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Two-Phase Flow Model (1)

f.’ Baer & Nunziato (J. Multiphase Flow 1986)

(a1p1); + V- (a1prtr) =0

(a1prtir), + V- (a1p1t1 @ 1) + V(aip1) = poVar + Az — 1)
(a1p1E1), + V- (a1p1 E1ty + aaprtr) = po (a2), + At - (U2 — 1)
(a2p2); + V - (aapatiz) =0

(q2p2tiz), + V - (agpaiis ® t2) + V(aep2) = poVag — (e — )
(aap2E2), + V - (aapaEatia + aapatiz) = —po (a2), — Ao - (U2 — U1)
(a2); + 1o - Vag = i (p2 — p1)

o = V3. /V: volume fraction for phase & (a; + a2 = 1)

.. global state for phase £, 0. local interface state
LA velocity relaxation parameter, (. pressure relaxation J
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Two-Phase Flow Model (Il)

f.o Saurel & Gallouet (1998)

(a1p1); + V- (c1prtiy) = m

(a1p1t1), + V- (a1prt; @ U1) + V(aip1) = poVaq + mtig + Fy
(a1p1E1), + V- (a1p1 E1t1 + caprtr) = po (a2), + mly + Fyup + G
(a2p2); + V- (aopatia) = —1h

(aapatin), + V - (a2patia ® U2) + V(aap2) = poVag — miiy — Fy
(qopalin), + V - (qopaBatis + qopatiz) = —po (a2), — mly — Faip —
(a2); + to - Vag = p(p2 — p1)

m. mass transfer, F}. drag force
()o. convective heat exchange

o |
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Two-Phase Flow Model (cont.) )

po & 1. Interfacial pressure & velocity

# Baer & Nunziato (1986)
s po=p2, Uy=1U
# Saurel & Abgrall (1999)

® Po= 1_10kDE, U0 =) 11 akﬂkuk/ > 11 OkPK

A & p (> 0): relaxation parameters that determine rates at
which velocities and pressures of two phases reach
equilibrium

o |
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Two-Phase Flow Model: Derivatio

f.o Standard way to derive these equations is based on
averaging theory of Drew (Theory of Multicomponent
Fluids, D.A. Drew & S. L. Passman, Springer, 1999)

Namely, introduce indicator function y; as

1 If M belongs to phase &
M. t) =
Xk (M, 1) {O otherwise
Denote < ¢ > as volume averaged for flow variable v,
W)= [ vav
=v /.

Gauss & Leilbnitz rules

uka¢> = (V) —WVxe) & () = <(Xk¢)t>_<¢(Xk)ﬂ
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Two-Phase Flow Model (cont.) ¢

£
s
Yoo
5,

|

-

Take product of each conservation law with ;. & perform
averaging process. In case of mass conservation equation,
for example, we have

(XkPr)e + Vo < Xpprty >= (pp(Xk)t + prUk - VXE)
Since y;. Is governed by
(i)t + 70 -Vxe=0  (i: interface velocity),
this leads to mass averaged equation for phase &
(Xkpr)y + V- < xpprty >= (pr (U, — o) - Vi)

Analogously, we may derive averaged equation for
Lmomentum, energy, & entropy (not shown here) J
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Two-Phase Flow Model (cont.)

In summary, averaged model system, we have, are

pr (Ug — Uo) - Vxk)

(XkPr); + V- < Xpprty >=
) = (P Vxk) +

(XkPEUR), + Vo < Xkprir @ Uy > +V (XEDPk
prUy (U — o) - VX&)

prE (U — o) - V)

(
(
(
(XkpPrEr), + V- < XkppErty + Xpprty >= (prUy - VXi) +
(
(i — to) - VX)

(X&) + (Uk - VXE) =

Note: existence of various interfacial source terms
Mathematical as well as numerical modelling of these terms
are important (but difficult) for general multiphase flow
problems

. |
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Reduced Two-Phase Flow Model{})

Uy,
o

-

# Murrone & Guillard (JCP 2005)
o Assume =\ /e & pu=p /e, X =0(1) & ' = O(1)
» Apply formal asymptotic analysis to Baer &

Nunziato’s model, as ¢ — 0, gives leading order
approximation

(a1p1); +V - (apru) =0

(azp2); +V - (a2p2u) = 0

(pii), + V- (pu @ u) + Vp =0 (mixture momentum)
(pE), +V - (pEU + pu) =0 (mixture total energy)

2 2
(Ozz)t + U - VCKQ = (X109 plzcl 102622 V - u
D k=1 OkPkCh

|
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Reduced Two-Phase Model (cont{y

R

1. Inthis case, p1 — po & 17 — s, as € — 0, which means
the flow is homogeneous (1-pressure & 1-velocity) with
p,=p&u, =u,t=0,1,2, across interfaces

emarks:

2. Mixture equation of state: p = p(«as, ai1p1, aspa, pe)
3. Isobaric closure: p; = ps = p

#® [For some EQOS, explicit formula for p is available
(examples are given next)

# For some other EOS, p is found by solving coupled
equations

p1(p1, pre1) = p2(p2, p2e2) & aipier + agpaes = pe

o |
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Reduced Two-Phase Model (cont(j})

-

#® Polytropic ideal gas: p, = (v — 1)prex

pe = Z%Pkek —I;Oék% 1 —

/,;%—1
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Reduced Two-Phase Model (cont{:)

-

# Polytropic ideal gas: pr = (v — 1) prex
pe = Z%Pkek = Z&k o —1
k=1
/k Tk T 1

® Van der Waals gas: px = (1Zkb;;k )(prer + agpi) — axps

1 — bipr
pe = Zakpkek = Zak K - _[i ) (p + arpy) —akpi]

o

1 — brps 1 — bipx
o ()] /o (52
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Reduced Two-Phase Model (cont(

-

# Two-molecular vibrating gas: pr = pr R T (er), T satisfies

RT RTip
e = +
v—1  exp (Tvib/T) —1

As before, we now have

R.T prRE T\
pe = Zak,@kek _ Zak (Mf_kf) N vib. i
Tk — exp (TVib k/Tk) —1

Do
( & >—|— vib & (Nonlinear eq.)
o (

k=1
2

o |
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Reduced Model: Remarks

. It can be shown entropy of each phase S;.. now satisfies

D
ﬁ—(()S]’“er-V‘S‘k:O, for k=12

Dt Ot
. Model system is hyperbolic under suitable
thermodynamic stability condition

. When o, = 0, p;. can not be recovered from «;. & ay.py,
and sotake o € e,1 —¢], e K 1

. Other model systems exist in the literature that are
more robust for homogeneous flow (examples)

. When individual pressure law differs in form (see
below), new mixture pressure law should be devised
first & construct model equations based on that J
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Barotropic & Non-Barotropic Flow *"

-

# Fluid component 1: Tait EOS

po) = o+ B) (L) -5

Po

# Fluid component 2: Noble-Abel EOS

)= (15 )

# Mixture pressure law (Shyue, Shock Waves 2006)

2

o\
(po-l-B)(—) —B if a=1
Po

v—1 :
\ (1—1),0) (pe—B)—B if a#1

|
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Barotropic Two-Phase Flow

-

# Fluid component .: Tait EOS

0 Ye
p(p) — (pOL + BL) (p7> — B,}, [ 1, 2

# Mixture pressure law (Shyue, JCP 2004)

( Y.
(po. + B.) (%) —B, if a=«a,(0o0rl)
O
P =
B .
(’Y—l)ﬂ<€+p—)—’yl3 if ae(0,1)
\ 0

o |
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Homogeneous Two-Phase Modefs}

-

In summary, mathematical model for compressible
homogeneous two-phase flow:

# Equations of motion

2 2
(&Q)t + U - VCKQ = (X109 ,01261 p2622 V - u

L.o Mixture equation of state: p = p(ao, aip1, azp2, pe) J

Department of Aeronautics and Astronautics, National Cheng Kung University, March 21, 2008 — p. 16/72



Wave Propagation Method

fFinite volume formulation of wave propagation method, @)% T
gives approximate value of cell average of solution ¢ over
cell S at time ¢,

1

Qs ~ W/SQ(X,tn)dV

M(S): measure (area in 2D or volume in 3D) of cell S

G | H
& NUF
c D

o |
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Wave Propagation Method (cont. )}

-

# First order version: Piecewise constant wave update

» Godunov-type method: Solve Riemann problem at
each cell interface in normal direction & use resulting
waves to update cell averages

QU = QZ“—M%I?S? 5) R,, R, beingjump from RP
Vo
" _|
(i T

l
N

| -
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Wave Propagation Method (cont. )}
-

® First order version: Transverse-wave included

» Use transverse portion of equation, solve Riemann
problem in transverse direction, & use resulting
waves to update cell averages as usual

s Stability of method is typically improved, while
conservation of method is maintained

7
| | ] |
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Wave Propagation Method (cont.)&)

wave before propagation

e
g

# High resolution version: Piecewise linear wave update

after propagation

b)

d)
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Volume Tracking Algorithm

-

1. Volume moving procedure

(a) Volume fraction update
Take a time step on current grid to update cell
averages of volume fractions at next time step

(b) Interface reconstruction
Find new interface location based on volume
fractions obtained in (a) using an interface
reconstruction scheme. Some cells will be
subdivided & values in each subcell must be
Initialized.

