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Dispersive shallow water flow: undular bore

Undular bore (Favre wave) on Severn river near Gloucester, UK




Qiantang river bore (from Dailymotion)




Talk outline

1. Whitham modulation theory for solitary wave-mean flow
interaction for dispersive equations

e Benjamin-Bona-Mahony (BBM) equation
o Serre-Green-Naghdi (SGN) equations

2. Numerical algorithm for 2D SGN equations with bottom
topography

Dispersive shallow water flow applications include:
tsunami modeling, river hydraulics, & study of geohazards like
avalanches, debris flows

Joint work with S. Gavrilyuk, B. Nkonga, G. El, M. Hoefer, T.
Congy and many others



Solitary wave-mean flow interaction scenarios
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Figures referred from Ablowitz et al. 2023 for Korteweg-de
Vries (KdV) equation
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Solitary wave-mean flow: dispersive equations

For dispersive solitary wave-mean flow interaction, consider
initial condition:

(u=,a™), x <0

(@ a) (z,0) = { (wt at(?)), >0 (1)

Sketch of positive rarefaction wave (RW) case: 0 < u™ < u™

u(x)

LD

Could one can obtain analytical formula for a* ? Yes, for
KdV, BBM, SGN, conduit equation, ...



BBM equation

BBM equation was proposed as a unidirectional model of
weakly non-linear waves in shallow water:

U+ Up + V0 — Vggr = 0
After change of variable v = u — 1 one gets
Up + Uy — Ugyy = 0 (2)

BBM (2) admits only three independent conservation laws:



Periodic travelling wave solutions: BBM equation
BBM periodic travelling wave solutions u(z,t) = u(§),

& = x — Dt, satisfies

, 2 ud u? 1
Wy =2 (—E + DY et ) = PW)  (42)

P(u) = (u—uy) (u—u2) (ug —u), D >0

Its solution (three-parameter family) is:

. 2 1 U3z — Uy
u(é) = uz +acn (2”—u1+u2+u3§’m> (4b)

cn is Jacobi function,

a=ug—uz, m= (ug —uz)/(ug —uy), D= (u; +us+us)/3



Define wave averaged of any function f(u) as
1
- [ rwae=2 [
&2

Wave averaged of u is

g [ _udu // u1+(U3—u1)E((Z;

Wavelength Lis

L:/ d§—2/ \/_ du = 4V/3 K(m)

K(m) & E(m): first & second type complete elliptic integrals

Solitary wave solution obtained in L — 0o, uy = ug > 0 is

1 Jus—u
U(f) = Uy + a SeCh2 (5 2/52—_’_1ii€>



Whitham modulation system: BBM equation
Assume BBM solution u(§, X, T, ¢); L-periodic with respect
to £ & varies slowly to X & T

X - DT
=—"—=20—-Dt, X=cx, T=ct ex1
£

One can obtain modulation system using two equivalent
methods: averaging of conservation laws & method of
averaged Lagrangian (Whitham 1965,1974)

For BBM equation, from (3), we have modulation system:

_ [ w2 ]
u _
) — 2
—+——=| +|v Pl _—j (5)
2 06D 3 3
" D
T L L dx




In quasi-linear form, (5) is written as
Agr+ Bgx =0 (6)
Let A\, be eigenvalue & r; be associated right eigenvector:
(B=XA)r;=0, j=1,2,3

It is known that (6) is mixed elliptic-hyperbolic system, i.e.,
there exists \; € C (Congy, Gavrilyuk, Tso, ...).

