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Outline

Computing monotone sharp resolution of interfaces is
of fundamental importance in many practical problems
of interest

Discuss a simple Eulerian interface sharpening
approach (vs. Lagrangian, interface tracking, or
adaptive moving mesh) for hyperbolic problems

Review two PDE-based interface sharpening
techniques for solving volume-fraction linear
transport equation that arises, for example, from
viscous incompressibe 2-phase flow

Extend method for computing material lines or free
surfaces arising from compressible multiphase flow
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Incompressible2-phase flow: Review

Consider unsteady, incompressible, viscous, immiscible
2-phase flow with governing equations

∇ · ~u = 0 (Continuity)

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = ∇ · τ + ρ~g + ~fσ (Momentum)

∂tα + ~u · ∇α = 0 (Volume-fraction transport )

Material quantities in 2-phase coexistent region are often
computed by α-based weighted average as

ρ = αρ1 + (1− α) ρ2, ǫ = αǫ1 + (1− α) ǫ2, α ∈ [0, 1],

where source terms are volume-fraction dependent

τ = ǫ
(
∇~u+∇~uT

)
, ~fσ = −σκ∇α with κ = ∇ ·

(
∇α

|∇α|

)
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Interface sharpening techniques

Typical interface sharpening methods for computing volume
fraction in incompressible 2-phase flow include:

Algebraic based approach
CICSAM (Compressive Interface Capturing Scheme
for Arbitrary Meshes): Ubbink & Issa JCP 1999
THINC (Tangent of Hyperbola for INterface
Capturing): Xiao, Honma & Kono Int. J. Numer.
Meth. Fluids 2005
Improved THINC: Xiao et al.

PDE based approah
Artificial compression: Harten CPAM 1977, Olsson &
Kreiss JCP 2005
Anti-diffusion: So, Hu & Adams JCP 2011
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Artificial interface compression

Our first interface-sharpening model concerns nonlinear
artificial compression of form proposed by Olsson & Kreiss

∂tα + ~u · ∇α =
1

µ
∇ · [(D (∇α · ~n)− α (1− α))~n]

where ~n = ∇α/|∇α|, D > 0, µ≫ 1

Numerical method based on fractional step may apply

1. Advection step over a time step ∆t to solve

∂tα + ~u · ∇α = 0 or ∂tα +∇ · (α~u) = 0

since by assumption ∇ · ~u = 0

2. Interface compression step towards τ -steady state

∂τα = ∇ · [(D (∇α · ~n)− α (1− α))~n] , τ = t/µ
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Square wave passive advection

Square-wave pluse moving with u = 1 after 4 periodic cycle
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Zalesak’s rotating disc

Contours α = 0.5 at 4 different times within 1 period in that

~u = (1/2− y, x− 1/2)

No compression With compression
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Vortex in cell
Contours α = (0.05, 0.5, 0.95) at 6 different times in 1 period

~u =
(
− sin2 (πx) sin (2πy), sin (2πx) sin2 (πy)

)
cos (πt/8)

No compression

With compression
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Interface compression: Remarks

Consider 1D model problem with u > 0 of form




∂tα + u∂xα =
1

µ
∂x [D (∂xα · ~n)− α (1− α)]

α(x, 0) = α0(x) = 1/ (1 + exp (−x/D)) , x ∈ lR, t > 0

Exact solution for this problem is simply α(x, t) = α0(x− ut)

When α(x, 0) is perturbed to α0(x) + δ(x), δ(x) ≪ 1, we have

∂τ α̃ + ∂ξ
(
α̃2/2

)
= ∂ξ

(
D∂ξα̃

)
, α̃(ξ, 0) = α̃0(ξ)

with ξ = x− ut, τ = t/µ, & α̃(ξ, τ) = 1− α(ξ, τ), yielding

steady state solution α(ξ, τ) = α̃0 (ξ + ξ0) as τ → ∞ for
some suitably chosen shift ξ0, see Sattinger (1976)
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Interface compression: Remarks

If perturbation is zero mass, i.e.,
∫∞
−∞ δ(ξ, 0)dξ = 0 we have

true solution with ξ0 = 0, see Goodman (1986)

When model is solved by a conservative method, truncation
errors will be of zero mass, yielding convergence of
numerical solution to exact one in time we want

In multi-D case, let Kα = D∇α · ~n− α (1− α). We solve

∂τα = ∇ · [(D (∇α · ~n)− α (1− α))~n] = Kα∇ · ~n+ ~n · ∇Kα

yielding τ -steady state solution as µ→ ∞, when Kα = 0 &
1D profile in coordinate normal to interface

When µ finite, Kα∇ · ~n+ ~n · ∇Kα 6= 0, strength & accuracy of
curvature ∇ · ~n plays important role in interface resolution
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Interface compression runs

