Solutions of nonlinear dispersive shallow water equations: analytical and numerical study

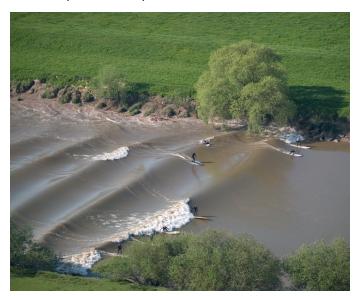
Keh-Ming Shyue

Ocean Center National Taiwan University Taiwan

SIAM PNW Section Biennial Meeting & 35th PNWNAS 08:30-09:30, October 5, 2025

Dispersive shallow water flow: undular bore

Undular bore (Favre wave) on Severn river near Gloucester, UK



Qiantang river bore (from Dailymotion)



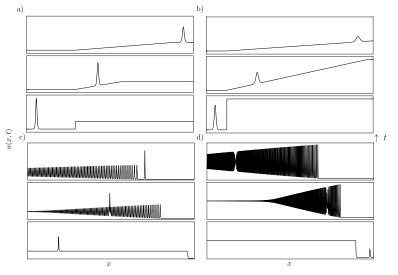
Talk outline

- 1. Whitham modulation theory for solitary wave-mean flow interaction for dispersive equations
 - Benjamin-Bona-Mahony (BBM) equation
 - Serre-Green-Naghdi (SGN) equations
- 2. Numerical algorithm for 2D SGN equations with bottom topography

Dispersive shallow water flow applications include: tsunami modeling, river hydraulics, & study of geohazards like avalanches, debris flows

Joint work with S. Gavrilyuk, B. Nkonga, G. El, M. Hoefer, T. Congy and many others

Solitary wave-mean flow interaction scenarios



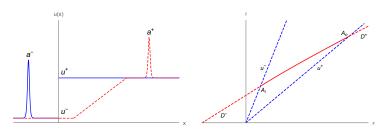
Figures referred from Ablowitz *et al.* 2023 for Korteweg-de Vries (KdV) equation

Solitary wave-mean flow: dispersive equations

For dispersive solitary wave-mean flow interaction, consider initial condition:

$$(\overline{u}, a)(x, 0) = \begin{cases} (u^{-}, a^{-}), & x < 0 \\ (u^{+}, a^{+}(?)), & x > 0 \end{cases}$$
 (1)

Sketch of positive rarefaction wave (RW) case: $0 < u^- < u^+$



Could one can obtain analytical formula for a^+ ? Yes, for KdV, BBM, SGN, conduit equation, ...

BBM equation

BBM equation was proposed as a unidirectional model of weakly non-linear waves in shallow water:

$$v_t + v_x + vv_x - v_{xxt} = 0$$

After change of variable v = u - 1 one gets

$$u_t + uu_x - u_{xxt} = 0 (2)$$

BBM (2) admits only three independent conservation laws:

$$(u - u_{xx})_t + \left(\frac{u^2}{2}\right)_x = 0 \tag{3a}$$

$$\left(\frac{u^2}{2} + \frac{u_x^2}{2}\right)_t + \left(\frac{u^3}{3} - uu_{tx}\right)_x = 0$$
 (3b)

$$\left(\frac{u^3}{3}\right)_t - \left(u_t^2 - u_{xt}^2 + u^2 u_{xt} - \frac{u^4}{4}\right)_t = 0 \tag{3c}$$

Periodic travelling wave solutions: BBM equation

BBM periodic travelling wave solutions $u(x,t)=u(\xi)$, $\xi=x-Dt$, satisfies

$$(u')^2 = \frac{2}{D} \left(-\frac{u^3}{6} + D\frac{u^2}{2} + c_1 u + c_2 \right) = \frac{1}{3D} P(u)$$
 (4a)

$$P(u) = (u - u_1)(u - u_2)(u_3 - u), D > 0$$

Its solution (three-parameter family) is:

$$u(\xi) = u_2 + a \operatorname{cn}^2 \left(\frac{1}{2} \sqrt{\frac{u_3 - u_1}{u_1 + u_2 + u_3}} \xi, m \right)$$
 (4b)

cn is Jacobi function,

$$a = u_3 - u_2$$
, $m = (u_3 - u_2)/(u_3 - u_1)$, $D = (u_1 + u_2 + u_3)/3$

Define wave averaged of any function f(u) as

$$\overline{f(u)} = \frac{1}{L} \int_{\xi_2}^{\xi_3} f(u) \, d\xi = \frac{2}{L} \int_{u_2}^{u_3} f(u) \frac{\sqrt{3D}}{\sqrt{P(u)}} \, du$$

Wave averaged of u is

$$\overline{u} = \int_{u_2}^{u_3} \frac{u du}{\sqrt{P(u)}} / \int_{u_2}^{u_3} \frac{du}{\sqrt{P(u)}} = u_1 + (u_3 - u_1) \frac{E(m)}{K(m)}$$

Wavelength L is

$$L = \int_{\xi_2}^{\xi_3} d\xi = 2 \int_{u_2}^{u_3} \frac{\sqrt{3D}}{\sqrt{P(u)}} du = 4\sqrt{3}\sqrt{\frac{Dm}{a}} K(m)$$

K(m) & E(m): first & second type complete elliptic integrals

Solitary wave solution obtained in $L \to \infty$, $u_1 = u_2 > 0$ is

$$u(\xi) = u_2 + a \operatorname{sech}^2 \left(\frac{1}{2} \sqrt{\frac{u_3 - u_2}{2u_2 + u_3}} \xi \right)$$

Whitham modulation system: BBM equation

Assume BBM solution $u(\xi, X, T, \varepsilon)$; L-periodic with respect to ξ & varies slowly to X & T:

$$\xi = \frac{X - DT}{\varepsilon} = x - Dt, \quad X = \varepsilon x, \quad T = \varepsilon t, \ \varepsilon \ll 1$$

One can obtain modulation system using two equivalent methods: averaging of conservation laws & method of averaged Lagrangian (Whitham 1965,1974)

For BBM equation, from (3), we have modulation system:

$$\begin{bmatrix}
\frac{\overline{u}^2}{2} + \frac{\overline{P(u)}}{6D} \\
\frac{1}{L}
\end{bmatrix}_T + \begin{bmatrix}
\frac{\overline{u}^2}{2} \\
\frac{\overline{u}^3}{3} - \frac{\overline{P(u)}}{3} \\
\frac{D}{L}
\end{bmatrix}_T = 0$$
(5)

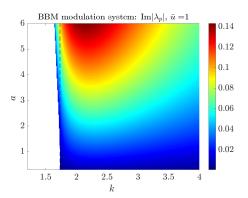
In quasi-linear form, (5) is written as

$$Aq_T + Bq_X = 0 (6)$$

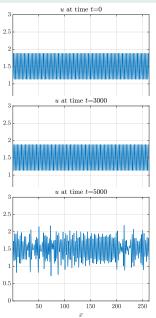
Let λ_j be eigenvalue & r_j be associated right eigenvector:

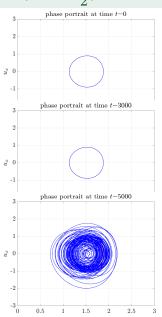
$$(B - \lambda_j A) r_j = 0, \quad j = 1, 2, 3$$

It is known that (6) is mixed elliptic-hyperbolic system, *i.e.*, there exists $\lambda_j \in \mathbb{C}$ (Congy, Gavrilyuk, Tso, ...).



