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Outline

Introduce simple relaxation model for compressible
2-phase barotropic flow with & without cavitation

Describe finite-volume method for solving proposed
model numerically on fixed mapped (body-fitted) grids

Discuss adaptive moving mesh approach for efficient
improvement of numerical resolution

Show sample results & discuss future extensions
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Conventional barotropic 2-phase model

Assume homogeneous equilibrium barotropic flow with
single pressure p & velocity ~u in 2-phase mixture region

Equations of motion

∂t (α1ρ1) +∇ · (α1ρ1~u) = 0 (Continuity α1ρ1)

∂t (α2ρ2) +∇ · (α2ρ2~u) = 0 (Continuity α2ρ2)

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = 0 (Momentum ρ~u)

Saturation condition for volume fraction αk, k = 1, 2

α1 + α2 = 1 =⇒
α1ρ1
ρ1(p)

+
α2ρ2
ρ2(p)

= 1

yielding scalar nonlinear equation for equilibrium p
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Equilibrium speed of sound

Non-monotonic sound speed ceq defined as

1

ρc2eq
=

α1

ρ1c21
+

α2

ρ2c22
(Wood’s formula)

exists in 2-phase region, air-water case shown below;
yielding numerical difficulty such as inaccurate wave
transmission across diffused interface
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Equilibrium vs. frozen sound speed

Equilibrium (solid) & frozen (dashed) sound speeds,
c2f =

∑
Ykc

2
k, in case of passive advection of air-water

interface
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Equilibrium vs. frozen sound speed

When acoustic wave interacts with numerical diffusion
zone, sound speeds difference leads to time delay τ of
transmitted waves through interface
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Relaxation barotropic 2-phase model

To overcome these difficulties, we consider a relaxation
model proposed by Caro, Coquel, Jamet, Kokh, Saurel et al.

∂t (α1ρ1) +∇ · (α1ρ1~u) = 0

∂t (α2ρ2) +∇ · (α2ρ2~u) = 0

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇ (α1p1 + α2p2) = 0

∂tα1 + ~u · ∇α1 = µ (p1 (ρ1)− p2 (ρ2)) (Transport α1)

When taking infinite pressure relaxation µ→∞, we have

p1(ρ1) = p2(ρ2) =⇒ p1

(
α1ρ1
α1

)
− p2

(
α2ρ2
1− α1

)
= 0

yielding scalar nonlinear equation for volume fraction α1
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Relaxation barotropic model: Remarks

This model can be viewed as isentropic version of
relaxation model proposed by Saurel, Petitpas, Berry
(JCP 2009, see below) for 2-phase flow

This model is hyperbolic & has monotonic sound speed
c2f =

∑
Ykc

2
k

Cavitation is modeled as a simplified mechanical
relaxation process, occurring at infinite rate & not as a
mass transfer process

i.e., cavitation pockets appear as volume fraction
increases for a small amount of gas present initially
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Relaxation2-phase model

Saurel, Petitpas, Berry (JCP 2009)

∂t (α1ρ1) +∇ · (α1ρ1~u) = 0

∂t (α2ρ2) +∇ · (α2ρ2~u) = 0

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇ (α1p1 + α2p2) = 0

∂t (α1ρ1e1) +∇ · (α1ρ1e1~u) + α1p1∇ · ~u = −p̄µ (p1 − p2)

∂t (α2ρ2e2) +∇ · (α2ρ2e2~u) + α2p2∇ · ~u = p̄µ (p1 − p2)

∂tα1 + ~u · ∇α1 = µ (p1 − p2)

p̄ = (p1Z2 + p2Z1)/(Z1 + Z2); Zk = ρkck

Model agrees with reduced 2-phase model of Kapila,
Menikoff, Bdzil, Son, Stewart (Phys. Fluid 2001) formally
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1-phase barotropic cavitation models

Cutoff model

p =

{
p(ρ) if ρ ≥ ρsat

psat if ρ < ρsat

Schmidt model

p =





p(ρ) if ρ ≥ ρsat

psat + pgl ln

[
ρgc

2

gρlc
2

l (ρl+α(ρg−ρl))