Methods used here are very elementary, i.e.,

1. Use Clawpack for advection in Step 1

2. Use simple forward Euler in time, second order in space
for interface compression in Step 2

Diffusion coefficient D = εmin∀i∆xi

Time step ∆τ

∆τ ≤
1

2D

d∑

i=1

∆x2i

Stopping criterion: simple 1-norm error measure
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Extension to compressible flow

Shukla, Pantano & Freund (JCP 2010) proposed extension
of interface-compression method for incompressible flow to
compressible flow governed by reduced 2-phase model as

∂t (α1ρ1) +∇ · (α1ρ1~u) = 0

∂t (α2ρ2) +∇ · (α2ρ2~u) = 0

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = 0

∂t(ρE) +∇ · (ρE~u+ p~u) = 0

∂tα1 + ~u · ∇α1 =
1

µ
~n · ∇ (D∇α1 · ~n− α1 (1− α1))

∂tρ+∇ · (ρ~u) =
1

µ
H(α1)~n · (∇ (D∇ρ · ~n)− (1− 2α1)∇ρ)

Mixture pressure is computed based on isobaric closure
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Compressible flow: Density correction

To see how density compression term comes from, we
assume ∇ρ · ~n ∼ ∇α1 · ~n & consider case when

Kα1
= D∇α1 · ~n− α1 (1− α1) ≈ 0 =⇒ D∇α1 · ~n ≈ α1(1− α1)

yielding density diffusion normal to interface at τ -steady as

∇ (D∇ρ · ~n) · ~n ≈ ∇ (α1(1− α1)) · ~n = (1− 2α1)∇α1 · ~n

∼ (1− 2α1)∇ρ · ~n

Define Kρ = ∇(D∇ρ · ~n)− (1− 2α1)∇ρ & form

∂tρ+∇ · (ρ~u) =
1

µ
H(α1)~nKρ

H(α1) = tanh (α1(1− α1)/D)2 is localized-interface function
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Shukla et al. interface compression

In each time step, Shukla’s interface-compression algorithm
for compressible 2-phase flow consists of following steps:

1. Solve model equation without interface-compression
terms by WENO method

2. Compute primitive variable w = (ρ1, ρ2, ρ, ~u, p, α1) from
conservative variables q = (α1ρ1, α2ρ2, ρ~u, ρE, α1)

3. Iterate interface & density compression equations to
τ -steady state until convergence

4. Update conserved variables at end of time step from
primitive variables in step 2 & new values of ρ , α1 from
step 3
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Underwater explosion (UNDEX)

Solution adpated from Shukla’s paper (JCP 2010)
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Underwater explosion

Solution adpated from Shyue’s paper (JCP 2006)
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Shukla et al. algorithm: Remarks

In Shukla’s results there are noises in pressure contours for
UNDEX means poor calculation of pressure near interface

To understand method better, consider simple interface only
problem where p & ~u are constants in domain, while ρ &
material quantities in EOS have jumps across interfaces

Assume consistent approximation in step 1 for model
equation without interface-compression, yielding

smeared (α1ρ1, α2ρ2, α1)
∗ & retain (~u, p)∗ = (~u, p)

In step 3, ρ∗ = (α1ρ1)
∗ + (α2ρ2)

∗ & α∗
1 are compressed to ρ̃ &

α̃1, which in step 4, total mass & momentum are set

(ρ, ρu)n+1 = (ρ̃, ρ̃~u∗) =⇒ ~un+1 = ρ̃~u∗/ρ̃ = ~u∗ as expected
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Shukla et al. algorithm: Remarks

In addition, for total energy, we set

(ρE)n+1 =

(
1

2
ρ|~u|2 + ρe

)n+1

=
1

2
ρ̃|~u∗|2 + ρ̃e(?)

Consider stiffened gas EOS for phasic pressure
pk = (γk − 1) (ρe)k − γkBk, k = 1, 2. We then have

ρ̃e =
2∑

k=1

αkρkek =
2∑

k=1

α̃k

p∗ + γkBk

γk − 1

= p∗
2∑

k=1

α̃k

γk − 1
+

2∑

k=1

α̃k

γkBk

γk − 1

yielding equilibrium pressure pn+1 = p∗ if

(
1

γ − 1

)n+1

=
2∑

k=1

α̃k

γk − 1
&

(
γB

γ − 1

)n+1

=
2∑

k=1

α̃k

γkBk

γk − 1
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Shukla et al. algorithm: Remarks

Next example concerns linearized Mie-Grüneisen EOS for
phasic pressure pk = (γk − 1) (ρe)k + (ρk − ρ0k)Bk