BBM modulation system: Im|),|, & =1
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Modulational instability (z =1, a = % k =~ 2.389)

3 u at time t=0 3 phase portrait at time =0

2.5 2 1
2 1 1

15 “ “ S0 1
1 b 1
B u at time t=3000 3 phase portrait at time ¢=3000

2.5 2 1
2 1 1

15 “ | S0 1
1 b 1
B u at time t=5000 B phase portrait at time t=5000

2.5 2 1
2 1 1

15 S0 1
1 b 1

0.5 -2 1
0 -3

50 100 150 200 250 0 0.5 1 1.5 2 2.5 3



BBM modulation system: simple wave solution

Assume solution is self-similar: g(x,t) = ¢(¢), ¢ = z/t. If
VA -1 # 0, one obtains ¢(¢) by solving ODEs numerically:

dgq
— =1/ (VeAj-rj), (=X, =123
d¢
5 u at time t=100
——BBM numerical
- - BBM modulation: u
15l™" BBM modulation: us

| - - BBM modulation: us _ -

0 0.2 0.4 0.6 0.8 1



Amplitude modulation equation: BBM equation

Taking L — oo to modulation system (5) (solitary limit), one
obtains only equations for u

2 2 \3

e () o () () —
2 )x 2 )r 3 /) x

from first two equations & trivial identity from third

To find equation for amplitude a(@), employing method of
averaged Lagrangian, we have action conservation laws:

w? — (@)’  P(u) w?—(@? Plu))) _
< ok +6Dk>T+<D< ok _6Dk)>X_O




BBM modulation system: solitary limit

Now taking L — oo to (7) we have governing equations for
Riemann problem (1):

71\2
2 X
F(@,a); + G (u,a), =0 (8b)
3/2(9 o7 3/2(4 15 —
F (@) = a’’?( a+:’)u)7 G (Ta) = a’’*(4a + 15u)v/a + 3u
va+ 3u 9
Quasilinear form of (8) is with D = @ -+ %:

Tr + Uy =0 (9a)
a 14a® 4+ Thau + 90u?

Day + & —0 9b
ar + D0x + 3 d0an + B X (9b)




BBM solitary limit: self-similar solution

Assuming solution in (8) is smooth & self-similar in { = X/T.
Let z = a/u. From (8), we have separable ODE:

_dz 1422 + 752 + 90
U = @) Fe) =2t e s

For Riemann problem (1), perform integration, we have
algebraic equation to be solved for z7:

In <i) =0 (z7) =0 ("), 25 =(a/u)*

u

1 15 + 8z 1
U(z) = ——+/15 tan™* — =1
(2) DM 5 tan ( i ) 1 n(3 + z)+

gln (15 + 152 + 427)



Approximate BBM solitary limit: fitting method

Dispersion relation to BBM equation linearized on constant
background u = is

Wo [
Cp = —/

A (¢, phase velocity)

DSW fitting method of G. El (2005) is to assume that solitary
wave motion on simple-wave background is governed by

_ w?

ur + | — =0 (103)
2 X

for + @ (n z%)X ~0 (10b)

~ ~ , = uk Wo a
_, k) = — (_, k) == =~ D = = = u —_
w0<u 1wy | U, T 7 u—i—S

wp conjugate dispersion relation & k conjugate wave number



It follows from (10) that one obtains ODE

k. (@o)y 1-k?

di - (@), u(—3k+ k)

For Riemann problem (1), perform integration, we have
algebraic equation to be solved for k*:

In (Z-f) :m(z?ﬁ) _ v (k*) =0

w (i) = -5 m (i 1)

Solitary wave amplitude a* is:

(:Jo (U+, l%+)
a+ = 3 —_— — u+ = 3—~
= 1 — (irt)?



Solitary wave over RW:
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Solitary wave over DSW: BBM equation
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Solitary wave over DSW: BBM equation

u in x-t plane
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Transmission: analytical & numerical comparision

solitary wave over RW (BBM) solitary wave over DSW (BBM)

1 2.4
e numerical e numerical
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DSW over RW/DSW: BBM equation

—time t=0, DSW over RW

—time t=1000,u" =2, u* =1,a =0
- - theoretical at = 1.944

—time
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Numerical approximation: BBM equation

+ L2 =0
U —Uu — Ugpt =
t 5 ) 1

@ wu-based elliptic operator inversion

BBM equation is

1
K + <§u2) =0 (hyperbolic step)
—uze +u =K (elliptic step)

@ w-based elliptic operator inversion

1
ug + (§u2 + w) =0 (hyperbolic step)

2

u .
— Wy + W = (;) (elliptic step)



SGN equations

SGN equations over a flat bottom approximating free-surface
Euler equations in long wave limit are

hy + (hu), =0 (11a)

1 /h3
uy + uu, + gh, = 7 (? (uxt + Ullyy — ui)) (11b)

h is total depth, u is depth-averaged horizontal velocity, and ¢
is acceleration due to gravity (set g = 1 in what follows)

SGN equations admit energy conservation law:

1 1
—h(h+u®+ k%l ) ) + (11c)
2 3 .