ρl(ρgc2g−α(ρgc2g−ρlc
2

l ))

]
if ρ < ρsat

with pgl =
ρgc

2
gρlc

2
l (ρg − ρl)

ρ2gc
2
g − ρ2l c

2
l

& ρ = αρg + (1− α)ρl

Modified Schmidt model & its variant
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Mapped grid method

We want to use finite-volume mapped grid approach to
solve proposed relaxation model in complex geometry

Assume mapped grids are logically rectangular & will
review method for hyperbolic system of conservation laws

∂tq+∇ · f(q) = 0

i− 1

i− 1

i

i j

j

j + 1
j + 1

Ĉij

Cij

ξ1

ξ2

mapping

∆ξ1

∆ξ2

logical grid
physical grid

←−

x1 = x1(ξ1, ξ2)
x2 = x2(ξ1, ξ2)

x1

x2
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Mapped grid methods

On a curvilinear grid, a finite volume method takes

Qn+1
ij = Qn

ij−
∆t

κij∆ξ1

(
F 1
i+ 1

2
,j
− F 1

i− 1

2
,j

)
−

∆t

κij∆ξ2

(
F 2
i,j+ 1

2

− F 2
i,j− 1

2

)

∆ξ1, ∆ξ2 denote mesh sizes in ξ1- & ξ2-directions

κij =M(Cij)/∆ξ1∆ξ2 is area ratio between areas of grid
cell in physical & logical spaces

F 1
i− 1

2
,j
= γi− 1

2
,jF̆i− 1

2
,j , F

2
i,j− 1

2

= γi,j− 1

2

F̆i,j− 1

2

are normal fluxes

per unit length in logical space with γi− 1

2
,j = hi− 1

2
,j/∆ξ1 &

γi,j− 1

2

= hi,j− 1

2

/∆ξ2 representing length ratios
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Wave propagation method

First order wave propagation method devised by LeVeque
on mapped grid is a Godunov-type finite volume method

Qn+1
ij = Qn

ij−
∆t

κij∆ξ1

(
A+

1 ∆Qi− 1

2
,j +A

−

1 ∆Qi+ 1

2
,j

)
−

∆t

κij∆ξ2

(
A+

2 ∆Qi,j− 1

2

+A−

2 ∆Qi,j+ 1

2

)

with right-, left-, up-, & down-moving fluctuations A+
1 ∆Qi− 1

2
,j ,

A−

1 ∆Qi+ 1

2
,j , A

+
2 ∆Qi,j− 1

2

, & A−

2 ∆Qi,j+ 1

2

that are entering into grid
cell

To determine these fluctuations, one-dimensional Riemann
problems in direction normal to cell edges are solved
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Wave propagation method

Speeds & limited versions of waves are used to calculate
second order correction terms as

Qn+1
ij := Qn+1

ij −
1

κij

∆t

∆ξ1

(
F̃1

i+ 1

2
,j
− F̃1

i− 1

2
,j

)
−

1

κij

∆t

∆ξ2

(
F̃2

i,j+ 1

2

− F̃2

i,j− 1

2

)

For example, at cell edge (i− 1
2 , j) correction flux takes

F̃1
i− 1

2
,j
=

1

2

Nw∑

k=1

∣∣∣λ1,k
i− 1

2
,j

∣∣∣
(
1−

∆t

κi− 1

2
,j∆ξ1

∣∣∣λ1,k
i− 1

2
,j

∣∣∣
)
W̃

1,k

i− 1

2
,j

κi− 1

2
,j = (κi−1,j + κij)/2. To aviod oscillations near

discontinuities, a wave limiter is applied leading to limited
waves W̃
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Wave propagation method

Transverse wave propagation is included to ensure second
order accuracy & also improve stability that A±