ρ̃e =

2∑

k=1

αkρkek =

2∑

k=1

α̃kp
∗

γk − 1
− (α̃kρ

∗
k − α̃kρ0k)

Bk

γk − 1

= p∗
2∑

k=1

α̃k
γk − 1

−

2∑

k=1

(α̃kρ
∗
k − α̃kρ0k)

Bk

γk − 1

yielding equilibrium pressure pn+1 = p∗ if

(
1

γ − 1

)n+1

=
2∑

k=1

α̃k

γk − 1
&

(
(ρ− ρ0)B

γ − 1

)n+1

=
2∑

k=1

(α̃kρ
∗

k − α̃kρ0k)
Bk

γk − 1
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Shukla et al. algorithm: Remarks

In Shukla et al. algorithm, there is a consistent problem as

2∑

k=1

(αkρk)
n+1 =

2∑

k=1

α̃kρ
∗
k 6= ρ̃ = ρn+1

One way to remove this inconsistency is to include
compression terms in partial density αkρk directly, k = 1, 2,

∂t (αkρk) +∇ · (αkρk~u) =

1

µ
H(αk)~n · (∇ (D∇ (αkρk) · ~n)− (1− 2αk)∇ (αkρk))

We then set ρn+1 =
∑2

k=1 (αkρk)
n+1 =

∑2
k=1 α̃kρ̃k

Validation of this approach is required
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Positivity & accuracy

In compressible multiphase flow, positivity of volume
fraction, i.e., αk ≥ 0, ∀k, is important due to provision of

1. information on interface location

2. information on thermodynamic states such as ρe & p in
numerical “mixture” region & so ρk from αkρk

It is known that devise of oscillation-free higher-order
method (WENO, DG, or variant) for multiphase flow is still
an open problem

In this regards, interface-sharpening of some kind should
be a useful tool as opposed to Eulerian higher-order
methods or other adaptive mesh methods
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Anti-diffusion interface sharpening

Our second interface-sharpening model concerns
anti-diffusion proposed by So, Hu & Adams (JCP 2011)

∂tα + ~u · ∇α = −
1

µ
∇ · (D∇α), D > 0, µ≫ 1

Standard fractional step method may still apply

1. Advection step over a time step

∂tα + ~u · ∇α = 0

2. Anti-diffusion step towards sharp layer

∂τα = −∇·(D∇α) or ∂τα = −∇·(D∇α · ~n)~n, τ = t/µ

Numerical regularization is required such as employ MINMOD

limiter to stabilize ∇α in discretization, Breuß et al. (’05, ’07)
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Square wave passive advection (revisit)

Square-wave pluse moving with u = 1 after 4 periodic cycle
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Vortex in cell (revisit)

Contours α = (0.05, 0.5, 0.95) at 6 different times in 1 period

No interface sharpening (second order)

With interface compression

With anti-diffusion
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Deformation flow in 3D
In this test, consider velocity field

~u =
(
2 sin2 (πx) sin (2πy) sin (2πz),− sin (2πx) sin2 (πy) sin (2πz),

− sin (2πx) sin (2πy) sin2 (πz)
)
cos (πt/3)
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Deformation flow in 3D

No anti-diffusion With anti-diffusion
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Deformation flow in 3D

No anti-diffusion With anti-diffusion

11:55-12:25, March 05, HPSC2012, Hanoi, Vietnam – p. 27



Anti-diffusion runs

Methods used here are essentially the same as artificial
interface compression runs, i.e.,

1. Use Clawpack for advection in Step 1

2. Use first order explicit method for anti-diffusion in Step 2

Diffusion coefficient D = max |~u|

Time step ∆τ

∆τ ≤
1

2D

d∑

i=1

∆x2i

Stopping criterion: some measure of interface
sharpness
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Anti-diffusion to compressible flow

Reduced 2-phase model with anti-diffusion (Shyue 2011)

∂tα1 + ~u · ∇α1 = −
1

µ
∇ · (D∇α1) = −

1

µ
Kα1

∂t (α1ρ1) +∇ · (α1ρ1~u) = −
1

µ
HI∇ · (D∇α1ρ1) = −

1

µ
HIKα1ρ1

∂t (α2ρ2) +∇ · (α2ρ2~u) = −
1

µ
HI∇ · (D∇α2ρ2) = −

1

µ
HIKα2ρ2

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = −
1

µ
HI~u ∇ · (D∇ρ) = −

1

µ
HIKρ~u

∂t (ρE) +∇ · (ρE~u+ p~u) = −
1

µ
HI

(
Kρ|~u|2/2 +Kρe

)

Isobaric closure for mixture pressure is used as usual

HI denotes interface indicator, K denotes “diffusion” term
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Anti-diffusion to compressible flow