Modulational instability ($\overline{u} = 1$, $a = \frac{1}{2}$, $k \approx 2.389$)

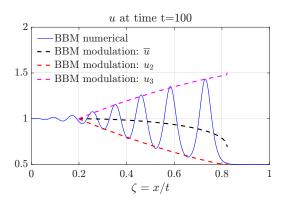




BBM modulation system: simple wave solution

Assume solution is self-similar: $q(x,t) = q(\zeta)$, $\zeta = x/t$. If $\nabla_q \lambda_i \cdot r_i \neq 0$, one obtains $q(\zeta)$ by solving ODEs numerically:

$$\frac{dq}{d\zeta} = r_j / (\nabla_q \lambda_j \cdot r_j), \quad \zeta = \lambda_j, \quad j = 1, 2, 3$$



Amplitude modulation equation: BBM equation

Taking $L \to \infty$ to modulation system (5) (solitary limit), one obtains only equations for \overline{u}

$$\overline{u}_T + \left(\frac{(\overline{u})^2}{2}\right)_X = 0, \quad \left(\frac{(\overline{u})^2}{2}\right)_T + \left(\frac{(\overline{u})^3}{3}\right)_X = 0$$

from first two equations & trivial identity from third

To find equation for amplitude $a(\overline{u})$, employing method of averaged Lagrangian, we have action conservation laws:

$$\overline{u}_{T} + \left(\frac{\overline{u^{2}}}{2}\right)_{X} = 0$$

$$\left(\frac{\overline{u^{2}} - (\overline{u})^{2}}{2k} + \frac{\overline{P(u)}}{6Dk}\right)_{T} + \left(D\left(\frac{\overline{u^{2}} - (\overline{u})^{2}}{2k} - \frac{\overline{P(u)}}{6Dk}\right)\right)_{X} = 0$$
(7a)

BBM modulation system: solitary limit

Now taking $L \to \infty$ to (7) we have governing equations for Riemann problem (1):

$$\overline{u}_T + \left(\frac{(\overline{u})^2}{2}\right)_X = 0 \tag{8a}$$

$$F\left(\overline{u},a\right)_{T}+G\left(\overline{u},a\right)_{X}=0\tag{8b}$$

$$F\left(\overline{u},a\right) = \frac{a^{3/2}(2a+5\overline{u})}{\sqrt{a+3\overline{u}}}, \ G\left(\overline{u},a\right) = \frac{a^{3/2}(4a+15\overline{u})\sqrt{a+3\overline{u}}}{9}$$

Quasilinear form of (8) is with $D = \overline{u} + \frac{a}{3}$:

$$\overline{u}_T + \overline{u} \ \overline{u}_X = 0 \tag{9a}$$

$$a_T + Da_X + \frac{a}{3} \frac{14a^2 + 75a\overline{u} + 90\overline{u}^2}{8a^2 + 40a\overline{u} + 45\overline{u}^2} \overline{u}_X = 0$$
 (9b)

BBM solitary limit: self-similar solution

Assuming solution in (8) is smooth & self-similar in $\zeta=X/T$. Let $z=a/\overline{u}$. From (8), we have separable ODE:

$$\overline{u}\frac{dz}{d\overline{u}} = -f(z), \quad f(z) = z + \frac{14z^2 + 75z + 90}{8z^2 + 40z + 45}$$

For Riemann problem (1), perform integration, we have algebraic equation to be solved for z^+ :

$$\ln\left(\frac{u^{+}}{u^{-}}\right) = \Psi\left(z^{-}\right) - \Psi\left(z^{+}\right), \quad z^{\pm} = (a/u)^{\pm}$$

$$\Psi(z) = -\frac{1}{12}\sqrt{15} \tan^{-1}\left(\frac{15 + 8z}{\sqrt{15}}\right) - \frac{1}{4}\ln(3+z) + \frac{5}{8}\ln\left(15 + 15z + 4z^{2}\right)$$

Approximate BBM solitary limit: fitting method

Dispersion relation to BBM equation linearized on constant background $u=\overline{u}$ is

$$c_p = \frac{\omega_0}{k} = \frac{\overline{u}}{1+k^2}$$
 $(c_p \text{ phase velocity})$

DSW fitting method of G. El (2005) is to assume that solitary wave motion on simple-wave background is governed by

$$\overline{u}_T + \left(\frac{\overline{u}^2}{2}\right)_X = 0 \tag{10a}$$

$$\tilde{k}_T + \widetilde{\omega_0} \left(\overline{u}, \tilde{k} \right)_X = 0$$
 (10b)

$$\widetilde{\omega}_0\left(\overline{u}, \widetilde{k}\right) = -i\omega_0\left(\overline{u}, i\widetilde{k}\right) = \frac{\overline{u}\widetilde{k}}{1 - \widetilde{k}^2}, \quad D = \frac{\widetilde{\omega_0}}{\widetilde{k}} = \overline{u} + \frac{a}{3}$$

 $\widetilde{\omega}_0$ conjugate dispersion relation & \widetilde{k} conjugate wave number

It follows from (10) that one obtains ODE

$$\frac{d\tilde{k}}{d\overline{u}} = \frac{(\widetilde{\omega}_0)_{\overline{u}}}{\overline{u} - (\widetilde{\omega}_0)_{\tilde{k}}} = \frac{1 - \tilde{k}^2}{\overline{u}(-3\tilde{k} + \tilde{k}^3)}$$

For Riemann problem (1), perform integration, we have algebraic equation to be solved for \tilde{k}^+ :

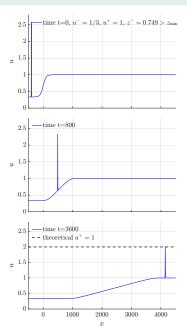
$$\ln\left(\frac{u^{+}}{u^{-}}\right) = \Psi\left(\tilde{k}^{+}\right) - \Psi\left(\tilde{k}^{-}\right), \quad \tilde{k}^{-} = 0$$

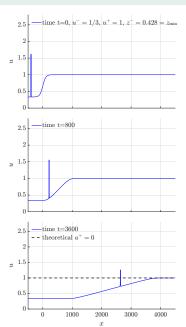
$$\Psi\left(\tilde{k}\right) = -\frac{\tilde{k}^{2}}{2} + \ln\left(\tilde{k}^{2} - 1\right)$$

Solitary wave amplitude a^+ is:

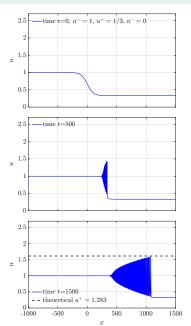
$$a^{+} = 3\left(\frac{\widetilde{\omega}_{0}\left(u^{+}, \widetilde{k}^{+}\right)}{\widetilde{k}^{+}} - u^{+}\right) = 3\frac{u^{+}(\widetilde{k}^{+})^{2}}{1 - (\widetilde{k}^{+})^{2}}$$

