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# Computing monotone sharp resolution of interfaces is
of fundamental importance in many practical problems
of interest

# Discuss a simple Eulerian interface sharpening
approach (vs. Lagrangian, interface tracking, or
adaptive moving mesh) for hyperbolic problems

» Review two PDE-based interface sharpening
techniques for solving volume-fraction linear
transport equation that arises, for example, from
viscous incompressibe 2-phase flow

s Extend method for computing material lines or free
L surfaces arising from compressible multiphase flow J
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Incompressible2-phase flow: Review

f(:onsider unsteady, incompressible, viscous, immiscible T
2-phase flow with governing equations

V-u=0 (Continuity)
O (pit) +V - (pi @ @) +Vp=V -7+ pi+ f,  (Momentum)

O +1u - Va =0 (Volume-fraction transport )

Material quantities in 2-phase coexistent region are often
computed by a-based weighted average as

p=ap;+ (1 —a)ps, €=ae+ (1 —a)es, a € [0,1],

where source terms are volume-fraction dependent
Vo

LT:e(VfH—VﬁT), f. = —okVa Withm:V-<W> J
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Interface sharpening techniques

nypicaI Interface sharpening methods for computing volumej
fraction in incompressible 2-phase flow include:

# Algebraic based approach

s CICSAM (Compressive Interface Capturing Scheme
for Arbitrary Meshes): Ubbink & Issa JCP 1999

s THINC (Tangent of Hyperbola for INterface

Capturing): Xiao, Honma & Kono Int. J. Numer.
Meth. Fluids 2005

s Improved THINC: Xiao et al.
# PDE based approah

s Artificial compression: Harten CPAM 1977, Olsson &
Kreiss JCP 2005

L s Anti-diffusion: So, Hu & Adams JCP 2011 J
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Artificial interface compression

fOur first interface-sharpening model concerns nonlinear T
artificial compression of form proposed by Olsson & Kreiss

at(l+ﬁ'VCX:%V'[(D(V()é'ﬁ)—@(l—&))ﬁ]

where 7 = Va/|Va

, D>0, u>1

Numerical method based on fractional step may apply
1. Advection step over a time step At to solve

O+ 1u-Va =0 or O+ V- (au) =0
since by assumption V-« =0
2. Interface compression step towards r-steady state

- Da=V-[(D(Va-i)—a(l—a)id, 7=t/u |
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Sguare wave passive advection

quuare-wave pluse moving with v = 1 after 4 periodic cycle T

0.8}

0.6

0.4

0.2

< NO compress
o With compress
— Exact

|
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Zalesak’s rotating disc

fContours a = 0.5 at 4 different times within 1 period in that T
= (1/2—y,z—1/2)

No compression With compression




Vortex in cell

f(:ontours a = (0.05,0.5,0.95) at 6 different times in 1 period T
U= (- sin® (rx) sin (27y), sin (27z) sin® (ry)) cos (t/8)

No compression

PR

With compression

|
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Interface compression: Remarks

-

Consider 1D model problem with « > 0 of form

-

{ Drer + udyer — %ax D (0par ) — (1 — @)

a(r,0) =ag(z) =1/(1+exp(—z/D)), xR, t>0
Exact solution for this problem is simply a(x,t) = ag(x — ut)

When «(z,0) is perturbed to ag(z) + o(x), é(x) < 1, we have
0;6 + 0 (6°/)2) = O (DOc@),  @(&,0) = ao(€)

With € = o — ut, 7 = /11, & a(&,7) = 1 — al€, 1), yielding

steady state solution a(¢,7) = g (£ + &) as 7 — oo for
Lsome suitably chosen shift ¢, see Sattinger (1976) J
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Interface compression: Remarks
ff perturbation is zero mass, ie., [__46(&,0)d¢ = 0 we have T
true solution with £, = 0, see Goodman (1986)

When model is solved by a conservative method, truncation
errors will be of zero mass, yielding convergence of
numerical solution to exact one in time we want

In multi-D case, let K, = DVa -1 — a (1 — a). We solve
Ora =V - [(D(Va-7) —a(l —a))i] = KoV -7+ 17 - VK,

ylelding 7-steady state solution as u© — oo, when K, =0 &
1D profile in coordinate normal to interface

When . finite, K,V -n+n - VK, # 0, strength & accuracy of
Lcurvature V -1 plays important role in interface resolution J