1 1 1
(hu (h + §u2 + §h2u§ — ghQ (ug + uum)>)m =0



Periodic travelling wave solutions: SGN equations

Periodic travelling wave solutions h(z,t) = h(§),
u(z,t) =u(f), £ = x — Dt to SGN equations (11) follows

@j?—m;%m—hmh—@x@—h) (122)
u:D—aL%?@ (12b)

We have periodic travelling wave solution (4-parameter
family):

3(hs — hq)

h(€) =h 2
(5) 9+ a cn I halts

— = &m (13)

hs — hy
hs—hy'

a=hs—hy, m= = +1(fast), 0 = —1(slow)



Averages of depth h & velocity @ can be written as
Im(1- Z—i, m)
th(m)

When hy — hy (m — 1), solitary wave limit of (13) on
background h = h,u = is

— E(m T
h = h1 + (h3 - hl)KEm) s u=D-—0c h1h2h3

~—

=h Sec 2 ﬂ xr — a
h(z,t)= h + asech (E\/ﬁ—m( Dt)> (14a)

hV h =
W) =D —o X0 p Gy oVE+a  (14b)

h(z,t) ’

When hy — hs (m — 0), harmonic limit of (13) yields
small-amplitude linear wave characterised by dispersion relation

- h
w=kD = CUQ(k,h,ﬂ) = ku+ ok R S— (15)
1+ hok2/3



Whitham modulation system: SGN equation

Assume SGN periodic solution h(&, X, T, ¢), u(§, X, T, ) with
respect to & & slowly varying to X & T'. Applying Whitham
averaging procedure to three SGN conservation laws (11) &
augmenting them by wave conservation equation, one obtains

SGN modulation system (El et al. 2006):
hr + (hu)x =0
_ — 1= 1
(hu)r + (hu2 + §h2 - §h3 ((u— D)u" — (u’)Q)) =0

X
L (h+w+ 2w +
2 3

T

(hu (h + %uQ + %hz(u’)Q - %hQ(u - D)u”))> ~0

X

kr + (kD) =0



SGN modulational system: hyperbolicity

Region s = hy > 1, 7 = hg — hy > 0 is divided by smooth
curve into two sub-regions: grey & white, corresponds to
eigenvalues sign change. In both regions, all eigenvalues are
real & distinct; system is genuinely nonlinear & strictly
hyperbolic (Tkachenko et al. 2020)
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Modulational instability: small amplitude @ = 103
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Modulational instability: large amplitude ¢ = 107!
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SGN modulation system: simple wave solution

Assume solution is self-similar: g(x,t) = ¢(¢), ¢ = z/t. If
VA -1 # 0, one obtains ¢(¢) by solving ODEs numerically:

dq .
= =1/ (VeAi-rj), (=X =123
dg
L5 depth (SGN) at time t=150
) T T
——numerical
1.4| ----modulation h
modulation hs
1.3 | ----modulation hg
1.2 NV“VAVAV“V/\VA\/‘ !
1.1+
1 L L
0 0.5 1 1.5

x/t



SGN modulation system: solitary limit

Without going into details, we write down exact solitary limit
for SGN modulation system as follows (Congy et al. 2025):

hr + (hw), =0 (16a)
Ur + Uty +hy =0 (16b)
2r + (ﬂ—i—m/ﬁ(l%—%)) zx+ (16¢)