2. Physical solution update
Take same time interval as in (a), but use a method to
update cell averages of multicomponent model on new

L grid created in (b) J
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Interface Reconstruction Schemej;

fGiven volume fractions on current grid, piecewise linear
Interface reconstruction (PLIC) method does:

1. Compute interface normal
# Gradient method of Parker & Youngs
#® |east squares method of Puckett

2. Determine interface location by iterative bisection

Data set Parker & Youngs Puckett
S I I N B Interface Interface
0O 10.09/0.51({0.29| O 217 )L'
0O (0.68| 1 ]0.68] O / / / /
0 10.2910.51]/0.09| O L I
\__ 0 0 0 0 0 J

Department of Aeronautics and Astronautics, National Cheng Kung University, March 21, 2008 — p. 22/72



Volume Moving Procedure

-

(a) Volume fractions given in previous slide are updated
with uniform (u,v) = (1,1) over At = 0.06

(b) New interface location is reconstructed

(@) (b)

new interface
0 |0.11|0.72|0.74 5(~3) /

0 |038| 1 [085] 0 \

0O 001025006 ]| O

old [nterface

o |
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Surface Moving Procedure ()

-

Solve Riemann problem at tracked interfaces & use
resulting wave speed of the tracked wave family over At to
find new location of interface at the next time step

~ O\\n
\

| o) ew front
A \
5
old front

- B
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Boundary Conditions

fFor tracked segments representing rigid (solid wall)
boundary (stationary or moving), reflection principle is used
to assign states for fictitious subcells in each time step:

RC ‘— RE (Z — P, D, Oé)

i = ilp — 2(ip - )7 + 2(io - 7)

tp. moving boundary velocity

P!
=

Q T

o T |
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Interface Conditions

-

For tracked segments representing material interfaces,
pressure equilibrium as well as velocity continuity
conditions across interfaces are fulfilled by

1. Devise of the wave-propagation method
2. Choice of Riemann solver used in the method

o |
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Stability Issues
- a

#® Choose time step At based on uniform grid mesh size
Az, Ay as

At maxp,q (Ap, Hg)
min(Ax, Ay) —

s N\, li,: Speed of p-wave, g-wave from Riemann
problem solution in normal-, transverse-directions

# Use large time step method of LeVeque (i.e., wave
Interactions are assumed to behave in linear manner) to
maintain stability of method even in the presence of

small Cartesian cut cells

# Apply smoothing operator (such as, h-box approach of
L Berger et al. ) locally for cell averages in irregular cells J
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|
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Shock-Bubble Interaction

-

Tracking
time=55us ‘

air
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-

time=‘|11ps
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time=1q5p5
|
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-

time=247us

n'.rf 3
¥ [ A

%
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-

time=318us P
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-

time=342us /
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-

time=417us
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time=1020us

Department of Aeronautics and Astronautics, National Cheng Kung University, March 21, 2008 — p. 28/72



Shock-Bubble Interaction (cont.)

f.p Approximate locations of interfaces

time=55pus

air

time=115us

time=135us

time=187us

time=247us

time=200pus

time=342us

time=417us

|
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Shock-Bubble Interaction (cont.) &

f.o Quantitative assessment of prominent flow velocities: T

Velocity (m/s) Vo Ve Vp Vi Vup Vi Vi
Haas & Sturtevant 415 240 540 73 90 78 T8
Quirk & Karni 420 254 560 74 90 116 82

Our result (tracking) 411 243 538 64 87 82 60
Our result (capturing) 411 244 534 65 86 98 76

o Vi (Vgr, Vp) Incident (refracted, transmitted) shock
speed t € |0,250]us (¢t € |0,202]us, t € [202,250]uS )

o V. (Vir) Inttial (final) upstream bubble wall speed
t € [0,400]us (¢t € [400, 1000]us)

® Vi (Var) Inttial (final) downstream bubble wall speed
£ € [200,4001S (£ € [400, 1000]S) |
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Underwater Explosions

f.p Numerical schlieren images for density

a) Density
Tracking Capturing

time=0.2ms air

t 52

time=0.4ms

N

time=0.8ms

O

time=1.2ms

|
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Underwater Explosions (cont.) |

e
L N
L

-

# Approximate locations of interfaces

time=0.2 time=0.4
air air
_______ T — o A IE__ .
water water
time=0.8 time=1.2
air air
water water
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Density
St =0ms _
air
2 L
1 L
. @
_1 L
-2t water
-3 -
-2 0

Falling Rigid Object in Water Tank )

=

Pressure Volume fraction
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Falling Rigid Object in Water Tank ({;

Density
t=1ms .
air
S ;
water
-2 0

s N
e A
>

i
g
WY 5

Pressure Volume fraction
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L

Falling Rigid Object in Water Tank ({yj)