11:55-12:25, March 05, HPSC2012, Hanoi, Vietham — p. 10



Interface compression runs

w

1. Use Clawpack for advection in Step 1

-

ethods used here are very elementary, i.e.,

2. Use simple forward Euler in time, second order in space
for interface compression in Step 2

o Diffusion coefficient D = ¢ miny; Ax;

#® Time step At

AT < —ZAx

#® Stopping criterion: simple 1-norm error measure

o |
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Extension to compressible flow

fShukIa, Pantano & Freund (JCP 2010) proposed extension T
of interface-compression method for incompressible flow to
compressible flow governed by reduced 2-phase model as

1
&%Dq-Fﬁ-VOq:;ﬁ-V(DVOél-T_i—Oq(l—Oq))

atpw-(pa):%ff(al) (V(DVp-il) — (1 - 201) V)

LMixture pressure Is computed based on isobaric closure J
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Compressible flow: Density correction

- N

To see how density compression term comes from, we
assume Vp-n~Vai;-n & consider case when

Ko, =DVay-ni—a(l—a;))~0 = DVa-n=a(l—a)
yielding density diffusion normal to interface at r-steady as

V(DVp-ﬁ)°ﬁ%V(Oq(1—Oq))°ﬁ: (1—20&1)V()41-ﬁ
~ (1—2041)V,0-ﬁ
Define K, = V(DVp-n) — (1 —2a1) Vp & form

L1 _)
Op+ V- (pu) = ;H(oq)nKp

LH(OQ) — tanh (a1 (1 — a1)/D)? is localized-interface function J
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Shukla et al. Interface compression

- N

In each time step, Shukla’s interface-compression algorithm
for compressible 2-phase flow consists of following steps:

1. Solve model equation without interface-compression
terms by WENO method

2. Compute primitive variable w = (p1, p2, p, 4, p, 1) from
conservative variables ¢ = (a1 p1, aopa, pt, pE, aq)

3. lterate interface & density compression equations to
r-Steady state until convergence

4. Update conserved variables at end of time step from
primitive variables in step 2 & new values of p , o from

L step 3 J
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Underwater explosion (UNDEX)

fSqution adpated from Shukla’s paper (JCP 2010) T

|
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Underwater explosion

fSqution adpated from Shyue’s paper (JCP 2006) T

Density Pressure
Tracking Capturing Tracking Capturing
time=0.2ms air time=0.2ms air
water U @ water .u
time=0.4ms time=0.4ms
time=0.8ms time=0.8ms
= ;x\- g - »
- =N / ; _ -l
ji% : time=1.2ms

N
\
K
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Shukla et al. algorithm: Remarks

ﬁn Shukla’s results there are noises in pressure contours forj
UNDEX means poor calculation of pressure near interface

To understand method better, consider simple interface only
problem where p & @ are constants in domain, while p &
material quantities in EOS have jumps across interfaces

Assume consistent approximation in step 1 for model
equation without interface-compression, yielding

—

smeared  (a1p1,a2p2, 1) & retain  (d,p)* = (d,p)

In step 3, p* = (a1p1)* + (agp2)* & o are compressed to p &
a1, which in step 4, total mass & momentum are set

L(p, )" = (p, p*) = d"'=pu*/p=u" as expectedJ
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Shukla et al. algorithm: Remarks

ﬁn addition, for total energy, we set T

n+1 1 =2 n 1~—»>|<2 el ?
(pE)"" = { 5plul” + pe = 5Pl [" + pe(?)

Consider stiffened gas EOS for phasic pressure
pr = (v — 1) (pe)r — 7B, k =1,2. We then have

< B
pe = X PECkL = Ak 1
k=1 k=1 Tk
2 a 2 y B
* k ~ kK
=P ) gt
-1 = w1
yielding equilibrium pressure p" ™! = p* if

n 2 ~ n 2
1 H_Z g, vB +1_Z~ Vi B
\— — = & E—— — A J
y—1 — =1 y—1 — =1
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Shukla et al. algorithm: Remarks

-

Next example concerns linearized Mie-Grluneisen EOS for
phasic pressure pj, = (v, — 1) (pe)x + (pk — pok) Bk

-

2 >
~ B QP - - By,
pe =Y opprex = Y — (Arpf — Arpor)
k=1 —1 kT 1 e
2 2 3
* k ~ ~ k
=p — > (agpy, — arpok)

yielding equilibrium pressure p" ™! = p* if

1 n+1 2 &k (IO . p0>B n+1 2 ) . ) Bk

v—1 k=1 v—1 k=1

o |
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Shukla et al. algorithm: Remarks