3(2%+ 1)3/2 /22 4+ 1 —sinh™'(z) 1 ot
O- —
2z 22v/22 + 1 —sinh'(2) Vv X

(_ V2241324223 —3v22 + 1sinh_1(z)> _

ux =0
2z 22/22 + 1 —sinh™'(2) *

Here 22 = a/h & o = +1



SGN solitary limit: self-similar solution
Riemann invariants for (16a), (16b) are r. = u + 2Vh,
(ri>T+Vi(ri)X:O7 Vi:ﬂzl:\/ﬁ

Let 22 = a/h. Assume solution in (16) is self-similar in
(=X/T=V,=r_+ 3vVh (2-wave) with r_ = const.
From (16), we have

B+ +3\/_>hx—0

(
2r + (7‘ + 2\/ﬁ—|— oy/h(1+ 22)) Zx + ag‘:/(%)ﬁx =0

(17)

32+ 1)*? 2y/22 +1 — sinh™!(2)
9.(2) = 2z 221/22 + 1 — sinh ™' (2) B
1422 (32 +22%)(1 + 22)71/2 — 3sinh ' (2)
772z 22v/1 1 22 — sinh 1(2)




h is one Riemann invariant of (17). Employing simple-wave
ansatz z = z(h) in (17), we have ODE

dz 9s(2)

— — =0 18a
dh h(\/1+22—0') (182)
Perform integration, we have
1 2 _
Inf = (= / v +S VITSY Z%5  (18b)

As in DSW fitting method for BBM equation, using
approximate solitary limit equation (10b), one obtains

i 5 k(<1+hk2>+2( >/2+1>

dh Vi) - oh <<1 . hgf"’)‘m . 1)

(19)



Solitary wave-mean flow: SGN equations

To solve SGN solitary wave-mean flow interaction problem
with initial condition:

7 _ (h_au_aa_)a $<O,
(h”“’a)(w’0>{(h+,u+,a+(?», z>0

one may use (18) or (19) for governing equation

For 2-wave case,, condition for solitary wave trapping is
2zt = 0. One need to take z~ > z_. which is a unique root of

w%w—@@—m<%)_o

to have solitary wave transmission through initial step function



Solitary wave over RW: SGN equations
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Solitary wave over DSW: SGN equations

3 3
—time t=0, 2-DSW —time t=0, 1-DSW
2.5 2.5
£ 2 2
2 2
I3 5
< <
15 15
1 1
3 3
—time t=400 —time t=200
2.5 2.5
£ 2 £ 2
< o'
< <
15 15
1 1
3 3
—time t=1000 —time t=700
at | - - theoretical a*
2.5
= 2 o[ TTTTTTTTITTIITIIT T
= =3
< <
< <
1.5 1.5
l i
500 1000 1500 500 1000 1500



Transmission: analytical & numerical comparison

solitary wave over RW (SGN) solitary wave over DSW (SGN)
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DSW

depth
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over RW/DSW: SGN equations
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Generalized Riemann problem: dispersive equations

Generalized Riemann problem (GRP) for dispersive equations
is Cauchy problem with initial condition:

u(z,0) = { u(z), € (zo,11),

u, T € |zg, 71|

u(x) is wave train of periodic travelling wave solution & @ is
wave average of 4

I3

<|
IS

) X1



GRP solution structure: dispersive equations

On the right, a right-facing DSW is formed followed by a

left-facing RW. A constant state, denoted by u_, is formed on
the left of the initial periodic wave train
u in x-t plane
800 , 1
600 0.8
0.6
400
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200
0.2

200 400 600 800
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GRP solutions: dispersive equations

BBM equation

14 SGN equations
2r ——time t=0, m = 0.961 = m, ——time t=0, m = 0.973 = m,
15} 13
il <12
3 o
<
0.5F 1.1
of 1
200 400 600 800 1000 2000 3000 4000 5000 6000 7000
9 14
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Transmission: analytical & numerical comparison

