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Outline

Introduce simple relaxation model for compressible
2-phase barotropic flow with & without cavitation

Describe finite-volume method for solving proposed
model numerically on fixed mapped (body-fitted) grids

Discuss adaptive moving mesh approach for efficient
Improvement of numerical resolution

Show sample results & discuss future extensions

|
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Conventional barotropic 2-phase model

N N

Assume homogeneous equilibrium barotropic flow with
single pressure p & velocity « in 2-phase mixture region

# Equations of motion

O (a1p1) + V- (a1p1i) =0 (Continuity aqp1)
Ot (aop2) + V - (agpati) = 0 (Continuity asp9)
O (pt) + V- (pu@u)+Vp=0 (Momentum pu)

# Saturation condition for volume fraction oy, k£ =1, 2

@8 @
1P1 n 202

() | p2(p) :

a1 +oa9 =1 —

L yielding scalar nonlinear equation for equilibrium p J

11:20-11:40, July 28, AJK2011, Hamamatsu, Shizuoka, Japan — p. 3/37



Equilibrium speed of sound

fNon-monotonic sound speed ceq defined as T

1 Qa1 Q9

= —= +—= (Wood’s formula)

2
Pleq pP1Cy P65
exists in 2-phase region, air-water case shown below;
yielding numerical difficulty such as inaccurate wave

transmission across diffused interface
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Equilibrium vs. frozen sound speed

quuiIibrium (solid) & frozen (dashed) sound speeds, T
c; = >_ Yjci, in case of passive advection of air-water
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Equilibrium vs. frozen sound speed

fWhen acoustic wave interacts with numerical diffusion

zone, sound speeds difference leads to time delay 7 of

transmitted waves through interface
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Relaxation barotropic 2-phase model

- N

To overcome these difficulties, we consider a relaxation
model proposed by Caro, Coquel, Jamet, Kokh, Saurel et al.

O (a1p1) + V- (arpri) =0

O (aap2) + V - (agpoti) = 0

O (pt) + V- (pu® ) + V (a1p1 + agpz) =0

O +u - Var = u(p1(p1) —p2(p2)) (Transport aq)

When taking infinite pressure relaxation ;. — oo, we have

pi(o) =paps) = m (M) . ( 022 ) 0

o] 1—&1

yielding scalar nonlinear equation for volume fraction o,
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Relaxation barotropic model: Remarks

- N

# This model can be viewed as isentropic version of
relaxation model proposed by Saurel, Petitpas, Berry
(JCP 2009, see below) for 2-phase flow

# This model is hyperbolic & has monotonic sound speed
C? = > Yici

# Cavitation is modeled as a simplified mechanical
relaxation process, occurring at infinite rate & not as a
mass transfer process

i.e., cavitation pockets appear as volume fraction
Increases for a small amount of gas present initially

o |
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Relaxation 2-phase model

fSaureI, Petitpas, Berry (JCP 2009) T
O (a1p1) +V - (arpri) = 0
O (aop2) + V- (agpeti) = 0
O (pt) + V- (pu® u) + V (a1p1 + agpz) = 0
Ot (a1pre1) + V- (arprerd) + a1p1V -4 = —pu (p1 — p2)

Ot (appaen) + V - (aepaeati) + aopaV - 4 = pp (p1 — p2)
Ora1 + U - Vay = i (p1 — p2)
p = (p14o +p2Z1)/(Z1 + Z2),  Zj = prci

Model agrees with reduced 2-phase model of Kapila,
Menikoff, Bdzil, Son, Stewart (Phys. Fluid 2001) formally

o |
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1-phase barotropic cavitation models
f.p Cutoff model T

b plp) It p=> psat
Psat If P < Psat

® Schmidt model

p(p) it p> psat

b= pecapici(pi+a(pg—pi)) :
{psat —l_ pgl ln [pl(pgcga(pgcgplc%)) If p < psat

2 2
. PgCaPiC] (Pg — PI)
with  py = —55— & p=ap,+ (1—a)p
PgCq — P1C

L’ Modified Schmidt model & its variant J
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Mapped grid method

fWe want to use finite-volume mapped grid approach to T
solve proposed relaxation model in complex geometry

Assume mapped grids are logically rectangular & will
review method for hyperbolic system of conservation laws

(‘9tq+Vof(q) =

logical grid
physical grid J J

mapping i1 A&

j“ — Ag
1
A

L1 = w1(€17€2)
Lo = 332(51,52) ) 62

\—xli_l i j . Ci;
L i—1 i J
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Mapped grid methods
5

On a curvilinear grid, a finite volume method takes T

At At
ntl _ An 1l B 2 2
Qij Ry ijAgl (FH‘%J Fi_%vj) /ﬁ:ijAgz (F’J+_ F’]__)