ﬁn Shukla et al. algorithm, there Is a consistent problem as T

2 2
| .
Z (arpr)™ = Z arpy £ p=p"t
—1

k=1

One way to remove this inconsistency is to include
compression terms in partial density «;.p;. directly, £ = 1, 2,

O (agpr) +V - (opprti) =
%H(Ozk)ﬁ- (V(DV (agpg) - 1) — (1 = 2ay) V (agpp))

2 1 2 .
We then set p" ™t =377, (o) = > 1 Ok

L Validation of this approach is required J
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Positivity & accuracy

- N

In compressible multiphase flow, positivity of volume
fraction, i.e., o > 0, Vk, IS Important due to provision of

1. information on interface location

2. Information on thermodynamic states such as pe & p in
numerical “mixture” region & so p;. from «;.p;.

It is known that devise of oscillation-free higher-order
method (WENO, DG, or variant) for multiphase flow is still
an open problem

In this regards, interface-sharpening of some kind should
be a useful tool as opposed to Eulerian higher-order
Lmethods or other adaptive mesh methods J
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Anti-diffusion interface sharpening

fOur second interface-sharpening model concerns T
anti-diffusion proposed by So, Hu & Adams (JCP 2011)

1
o+ u-Va=—-V-(DVa), D>0, p>1
v

Standard fractional step method may still apply
1. Advection step over a time step

O +1u-Va =0
2. Anti-diffusion step towards sharp layer
Ora = —-V-(DVa) or O.a=-V-(DVa-n)i, 7=t/u

Numerical regularization Is required such as employ Minmob
uimiter to stabilize Vo in discretization, Breul3 et al. ('05, '07)
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Sguare wave passive advection (revisit)

quuare-wave pluse moving with v = 1 after 4 periodic cycle T

time=4
1 CERERRRREEREEE O :
o 0 xNo sharpen
o0t o Compress
I O % © o Anti-diffus |
0.8 S — Exact
D X g
0.6_ X
3
0.4r x
><C D
0.2r
O O

|
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Vortex In cell (revisit)

f(:ontours a = (0.05,0.5,0.95) at 6 different times in 1 period T
No interface sharpening (second order)

 Cee

a

11:55-12:25, March 05, HPSC2012, Hanoi, Vietham — p. 24



Deformation flow in 3D

ﬁn this test, consider velocity field T

u=(2 sin? (rx) sin (27y) sin (272), — sin (272) sin? (7y) sin (272),

—sin (272) sin (27y) sin? (72)) cos (7t /3)

08.

06.

|
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Deformation flow in 3D

-

No anti-diffusion With anti-diffusion

q(1) attime 1.5000

08 0.8




Deformation flow in 3D

-

No anti-diffusion With anti-diffusion

-

q(1) attime 3.0000

08 08




Anti-diffusion runs

o N

Methods used here are essentially the same as artificial
Interface compression runs, i.e.,

1. Use Clawpack for advection in Step 1

2. Use first order explicit method for anti-diffusion in Step 2
# Diffusion coefficient D = max |

#® Time step At

d
12: 2
ATSE 1A3§'i
1=

# Stopping criterion: some measure of interface

L sharpness J
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Anti-diffusion to compressible flow

fReduced 2-phase model with anti-diffusion (Shyue 2011) T

1 1
o1 +u-Vay =—=V - (DVap) = —;/Cal

[
B 1 1
O (1p1) + V- (aapr) = —;HIV - (DVaipr) = —;Hﬂcalpl

B 1 1
O (2p2) +V - (agpat) = —;HIV - (DVagpz) = _;HI]COQPQ

1 1
O (pil) + V - (pii @ @) + Vp = —;Hﬂz V- (DVp) = —;Hﬂcpa

B . 1
Oy (,OE) + V- (pEu + pu) — —;H] (]Cp‘ﬁ‘Q/Q + ]Cpe)

Isobaric closure for mixture pressure Is used as usual
LH] denotes interface indicator, K denotes “diffusion” termJ
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Anti-diffusion to compressible flow

-

To find C

-

pli2/2 @assuming i|? is constant, we observe

1
_|@%|V - (DVp)

i}

| B 1 .
\% (§p\ul2> = §\ul2v,0 yielding K, z2/2 =

To find C,., we need to know equation of state. Now in
stiffened gas case with pp, = (v — 1) (pe)r — VB,