08 generalized Riemann problem (BBM) 0.16 generalized Riemann problem (SGN)
' e numerical ) e numerical
0.7} —theoretical 0.14 | — theoretical: mean-field
- - theoretical: fitting
0.6
+ +
S S
0.5
0.4
0.3 0.06
0.96 0.97 0.98 0.99 1 0.97  0.975 0.98 0.985 0.99 0.995 1

m m

e u, & h are solutions of generalized Rankine-Hugoniot
conditions for BBM & SGN modulation equations,
respectively

U3z — U2 hg—hg
Ug —ur hs — hy

m = m,. satisfies D = \ (phase speed = dispersonless
characteristic velocity)

@ Recall m = . Critical value



Stable shock-like travelling front

If, initially, instead of @, we put u, on left connected with
wave train by half-solitary wave (red curve), would left
boundary of wave train remain invariable in time 7

u(x)

us




Stable shock-like travelling front: BBM equation
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DSW over multi-hump: BBM equation
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Headon DSW-DSW interaction: SGN equations

2.5 2.5
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5 4
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@ Solitary limit construction does not apply to head-on
DSW interaction, due to unidirectional nature of wave
generation in our Cauchy problems

@ Solitary wave limit solution works only outside self-similar
fan, but not within fan



Solitary wave over perturbed 2-DSW: A" /h~ = 1.2
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Solitary wave over perturbed 1-DSW: At /h~ = 1.2
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Solitary wave over perturbed 2-DSW: h*/h™ = 1.5
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Solitary wave over perturbed 1-DSW: At /h~ = 1.5
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SGN equations: alternative form

Recall SGN momentum equation (11b) reads

h3
Uy + Uy + ghy = 7 <3 (uzt—l—uuxx—ui))x
Equivalent form of (11b) is

1 1.
(hw), + (hu® +p)$ =0, p= fth + §h2h

p is integrated fluid pressure divided by constant density p,
h ht‘i‘Uh;p, h ht+Uh

Bernoulli conservation law for C representing tangent
component of fluid velocity at free surface (Gavrilyuk et
al. 2015) is

2
1
ICt+<ICu+gh—%—2hi 2) =0, K:u——(hgux)w



Numerical approximation: SGN equation

1. u-based elliptic operator inversion
e Hyperbolic step for (h, hK)

he + (hu), =0, (hK), + (hICu + ;ghQ) _ (gh?’ (um)2>x

o Elliptic step for u
1
3h

2. w-based elliptic operator inversion
e Hyperbolic step for (h, hu)

u

(hgux)x =K

1
hi + (hu), =0, (hu), + <hu2 + 2gh2) = —w,

€T
1
o Elliptic step for w (p = w + igh2)

h3 (o, 2 44 B3
-5 (F), * == g+ ot



SGN equations over topography

z

xT

SGN equations are fully nonlinear Boussinesg-type model (cf.
weakly nonlinear models: Nwogu and Madsen & Sgrensen).
With bottom topography, it can be written as:

he + div(hu) = 0 (20a)
(hu); + div (hu®u) + Vp = —p ‘Z:b Vb (20b)
B2 R 3 L1
p=%+—<h+ b) p|z:b=gh+h(b+§h)

55/80



Enhanced SGN equations with topography

Improved formulation of SGN equations (cf. Bonneton et
al. 2011, Tissier et al. 2012, Berger & LeVeque 2024) is:

he + (hu) hv), = (21a)
+ (h uz)x (huv), + ghn, = h <§nm - ¢1> (21b)
(o), + (hav), + (h0?), + ghny = b (S, = v2)  (210)

Vector @ = [y, 1] satisfies elliptic equation of form

T T

I+aT)yp=2, T= [7_21 e

} . Z =4, 7

h? h

h? h 1 h
,Tlg = —g@xay -+ §by0x — h (hx + §bx) 8y + §bxy + byT]x



1 h h
751 = —gaxay — h (hy + §by) 83; + §bx8y + bey + byny

2, h
752 = —gay — hhyay + §byy + byny
h 1 h
« 3 2 2

g h 1 h
ZQ = a?‘]y + 2h (§¢y + (b <hy + §by)) + E’U}y + wny

O = VyUy — UyVy + (Uy + vy)2 ;W = by, + 2uvby, + v7b,,

To solve (21) numerically, one approach is fractional-step
method:

o Elliptic step for dispersive source term

@ Hyperbolic step for h, hu, & hv

Detailed numerical procedures would vary depending on
employed discretization methods



