- N

Adaptive moving mesh methods
for
hyperbolic problems

Per spective to astrophysical applications

Keh-Ming Shyue

Department of Mathematics
National Taiwan University

Taiwan


http://www.math.ntu.edu.tw/~shyue/

Objective
B -

Discuss adaptive moving mesh method for sharp &
accurate numerical resolution of discontinuous solutions
(shock waves & interfaces) for hyperbolic balance laws

Oiq +V - flq) =v¥(q)

In more than one space dimension

g R™, feR™N & e R™ denote vector of m
conserved quantities, flux matrix, & source terms

Hyperbolicity of system means any linear combination of
Jacobian matrix of column vector of flux matrix f has real
eigenvalues & complete set of eigenvectors
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October 11-15, Frontiers in Computational Astrophysics 2010, Lyon, France — p. 2/71



Content

- N

1. Cartesian cut-cell approach
# Marker-and-cell (MAC) front tracking method
o \Volume-of-fluid (VOF) interface tracking method

# Application to cosmic-ray modified shock waves,
detonation waves, & compressible multiphase flow

2. Mapped-grid approach (variant of ALE method)

# Interpolation-based method
# Interpolation-free method

3. Future research direction

o |
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Cartesian cut-cell method

o N

Basic algorithmic features:

# Use uniform underlying grid

# Introduce additional grid interfaces (points in 1D, curves
In 2D, surfaces in 3D) which represent discontinuities

moving freely through underlying grid

# Employ a finite volume method on a grid which contains
tracked discontinuities for solution update

This method is unlike a mapped grid method (to be
discussed later) where underlying grid is adjusted to fit
location of tracked discontinuities

o |

October 11-15, Frontiers in Computational Astrophysics 2010, Lyon, France — p. 4/71



MAC front tracking in 1D

fOur grid system is time-varying that consists of two parts: T
regular & irregular cells, 1D sample grid is shown below

tntd +—F—+—g-——+—

o tn, +————H—F—+— |
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MAC front moving procedure
B -

1. Solve Riemann problems at each grid point

2. Check strength of resulting Riemann solutions; only
strong wave (solid line) is tracked & weak wave (dashed
line) is captured

tn—l—l
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MAC front moving procedure

- N

wo tracked waves collide at a point over [t, 1, ty+2]
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MAC front moving procedure

-

Front collision case: adjust time step to collision point for
accurate resolution of solution after wave interaction

-

g -ttt

o R T o
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Solution update

fMethod uses finite-volume formulation in that approximate T
value of cell average of solution over jth cell at a time ¢,, IS

1
Qi ~ o / gz, t,) dx
J M(C]) CJTL ( )
C" denotes region occupied by grid cell j at ¢, & M(C7') Is
measure (length) of C7

Choose “large” time step At based on CFL condition va,
but is not restricted one based on v, . as

At At
UAN, = — max |\l <1 & va,. . = max || <1

. Az = minj Azj, Ay, Wave speed in pth family o
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Wave propagation method

fMethod Is of Godunov-type In that T

# Propagate waves (obtained using shock-only
approximate Riemann solver) independently

# Allow waves to propagate more than one cell to
maintain stability even in presence of small cells

» Wwave interaction in cell is handled linearly
# No averaging error & so smearing of tracked waves

tn+1 -

|
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Wave propagation (graphical view)
mave structure in z-t space T
1 —t— — 1 1 | tn_|_1
\% | I

Tj—1 Tj Tjr1

Piecewise constant wave arising at z;

Tj—1 L5 Tj+1

Piecewise linear wave

a e | o
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Wave propagation method

fOn uniform grid, first order method takes form T
At -
n+l _ "n — n n
Qj = Qj — N ()‘p Wp)j+1 T ()‘;Wp)j
p=1

while high resolution method (slope limiter type) takes

) ) At [~ -
Q= it = 2 (Fn - F)
. ~ 1 At — 1"
with — Fj = > [|Ap| (1 - yAp|A—$> Wp]
p=1 Jj+1

)/N\/kj Is limited version of wave W,; Jumps in Riemann
solution across A,;), AT = max{A,0}, A= = min{\, 0}, my, IS
Lnumber of waves in total, e.g., m,, = 3 for 1D Euler eq. J
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Split & merge grid cells

fA tracked wave propagating fromcell itocell j =i+ 1 Ieadsj
to a subdivision of cells i and j