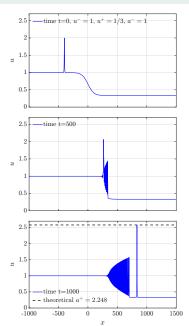
Solitary wave over RW: BBM equation



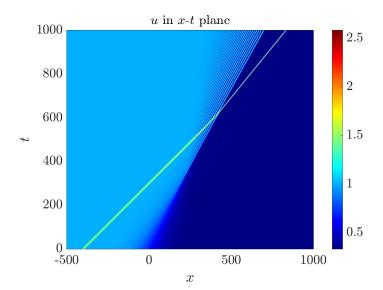


Solitary wave over DSW: BBM equation

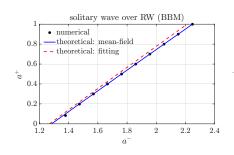


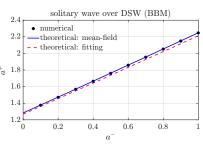


Solitary wave over DSW: BBM equation

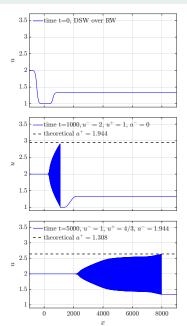


Transmission: analytical & numerical comparision





DSW over RW/DSW: BBM equation





Numerical approximation: BBM equation

BBM equation is

$$u_t + \left(\frac{1}{2}u^2\right)_x - u_{xxt} = 0$$

• *u*-based elliptic operator inversion

$$K_t + \left(\frac{1}{2}u^2\right)_x = 0 \quad \text{(hyperbolic step)}$$

$$-u_{xx} + u = K \quad \text{(elliptic step)}$$

$$\begin{split} u_t + \left(\frac{1}{2}u^2 + \varpi\right)_x &= 0 \quad \text{(hyperbolic step)} \\ -\varpi_{xx} + \varpi &= \left(\frac{u^2}{2}\right)_{xx} \quad \text{(elliptic step)} \end{split}$$

SGN equations

SGN equations over a flat bottom approximating free-surface Euler equations in long wave limit are

$$h_t + (hu)_x = 0 (11a)$$

$$u_t + uu_x + gh_x = \frac{1}{h} \left(\frac{h^3}{3} \left(u_{xt} + uu_{xx} - u_x^2 \right) \right)_x$$
 (11b)

h is total depth, u is depth-averaged horizontal velocity, and g is acceleration due to gravity (set g=1 in what follows)

SGN equations admit energy conservation law:

$$\left(\frac{1}{2}h\left(h+u^2+\frac{1}{3}h^2u_x^2\right)\right)_t + \left(hu\left(h+\frac{1}{2}u^2+\frac{1}{2}h^2u_x^2-\frac{1}{3}h^2\left(u_{xt}+uu_{xx}\right)\right)\right)_x = 0$$

Periodic travelling wave solutions: SGN equations

Periodic travelling wave solutions $h(x,t) = h(\xi)$, $u(x,t) = u(\xi)$, $\xi = x - Dt$ to SGN equations (11) follows

$$(h')^2 = \frac{3}{h_1 h_2 h_3} (h - h_1)(h - h_2)(h_3 - h)$$

$$u = D - \frac{\sqrt{h_1 h_2 h_3}}{h}$$
(12a)

We have periodic travelling wave solution (4-parameter family):

$$h(\xi) = h_2 + a \operatorname{cn}^2 \left(\frac{1}{2} \sqrt{\frac{3(h_3 - h_1)}{h_1 h_2 h_3}} \xi, m \right)$$
 (13)

$$a = h_3 - h_2$$
, $m = \frac{h_3 - h_2}{h_2 - h_1}$, $\sigma = +1$ (fast), $\sigma = -1$ (slow)

Averages of depth \overline{h} & velocity \overline{u} can be written as

$$\overline{h} = h_1 + (h_3 - h_1) \frac{E(m)}{K(m)}, \ \overline{u} = D - \sigma \sqrt{h_1 h_2 h_3} \ \frac{\prod \left(1 - \frac{h_2}{h_3}, m\right)}{h_3 K(m)}$$

When $h_2 \to h_1$ $(m \to 1)$, solitary wave limit of (13) on background $h = \overline{h}, u = \overline{u}$ is

$$h(x,t) = \overline{h} + a \operatorname{sech}^{2} \left(\frac{\sqrt{3a}}{\overline{h}\sqrt{\overline{h} + a}} (x - Dt) \right)$$
 (14a)

$$u(x,t) = D - \sigma \frac{\overline{h}\sqrt{\overline{h}+a}}{h(x,t)}, \quad D = \overline{u} + \sigma \sqrt{\overline{h}+a}$$
 (14b)

When $h_2 \to h_3$ ($m \to 0$), harmonic limit of (13) yields small-amplitude linear wave characterised by dispersion relation

$$\omega = kD = \omega_0(k, \overline{h}, \overline{u}) \equiv k\overline{u} + \sigma k \sqrt{\frac{\overline{h}}{1 + \overline{h}^2 k^2/3}}$$
 (15)

Whitham modulation system: SGN equation

Assume SGN periodic solution $h(\xi,X,T,\varepsilon)$, $u(\xi,X,T,\varepsilon)$ with respect to ξ & slowly varying to X & T. Applying Whitham averaging procedure to three SGN conservation laws (11) & augmenting them by wave conservation equation, one obtains SGN modulation system (El $et\ al.\ 2006$):

$$\overline{h}_{T} + (\overline{h}\overline{u})_{X} = 0$$

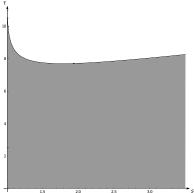
$$(\overline{h}\overline{u})_{T} + \left(\overline{h}\overline{u^{2}} + \frac{1}{2}\overline{h^{2}} - \frac{1}{3}\overline{h^{3}((u - D)u'' - (u')^{2})}\right)_{X} = 0$$

$$\left(\frac{1}{2}\overline{h}\left(h + u^{2} + \frac{1}{3}h^{2}(u')^{2}\right)\right)_{T} + \left(\overline{hu\left(h + \frac{1}{2}u^{2} + \frac{1}{2}h^{2}(u')^{2} - \frac{1}{3}h^{2}(u - D)u''\right)}\right)_{X} = 0$$

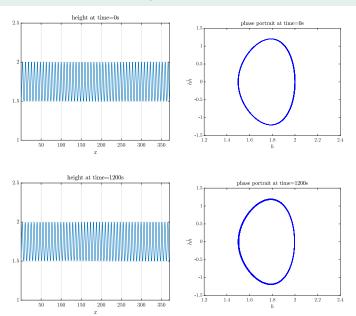
$$k_{T} + (kD)_{X} = 0$$

SGN modulational system: hyperbolicity

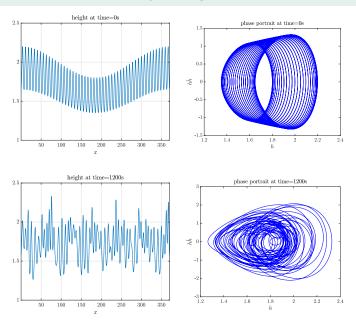
Region $s=h_2>1,\ \tau=h_3-h_2>0$ is divided by smooth curve into two sub-regions: grey & white, corresponds to eigenvalues sign change. In both regions, all eigenvalues are real & distinct; system is genuinely nonlinear & strictly hyperbolic (Tkachenko *et al.* 2020)



Modulational instability: small amplitude $a = 10^{-3}$



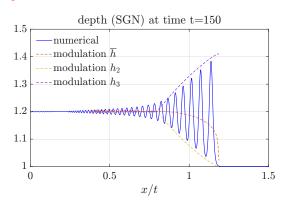
Modulational instability: large amplitude $a = 10^{-1}$



SGN modulation system: simple wave solution

Assume solution is self-similar: $q(x,t) = q(\zeta)$, $\zeta = x/t$. If $\nabla_q \lambda_i \cdot r_i \neq 0$, one obtains $q(\zeta)$ by solving ODEs numerically:

$$\frac{dq}{d\zeta} = r_j / (\nabla_q \lambda_j \cdot r_j), \quad \zeta = \lambda_j, \quad j = 1, 2, 3$$