Volume fraction

Pressure

Density
Ut = 2ms
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Falling Rigid Object in Water Tank (§

=N

Density

T = oms

air

[
s
%

Lo

Neows

Pressure Volume fraction
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Generalized Lagrangian Model (s}

-

# Introduce transformation (¢, z, y) < (7, &, n) via

dt 1 0 0 dTr dTr 1 0 O dt
dr | = |z Z¢ @y d& or d | =1& & &y dx
dy Yr  Ye Yn) \dn dn e Me Ny \dy

# Basic grid-metric relations:

1 _ -
10 O r 0 O TelYn — Tnle 0 0

1
SERT gy — | Tr Tg Ty | — j —ZrYny T YrTy  Yn — Iy
e TNz Ty Yr  Y¢  Yn | LrlYe — Yrde —Y¢ L

® J=uzey, — xyyes grid Jacobian

o |

Department of Aeronautics and Astronautics, National Cheng Kung University, March 21, 2008 — p. 34/72



G. Lagrangian Model (cont.)

H

omogeneous two-phase model in N; generalized coord.:

8—(@1P1J)+Za—6(&1P1JUJ)_Oa
j=1 ">/
Ni g
— (qap2d) + Z — (agp2JU;) =0,
9 2 g,
9 Je g ¢
aT(pJuZ)—F;ang(puzUj—kpaxi) 0 for 1=1,2,..., Ny,
9 Je g e
2 (JE 2 J(E 95
Ny Ny
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G. Lagrangian Model (cont.)

fContinuity on mixed derivatives of grid coordinates gives
geometrical conservation laws

(1’5\ (—1’7\ [0 \

0 0 T 0 0
S Rl FRA e R =0
ot

Ty, 73 0 —Z;
\va) N\ 0 \~4-/

with (2., vy, ) to be specified as, for example,

# Eulerian case: (z,,y,) =0
# Lagrangian case: (z,y,) = (u,v)

# Lagrangian-like case: (x.,y,;) = ho(u,v) or (hou, kov)
L s hge|0,1] & kypel0,1] (fixed piecewise const.) J
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G. Lagrangian Model (cont.)
=

® General 1-parameter case: (z-,y:) = h(u,v), h e [0,1]

At given time instance, h can be chosen based on
s Grid-angle preserving condition (Hui et al. JCP 1999)

gcos (Vf W ) = 2(:os —YnTn — Yt
oT Vel |V oT \/y£+yn\/ £-|—£E'2

= Ahg + Bh, + Ch =0 (1st order PDE )
with

A= \[22+y2 (vze —uye), B= /2% +y2 (uy, —va,)
C = \/Zlfg + yg (Unyn - vnajn) BRY. 37727 + y727 (u€y€ - vﬁajﬁ)
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G. Lagrangian Model (cont.) @

General 1-parameter case: (z,,y;) = h(u,v), h € [0,1]

Or alternatively, based on
s Mesh-area preserving condition

oJ 0
- = 97 (Teyn — Tnye)

= Ter Yn + Tg Ynr — Typr Ye — Ty Yer

= Ah¢ + Bh,,+Ch =0 (1storder PDE )
with

A =uy, —vz,, B=vxe—uye, C=uUgly+0yTe — UpYe — Vel

|
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G. Lagrangian Model (cont.)
=

® Numerics: h- or h-equation constraint geometrical laws

(we) (b} [0)

0 | ye 0
Ty 9 | o hu
\v/  \o) Ay

# Usability: Mesh-area evolution equation

on

oJ 0 )
-~ ge M —van)] = Fo R (vee —uye)] = 0

# Initial & boundary conditions for h- or h-equation ?

o |
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G. Lagrangian Model (cont.)

-

hn summary, with (z-,y,) = ho(u,v) & EOS, model system T
for homogeneous two-phase flow reads

(o)

Jazpo
J pu
J pv
JE

Le

(

JaiprU
Jagp2U
JpulU + y,p
JpvU — x,p
JEU + (ynu — xno)p
—hou
—hgv
0
0

Department of Aeronautics an

)

/

\

Jaip1V
Jagp2V
JpuV —yep
JpvV + xep
JEV + (xev — yeu)p
0
0
—hou

—ho’U

/

=0, U= (1= ho)(yqu —2q0)&V = (1= ho)(wev — e}
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G. Lagrangian Model (cont.)