S

tn+1-

by — ’ ia ’ Ajb ’

Ld Xy

At t,,, split cell 5 in two, setting Q7 = Q7 =Q7, while at ¢, 1,
remove old tracked point in cell 7, using conservative
weighted average

n+1 ,__
s

n Li+1 — n+1
Q e Q
Az J
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MAC front tracking algorithm

hn summary, in each time step, algorithm consists of T

1. Flag tracked points by checking Riemann solutions

2. Determine time step At & location of tracked points at
next time step

3. Modify current grid by inserting these new tracked
points. Some cells will be subdivided & values in each
subcell must be Initialized

4. Take At as in step 2, employ a conservative finite
volume method to update cell averages on this
nonuniform grid

5. Delete old tracked points from previous time step.
Some subcells will be combined & value in combined
L cell must be determined from subcell values J
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Cosmic-ray hydrodynamics

fConsider two-fluid model for cosmic-ray modified flows T
proposed by Axford etal. 1977 & Drury & VOlk 1981 in that

# Cosmic-rays (energetic charged particles) are assumed
to be a hot low-density gas with negligible mass density,
mass flux, & momentum density compared to that of
thermal gas

# Cosmic rays are assumed to be scattered by waves or
turbulence traveling in background flow

# Dynamics of flow system are governed by overall mass,
momentum, & energy conservation equations

# Transfer of energy between cosmic rays & background
L flow is described by diffusive transport equation J
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Two-fluid cosmic-ray model

fTwo-fluid model for cosmic-ray-modified flows T

8tp+V-(pu):O
O (pu) + V- [pu@u+ (pg + pc) I =0

1 1
Oy <§pu2+Eg+Ec> + V- [(§pu2+Eg+pg) u+FC] = ()

p p
E, = —* E, ==

Vg — 1’ Ye — 1

P, U, Dgy Eg, Vg, Des By Ve, Fey & 1, denote thermal gas
density, velocity, pressure, energy density, adiabatic index,
cosmic-ray pressure , energy density, adiabatic index,

Lenergy flux, & unit 3 x 3 dyadic J
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Cosmic-ray energy equation

-

Classical two-fluid model consists in using diffusive
transport eq.

-

atEc“l_v'Fc:u'vPc

for energy density E. carried by energetic particles in that
energy flux F,. is defined by

F.=(E.+p.)u—k-VE,

x 1S mean hydrodynamical diffusion tensor

o |
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Cosmic-ray distribution function

fRecent model concerns cosmic-ray particles described by T

distribution function f(x, p, ) that follows
convection-diffusion equation of form

(9tf+u°Vf:%(V-u)ﬁpwaV-(/ﬁ;Vf)

p denotes momentum. We compute E., p., & . by

E, — 47r/ P {(p2 +1)% - 1} £(x,p,t) dp
D1
4 @)
Pe = ?ﬂ pt (p*+1)
P1

—1/2
/ f(x,p,t) dp

De
_ 14 e
Ve T E.

ul injection momentum
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Numerical resolution of CR-hydro

fDiffusion of cosmic rays pressure would tend to decelerate T
& compress flow into shock, forming a shock precursor

Spatial scale of flow within precursor can be characterized
by so-called diffusion length D yi¢r = (p)/u, power law

k(p) o< p® with s ~ 1-2 Is of practical interest

Accurate solutions to CR convection-diffusion equation
require a grid spacing significantly smaller than D y;¢,

typlcally Ar ~ 5 x 10_2Dd|ﬂ:<p)

CRASH (Cosmic-Ray Amr SHock) code developed by Kang
& Jones for CR-related flow using front tracking method
with AMR in region near shock J

o

October 11-15, Frontiers in Computational Astrophysics 2010, Lyon, France — p. 19/71



Test for CR modified plane shock
5

CRASH code basic grid setup: Shock tracking with AMR

-




CR modified plane shock

fDensity & pressure obtained using CRASH code at six T
different times ¢ = 10, 20, ...,60

]2 LI I L T T T 1 |
g |ﬂ"
o ]m _ 08 [ 8
y |_| I
o il 06 [ T
: il
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CR modified plane shock

fVeIocity & cosmic-ray pressure obtained using CRASH T
code at six different times ¢t = 10, 20, ..., 60