1 ∆Qi− 1

2
,j are

each split into two transverse fluctuations: up- &
down-going A±

2 A
+
1 ∆Qi− 1

2
,j & A±

2 A
−

1 ∆Qi− 1

2
,j , at each cell

edge

This method can be shown to be conservative & stable
under a variant of CFL (Courant-Friedrichs-Lewy) condition
of form

ν = ∆tmax
i,j,k




∣∣∣λ1,k

i− 1

2
,j

∣∣∣
κip,j∆ξ1

,

∣∣∣λ2,k

i,j− 1

2

∣∣∣
κi,jp∆ξ2


 ≤ 1,

ip = i if λ1,k
i− 1

2
,j
> 0 & i− 1 if λ1,k

i− 1

2
,j
< 0
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Extension to moving mesh

To extend mapped grid method to solution adaptive moving
grid method one simple way is to take approach proposed
by

H. Tang & T. Tang, Adaptive mesh methods for one- and
two-dimensional hyperbolic conservation laws, SIAM J.
Numer. Anal., 2003

In each time step, this moving mesh method consists of
three basic steps:

(1) Mesh redistribution

(2) Conservative interpolation of solution states

(3) Solution update on a fixed mapped grid
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Mesh redistribution scheme
Winslow’s approach (1981)

Solve ∇ · (D∇ξj) = 0, j = 1, . . . , Nd

for ξ(x). Coefficient D is a positive definite matrix which
may depend on solution gradient

Variational approach (Tang & many others)

Solve ∇ξ · (D∇ξxj) = 0, j = 1, . . . , Nd

for x(ξ) that minimizes “energy” functional

E(x(ξ)) =
1

2

∫

Ω

Nd∑

j=1

∇T
ξ D∇xjdξ

Lagrangian (ALE)-type approach (e.g., CAVEAT code)
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Conservative interpolation

Numerical solutions need to be updated conservatively, i.e.

∑
M
(
Ck+1

)
Qk+1 =

∑
M
(
Ck
)
Qk

after each redistribution iterate k. This can be done by

Finite-volume approach

M
(
Ck+1

)
Qk+1 =M

(
Ck
)
Qk −

Ns∑

j=1

hjĞj , Ğ = (ẋ · n)Q

Geometric approach
[
∑

S

M
(
Ck+1

p ∩ Sk
p

)
]
Qk+1

C =
∑

S

M
(
Ck+1

p ∩ Sk
p

)
Qk

S

Cp, Sp are polygonal regions occupied by cells C & S
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Interpolation-free moving mesh

If we want to derive an interpolation-free moving mesh
method, one may first consider coordinate change of
equations via (x, t) 7→ (ξ, t), yielding transformed
conservation law as

∂tq̃+∇ξ · f̃ = G

q̃ = Jq, f̃j = J (q ∂tξj +∇ξj · f) , J = det (∂ξ/∂x)−1

G = q
[
∂tJ +∇ξ · (J∂tξj)

]
+

N∑

j=1

fj∇ξ ·
(
J∂xj

ξk
)

= 0 (if GCL & SCL are satisfied)

Numerical method can be devised easily to solve these
equations
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Relaxation solver on moving meshes

In each time step, our numerical method for solving
barotropic 2-phase flows on a moving mesh consists of
following steps:

(1) Moving mesh step
Determine cell-interface velocity & cell-interface location
in physical space over a time step

(2) Frozen step µ→ 0
Solve homogeneous part of relaxation model on a
moving mapped grid over same time step as in step 1

(3) Relaxation step µ→∞
Solve model system with only source terms in infinite
relaxation limit
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Water-vapor cavitation

Initially, in closed shock tube, flow is homogeneous
(contains α = 10−6 gas in bulk liquid) at standard
atmospheric condition & exists interface separating flow
with opposite motion (u = 100 m/s)

Result in pressure drop & formation of cavitation zone
in middle; shocks form also from both ends

Eventually, shock-cavitation collision occurs

−u u

← Inteface
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Water-vapor cavitation
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Water-vapor cavitation

Physical grid in x-t plane
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Oscillating water column