Under thermodyn. stability condition, our multifluid
model in generalized coordinates is hyperbolic when
ho # 1, & Is weakly hyperbolic when 7y =1

Model system Is written in quasi-conservative form with
spatially varying fluxes in generalized coordinates

Grid system Is a time-varying grid

Extension of the model to general non-barotropic
multifluid flow can be made in an analogous manner

|
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Flux-based Wave Decomposition )

-

# In 2D, equations to be solved takes the form

Oq %, » %, A\ -
ot 1 (50 V) + 1o 0. VE) =
# A simple dimensional-splitting approach based on
f-wave formulation of LeVeque et al. IS used

» Solve one-dimensional generalized Riemann
problem (defined below) at each cell interfaces

» Use resulting jumps of fluxes (decomposed into
each wave family) of Riemann solution to update cell
averages

s Introduce limited jumps of fluxes to achieve high
resolution

o |
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F-Waves Decomposition (cont.) &

@_ ,*‘Nd;

fEmploy finite volume formulation of numerical solution T

1
O S ) dA
) AfAn Lij Q(fanaT )

that gives approximate value of cell average of solution ¢
over cell Cy; = &, &iv1] X 15, m5+1] at time 7,

computational grid

physical grid 02|
-0.4
0 - -0.6
- -0.8}
= -0.5
-1} '
15 -1.6

L o R g J
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Generalized Riemann Problem

-

Generalized Riemann problem of our multifluid model at cell
interface ¢;_, » consists of the equation

together with flux function

F ., . = Ji1 (ag’q’v‘g) for & <&_ 1,2
T £ (060, VE)  for e> 6y

and piecewise constant initial data

i for £>¢& 1,9
17 J
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Generalized Riemann Problem

-

Generalized Riemann problem attime 7 = 0

|
n n
i—1,] l Qz’j
|

§

L qr + fi—1,j (3576], Vg) =0 qr+ fi; (357617 Vg) =0 J
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Generalized Riemann Problem

-

Exact generalized Riemann solution: basic structure

§

L qr + fi—1,j (3576], Vg) =0 ¢r+ fi (357617 Vg) =0 J
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Generalized Riemann Problem ¢

-

Shock-only approximate Riemann solution: basic structure

zZl = fola, ) — fL(Q?—l,j) T 2= frR(GmR) — fR(q:;L)

AL A2
49t | 9mL Z0 = fR( ij) — fR<QmR)
)\3
dmR
n mn
i—1,j v

| §
4r + fi-1; (557% V{) =0 qr + fij (35,6_1, Vg) — 0

o |
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F-Waves Decomposition (cont.) ()

fBasi(: steps of a dimensional-splitting scheme

® (-sweeps: solve

dq 0 >\
ot i (5 7€) =0

updating Q)7; to Q7 ;
® 7-sweeps: solve

dq 0 >\
o+ fa (500, VE) =0

updating Q;; to Q71
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p A Y
. W

>

F-Waves Decomposition (cont.) (

o
W&

E

® (-Sweeps: we use

hat is to say,
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F-Waves Decomposition (cont.) ¢

Flux-based wave decomposition T

M

fz',j _fz'—l,j — 1/2 Z)\z 1/2Wz]‘0—1/2

p=1

Some care should be taken on the limited jump of fluxes

WP, for p = 2 (contact wave), in particular to ensure
correct pressure equilibrium across material interfaces

MUSCL-type (slope limited) high resolution extension is
not simple as one might think of for multifluid problems

Splitting of discontinuous fluxes at cell interfaces:
significance ?

First order or high resolution method for geometric
conservation laws: significance to grid uniformity ? J
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L ax’s Riemann Problem

-

® hy = 0 Eulerian result

® hp = 0.99 Lagrangian-like result
» sharper resolution for contact discontinuity

o |
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L ax’s Riemann Problem

-

# Physical grid coordinates at selected times

s Each little dashed line gives a cell-center location of
the proposed Lagrange-like grid system
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time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

o |
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Woodward-Colella’s Problem

-

® hy = 0 Eulerian result

® hp = 0.99 Lagrangian-like result
» sharper resolution for contact discontinuity

t =0.016 ~ t=0.016 ~ t=0.016
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-

Woodward-Colella’s Problem

® hy = 0 Eulerian result

® hp = 0.99 Lagrangian-like result
» sharper resolution for contact discontinuity

20

15

t =0.032

(e}

A

Fine grid
hO:O

h0=0.99

600

t =0.032 t =0.032

400

200

© N
f
1

0.5
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Woodward-Colella’s Problem
=

® hy = 0 Eulerian result

® hp = 0.99 Lagrangian-like result
» sharper resolution for contact discontinuity

t = 0.038 - t=10.038 - t=10.038
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Woodward-Colella’s Problem

-

# Physical grid coordinates at selected times

s Each little dashed line gives a cell-center location of
the proposed Lagrange-like grid system
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2D Riemann Problem

-

With initial 4-shock wave pattern

[ sy [ oy
o8 1.206 U 0 |
0 v 0 |1
o \03) |\p) \15/)