A&, A& denote mesh sizes in £1- & &-directions

rij = M(Cjj) /A& A IS area ratio between areas of grid
cell in physical & logical spaces

()

1 2 _
FZ__J = Vet i E1 F,]__ %J_;Fm_; are normal fluxes
per unit length in logical space with ~, 1= Z_%J/Afl &
Vi1 = hij_%/Afg representing length ratios

) 2 )

o |
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Wave propagation method

fFirst order wave propagation method devised by LeVeque T
on mapped grid is a Godunov-type finite volume method

At
n+1 _ "n + _
At

Kij A&

(A;AQZ;J'—% + AQ_AQi,j—F%)
with right-, left-, up-, & down-moving fluctuations AfAQ, . ;.

ATAQ 1 5 ATAQ; ; 1, & A7 AQ, ;.1 that are entering into grid
cell

To determine these fluctuations, one-dimensional Riemann
Lproblems In direction normal to cell edges are solved J

11:20-11:40, July 28, AJK2011, Hamamatsu, Shizuoka, Japan — p. 13/37



Wave propagation method

-

Speeds & limited versions of waves are used to calculate
second order correction terms as

-

Q= Q- oL (R, -, ) -2l (7, -7 )

(%] (%] Kij A§1 1+35,7 1—3,] Kij A§2 1,)+35 1,J— %5

For example, at cell edge (i — 3, ) correction flux takes

N
~ I~ | 1k At 1.k —~— &
Flai=32 Al 1= A R
29 2 k._l (/ 27.] /{;Z 17JA€1 (/ 27] (/ 27]

ri_1 ;= (Ki—1,j + Kij)/2. To aviod oscillations near
29
discontinuities, a wave limiter is applied leading to limited

waves W
o |
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Wave propagation method

- N

ransverse wave propagation is included to ensure second
order accuracy & also improve stability that AfAQZ._l . are

57.]
each split into two transverse fluctuations: up- &
down-going Ay A AQ, 1 ; & Ay AT AQ, : ;, ateach cell
edge

1 .
57]’

This method can be shown to be conservative & stable
under a variant of CFL (Courant-Friedrichs-Lewy) condition
of form

1,k 2.k

>\i7—l j Ai}—l

v = At max e —— <1,
1,7,k /fz'p,jAfl lii,ij&

ip=i ifA" >0 & i—1 ifA* <0

27] 27]
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Extension to moving mesh
B

0 extend mapped grid method to solution adaptive moving T
grid method one simple way is to take approach proposed

by

# H. Tang & T. Tang, Adaptive mesh methods for one- and

two-dimensional hyperbolic conservation laws, SIAM J.
Numer. Anal., 2003

In each time step, this moving mesh method consists of
three basic steps:

(1) Mesh redistribution
(2) Conservative interpolation of solution states
L(S) Solution update on a fixed mapped grid J
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Mesh redistribution scheme

f.p Winslow’s approach (1981) T
Solve V- (DVE)=0, j=1,...,Ng

for £(x). Coefficient D is a positive definite matrix which
may depend on solution gradient

# Variational approach (Tang & many others)
Solve Vg : (Dngj) =0, g7=1,...,Ny

for x(¢) that minimizes “energy” functional

1
Ex(€) = 5 | 3 VEDVaydt
\—.9 Lagrangian (ALE)-type approach (e.g., CAVEAT code) J
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Conservative interpolation

fNumericaI solutions need to be updated conservatively, i.e. T
ZM Ck:—l—l ka—l—l ZM Ck: ka
after each redistribution iterate k. This can be done by

# Finite-volume approach

Ng
M(CMT) QT = Z (% m)Q

# Geometric approach

> MG nsy)

k—l—l ZM Ck—i—l N Sk) QS

L Cy, S, are polygonal regions occupied by cells C & S J
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Interpolation-free moving mesh

ﬁf we want to derive an interpolation-free moving mesh T
method, one may first consider coordinate change of
equations via (x, t) — (&, t), yielding transformed
conservation law as

8tq+V§-f‘:Q

i=Jqg,  [i=J(qd&+VE ),  J=det(de/ox)"

N
G =q[0]+ Ve (JO)] + ) fiVe - (J0u,&k)

j=1
=0 (If GCL & SCL are satisfied)

Numerical method can be devised easily to solve these

Lequations J
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Relaxation solver on moving meshes

- N

In each time step, our numerical method for solving
barotropic 2-phase flows on a moving mesh consists of
following steps:

(1) Moving mesh step
Determine cell-interface velocity & cell-interface location
In physical space over a time step

(2) Frozen step u — 0
Solve homogeneous part of relaxation model on a
moving mapped grid over same time step as in step 1