Initially, in closed shock tube, water column moves at
u = 1 from left to right, yielding air compression at right
& air expansion at left

Subsequently, pressure difference built up across water
column resulting deceleration of column of water to
right, makes a stop, & then acceleration to left; a
reverse pressure difference built up across water
column redirecting flow from left to right again

Eventually, water column starts to oscillate

airair water
u→
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Oscillating water column

Physical grid in x-t plane
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Oscillating water column
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Oscillating water column

Time evolution of pressure at left & right boundaries
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Tait equation of state & parameters

Each fluid phase (liquid & gas) satisfies Tait equation of
state

pk(ρ) = (p0k + Bk)

(
ρ

ρ0k

)γk

− Bk for k = 1, 2.

with parameters for liquid phase as

(γ,B, ρ0, p0)1 =
(
7, 3000 bar, 103 kg/m3, 1 bar

)

while parameters for gas phase as

(γ,B, ρ0, p0)2 =
(
1.4, 0, 1 kg/m3, 1 bar

)
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Supersonic flow over a bluntbody

Formation of cavitation zone
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Underwater explosion

Contours of density and pressure at selected times

Density

t=0.24ms
air

water

Pressure

t=0.4ms
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Underwater explosion

Contours of density and pressure at selected times

t=0.8ms

t=1.2ms
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Underwater explosion

Physical grid at selected times
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Final remarks

Show preliminary results obtained using relaxation
moving mesh methods for barotropic 2-phase flow
problem

Cavitation problems are often occurred in low Mach
scenario & so suitable fixed up such as preconditioning
& others are necessary for solution accuracy
improvement

Extension to non-barotropc cavitation with phase
transition

. . .
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Thank you
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Reduced2-phase flow model

Reduced 2-phase flow model of Kapila et al. is zero-order
approximation of Baer-Nunziato equations with stiff
mechanical relaxation that takes

∂t (α1ρ1) +∇ · (α1ρ1~u) = 0

∂t (α2ρ2) +∇ · (α2ρ2~u) = 0

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = 0

∂t (ρE) +∇ · (ρE~u+ p~u) = 0

∂tα1 + ~u · ∇α1 =
ρ2c

2
2 − ρ1c

2
1∑2

k=1 ρkc
2
k/αk

∇ · ~u
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Baer-Nunziato Two-Phase Flow Model
Baer & Nunziato (J. Multiphase Flow 1986)

(α1ρ1)t +∇ · (α1ρ1~u1) = 0

(α1ρ1~u1)t +∇ · (α1ρ1~u1 ⊗ ~u1) +∇(α1p1) = p0∇α1 + λ(~u2 − ~u1)

(α1ρ1E1)t +∇ · (α1ρ1E1~u1 + α1p1~u1) = p0 (α2)t + λ~u0 · (~u2 − ~u1)

(α2ρ2)t +∇ · (α2ρ2~u2) = 0

(α2ρ2~u2)t +∇ · (α2ρ2~u2 ⊗ ~u2) +∇(α2p2) = p0∇α2 − λ(~u2 − ~u1)

(α2ρ2E2)t +∇ · (α2ρ2E2~u2 + α2p2~u2) = −p0 (α2)t − λ~u0 · (~u2 − ~u1)

(α2)t + ~u0 · ∇α2 = µ (p2 − p1)

αk = Vk/V : volume fraction (α1 + α2 = 1), ρk: density,
~uk: velocity, pk: pressure, Ek = ek + ~u2k/2: specific total
energy, ek: specific internal energy, k = 1, 2
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Baer-Nunziato Model (Cont.)

p0 & ~u0: interfacial pressure & velocity

Baer & Nunziato (1986)
p0 = p2, ~u0 = ~u1

Saurel & Abgrall (1999)

p0 =
∑2

k=1 αkpk, ~u0 =
∑2

k=1 αkρk~uk

/∑2
k=1 αkρk

λ & µ (> 0): relaxation parameters that determine rates at
which velocities and pressures of two phases reach
equilibrium
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