(0,138\ ( 0.532\

1.206 0
02 1.206 1.206

Il Il Il Il Il Il Il Il Il
1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
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2D Riemann Problem

W

# Lagrange-like result
» Occurrence of simple Mach reflection

ith initial 4-shock wave pattern

Density Physical grid
_ J 0.8f 0.8 s
0.6 0.6
0.4 0.4; S
0.2 0.2

02 04 06
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2D Riemann Problem

W

# Eulerian result
» Poor resolution around simple Mach reflection

ith initial 4-shock wave pattern

Density Pressure Physical grid

————— S ] St

0.8 0.8 (77~ I 0.8¢
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-

More Examples

® Two-dimensional case

» Radially symmetric problem

s Underwater explosion
o Shock-bubble interaction

s Helium bubble case

s Refrigerant bubble case

® Three-dimensional case

s Underwater explosion

s Shoc

K-bubble interaction

s He

ilum

DU

D

D

e case

s Refrigerant bubble case

||
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Radially Symmetric Problem ()
Ca) hp =0.99. . |

. Density . Pressure . nysical grio
0.4 0.4
0.3 0.3
0.2 liquid 0.2 {1
0.1\ 0.1 :
ON\ , 0 SSmmmEammms
0 0.2 0.4 0 0.2 0.4
D) ho =0 o
Density Physical gric
0.5 0.5
0.4 Ioafittrrrmsg 4 04
BRI, O
Ay EREES
0.3 OELS A INI00 NEREEE I 03
. ) RN IS IPY
0.2 liguid | o2 %22% 0.2
= NN s U
0.1 0.1 Nfggz/z/,,,,, ] 0.1
\\( igissaionntm N
0 0 \ o 0
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| —— one-d
| . h =O
|
|

hO:O.99

0.1 0.2 0.3 0.4 0.5

gasi liquid

1

01 02, 03 04 05
r(m)

P 2T
&/ \
fl.;,

Radially Symmetric Prob. (Cont.) (

e
.
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Underwater Explosions

Numerical schlieren images /o = 0.9, 800 x 500 grid

time=0ms
air
0.5
0
-0.5
water
-1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 i
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Underwater Explosions

Numerical schlieren images /o = 0.9, 800 x 500 grid

time=0.2ms

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 i
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Underwater Explosions

Numerical schlieren images /o = 0.9, 800 x 500 grid

time=0.4ms

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 i
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Underwater Explosions

Numerical schlieren images /o = 0.9, 800 x 500 grid

time=0.8ms

0.5

AR

-2 -1.5 -1 -0.5 0 0.5 1 1.5 i
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Underwater Explosions

Numerical schlieren images /o = 0.9, 800 x 500 grid

time=1.2ms

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 i
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Underwater Explosions (Cont.) ()

-

-

#® Grid system (coarsen by factor 5) with hg = 0.9

time=0ms

0.5Fk

-0.5F




Underwater Explosions (Cont.) ()

-

-

#® Grid system (coarsen by factor 5) with hg = 0.9

time=0.2ms
0.5F
Ok
-0.5
1k




Underwater Explosions (Cont.) ()

-

-

#® Grid system (coarsen by factor 5) with hg = 0.9

time=0.4ms
0.5F
Ok
-0.5
1k




Underwater Explosions (Cont.)

-

#® Grid system (coarsen by factor 5) with hg = 0.9

time=0.8ms
0.5
ok BEEEEzEsE - EEEEREEE
T T
,+‘+_
T ERERRNAEE
et ' T FHH i
-0.5 | i i
1
Bl i st
.y a e
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Underwater Explosions (Cont.)

ﬁ.p Grid system (coarsen by factor 5) with hg = 0.9 —‘

time=1.2ms
05H
O HH H j}_ Nk—;
EaEEIEEEs BREEERE
H ERRSEE EEaea
T SisEi
Emg + M
- ‘ : T ‘1
_05 i u TR
HH
-1F ]
EiE gEEE
EEsEiE I
T = 5= FHHE
i : I i

\_ | : }H. :. N : E J
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Shock-Bubble (Helium)

Numerical schlieren images: 7y = 0.5, 600 x 400 grid

t=0

0.2 air

0.15

0.1

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Shock-Bubble (Helium)

Numerical schlieren images: 7y = 0.5, 600 x 400 grid

t=0.02

0.2
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Shock-Bubble (Helium)

Numerical schlieren images: 7y = 0.5, 600 x 400 grid

t=0.08

0.2
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Shock-Bubble (Helium)

Numerical schlieren images: 7y = 0.5, 600 x 400 grid

t=0.16

0.2
0.15 -
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-0.05 -
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Shock-Bubble (Helium)