Shallow water models: group velocity comparison

group velocity for different model equations
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Numerical SGN model: pressure-based formulation

To simplify elliptic-step computation in 2D SGN, Gavrilyuk &
Shyue (2023) derived scalar elliptic equation for averaged
pressure p defined in (20) as

h? Vp h3 pVb
-V (h>——v (h2 >+p—
h3

2h? ou 9 9
—{(V~u) det(ax>}+ —gh” + - hb—gv T

with )
—(g+0)b./4

— g+?5 b, /4



Numerical SGN model: w-based formulation

h2

3
3 (h + b) be non-hydrostatic part of

1
Let w=p— égh2
averaged pressure p

Alternative elliptic equation written in @ is:

G G5 | (=) (=),

2h3 h2 .
= (U, + V)2 = (U.V, — U V,)] + = b+

v [(g<h+b>x+ﬁ“x)j (g(“b)“iéby)y]

Separating w from p has advantage in hyperbolic-step
approximation. Here u = (U, V)T & x = (z,y)”

t+w=




Numerical method for zo-based SGN model

We employ hyperbolic-elliptic splitting in solving SGN model

@ Hyperbolic step: well-balanced scheme

q: + div F(q) +¢(g, Vb) =9 (¢, Vg, Vb, V?b, w, Vw)

h hU
_|wU B | hU? + Lgh?
a= || F=IF 6= oA
b 0
[0 0
- —ghb, | = —%—fbx— %sz—w
—ghb, —3=p, — hhh, — @
0 0
o Elliptic step

hV
hUV
hV? + Lgh?
0

h? 1 h? Vb



Derivation of SGN averaged pressure equation

SGN equations (20) in 2D are:
he + (hU), + (hV), =0

(hU) + (hU? +p), + (hUV), = — [gh +h (6 + %h)] by

(AV)e + (hUV), + (hV? +p), = — {gh +h (’6 + %h)] b,

) _ _ gh? o (1. 1.
With fluid pressure p defined by p = 5 +h Eb + §h :

rewrite momentum equations as:

h 4



Taking divergence of above system, we find

\Y — (g +b+6p/h?) b, /4
—V-(p)+V\If V-(a), U= .

h —(g+b+6p/h?)b,/4
Using vector calculus, we have

R2><2

V-(ﬂ):m—k(v-u) —2det<0u>, Ou

ox 8x

Thus one obtains:

—v-(vhp)+v v = mﬂv-u) —2det(gz)

which with V- u = —h/h gives

Vp h o h? ou
—v-(h>+v W= 4255 — 2de t(ax)



This leads to

h? ou 1 Vp 1
Lpi = 253 (12 _ et v (X2) v
3 3 <h2 (8x)>+3 v (h) 5"V
Lyz

=p— —gh®—
p 29 2

Thus we arrive at
h? Vp h3 pVb
e ()47 () o
3 3
27 {(v u)” — det (g—)‘i)} + gh2 + = h%— h—v T

with )
—(g+0b)b,/4

— g+6 b, /4



Radially symmetric problems: SGN equations

height at time ¢t =20 s 6 non-hydrostatic pressure at time ¢ =20 s
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Solitary wave over bottom

0.3

free surface at time t=0

0 10
surface at time t=4.296 s
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step: SGN equations
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Solitary wave over bottom step: time history
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Solitary wave over Gaussian hump

free surface at t=0 non-hydrostatic pressure at t=0 ™
b -
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Solitary wave over Gaussian hump: Convergence
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Hyperbolic SGN (SGNH) model over topography