0 0.6 | |
_{}2 :__-. $3iiiil ': .-.-"__-'.-'-:'-.f':-" . ': )
0.4 - T il .
506 [ o
: 02 [~ m
08 [ &
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CR modified plane shock

fDistribution functions ¢ = fp* at time ¢t = 10 & 30 obtained T
using CRASH code with 4 different mesh sizes

_2 TT T T T
A pas
fl: Il_l.r 'I. ll-,.lll e
v t=10 i fﬁf; i I t=30
_4 _FJIE I!I.r ) _4 N II A :, —
!.'l;ll IIIF ||| | | .
E IEI-'; lll% E ~ ||I ': || ::
Y, ;' I|.-- T i) -
-6 [ ] — i | =
6 _ K‘i _ 6 _ “ _
—B 1111 | 1111 | 1111 | | \ 1 | 111 1 —B 1111 | | | | 1111 | 1111 \ L1 1

-3 -2 -1 0 1 Z -3 e, -1 0 1 2
log(p/mc) log{p/mc)
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Unstable detonation wave

fToy model for supernovae explosion T
# Equation of motion

Op+ V- (pu) =0

Ot (pu) + V- (pu@u—+pl) =0
O0FE+V - -(Eu+pu) =0

O (pY) +V - (pYu) = —K(T)pY

: K(T
# Combustion model: unburnt gas KT burnt gas
e.g., Arrhenius relation K (T) = KoT®e 2"/T

® EOS:p=(v—1)(pe —quZ), qo: heatrelease

LE: total energy, Y': unburnt gas mass fraction, 7' = p/pR J
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Detonation wave spatial structure

-

Spatial resolution of pressure for unstable (left) & stable
(right) detonation waves

-
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Unstable detonation wave

fShock front pressure history for unstable detonation with T
underdriven parameter f = s/scy = 1.72 (shock tracking
with AMR is required)

75

74

73

72

pressure

71

70

T T T T T T
0 20 40 60 80 100
time
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Cartesian cut-cell method in2D

-

As before, our grid system consists of two parts: regular &
irregular cells. Tracked interfaces are represented by
piecewise linear segments.

-

tracked interface
!

\

N\

\
- \ |
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MAC front moving procedure

fl. Solve Riemann problems normal to tracked interfaces T
2. Detect & follow strong waves of step 1 over time step At
3. Interpolate to get new front location

\A I \Q\l new frant

/ olc froTr?t (\3

This approach works good for simple front but is not robust
~ for complex topological change of front o

0l(
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VOF Interface moving procedure

fl. Volume fraction update T
Take a time step on current grid to update cell averages
of volume fractions o governed by

Oa+u-Va=>0

at next time step

2. Interface reconstruction
Given volume fractions on current grid, piecewise linear
Interface reconstruction (PLIC) method does:

(a) Compute interface normal
# Gradient or least squares method method of
Youngs or Puckett

L (b) Determine interface location by iterative bisection J
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Interface reconstruction: Example

-

Cell-averaged volume fractions (left) & reconstructed
Interface (right)

-

0 0 0 0 0 .
Interface

0 [0.09/0.51(0.29| O /l/

0 1068 1 10.68] O / /

0 10.2910.51/0.09] 0O ]

0 0 0 0 0

o |
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Interface reconstruction: Example

- N

o Updated volume fraction (left) with u = (1, 1) over a time
step At = 0.06, k1 = 5.7 x 1073 & kg = 1.3 x 1073

# New reconstructed interface location (right)

0 0 0O | k2| O .
new interface

0 10.1110.7210.74| K1 /N

N
N
N
'
1
'
'

0 10.38] 1 [0.85| O

P S
I )\
D
N
N
N

0 10.01/0.25/0.06| 0 o —

old Interface

o |

October 11-15, Frontiers in Computational Astrophysics 2010, Lyon, France — p. 31/71




Solution update

fFinite volume formulation of wave propagation method, @)% T
gives approximate value of cell average of solution ¢ over
cell S at time ¢,

1

Qs ~ W/SQ(X,tn)dV

M(S). measure (area in 2D or volume in 3D) of cell S

G | H
B NF
C D

o |
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Normal-edge wave propagation

fFirst order version: Piecewise constant wave update T

o Fully discretized Godunov-type method: Solve Riemann
problem at each cell edge in normal direction & use
resulting waves to update cell averages whatever cells
they affect

w1 MOV, N S5)