SGN modulation system: solitary limit

Without going into details, we write down exact solitary limit for SGN modulation system as follows (Congy et al. 2025):

$$\overline{h}_{T} + (\overline{h}\overline{u})_{X} = 0 \tag{16a}$$

$$\overline{u}_{T} + \overline{u}\,\overline{u}_{X} + \overline{h}_{X} = 0 \tag{16b}$$

$$z_{T} + (\overline{u} + \sigma\sqrt{\overline{h}(1+z^{2})}) z_{X} + \tag{16c}$$

$$\sigma \left(\frac{3(z^{2}+1)^{3/2}}{2z} \frac{z\sqrt{z^{2}+1} - \sinh^{-1}(z)}{2z\sqrt{z^{2}+1} - \sinh^{-1}(z)} \frac{1}{\sqrt{\overline{h}}}\right) \overline{h}_{X} + \left(-\frac{\sqrt{z^{2}+1}}{2z} \frac{3z + 2z^{3} - 3\sqrt{z^{2}+1} \sinh^{-1}(z)}{2z\sqrt{z^{2}+1} - \sinh^{-1}(z)}\right) \overline{u}_{X} = 0$$

Here
$$z^2 = a/\overline{h} \& \sigma = \pm 1$$

SGN solitary limit: self-similar solution

Riemann invariants for (16a), (16b) are $r_{\pm} = \overline{u} \pm 2\sqrt{\overline{h}}$,

$$(r_{\pm})_T + V_{\pm} (r_{\pm})_X = 0, \quad V_{\pm} = \overline{u} \pm \sqrt{\overline{h}}$$

Let $z^2 = a/\overline{h}$. Assume solution in (16) is self-similar in $\zeta = X/T = V_+ = r_- + 3\sqrt{\overline{h}}$ (2-wave) with $r_- = \mathrm{const.}$

From (16), we have

$$\overline{h}_{T} + \left(r_{-} + 3\sqrt{\overline{h}}\right) \overline{h}_{X} = 0$$

$$z_{T} + \left(r_{-} + 2\sqrt{\overline{h}} + \sigma\sqrt{\overline{h}(1+z^{2})}\right) z_{X} + \sigma \frac{g_{\sigma}(z)}{\sqrt{\overline{h}}} \overline{h}_{X} = 0$$

$$g_{\sigma}(z) = \frac{3(z^{2} + 1)^{3/2}}{2z} \frac{z\sqrt{z^{2} + 1} - \sinh^{-1}(z)}{2z\sqrt{z^{2} + 1} - \sinh^{-1}(z)} - \sigma \frac{1 + z^{2}}{2z} \frac{(3z + 2z^{3})(1 + z^{2})^{-1/2} - 3\sinh^{-1}(z)}{2z\sqrt{1 + z^{2}} - \sinh^{-1}(z)}$$

 \overline{h} is one Riemann invariant of (17). Employing simple-wave ansatz $z = z(\overline{h})$ in (17), we have ODE

$$\frac{dz}{d\overline{h}} + \frac{g_{\sigma}(z)}{\overline{h}\left(\sqrt{1+z^2} - \sigma\right)} = 0 \tag{18a}$$

Perform integration, we have

$$\ln \overline{h} = \Psi(z), \quad \Psi(z) = \int_{-\pi/s}^{z} -\frac{\sqrt{1+s^2} - \sigma}{\sigma_z(s)} ds$$
 (18b)

As in DSW fitting method for BBM equation, using approximate solitary limit equation (10b), one obtains

$$\frac{d\widetilde{k}}{d\overline{h}} = \frac{\widetilde{\omega}_{\overline{h}}}{V_{+}(\overline{h}) - \widetilde{\omega}_{\widetilde{k}}} = \frac{\widetilde{k}\left(\left(1 + \frac{\overline{h}^{2}\widetilde{k}^{2}}{3}\right) + 2\left(1 - \frac{\overline{h}^{2}\widetilde{k}^{2}}{3}\right)^{3/2} + 1\right)}{2\overline{h}\left(\left(1 - \frac{\overline{h}^{2}\widetilde{k}^{2}}{3}\right)^{3/2} - 1\right)}$$

Solitary wave-mean flow: SGN equations

To solve SGN solitary wave-mean flow interaction problem with initial condition:

$$(\overline{h}, \overline{u}, a) (x, 0) = \begin{cases} (h^-, u^-, a^-), & x < 0, \\ (h^+, u^+, \mathbf{a}^+(?)), & x > 0 \end{cases}$$

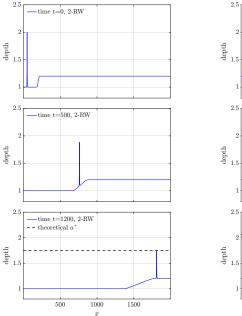
one may use (18) or (19) for governing equation

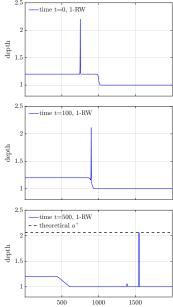
For 2-wave case,, condition for solitary wave trapping is $z^+=0$. One need to take $z^->z_{\min}^-$ which is a unique root of

$$\Psi(z_{\min}^-) - \Psi(0) - \ln\left(\frac{h^+}{h^-}\right) = 0$$

to have solitary wave transmission through initial step function

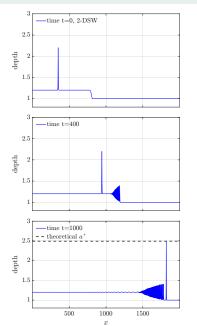
Solitary wave over RW: SGN equations

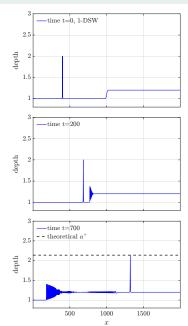




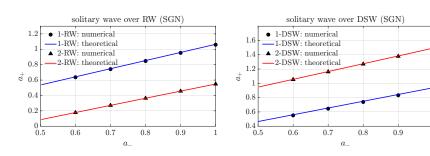
x

Solitary wave over DSW: SGN equations

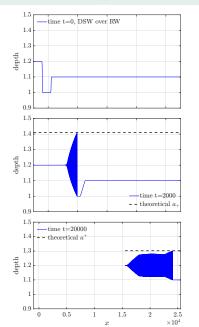


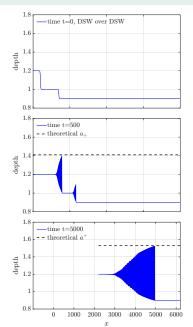


Transmission: analytical & numerical comparison



DSW over RW/DSW: SGN equations



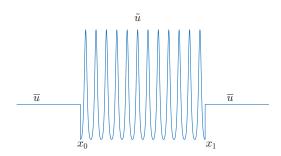


Generalized Riemann problem: dispersive equations

Generalized Riemann problem (GRP) for dispersive equations is Cauchy problem with initial condition:

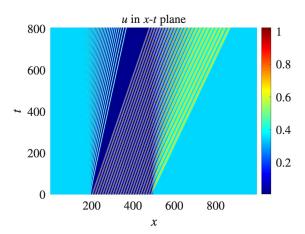
$$u(x,0) = \begin{cases} \tilde{u}(x), & x \in (x_0, x_1), \\ \overline{u}, & x \in]x_0, x_1[.] \end{cases}$$

