o (06N 0 (.06\_ 0 (0 O [ On
0—51(J0—331)+3§2 (Jafl)_0§1(0§2)+3§2< 051) ’
0
2

0 051 862 - 0 —(9331 0 (9331
L 3_&(J5—$2>+£(J3—962>_5€1( 082 )+3§2 (351) ! J
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Unified coord.: Grid movement

-

Consider N = 2 case, for example, and use simplified

notation Z = (z, y), £ = (£, n). At given time instance, free
parameter i can be chosen based on

# Grid-angle preserving condition (Hui et al. JCP 1999)

2(3os (V{ LV ) = gcos —Yntn — YETe
o W o) "o\ g et s a2

= Ahg + Bh, + Ch =0 (1st order PDE )

A=\ Jo2 +y2 (vze —uye), B= . a2+ y2 (uy, — vay)
C = \/ZEQ -+ yg (unyn — Unxn) BRY. ZE% + y% (’LLgyg - U'SZES)
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Unified coord.: Grid movement

-

Consider N = 2 case, for example, and use simplified

—

notation 7 = (z, y), £ = (£, n). Or alternatively, based on
# Grid-Jacobian preserving condition

oJ 9,
- = 97 (Teyn — TnYe)

= Ter Yn + Tg Ynr — Typr Ye — Ty Yer

= Ah¢ + Bh,y+Ch =0 (1storder PDE )
with

A =uy, —vx,, B=uvre—uye, C=uglyy+vyTe— Upye — VeTy

o |
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