2 2
p + Vi B
(o) o (28]
2
_Z<P+%Bk> _(p+%81 p+v282)
— . = — V()él
—\ w1 71— 1 Y2 — 1

L = a; Yylelding K, =8V (DVa) J
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Anti-diffusion to compressible flow

-

We next consider case with linearized Mie-Gruneisen EOS
pr = (ve — 1) (pe)r + (pr — por) Br k = 1,2, & proceed same
procedure as before

2 2 — (pr — por) B
V(pe) =V (Z Oékpkek> =V (Z g 212 _:010k k)

-

LWe choose K,. = 8y V- (DVar) + 57 8 V- (DVaypp) J
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Anti-diffusion to compressible flow

fWrite anti-diffusion model in compact form T

- 1
oq+V-f+ BVg= —;19(61)
with ¢, f, B, & v defined (not shown)

In each time step, proposed anti-diffusion algorithm for
compressible 2-phase flow consists of following steps:

1. Solve model equation without anti-diffusion terms

g+ V- f+BVqg=0

2. Iterate model equation with anti-diffusion terms

87'q — —¢(Q)

L to sharp layer J
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Circular water column in uniform flow

fDensity surface plot (moving speed « = (1,1/10) ) T
No anti-diffusion

L

W

| _JI”I.I

|
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Single-phase Riemann problem

- N

» < No sharpen
0.9r » ¢ Anti—diffu
— Exact

0.8}

0.7¢

0.6

0.5¢

0.4

0.3

0.2

0.1
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Single-phase Riemann problem

1.6

1.4

1.2¢

0.8}

0.2
0

Lax problem

-

< No sharpen
¢ Anti—diffu

Exact

0.2

o
S0
q
0
O/\/S’\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\
0.8 1

|
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Osclillating water column

- N

# Initially, in closed shock tube, water column moves at

u = 1 from left to right, yielding air compression at right
& air expansion at left

#® Subsequently, pressure difference built up across water
column resulting deceleration of column of water to
right, makes a stop, & then acceleration to left; a
reverse pressure difference built up across water
column redirecting flow from left to right again

# Eventually, water column starts to oscillate

u —
alr water alr

o |
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Osclllating water column

No anti-diffusion
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2D Riemann Problem

-

With initial 4-slip lines wave pattern

(2 e\ [}
0.75 u 0.75
0.5 v 0.5

\ 1) \»/ 1
(1) (3 )

—0.75 —0.75
0.5 —0.5

0.2
Il Il Il Il Il Il Il Il Il
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1




2D Riemann Problem
fDensity on top & pressure on bottom T

No anti-diffusion With anti-diffusion

3

25

2

[ 15

1

‘ 0.5

|
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Shock in air & water cylinder

fSqution adpated from Shukla’s paper (JCP 2010) T




Shock in air & water cylinder

fSchlieren Images for anti-diffusion results at times ¢ = 0.15, T
0.4, 0.65 (volume fraction on right)
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Anti-diffusion sharpening: Remarks

-

1. Local interface identification
o Algebraic

-

H(a) = tanh (a(1 — @)/D)*  (Shukla etal. )
# Physical-jump (density, volume fraction, ...)

2. Diffusion coefficient definition
® Global D = max|u| or D; = max |u;|

® Local D = max (¢ u| or Dj(-J = IMaXpr(C) uj]

3. Stopping criterion
# Run 1 — 2 anti-diffusion iteration currently
L # Interface-shapreness measure (?) J
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Effect of diffusion coefficient

-

Anti-diffusion results for Zalesak’s rotating disc

-

Global D; Local D;




Effect of stopping criterion

-

Anti-diffusion results for Zalesak’s rotating disc

-

Local D;: 1 step Local D;: 2 step




Future perspectives

fExtend method to mapped grid & model with phase T
transition proposed by Saurel, Petipas, Abgrall (JFM 2008)
O (a1p1) + V- (aipru) =0
O (aop2) + V- (agpoti) =0
O (pi) + V- (pi@u)+Vp=0
Ot (pE) +V - (pEd + pu) =0
. — KS — [N(F Kc '
Oap +u -V (o) = qu—éV U 4+ f(SQl + f(SpY
—1 1 2
_ a1 9 ~ Ky  Kg ~ I'y Iy
Kg=|—+4— Kg=|—24=—22 Kr=|—+—=
S <K§+K§>7 S ( 1+&2>7 r (Oél_|_()42

LKC — (;—1 + ;—2> , Kt =pc?, Q= H(Ty —T1), Y(mass trans.
1 2
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Thank you
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