Numerical schlieren images: 7y = 0.5, 600 x 400 grid

t=0.35
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0.15 -
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Shock-Bubble (Helium) (Cont.) (@
=

-

#® Grid system (coarsen by factor 5) with hg = 0.5

time=0

0.2

0.15[¢

0.1

0.05

-0.05

-0.1

-0.15f¢
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Shock-Bubble (Helium) (Cont.) (@
=

-

#® Grid system (coarsen by factor 5) with hg = 0.5

time=0.02

0.2

0.15H

0.1H
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Shock-Bubble (Helium) (Cont.) (@
=

-

#® Grid system (coarsen by factor 5) with hg = 0.5

time=0.08

0.2
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Shock-Bubble (Helium) (Cont.) (@
=

-

#® Grid system (coarsen by factor 5) with hg = 0.5

time=0.16

0.2
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Shock-Bubble (Helium) (Cont.)

ﬁ.p Grid system (coarsen by factor 5) with A
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Shock-Bubble (Refrigerant)

Numerical schlieren images: 7y = 0.5, 600 x 400 grid

t=0
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Shock-Bubble (Refrigerant)

Numerical schlieren images: 7y = 0.5, 600 x 400 grid

t=0.02
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Shock-Bubble (Refrigerant)

Numerical schlieren images: 7y = 0.5, 600 x 400 grid

t=0.08
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Shock-Bubble (Refrigerant)

Numerical schlieren images: 7y = 0.5, 600 x 400 grid

t=0.16
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Shock-Bubble (Refrigerant)

Numerical schlieren images: 7y = 0.5, 600 x 400 grid
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Shock-Bubble (R22) (Cont.)

-

#® Grid system (coarsen by factor 5) with hg = 0.5

time=0
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Shock-Bubble (R22) (Cont.)

-

#® Grid system (coarsen by factor 5) with hg = 0.5

time=0.02
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Shock-Bubble (R22) (Cont.)

-

#® Grid system (coarsen by factor 5) with hg = 0.5

time=0.08

0.2

0.15f

0.1

0.05r-

-0.05

-0.1

-0.15f

-0.2




Shock-Bubble (R22) (Cont.)

-

#® Grid system (coarsen by factor 5) with hg = 0.5

time=0.16
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Shock-Bubble (R22) (Cont.)

Grid system (coarsen by factor 5) with hg = 0.5
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Underwater Explosions

-

® Numerical schlieren images hg = 0.6, 100° grid

time=0ms
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Underwater Explosions

-

# Numerical schlieren images o = 0.6, 100° grid

time=0.25ms
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Underwater Explosions

-

# Numerical schlieren images o = 0.6, 100° grid

time=0.5ms
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Underwater Explosions (¥
o N

# Numerical schlieren images o = 0.6, 100° grid

time=1ms
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Underwater Explosions

R,
' &
w ¥,
2. %

# Numerical schlieren images o = 0.6, 100° grid

time=1.5ms
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3D Underwater Explosions (Cont.){)

-

# Grid system (coarsen by factor 2) with hg = 0.6

time =0
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# Grid system (coarsen by factor 2) with hg = 0.6

time = 0.25ms




3D Underwater Explosions (Cont. )

-

# Grid system (coarsen by factor 2) with hg = 0.6

time = 0.5ms
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3D Underwater Explosions (Cont. )}

-

# Grid system (coarsen by factor 2) with hg = 0.6

time = 1.0ms
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3D Underwater Explosions (Cont.

# Grid system (coarsen by factor 2) with hg = 0.6

time = 1.5ms
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3D Shock-Bubble (Helium) G

Numerical schlieren images: 7y = 0.6, 150 x 50 x 50 grid

t=0

0.25

|

Department of Aeronautics and Astronautics, National Cheng Kung University, March 21, 2008 — p. 68/72



3D Shock-Bubble (Helium)

Numerical schlieren images: 7y = 0.6, 150 x 50 x 50 grid
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3D Shock-Bubble (Helium)

Numerical schlieren images: 7y = 0.6, 150 x 50 x 50 grid
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3D Shock-Bubble (Helium)

Numerical schlieren images: 7y = 0.6, 150 x 50 x 50 grid
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3D Shock-Bubble (Helium)

Numerical schlieren images: 7y = 0.6, 150 x 50 x 50 grid

t=0.35
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# Grid system (coarsen by factor 2) with hg = 0.6

time = 0
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# Grid system (coarsen by factor 2) with hg = 0.6

= (.02

Ime

t

NNNNNNN 12 o o o Vo o

1 1 e o 1 W

[ ]

[ [ ]

[ 1 ] ]

1 1

0.25 —
0.2

0.15

0.1

0.05 —

Department of Aeronautics and Astronautics, National Cheng Kung University, March 21, 2008 — p. 69/72



I I I I I “‘NNNNNN

time = 0.08

0.25 —
0.2
0.15
0.1
0.05 —

A~
+—
-
O
O
—
A~
=
=
[©
L
—’
@
O
O
)
0
'
O
O
L
V)

# Grid system (coarsen by factor 2) with hg = 0.6

Department of Aeronautics and Astronautics, National Cheng Kung University, March 21, 2008 — p. 69/72



Shock-Bubble (Helium) (Cont.)