QZH = Qg M(S) R,, R, beingjump from RP
Wy
EENR ]
N T A
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Transverse wave propagation

First order version: Transverse-wave included

# Use transverse portion of equation, solve Riemann
problem in transverse direction, & use resulting waves
to update cell averages as usual

# Stability of method is typically improved, while
conservation of method is maintained

y
- - o
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High resolution correction

ingh resolution version: Piecewise linear wave update T
wave before propagation after propagation
a) b)

c) d)
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Cartesian cut-cell method: Remark

fLittIe or no smearing of physical states in tracked wave T
family as illustrated below

new front
old frontT

Method remains stable with “large” time step chosen by

L v = At max (A, ig) / min(Az, Ay) <1 J

p,q
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Front tracking: Advantages

f.’ Tracked wave remain sharp T

o Avoid anomalous oscillations due to numerical
smearing in a capturing method for interfaces such

as slip line & material line, for example

# Provide valuable information on fronts for hybrid method
(e.g., couple front tracking with AMR) to solve multiscale

problems

» Useful for problems involving internal structure near
discontinuities such as cosmic-ray modified flow &
chemically-reacting detonation waves, or many
MHD, RMHD, GRMHD flow

o |
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Numerical challenges to front tracking
- -

# Small cell problems

s Stringent limits on time step in presence of small
cells created by tracked front cutting through grid

# Conservation of algorithm

# Second order accuracy near tracked front without
post-front oscillations

# Front formation & wave interactions in multiple
dimensions

# Robust algorithm for front moving, bifurcation &
topological changes

L’ Efficient numerical implementation, in particular, in 3D J
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Slip line (shear flow) problem

fTo show anomalous oscillations obtained using T
state-of-the-art capturing method, we consider a plane
right-moving interface for ideal gas in z;-direction. Interface
conditions for this problem are

# Dynamic condition: pr = pr,
» Kinematic condition: uy g = uy 1 & (u2 g — ua,z) # 0

slip line

o |
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Slip line problem: Example

fExampIe obtained by using a Godunov-type method T

#® Errors depend strongly on transverse velocity jump
6 : . . . 1.35
5 1.3¢
| E 1.25}
4t ! 10}
= l' ) 11.5-
3t , 1 -
o
10.15 T T T T 1 2]
10.1} 1 05}

o
[e]
o
9.95 : : : : -1 : —L =
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
1 L1
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Slip line problem: Source of error

fTo ensure pressure equilibrium, as it should be for this slip T
line problem, motion of transverse-kinetic energy pu3/2 is

Oy (pu%/2) + U1 0y, (pu%/2) =0

To compute pressure, from EOS using conservative
variables,

2
p=(y—1) (E - Z(pui)2/2p>
i=1
while generally (pus)?/2p # pu3/2

When a slip line is smeared out, yielding loss of pressure
equilibrium & so incorrect solution of other variables

o |
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Slip line problem: Improvement

-

To devise a more accurate method for numerical resolution
of slip lines, we may use

-

# Diffuse interface approach

» Include transverse kinetic energy equation in the
model & use its solution for pressure update

2 2
= (5 e o)

This transverse kinetic equation should be modified so
that there is no difficulty to work with shock waves

# Sharp interface approach
L s Front tracking or Lagrangian moving grid method J
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Material Line Problem

fConsider a plane material line, separating regions of two T
different fluid phases. Assume ideal gas law for each

phase: pi(p,e) = (v — L)pe, 11 # 72
To ensure pressure equilibrium, from energy eq.

p ) p
8t<7—1>+u18x1 (7—1>+
o (o) + won, (Loud) =0
t 2/0u2 U110z, 2pu2 —

yielding two constraints that should be satisfied numerically,

1 1
O (§pu%> + 110y, <§pu%) =0
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Compressible two phase flow

fConsider popular shock-bubble interaction for example of T
compressible fluid mixing