 $\tilde{u}(x)$ is wave train of periodic travelling wave solution & \overline{u} is wave average of \tilde{u}

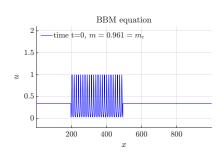


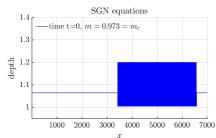
GRP solution structure: dispersive equations

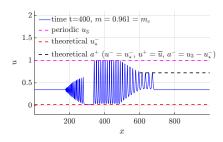
On the right, a right-facing DSW is formed followed by a left-facing RW. A constant state, denoted by u_{\ast}^{-} , is formed on the left of the initial periodic wave train

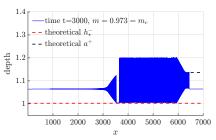


GRP solutions: dispersive equations

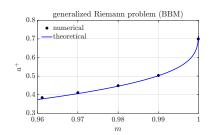


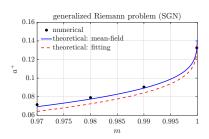






Transmission: analytical & numerical comparison

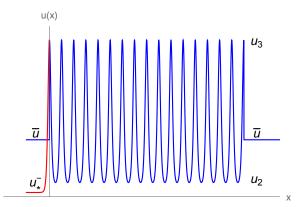




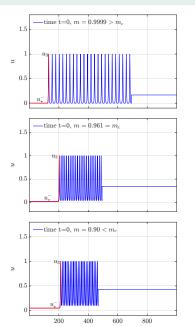
- u_{\star}^- & h_{\star}^- are solutions of generalized Rankine-Hugoniot conditions for BBM & SGN modulation equations, respectively
- Recall $m=\frac{u_3-u_2}{u_3-u_1}$ or $m=\frac{h_3-h_2}{h_3-h_1}$. Critical value $m=m_c$ satisfies $D=\overline{\lambda}$ (phase speed = dispersonless characteristic velocity)

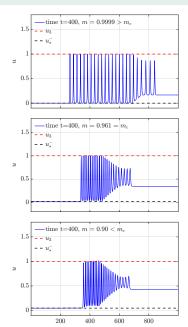
Stable shock-like travelling front

If, initially, instead of \overline{u} , we put u_{\star}^- on left connected with wave train by half-solitary wave (red curve), would left boundary of wave train remain invariable in time ?

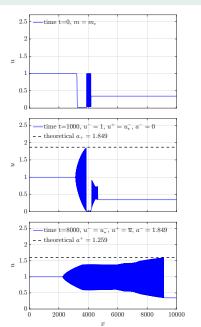


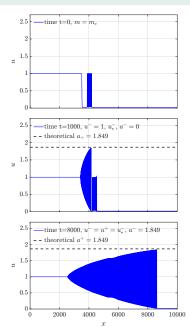
Stable shock-like travelling front: BBM equation



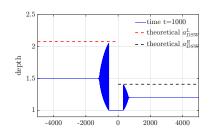


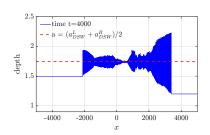
DSW over multi-hump: BBM equation





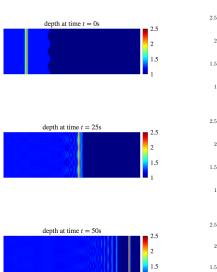
Headon DSW-DSW interaction: SGN equations

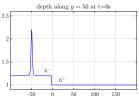


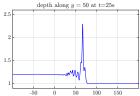


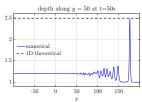
- Solitary limit construction does not apply to head-on DSW interaction, due to unidirectional nature of wave generation in our Cauchy problems
- Solitary wave limit solution works only outside self-similar fan, but not within fan

Solitary wave over perturbed 2-DSW: $h^+/h^- = 1.2$

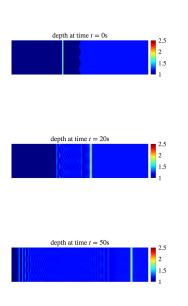


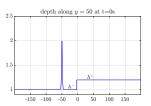


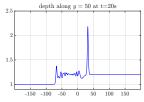


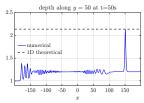


Solitary wave over perturbed 1-DSW: $h^+/h^- = 1.2$

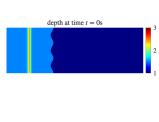


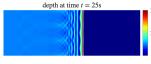


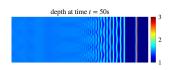


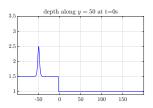


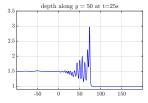
Solitary wave over perturbed 2-DSW: $h^+/h^- = 1.5$

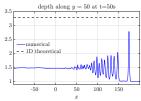




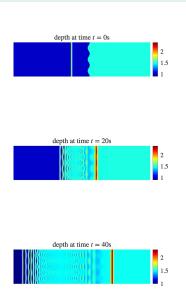


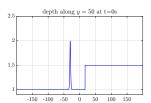


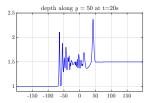


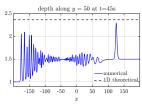


Solitary wave over perturbed 1-DSW: $h^+/h^-=1.5$









SGN equations: alternative form

Recall SGN momentum equation (11b) reads

$$u_t + uu_x + gh_x = \frac{1}{h} \left(\frac{h^3}{3} \left(u_{xt} + uu_{xx} - u_x^2 \right) \right)_x$$

Equivalent form of (11b) is

$$(hu)_t + (hu^2 + p)_x = 0, \quad p = \frac{1}{2}gh^2 + \frac{1}{3}h^2\ddot{h}$$

p is integrated fluid pressure divided by constant density ρ , $\dot{h}=h_t+uh_x, \ \ddot{h}=\dot{h}_t+u\dot{h}_x$

Bernoulli conservation law for \mathcal{K} representing tangent component of fluid velocity at free surface (Gavrilyuk *et al.* 2015) is:

$$\mathcal{K}_t + \left(\mathcal{K}u + gh - \frac{u^2}{2} - \frac{1}{2}h_x^2u^2\right)_x = 0, \quad \mathcal{K} = u - \frac{1}{3h}\left(h^3u_x\right)_x$$

Numerical approximation: SGN equation

- 1. *u*-based elliptic operator inversion
 - Hyperbolic step for $(h, h\mathcal{K})$

$$h_t + (hu)_x = 0$$
, $(h\mathcal{K})_t + \left(h\mathcal{K}u + \frac{1}{2}gh^2\right) = \left(\frac{2}{3}h^3(u_x)^2\right)_x$

Elliptic step for u

$$u - \frac{1}{3h} \left(h^3 u_x \right)_x = \mathcal{K}$$

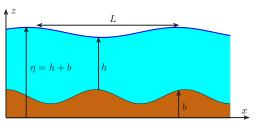
- 2. ϖ -based elliptic operator inversion
 - Hyperbolic step for (h, hu)

$$h_t + (hu)_x = 0$$
, $(hu)_t + \left(hu^2 + \frac{1}{2}gh^2\right)_x = -\varpi_x$

• Elliptic step for ϖ $(p = \varpi + \frac{1}{2}gh^2)$

$$-\frac{h^{3}}{3} \left(\frac{\varpi_{x}}{h}\right)_{x} + \varpi = \frac{2}{3} h^{3} u_{x}^{2} + \frac{h^{3}}{3} g h_{xx}$$