To avoid elliptic operator inversion Favrie & Gavrilyuk (2016)
considered hyperbolic approximation of SGN equations:

hy + div(hu) = 0

' _ _n
(hu), + div(hu®@u) + Vp, = [gh + 3 <h 1)} Vb
(hn), + div (hnu) = hw

(hw), + div (hwu) = —p <% — 1)

1 € Ry relaxation parameter & p,, relaxed pressure

1 e
po=zon =5 (5 1)

Model is hyperbolic with real eigenvalues & complete set of
eigenvectors

Duchene (2019) gave rigorous mathematical justification of
hyperbolic model (b = 0 case) to SGN as 1 — oo
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Compressible gas dynamics: 2D Riemann problems
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SGN equations: 2D Riemann problems
2 DSW-1 DSW case

depth at time ¢ = Os depth at time ¢ = 30s

i

2 DSW-1 RW case

depth at time ¢ = 30s

I \
|
!

depth at time # = Os




Headon DSW-DSW interaction

depth at time 7 = Os

1.4
13

12

depth at time ¢ = 200s




Qiantang river bore (from Dailymotion)
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Impact induced tsunami wave over reef

crater profile (RC' = 1000m) 1000 time t=0 (RC' = 1000m)
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Impact induced waves: direct numerical simulation

r[)‘cimc t=300 seconds after impact (RC = 1000m) r[)timc t=600 seconds after impact (RC' = 1000m)
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@ H-equation transport model

1
&npﬂt+(aMMUL%—&npﬂﬁz=:—;auhu
1
(qap2), + (apou), + (aapav), = P2l
1
(pw), + (pu® +p), + (puv), = ——pu’

1
(pv), + (puv), + (pv* +p), = == puv — pg

1
(PE): + (pHu), + (pHv), = —;,OHu — pug
oy +uoy, +vag, =0

e Equation of state: stiffened gas
p + 71poo,1> (p + 72poo,2)
epa)=a|————— |+ (1 —a)| ————=
el ) ( 71 ( ) Y2 —1

° p=oa1prt+azpr, artay=1



Hyperbolic-step solver for SGN equations: remark

1. Solitary wave problem

Godunov MUSCL WENO 3
N EY(h)  order | FEY(h)  order | FE'(h)  order
1200 | 2.595e+02 1.894e+00 2.088e—01
2400 | 1.470e+02 0.82 | 1.210e+00 2.02 | 5.237e—02  2.00
4800 | 7.834e+01  0.91 | 3.005e—01 2.01 | 1.310e—02 2.0
9600 | 4.044e+01 0.95 | 7.487e—02 2.01 | 3.273e—03 2.04
2. Periodic wave problem
Godunov MUSCL WENO 3
N El(h) order | E'(h) order | E'(h) order
300 | 1.346e—01 5.250e—03 3.521e—03
600 | 7.749e—02 0.83 | 1.094e—03 2.37 | 4.563e—04 3.09
1200 | 4.100e—02 0.92 | 2.482e—04 2.15 | 5.927e—05 2.96
2400 | 2.112e—02 0.96 | 6.072e—05 2.03 | 7.923e—06 2.90




Adaptive reconstruction scheme

Let ¢}, & g} be interpolated states at left & right cell edges of
numerical reconstruction scheme Q(z) for . = A, B

Boundary variation diminising (BVD) selection algorithm
consists of two steps (Deng et al. 2018):
1. Compute values of minimum total boundary variation
(mTBV) for schemes ¢ for 1 = A & B

L : A L L A
mTBV; = min (|QL,j—1/2 - QR,j—l/Q‘ + |QL,j+1/2 — 4R j+1/2

)

|Qf,j71/2 - Cﬁ%,jflﬂ‘ + |qLL,j+1/2 - qg,jH/Q‘ )

{qgj—1/2 - q;Z,j—l/2‘ + {qi,j—‘rl/Q - qg,j—i—l/Q )
|42 =172 = Qrjmrjo] + aLi12 = QR jss2])
2. Compare values of mMTBV* & mTBV?®
Q4(x), if mTBV* < mTBV®,
Qj(z) = { y

QF(x), otherwise



Thank you