4
2 AT ™
7N
0 | R22 JIJ
_D air \ I
-4
0 5 10 15 20 25 30 35 40

o |
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Two-phase flow model

- | N

# Equation of motion: Kapila et al. two-phase flow model

O (a1p1) +V - (a1p1u) =0
O (azp2) +V - (agpgu) =0
O (pu) +V - (pu®@u+pl) =0

OWE+ V- -(Fu+pu) =0

2 2
167 — pP2C
Oras +1u - Vag = ajae /021 P2 V-u
2
k=1 Ok PkCy,

# Mixture equation of state: p = p(a9, ai1p1, aspa, pe) with
Isobaric closure: p; = py = p

o |
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Shock-bubble interaction

-

Schlieren-type image: front tracking (left) & front capturing
(right)

-

Tracking Capturing
time=55us

air




Shock-bubble interaction

-

Schlieren-type image: front tracking (left) & front capturing
(right)

-

time=1 11;.6




Shock-bubble interaction

-

Schlieren-type image: front tracking (left) & front capturing
(right)

-

time=1q5ps
|




Shock-bubble interaction

-

Schlieren-type image: front tracking (left) & front capturing
(right)

-



Shock-bubble interaction

-

Schlieren-type image: front tracking (left) & front capturing
(right)

-

time=247us




Shock-bubble interaction

-

Schlieren-type image: front tracking (left) & front capturing
(right)

-

time=318us




Shock-bubble interaction

-

Schlieren-type image: front tracking (left) & front capturing
(right)

-

time=342us




Shock-bubble interaction

-

Schlieren-type image: front tracking (left) & front capturing
(right)

-

time=417us




Shock-bubble interaction

-

Schlieren-type image: front tracking (left) & front capturing
(right)

-

time=1020us




Shock-bubble interaction

prproximate locations of interfaces

time=55pus

air

time=115us

time=135us

time=187us

time=247us

time=200ps

time=342us

time=417us

|
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Shock-bubble interaction

-

Space-time locations of prominent waves

-

x (incident shock), + (upstream bubble), < (downstream bubble),
A (refracted shock), x &  (transmitted shock)

Tracking

Capturing

250 . 250 y
& %
! § $
; & &
200} i A N 200} o
+ A
iy A2 AAAA
150 | ¢ s - 150} o
—~ i A x —~ A x X
) + AA x (7)) A <
5 E AA ) X 5 AAA 5 X
T o100p 2t ~ 100} e
3— AAA . N X AA ) " X
Iy A8 x ;:r
50| L 50 ¢ E
0% ' ' ' 0¢ ' ' '
20 40 60 20 40 60 J
x (mm) x (mm)
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Shock-bubble interaction

fQuantitative assessment of prominent flow velocities T
Velocity (m/ S) Vi Ve Vpr Vi V, f Vi Vdf
Haas & Sturtevant 415 240 540 73 90 78 T8
Quirk & Karni 420 254 560 74 90 116 &2

Our result (tracking) 411 243 538 64 87 82 60
Our result (capturing) 411 244 534 65 86 98 76

o V, (Vr, Vr) Incident (refracted, transmitted) shock
speed t € 0,250]us (¢t € [0,202]us, t € [202,250]uS )

® Vi (Vi) Initial (final) upstream bubble wall speed
t € (0,400]us (t € [400,1000]uS)

o Vi (Vy) Initial (final) downstream bubble wall speed
- t € [200,400]us (t € [400,1000]us) |
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Mapped grid method

hntegral form of conservation laws T

oq+ V- flq)=0
over any control volume C'is

4 qdx=— [ f(q) nds

dt Jo oC
A finite volume method on a control volume C takes

N

At y
Qn—l—l — Q" — M(C> Z thj

j=1
M(C) is measure (area in 2D or volume in 3D) of C, Ny is
number of sides, £, Is length (in 2D) or area (in 3D) of j-th

Lside, Fj Is approx. normal flux in average across j-th side J
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Mapped grid method

fAssume that our mapped grids are logically rectangular, & T

will restrict our consideration to 2D as illustrated below
computational grid

physical grid

j .m ry = 21(61,8) |

2 ry = 72(£1,&2) e
\— i—1 i jo|*?