SGN equations over topography



SGN equations are fully nonlinear Boussinesq-type model (cf. weakly nonlinear models: Nwogu and Madsen & Sørensen). With bottom topography, it can be written as:

$$h_t + \operatorname{div}(h\mathbf{u}) = 0 \tag{20a}$$

$$(h\mathbf{u})_t + \operatorname{div}(h\mathbf{u} \otimes \mathbf{u}) + \nabla p = -p \Big|_{z=b} \nabla b$$
 (20b)

$$p = \frac{gh^2}{2} + \frac{h^2}{3} \left(\ddot{h} + \frac{3}{2} \ddot{b} \right), \qquad p \mid_{z=b} = gh + h \left(\ddot{b} + \frac{1}{2} \ddot{h} \right)$$

Enhanced SGN equations with topography

Improved formulation of SGN equations (cf. Bonneton *et al.* 2011, Tissier *et al.* 2012, Berger & LeVeque 2024) is:

$$h_t + (hu)_x + (hv)_y = 0$$

$$(hu)_t + (hu^2)_x + (huv)_y + gh\eta_x = h\left(\frac{g}{\alpha}\eta_x - \psi_1\right)$$

$$(hv)_t + (huv)_x + (hv^2)_y + gh\eta_y = h\left(\frac{g}{\alpha}\eta_y - \psi_2\right)$$

$$(21a)$$

Vector $\boldsymbol{\psi} = [\psi_1, \psi_2]$ satisfies elliptic equation of form

$$(I + \alpha \mathcal{T}) \psi = \mathbf{Z}, \quad \mathcal{T} = \begin{bmatrix} \mathcal{T}_{11} & \mathcal{T}_{12} \\ \mathcal{T}_{21} & \mathcal{T}_{22} \end{bmatrix}, \quad \mathbf{Z} = [Z_1, Z_2]$$

$$\mathcal{T}_{11} = -\frac{h^2}{3} \partial_x^2 - h h_x \partial_x + \frac{h}{2} b_{xx} + b_x \eta_x$$

$$\mathcal{T}_{12} = -\frac{h^2}{3} \partial_x \partial_y + \frac{h}{2} b_y \partial_x - h \left(h_x + \frac{1}{2} b_x \right) \partial_y + \frac{h}{2} b_{xy} + b_y \eta_x$$

$$\mathcal{T}_{21} = -\frac{h^2}{3}\partial_x\partial_y - h\left(h_y + \frac{1}{2}b_y\right)\partial_x + \frac{h}{2}b_x\partial_y + \frac{h}{2}b_{xy} + b_y\eta_y$$

$$\mathcal{T}_{22} = -\frac{h^2}{3}\partial_y^2 - hh_y\partial_y + \frac{h}{2}b_{yy} + b_y\eta_y$$

$$Z_1 = \frac{g}{\alpha}\eta_x + 2h\left(\frac{h}{3}\phi_x + \phi\left(h_x + \frac{1}{2}b_x\right)\right) + \frac{h}{2}w_x + w\eta_x$$

$$Z_2 = \frac{g}{\alpha}\eta_y + 2h\left(\frac{h}{3}\phi_y + \phi\left(h_y + \frac{1}{2}b_y\right)\right) + \frac{h}{2}w_y + w\eta_y$$

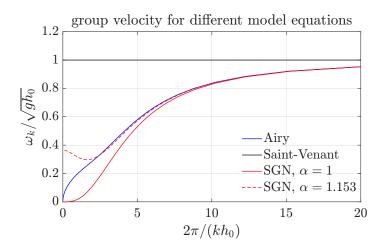
$$\phi = v_x u_y - u_x v_y + (u_x + v_y)^2, \quad w = u^2 b_{xx} + 2uvb_{xy} + v^2 b_{yy}$$

To solve (21) numerically, one approach is fractional-step method:

- ullet Elliptic step for dispersive source term ψ
- Hyperbolic step for h, hu, & hv

Detailed numerical procedures would vary depending on employed discretization methods

Shallow water models: group velocity comparison



Numerical SGN model: pressure-based formulation

To simplify elliptic-step computation in 2D SGN, Gavrilyuk & Shyue (2023) derived scalar elliptic equation for averaged pressure p defined in (20) as

$$-\frac{h^{3}}{3}\nabla \cdot \left(\frac{\nabla p}{h}\right) - \frac{h^{3}}{2}\nabla \cdot \left(\frac{p\nabla b}{h^{2}}\right) + p =$$

$$\frac{2h^{3}}{3}\left[\left(\nabla \cdot \mathbf{u}\right)^{2} - \det\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)\right] + \frac{1}{2}gh^{2} + \frac{1}{2}h^{2}\ddot{b} - \frac{h^{3}}{3}\nabla \cdot \Upsilon$$

with

$$\Upsilon = \begin{bmatrix} -\left(g + \ddot{b}\right)b_x/4\\ -\left(g + \ddot{b}\right)b_y/4 \end{bmatrix}$$

Numerical SGN model: ϖ -based formulation

Let $\varpi=p-\frac{1}{2}gh^2=\frac{h^2}{3}\left(\ddot{h}+\frac{3}{2}\ddot{b}\right)$ be non-hydrostatic part of averaged pressure p

Alternative elliptic equation written in ϖ is:

$$-\frac{h^3}{3} \left[\left(\frac{\varpi_x}{h} \right)_x + \left(\frac{\varpi_y}{h} \right)_y \right] - \frac{h^3}{2} \left[\left(\frac{b_x}{h^2} \varpi \right)_x + \left(\frac{b_y}{h^2} \varpi \right)_y \right] + \varpi =$$

$$\frac{2h^3}{3} \left[(U_x + V_y)^2 - (U_x V_y - U_y V_x) \right] + \frac{h^2}{2} \ddot{b} +$$

$$\frac{h^3}{3} \left[\left(g \left(h + b \right)_x + \frac{1}{4} \ddot{b} \, b_x \right)_x + \left(g \left(h + b \right)_y + \frac{1}{4} \ddot{b} \, b_y \right)_y \right]$$

Separating ϖ from p has advantage in hyperbolic-step approximation. Here $\mathbf{u}=(U,V)^T$ & $\mathbf{x}=(x,y)^T$

Numerical method for ϖ -based SGN model

We employ hyperbolic-elliptic splitting in solving SGN model

• Hyperbolic step: well-balanced scheme

$$egin{aligned} oldsymbol{q}_t + \operatorname{div} oldsymbol{\mathcal{F}}(oldsymbol{q}) + oldsymbol{\zeta}(oldsymbol{q},
abla b) &= oldsymbol{\psi} \left(oldsymbol{q},
abla oldsymbol{q},
abla oldsymbol{q},
abla oldsymbol{q},
abla oldsymbol{F} = oldsymbol{b} \left(oldsymbol{q},
abla oldsymbol{q},
abla oldsymbol{q},
abla oldsymbol{\psi} \left(oldsymbol{q},
abla oldsymbol{q},
abla oldsymbol{\psi} \left(oldsymbol{q},
abla oldsymbol{q},
abla oldsymbol{\psi} \left(oldsymbol{q},
abla oldsymbol{\psi} oldsymbol{\psi} \left(oldsymbol{q},
abla oldsymbol{\psi} oldsymbol{q},
abla oldsymbol{\psi} \left(oldsymbol{q},
abla oldsymbol{\psi} oldsymbol{q},
abla oldsymbol{\psi} \left(oldsymbol{q},
abla oldsymbol{\psi} oldsymbol{\psi} \left(oldsymbol{q},
abla oldsymbol{\psi} oldsymbol{\psi} \left(oldsymbol{q},
abla oldsymbol{\psi} \left(oldsymbol{q},
ab$$

$$\boldsymbol{\zeta} = \begin{bmatrix} 0 \\ -ghb_x \\ -ghb_y \\ 0 \end{bmatrix}, \qquad \boldsymbol{\psi} = \begin{bmatrix} 0 \\ -\frac{3\varpi}{2h}b_x - \frac{h}{4}\ddot{b}b_x - \varpi_x \\ -\frac{3\varpi}{2h}b_y - \frac{h}{4}\ddot{b}b_y - \varpi_y \\ 0 \end{bmatrix}$$