To find Kρ|~u|2/2 assuming |~u|2 is constant, we observe

∇

(
1

2
ρ|~u|2

)
=

1

2
|~u|2∇ρ yielding Kρ|~u|2/2 =

1

2
|~u2|∇ · (D∇ρ)

To find Kρe, we need to know equation of state. Now in
stiffened gas case with pk = (γk − 1) (ρe)k − γkBk,

∇(ρe) = ∇

(
2∑

k=1

αkρkek

)
= ∇

(
2∑

k=1

αk
p+ γkBk

γk − 1

)

=

2∑

k=1

(
p+ γkBk

γk − 1

)
∇αk =

(
p+ γ1B1

γ1 − 1
−
p+ γ2B2

γ2 − 1

)
∇α1

= β ∇α1 yielding Kρe = β ∇ · (D∇α1)
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Anti-diffusion to compressible flow

We next consider case with linearized Mie-Grüneisen EOS
pk = (γk − 1) (ρe)k + (ρk − ρ0k)Bk k = 1, 2, & proceed same
procedure as before

∇(ρe) = ∇

(
2∑

k=1

αkρkek

)
= ∇

(
2∑

k=1

αk
p− (ρk − ρ0k)Bk

γk − 1

)

=

2∑

k=1

p+ ρ0kBk

γk − 1
∇αk +

2∑

k=1

Bk

γk − 1
∇ (αkρk)

= β0∇α1 +

2∑

k=1

βk∇(αkρk)

We choose Kρe = β0 ∇ · (D∇α1) +
∑2

1 βk ∇ · (D∇αkρk)
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Anti-diffusion to compressible flow

Write anti-diffusion model in compact form

∂tq +∇ · ~f + B∇q = −
1

µ
ψ(q)

with q, ~f , B, & ψ defined (not shown)

In each time step, proposed anti-diffusion algorithm for
compressible 2-phase flow consists of following steps:

1. Solve model equation without anti-diffusion terms

∂tq +∇ · ~f + B∇q = 0

2. Iterate model equation with anti-diffusion terms

∂τq = −ψ(q)

to sharp layer
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Circular water column in uniform flow
Density surface plot (moving speed ~u = (1, 1/10) )
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Single-phase Riemann problem
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Single-phase Riemann problem
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Oscillating water column

Initially, in closed shock tube, water column moves at
u = 1 from left to right, yielding air compression at right
& air expansion at left

Subsequently, pressure difference built up across water
column resulting deceleration of column of water to
right, makes a stop, & then acceleration to left; a
reverse pressure difference built up across water
column redirecting flow from left to right again

Eventually, water column starts to oscillate

airair water
u→
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Oscillating water column
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2D Riemann Problem

With initial 4-slip lines wave pattern
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2D Riemann Problem
Density on top & pressure on bottom
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Shock in air & water cylinder

Solution adpated from Shukla’s paper (JCP 2010)
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Shock in air & water cylinder

Schlieren images for anti-diffusion results at times t = 0.15,
0.4, 0.65 (volume fraction on right)
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Anti-diffusion sharpening: Remarks

1. Local interface identification
Algebraic

H(α) = tanh (α(1− α)/D)2 (Shukla et al. )

Physical-jump (density, volume fraction, . . . )

2. Diffusion coefficient definition
Global D = max |~u| or Dj = max |uj |

Local D = maxM(C) |~u| or DC
j = maxM(C) |uj |

3. Stopping criterion
Run 1− 2 anti-diffusion iteration currently
Interface-shapreness measure (?)
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Effect of diffusion coefficient

Anti-diffusion results for Zalesak’s rotating disc

Global Dj Local Dj
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Effect of stopping criterion

Anti-diffusion results for Zalesak’s rotating disc

Local Dj : 1 step Local Dj : 2 step
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Future perspectives

Extend method to mapped grid & model with phase
transition proposed by Saurel, Petipas, Abgrall (JFM 2008)

∂t (α1ρ1) +∇ · (α1ρ1~u) = 0

∂t (α2ρ2) +∇ · (α2ρ2~u) = 0

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = 0

∂t (ρE) +∇ · (ρE~u+ p~u) = 0

∂tα1 + ~u · ∇ (α1~u) = α1
K̄S

K1
S

∇ · ~u+
K̃Γ

K̃S

Q1 +
K̃c

K̃S

ρẎ

K̄S =

(
α1
K1

S

+
α2
K2

S

)−1

, K̃S =

(
K1

S

α1
+
K2

S

α2

)
, K̃Γ =

(
Γ1

α1
+

Γ2

α2

)

K̃c =

(
c21
α1

+
c22
α2

)
, Kι

S = ριc
2
ι , Q1 = H(T2 − T1), Ẏ (mass trans.)
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Thank you
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