L1 51

1 — 1 1

On a curvilinear grid, a finite volume method takes

At At
n+1 n 1 I Al - 2 B n
Qi = Qi NG (l i+l Fi—%,j) PN (Fi,jJr% Fz',j—%)

o |
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Mapped grid method
5

On a curvilinear grid, a finite volume method takes T

At At
ntl _ An 1 ol B 2 y
Qij Ry rij A& (Fi+%7j Fi_%vj) rij A& (F ij+3 FJ__)

A&, A& denote spatial size of comput. domain

rij = M(Cij) /A& A IS area ratio between area of grid cell
In physical space & area of a comput. grid

()

1 2
FZ__’] = Y1 Fia FJ__ %J_;Fm . are fluxes per unit

length in comput. space with Yielj = h@._%,j/Agl
Vij—1 = hi,j_%/Afz representing length ratios

o |
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Mapped grid method
-

First order wave propagation method is a Godunov-type
finite volume method that takes form

At
rij A&

-

Q?jﬂ = Q;;— (AELAQi—%,j + Al_AQH—%,j) -

At
Kij A&

(A;AQZ.,]._% n A;AQ,L-,]-JF%)

with right-, left-, up-, & down-moving fluctuations AfAQ,_: ;.
ATAQ 41 5 ATAQ; 1, & A7 AQ, ;.1 that are entering into grid
cell

To determine these fluctuations, we need to solve
one-dimensional Riemann problems normal to cell edges

L(not discussed here) J
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High resolution corrections

-

Speeds & limited versions of waves are used to calculate
second order correction terms. These terms are added to
method In flux difference form as

-

%A%tl(ﬁl B Y
iJ

1 1
Q?-Jr = Q:hL — 1 _1 ' 1
.] j /L+27] 1 27] I{'LJ A€2 7’7]+2 7’7] 2

At cell edge (i — 3, j) correction flux takes

N
~ 1 = A
FL,o == )3”2.(1 '
2 K;

Al,k
'—%,jAfl

. 1 .
7‘_57]

Rilj = (ki—1, + Kij)/2. To aviod osclillations near

discontinuities, a wave limiter is applied leading to limited

Lwaves ) 4% J
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High resolution corrections

- N

0 ensure second order accuracy & also improve stability, a
transverse wave propagation is included in algorithm that

left- & right-going fluctuations AliAQi_%J are each split into

two transverse fluctuations: up- & down-going
AFATAQ, 1 . & ATATAQ,

5 %7]

This wave propagation method can be shown to be
conservative & stable under a variant of CFL
(Courant-Friedrichs-Lewy) condition of form

ALk A2k

1 - .1
2_573 7’7]_§

v = At max : <1
i,k (Jz'p,jA§1 Jz‘,ij§2)

Lip:iifA§;k1.>o & i—1if A <0 |

27] 27]
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Accuracy test in2D

-

# Consider 2D compressible Euler equations with ideal
gas law as governing equations

® Take smooth vortex flow with initial condition

25(,)/ _ 1) 5 1/(v—1)
p = (1 o= exp(l—r ))

p=p'
5

up =1-— %exp((l —1%)/2) (x5 — 5)

w =1+ o= exp (1= 1)/2) (31— 5)

& periodic boundary conditions as an example,
r=+/(xr1 —5)2+ (2 — 5)?

o |
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-

Accuracy test in2D

® Grids used for this smooth vortex flow test

Grid 1 Grid 2 Grid 3
10 10 10
8 8 8
6 6 6 HH A R
4 4 : 4
2 2 e 2
0] 0 0
0] 5 10 0 5 10 0 5 10

o

9 €100 = ”Zcomput — Zaxactl|1,00 denotes discrete 1- or
maximum-norm error for state variable z
® Results shown below are attime t = 10 on N x N mesh J
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Accuracy results iIn2D: Grid 1

-

N | &(p) Order | &(uy) Order | E(uz) Order | & (p) Order
40 | 0.6673 2.3443 1.7121 0.8143

80 | 0.1792 190 | 0.6194 1.92 | 0.4378 1.97 | 0.2128 1.94
160 | 0.0451 1.99 | 0.1537  2.01 | 0.1104 1.99 | 0.0536  1.99
320 | 0.0113  2.00 | 0.0384  2.00 | 0.0276  2.00 | 0.0134  2.00
N | Ex(p) Order | Ex(uy) Order | E(uz) Order | E(p) Order
40 | 0.1373 0.3929 0.1810 0.1742

80 | 0.0377  1.87 0.1014 1.95 0.0502 1.85 | 0.0482  1.85
160 | 0.0093  2.02 0.0248 2.03 0.0123 2.03 | 0.0119  2.02
320 | 0.0022  2.07 0.0062 2.00 0.0030 2.04 | 0.0029 2.04
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Accuracy results in2D: Grid 2