Elliptic step

$$-\frac{h^3}{3}\nabla \cdot \left(\frac{1}{h}\nabla\varpi\right) - \frac{h^3}{2}\nabla \cdot \left(\frac{\nabla b}{h^2}\varpi\right) + \varpi = \varphi\left(\boldsymbol{q}, \nabla \boldsymbol{q}, \cdots\right)$$

Derivation of SGN averaged pressure equation

SGN equations (20) in 2D are:

$$\begin{split} h_t + (hU)_x + (hV)_y &= 0 \\ (hU)_t + \left(hU^2 + p\right)_x + (hUV)_y &= -\left[gh + h\left(\ddot{b} + \frac{1}{2}\ddot{h}\right)\right]b_x \\ (hV)_t + (hUV)_x + \left(hV^2 + p\right)_y &= -\left[gh + h\left(\ddot{b} + \frac{1}{2}\ddot{h}\right)\right]b_y \end{split}$$

With fluid pressure p defined by $p=\frac{gh^2}{2}+h^2\left(\frac{1}{2}\ddot{b}+\frac{1}{3}\ddot{h}\right)$, rewrite momentum equations as:

$$\begin{split} \dot{U} + \frac{p_x}{h} &= -\frac{1}{4} \left(g + \ddot{b} + \frac{6p}{h^2} \right) b_x \\ \dot{V} + \frac{p_y}{h} &= -\frac{1}{4} \left(g + \ddot{b} + \frac{6p}{h^2} \right) b_y \end{split}$$

Taking divergence of above system, we find

$$-\nabla \cdot \left(\frac{\nabla p}{h}\right) + \nabla \cdot \Psi = \nabla \cdot (\dot{\mathbf{u}}), \ \Psi = \begin{bmatrix} -\left(g + \ddot{b} + 6p/h^2\right)b_x/4\\ -\left(g + \ddot{b} + 6p/h^2\right)b_y/4 \end{bmatrix}$$

Using vector calculus, we have

$$\nabla \cdot (\dot{\mathbf{u}}) = (\nabla \cdot \mathbf{u}) + (\nabla \cdot \mathbf{u})^2 - 2 \det \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right), \quad \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \in \mathbf{R}^{2 \times 2}$$

Thus one obtains:

$$-\nabla \cdot \left(\frac{\nabla p}{h}\right) + \nabla \cdot \Psi = \overbrace{\left(\nabla \cdot \mathbf{u}\right)}^{\star} + \left(\nabla \cdot \mathbf{u}\right)^{2} - 2 \det \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)$$

which with $\nabla \cdot \mathbf{u} = -\dot{h}/h$ gives

$$-\nabla \cdot \left(\frac{\nabla p}{h}\right) + \nabla \cdot \Psi = -\frac{\ddot{h}}{h} + 2\frac{\dot{h}^2}{h^2} - 2\det\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)$$

This leads to

$$\begin{split} \frac{1}{3}h^2\ddot{h} &= \frac{2}{3}h^3\left(\frac{\dot{h}^2}{h^2} - \det\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)\right) + \frac{1}{3}h^3\nabla \cdot \left(\frac{\nabla p}{h}\right) - \frac{1}{3}h^3\nabla \cdot \Psi \\ &= p - \frac{1}{2}gh^2 - \frac{1}{2}h^2\ddot{b} \end{split}$$

Thus we arrive at

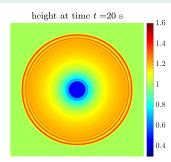
$$-\frac{h^{3}}{3}\nabla \cdot \left(\frac{\nabla p}{h}\right) - \frac{h^{3}}{2}\nabla \cdot \left(\frac{p\nabla b}{h^{2}}\right) + p =$$

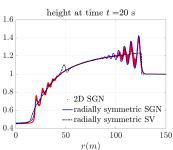
$$\frac{2h^{3}}{3}\left[\left(\nabla \cdot \mathbf{u}\right)^{2} - \det\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)\right] + \frac{1}{2}gh^{2} + \frac{1}{2}h^{2}\ddot{b} - \frac{h^{3}}{3}\nabla \cdot \Upsilon$$

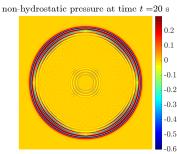
with

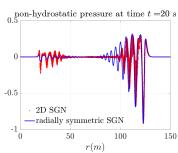
$$\Upsilon = \begin{bmatrix} -\left(g + \ddot{b}\right)b_x/4\\ -\left(g + \ddot{b}\right)b_y/4 \end{bmatrix}$$

Radially symmetric problems: SGN equations

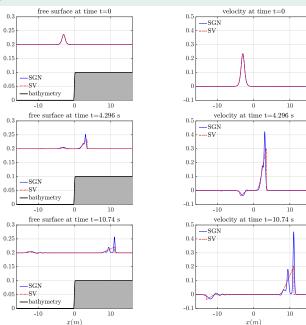




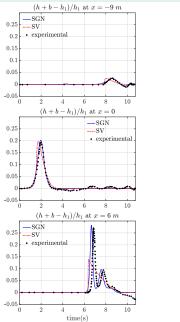


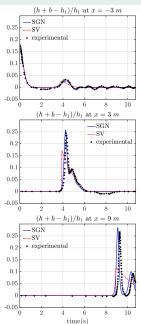


Solitary wave over bottom step: SGN equations

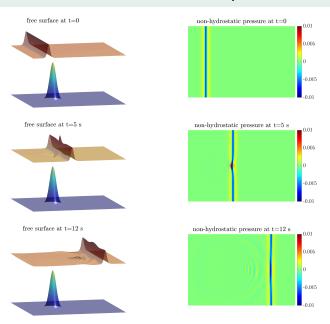


Solitary wave over bottom step: time history

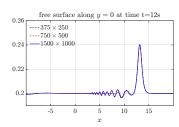


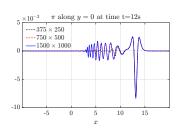


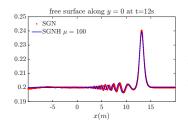
Solitary wave over Gaussian hump

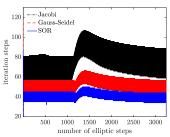


Solitary wave over Gaussian hump: Convergence









Hyperbolic SGN (SGNH) model over topography

To avoid elliptic operator inversion Favrie & Gavrilyuk (2016) considered hyperbolic approximation of SGN equations:

$$h_t + \operatorname{div}(h\mathbf{u}) = 0$$

$$(h\mathbf{u})_t + \operatorname{div}(h\mathbf{u} \otimes \mathbf{u}) + \nabla p_\mu = -\left[gh + \frac{\mu}{2}\left(\frac{\eta}{h} - 1\right)\right]\nabla b$$

$$(h\eta)_t + \operatorname{div}(h\eta\mathbf{u}) = hw$$

$$(hw)_t + \operatorname{div}(hw\mathbf{u}) = -\mu\left(\frac{\eta}{h} - 1\right)$$