(3) Relaxation step p — oo
Solve model system with only source terms in infinite

~ relaxation limit o
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Water-vapor cavitation

- N

# Initially, in closed shock tube, flow iIs homogeneous

(contains a = 10~° gas in bulk liquid) at standard
atmospheric condition & exists interface separating flow
with opposite motion (v = 100 m/s)

#® Result in pressure drop & formation of cavitation zone
In middle; shocks form also from both ends

# Eventually, shock-cavitation collision occurs

+ Inteface

. |
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Water-vapor cavitation

. Volume fraction ; Pressure

Time
Time

. Density

Velocity
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Water-vapor cavitation
p

hysical grid in z-t plane

x 107
14

0.9f7

0.8t

0.7

0.6

0.4

0.3y

0.2

0.1y

0
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
X

11:20-11:40, July 28, AJK2011, Hamamatsu, Shizuoka, Japan — p. 23/37




Osclllating water column

- N

# Initially, in closed shock tube, water column moves at

uw = 1 from left to right, yielding air compression at right
& air expansion at left

#® Subsequently, pressure difference built up across water
column resulting deceleration of column of water to
right, makes a stop, & then acceleration to left; a
reverse pressure difference built up across water
column redirecting flow from left to right again

# Eventually, water column starts to oscillate

u — _
alr water alr

o |
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p

Oscillating water column

hysical grid in z-t plane
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Osclllating water column

Volume fraction Pressure

Time
Time

Velocity

Time
Time

X X
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Oscillating water column

-

Time evolution of pressure at left & right boundaries

-
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Tait equation of state & parameters

-

Each fluid phase (liquid & gas) satisfies Tait equation of
state

-

Yk
pr(p) = (Pox + Bi) (P—§k> — By, fork =1,2.

with parameters for liguid phase as

(v, B, po, o)y = (7, 3000 bar, 10° kg/m?®, 1 bar)

while parameters for gas phase as

(7, B, po,10)y = (1.4,0,1 kg/m3,1 bar)

o |
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Supersonic flow over a bluntbody

. N

ormation of cavitation zone

Volume fraction Pressure

- 40.6

- 115
- 0.5

- 104




Underwater explosion

-

Contours of density and pressure at selected times

-

Density Pressure

t=0.24ms

air




Underwater explosion

-

Contours of density and pressure at selected times

-

t=0.8ms
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Underwater explosion

p

hysical grid at selected times

t =0.2ms

0.5

-0.5

-1 0 1 J
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Final remarks

-

Show preliminary results obtained using relaxation
moving mesh methods for barotropic 2-phase flow
problem

Cavitation problems are often occurred in low Mach
scenario & so suitable fixed up such as preconditioning
& others are necessary for solution accuracy
Improvement

Extension to non-barotropc cavitation with phase
transition

|
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Thank you
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Reduced2-phase flow model

-

Reduced 2-phase flow model of Kapila et al. is zero-order
approximation of Baer-Nunziato equations with stiff
mechanical relaxation that takes

-

Ot (a1p1) + V- (a1p1) =0

mwﬂ+v(wm@=0
O (pu) + V- (pu®@u) + Vp =0
Ot (pE) + V - (pEi + pii) = 0
2 2

P2Cy — P16 V.

atOél + u - Voq = 5
Zk:1 Pkci/@k

o |
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Baer-Nunziato Two-Phase Flow Model
f.’ Baer & Nunziato (J. Multiphase Flow 1986) T

%1 ) —|—v-(a1p11_[1) = (
a1p1u1); + V- (a1p1u1 @ t1) + V(arpr) = poVar + A(d2 — uy)
a1p1Er), + V- (a1p1 E1t1 + a1p1tr) = po (a2), + Ao - (e — 1)

aap2tin); + V - (apatia ® Uz) + V(aop2) = poVag — A(i2 — 1)

— —

(
(
(
(2p2); + V- (agpatiz) =0
(
(aap2E2), + V - (aap2Eatia + aapatiz) = —po (a2), — Ao - (U2 — U1)
(

o), + Up - Vag = 11 (p2 — p1)

ag = V3. /V: volume fraction (a1 + as = 1), pi: density,
u. velocity, p.. pressure, E,. = e, + U /2 specific total
energy, e;. specific internal energy, k£ = 1,2
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Baer-Nunziato Model (Cont.)
-

po & up: Interfacial pressure & velocity

# Baer & Nunziato (1986)
® po=p2, Uy=1U
# Saurel & Abgrall (1999)

2 — 2 — 2
® D0= 1 VkPks U= 14 Oékﬁkﬂk/ > 11 Pk

A & p (> 0): relaxation parameters that determine rates at
which velocities and pressures of two phases reach
equilibrium

o |
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