-

N | &(p) Order | &(uy) Order | E(uz) Order | & (p) Order
40 | 0.9298 2.6248 2.1119 1.2104

80 | 0.2643  1.81 | 0.7258 1.85 | 0.5296  2.00 | 0.3277  1.89
160 | 0.0674 1.97 | 0.1833 1.99 | 0.1309 2.02 | 0.0845 1.96
320 | 0.0169  2.00 | 0.0458  2.00 | 0.0327  2.00 | 0.0212  1.99

N | Ex(p) Order | Ex(uy) Order | E(uz) Order | E(p) Order
40 | 0.1676 0.4112 0.2259 0.2111

80 | 0.0471  1.83 0.1242 1.73 0.0645 1.79 | 0.0586  1.85
160 | 0.0126  1.91 0.0333 1.90 0.0162 2.02 ] 0.0149 1.97
320 | 0.0033  1.93 0.0085 1.97 0.0040 2.00 | 0.0038 1.98
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Accuracy results in2D: Grid 3

-

N | &(p) Order | &(uy) Order | E(uz) Order | & (p) Order
40 | 4.8272 4.7734 5.3367 5.4717

80 | 1.5740  1.62 | 1.5633  1.61 1.5660  1.77 | 1.5634  1.81
160 | 0.4536  1.79 | 0.4559 1.78 | 04537 1.79 | 0.4560  1.78
320 | 0.1215 1.90 | 0.1221 1.90 | 0.1222 1.89 | 0.1221 1.90
N | Ex(p) Order | Ex(uy) Order | E(uz) Order | E(p) Order
40 | 0.4481 0.4475 0.4765 0.4817

80 | 0.1170  1.94 0.1181 1.92 0.1196 1.99 | 0.1191  2.02
160 | 0.0434  1.43 0.0431 1.45 0.0442 1.43 | 0.0440 1.44
320 | 0.0117  1.89 0.0119 1.86 0.0119 .89 | 0.0118  1.89
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Accuracy test in3D
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# Grids used for smooth radially-symmetric flow test
Grid 2

October 11-15, Frontiers in Computational Astrophysics 2010, Lyon, France — p. 61/71



Accuracy results In3D: Grid 1

- B

N E1(p) Order E1(|ul) Order E1(p) Order
20 | 7.227-1073 8.920 - 1073 1.019-1072

40 | 2.418-1073% 158 | 2.558-1072 1.80 | 3.415-1073  1.58
80 | 6.356-10"* 1.93 | 6.7564-10% 1.92 | 8.980-10"* 1.93
160 | 1.616-10"* 198 | 1.718-10%* 1.97 | 2.282-10~*% 1.98

N Eso(p) Order Eso(|1)) Order Eso(D) Order
20 | 1.096 - 102 1.200 - 1072 1.569 - 102

40 | 4.085-1072 1.42 | 4.381-1073 1.45 | 5.848-1073  1.42
80 | 1.235-107° 1.73 | 1.263-107° 1.79 | 1.765-1073  1.73
160 | 3.517-10~* 1.81 | 3.349-10~* 1.91 | 5.030-10* 1.81

o |
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Accuracy results in3D: Grid 2

-

N E1(p) Order E1(|ul) Order E1(p) Order
20 | 7.227-1073 8.920 - 1073 1.019-1072

40 | 2.418-1073% 158 | 2.558-1072 1.80 | 3.415-1073  1.58
80 | 6.356-10"* 1.93 | 6.7564-10% 1.92 | 8.980-10"* 1.93
160 | 1.616-10"* 198 | 1.718-10%* 1.97 | 2.282-10~*% 1.98
N Eso(p) Order Eso(|1)) Order Eso(D) Order
20 | 7.227-1073 8.920 - 1073 1.019-1072

40 | 2.418-1072 158 | 2.558-1072 1.80 | 3.415-1073  1.58
80 | 6.356-10"%* 193 | 6.7564-10* 1.92 | 8.980-10"* 1.93
160 | 1.616-10"* 198 | 1.718-10%* 197 | 2.282-10~*% 1.98

|
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Accuracy results in3D: Grid 3
B B