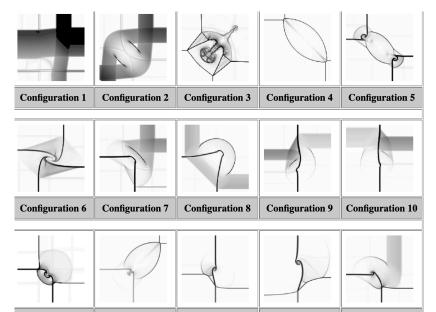
 $\mu \in \mathbf{R}_+$ relaxation parameter & p_μ relaxed pressure

$$p_{\mu} = \frac{1}{2}gh^2 - \frac{\mu}{3}\left(\frac{\eta}{h} - 1\right)\eta$$

Model is hyperbolic with real eigenvalues & complete set of eigenvectors

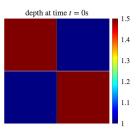
Duchene (2019) gave rigorous mathematical justification of hyperbolic model (b=0 case) to SGN as $\mu \to \infty$

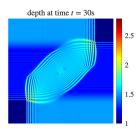
Compressible gas dynamics: 2D Riemann problems



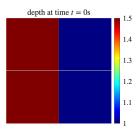
SGN equations: 2D Riemann problems

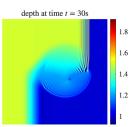
2 DSW-1 DSW case



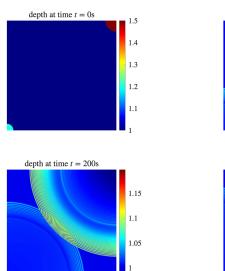


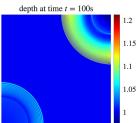
2 DSW-1 RW case

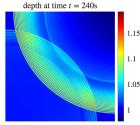




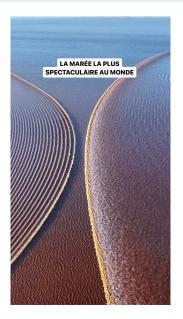
Headon DSW-DSW interaction



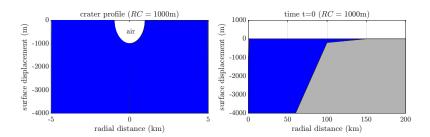




Qiantang river bore (from Dailymotion)



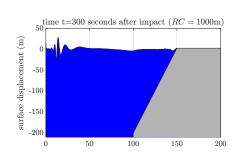
Impact induced tsunami wave over reef

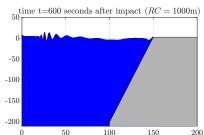


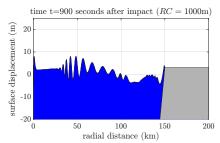
Numerical modelling approach:

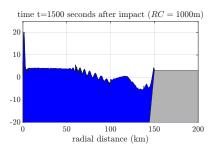
- (i) Initial wave generation
 Direct numerical impact simulation
- (ii) Wave propagation & run-up Depth-average Boussinesq simulation

Impact induced waves: direct numerical simulation









• 5-equation transport model

$$(\alpha_{1}\rho_{1})_{t} + (\alpha_{1}\rho_{1}u)_{r} + (\alpha_{1}\rho_{1}v)_{z} = -\frac{1}{r}\alpha_{1}\rho_{1}u$$

$$(\alpha_{2}\rho_{2})_{t} + (\alpha_{2}\rho_{2}u)_{r} + (\alpha_{2}\rho_{2}v)_{z} = -\frac{1}{r}\alpha_{2}\rho_{2}u$$

$$(\rho u)_{t} + (\rho u^{2} + p)_{r} + (\rho uv)_{z} = -\frac{1}{r}\rho u^{2}$$

$$(\rho v)_{t} + (\rho uv)_{r} + (\rho v^{2} + p)_{z} = -\frac{1}{r}\rho uv - \rho g$$

$$(\rho E)_{t} + (\rho Hu)_{r} + (\rho Hv)_{z} = -\frac{1}{r}\rho Hu - \rho vg$$

$$\alpha_{1,t} + u\alpha_{1,r} + v\alpha_{1,z} = 0$$

• Equation of state: stiffened gas

$$\rho e(p,\alpha) = \alpha \left(\frac{p + \gamma_1 p_{\infty,1}}{\gamma_1 - 1} \right) + (1 - \alpha) \left(\frac{p + \gamma_2 p_{\infty,2}}{\gamma_2 - 1} \right)$$

$$\rho = \alpha_1 \rho_1 + \alpha_2 \rho_2, \quad \alpha_1 + \alpha_2 = 1$$

Hyperbolic-step solver for SGN equations: remark

1. Solitary wave problem

	Godunov		MUSCL		WENO 3	
N	$E^1(h)$	order	$E^1(h)$	order	$E^1(h)$	order
1200	2.595e+02		4.894e+00		2.088e-01	
2400	1.470e+02	0.82	1.210 e + 00	2.02	5.237e - 02	2.00
4800	7.834e+01	0.91	3.005e-01	2.01	$1.310 \mathrm{e}{-02}$	2.00
9600	4.044e+01	0.95	7.487e - 02	2.01	$3.273 \mathrm{e}{-03}$	2.04

2. Periodic wave problem

	Godunov		MUSCL		WENO 3	
N	$E^1(h)$	order	$E^1(h)$	order	$E^1(h)$	order
300	1.346e-01		$5.250 \mathrm{e}{-03}$		$3.521e{-03}$	
600	7.749e-02	0.83	$1.094 e{-03}$	2.37	$4.563 \mathrm{e}{-04}$	3.09
1200	4.100e-02	0.92	2.482e-04	2.15	$5.927 \mathrm{e}{-05}$	2.96
2400	2.112e-02	0.96	$6.072 \mathrm{e}{-05}$	2.03	7.923e-06	2.90

Adaptive reconstruction scheme

Let q_L^{ι} & q_R^{ι} be interpolated states at left & right cell edges of numerical reconstruction scheme $Q_j^{\iota}(x)$ for $\iota=A$, B

Boundary variation diminising (BVD) selection algorithm consists of two steps (Deng *et al.* 2018):

1. Compute values of minimum total boundary variation (mTBV) for schemes ι for $\iota = A \& B$

$$\begin{split} \text{mTBV}_{\mathbf{j}}^{\iota} &= \min \left(\left| q_{L,j-1/2}^{A} - q_{R,j-1/2}^{\iota} \right| + \left| q_{L,j+1/2}^{\iota} - q_{R,j+1/2}^{A} \right|, \\ \left| q_{L,j-1/2}^{A} - q_{R,j-1/2}^{\iota} \right| + \left| q_{L,j+1/2}^{\iota} - q_{R,j+1/2}^{B} \right|, \\ \left| q_{L,j-1/2}^{B} - q_{R,j-1/2}^{\iota} \right| + \left| q_{L,j+1/2}^{\iota} - q_{R,j+1/2}^{A} \right|, \\ \left| q_{L,j-1/2}^{B} - q_{R,j-1/2}^{\iota} \right| + \left| q_{L,j+1/2}^{\iota} - q_{R,j+1/2}^{B} \right| \right) \end{split}$$

2. Compare values of $\rm mTBV^{A}$ & $\rm mTBV^{B}$

$$Q_j(x) = \begin{cases} Q_j^A(x), & \text{if mTBV}^A < \text{mTBV}^B, \\ Q_j^B(x), & \text{otherwise} \end{cases}$$

Thank you