-

# Grid system (coarsen by factor 2) with hg = 0.6

time = 0.16

0.25 —
0.2
0.15

0.1

N
N
N
i
1]
1]
i
1]
1]
1]
1]
]
\ L]
|

‘

0.7
0.05 —

o |

Department of Aeronautics and Astronautics, National Cheng Kung University, March 21, 2008 — p. 69/72



Shock-Bubble (Helium) (Cont.) )

B B

# Grid system (coarsen by factor 2) with hg = 0.6

time = 0.35

0.25 —

0.2

0.15

0.1 —

0.05 —




3D Shock-Bubble (Refrigerant) @)
=

Numerical schlieren images: 7y = 0.6, 150 x 50 x 50 grid

t=0

0.25




3D Shock-Bubble (Refrigerant) @)

T’
i

-

Numerical schlieren images: 7y = 0.6, 150 x 50 x 50 grid

t=0.02

0.25

0.15 0.5
0.1



3D Shock-Bubble (Refrigerant) @)
=

Numerical schlieren images: 7y = 0.6, 150 x 50 x 50 grid

t=0.08

0.25

0.2

0.15
N
0.1

0.05

0.7

0.05 -
0.1 0.3
0.15 0.2

02 0.1



*—:"'H;“‘ o

3D Shock-Bubble (Refrigerant) (i)

%

Numerical schlieren images: 7y = 0.6, 150 x 50 x 50 grid

t=0.16

0.25




3D Shock-Bubble (Refrigerant) @)

T’
i

-

Numerical schlieren images: 7y = 0.6, 150 x 50 x 50 grid

t=0.35
0.25
0.2
0.15
N
0.1 L
0.05
' 0.7
0
- 0.6
: 0.5
0.05 0.4
0.1 0.3
0.15 0.5
02 0.1
0
Y



NNNNNNR 12 o o o Vo o 1 1

1 1 e o I I

time = 0

0.25 —
0.2
0.15
0.1
0.05 —

A~
4=
-
®,
O
—r
A~
AN
)
ad
—r
¢
O
O
-
0
4
&
O
e
V)

# Grid system (coarsen by factor 2) with hg = 0.6

Department of Aeronautics and Astronautics, National Cheng Kung University, March 21, 2008 — p. 71/72



NNNNNNR 12 o o o Vo o 1 1

= (.02

1 1 e o I I

Ime

t

0.25 —
0.2
0.15
0.1
0.05 —

A~
4=
-
®,
O
—r
A~
AN
)
ad
—r
¢
O
O
-
0
4
&
O
e
V)

# Grid system (coarsen by factor 2) with hg = 0.6

Department of Aeronautics and Astronautics, National Cheng Kung University, March 21, 2008 — p. 71/72



I I I I I “‘NNNNNN

Ime = 0.08

t

0.25 —
0.2
0.15
0.1
0.05 —

A~
4=
-
®,
O
—r
A~
AN
)
ad
—r
¢
O
O
-
0
4
&
O
e
V)

# Grid system (coarsen by factor 2) with hg = 0.6

Department of Aeronautics and Astronautics, National Cheng Kung University, March 21, 2008 — p. 71/72



Shock-Bubble (R22) (Cont.)

-

# Grid system (coarsen by factor 2) with hg = 0.6

time = 0.16

0.25 —

0.2

0.15

0.1

0.05 —

o |

Department of Aeronautics and Astronautics, National Cheng Kung University, March 21, 2008 — p. 71/72



A~
4=
-
®,
O
—r
A~
AN
)
ad
—r
¢
O
O
-
0
4
&
O
e
V)

# Grid system (coarsen by factor 2) with hg = 0.6

time = 0.35

NNNN‘NNN 1 I I I

\NNNNNN

| [ [T 1] NNN\‘ NNNNNNN‘ [ ] ]
P I e e P 2 V2t W W 12 2 1 V2 W V2 P

[ | ]

P 12 V2tV Y 12t V2 V2tV V2 I I 2 12

Department of Aeronautics and Astronautics, National Cheng Kung University, March 21, 2008 — p. 71/72



Conclusion

f #® Have described wave-propagation based methods for
compressible two-phase flow problems

# Have shown results in 1, 2 & 3D to demonstrate
feasibility of method for practical problems
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