N E1(p) Order E1(|ul) Order E1(p) Order
20 | 1.290 - 102 1.641 - 1072 1.816 - 1072

40 | 4.694-1072  1.46 | 4.999-1073 1.71 | 6.623-1073  1.46
80 | 1.257-107% 1.90 | 1.379-107° 1.86 | 1.774-1073  1.90
160 | 3.209-10~* 197 | 3.546-10~% 1.96 | 4.527-10"* 1.97

N Eso(p) Order Eso(|1)) Order Eso(D) Order
20 | 1.632-1072 1.984 - 102 2.316 - 102

40 | 5.819-1077 1.49 | 6.745-10° 1.56 | 8.307-10"° 1.48

80 | 1.823-10° 1.67 | 4.290-107° 0.65 | 2.710-10° 1.67

160 | 5.053-10"* 1.85 | 3.271-1073%  0.39 | 7.237-10~* 1.85

o |
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Extension to moving mesh

-

fOne simple way to extend mapped grid method described
above to solution adaptive moving grid method is to take
approach proposed by

# H. Tang & T. Tang, Adaptive mesh methods for one- and
two-dimensional hyperbolic conservation laws, SIAM J.
Numer. Anal., 2003

In each time step, this moving mesh method consists of
three basic steps:

1. Mesh redistribution
2. Conservative interpolation of solution state
B. Solution update on a fixed mapped grid J
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Mesh redistribution scheme

f.p Winslow’s approach (1981) T
Solve V- (DVE)=0, j=1,...,Ng

for £(x). Coefficient D is a positive definite matrix which
may depend on solution gradient

# Variational approach (Tang & many others)
Solve Vg : (Dngj) =0, g7=1,...,Nyg

for x(&) that minimizes “energy” functional

Ex(€) = 5 | 3 VEDVayit
\—.9 Lagrangian (ALE)-type approach (e.g., CAVEAT code) J
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Mesh redistribution: Example

-

fDashed lines represent initial mesh & solid lines represent
new mesh after a redistribution step

4@ o ©
| | |
| | |
| | |
3.5 | | |
| |
| | |

3q

25

2q
15

| | |
| | |
! D ! A
I | |
10— — - -~ G- > - a1 - ——§®——————>
| |
| | ) |

0.5

| | |
| | |
| | |
| | |
OC) A4 A4 A4 O
0 0.5 1 1.5 2 25 3 3.5 4
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Conservative interpolation

fNumericaI solutions need to be updated conservatively, i.e. T
ZM Ck:—|—1 ka—|—1 ZM Ck: ka
after each mesh redistribution iterate k. This can be done

# Finite-volume approach (Tang & Tang, SIAM 03)

M (Ck+1> Qk—I—l (Ck Qk Z 1y Gj, é _ (X ) D)Q

# Geometric approach (Shyue 2010 & others)

Y M(CETNSE) | Qe = Z/\/l (C*H1nSk) Qk

L Cy, S, are polygonal regions occupied by cells C & S J
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Interpolation-free moving mesh

fTo avoid averaging error in conservative interpolation step, T
one approach is to dervise an interpolation-free moving
mesh method
To do so, consider coordinate change of equations via
(x, t) — (&, 1), yielding transformed conservation law

~

G+ Ve f=Jv+G

G=Jq, [i=J(qo&+VE-f), J=det(d/ox)"

N
g = q [(%J + v§ . (J(?tfj)} + ZfJV§ ' (Jaa:jgk)
j=1

=0 (If GCL & SCL are satisfied)
LModeI system can be solved by “well-design” method J
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Sedov problem

- N

# Mesh redistribution scheme: Lagrangian approach
# 30 x 30 mesh grid

Grid system Density
1.2 6 : :
1 5| o  Lagrangian
Eulerian
0.8 4l
> 0.6F 37
0.4y 27

0.2} 11

O I I | 0 e Caccma@ioll .,:«.»‘;;.ii:é"s“‘“i’ | |
L 0 02 04 06 08 1 0 02 04 06 08 1 J
X r
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Future perspective

-

# Cartesian cut-cell front tracking for shocks & interfaces
should be useful tool in astrophysical flows

# Mapped grid method in 3D is applicable for supernovae
In spherical geometry (cf. E. Muller using Yin-Yang

grid)

°

o |
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Thank you
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