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Flying Projectile & Ocean Surface
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Flying Projectile & Ocean Surface
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Flying Projectile & Ocean Surface
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Flying Projectile & Ocean Surface

−10 0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

air

water

t = 36ms

HYP2006, July 17-21, 2006 – p. 4/46



Flying Projectile & Ocean Surface
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Flying Projectile & Ocean Surface
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Two Phase Flow Problem

Ignore physical effects such as gravity, viscosity, surface
tension, mass diffusion, and so on

Each fluid component satisties

Eulerian form conservation laws

ρt + ∇ · (ρ~u) = 0

(ρ~u)t + ∇ · (ρ~u⊗ ~u) + ∇p = 0

(ρE)t + ∇ · (ρE~u+ p~u) = 0

General pressure law p(ρ, e)

ρ: density, ~u: vector of particle velocity, p: pressure
E: specific total energy, e: specific internal energy
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Two-Phase Flow Model
Model derivation based on averaging theory of Drew
(Theory of Multicomponent Fluids, D.A. Drew & S. L.
Passman, Springer, 1999)

Namely, introduce indicator function χk as

χk(M, t) =

{

1 if M belongs to phase k
0 otherwise

Denote < ψ > as volume averaged for flow variable ψ,

〈ψ〉 =
1

V

∫

V

ψ dV

Gauss & Leibnitz rules

〈χk∇ψ〉 = 〈∇(χkψ)〉−〈ψ∇χk〉 & 〈χkψt〉 = 〈(χkψ)t〉−〈ψ(χk)t〉
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Two-Phase Flow Model (cont.)

Take product of each conservation law with χk & perform
averaging process. In case of mass conservation equation,
for example, we have

〈χkρk〉t + ∇· < χkρk~uk >= 〈ρk(χk)t + ρk~uk · ∇χk〉

Since χk is governed by

(χk)t + ~u0 · ∇χk = 0 (~u0: interface velocity),

this leads to mass averaged equation for phase k

〈χkρk〉t + ∇· < χkρk~uk >= 〈ρk (~uk − ~u0) · ∇χk〉

Analogously, we may derive averaged equation for
momentum, energy, & entropy (not shown here)
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Two-Phase Flow Model (cont.)

In summary, averaged model system, we have, are

〈χkρk〉t + ∇· < χkρk~uk >= 〈ρk (~uk − ~u0) · ∇χk〉

〈χkρk~uk〉t + ∇· < χkρk~uk ⊗ ~uk > +∇〈χkpk〉 = 〈pk∇χk〉+

〈ρk~uk (~uk − ~u0) · ∇χk〉

〈χkρkEk〉t + ∇· < χkρkEk~uk + χkpk~uk >= 〈pk~uk · ∇χk〉+

〈ρkE (~uk − ~u0) · ∇χk〉

〈χk〉t + 〈~uk · ∇χk〉 = 〈(~uk − ~u0) · ∇χk〉

Note: existence of various interfacial source terms
Mathematical as well as numerical modelling of these terms
are important (but difficult) for general multiphase flow
problems
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Homogeneous2-Phase Flow Model

Assume homogeneous (1-pressure & 1-velocity) flow;
i.e., across interfaces: pι = p & ~uι = ~u, ι = 0, 1, 2

Introduce volume fraction for phase k as αk = Vk/V

Now, by dropping all interfacial terms, we may obtain a
simplified model as

(αkρk)t + ∇ · (αkρk~u) = 0

(αkρk~u)t + ∇ · (αkρk~u ⊗ ~u) + ∇ (αkp) = p∇αk

(αkρkEk)t + ∇ · (αkρkEk~u + αkp~u) = p~u · ∇αk

(α1)t + ~u · ∇α1 = 0

for k = 1, 2, & α1 + α2 = 1. Note this gives 2(2 +Nd) + 1
equations in total for a Nd-dimension 2-phase flow problem
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Homogeneous Flow Model (cont.)

Note that, in practice, rather than using equations αkρk~u &
αkρkEk for each phase, we may write down a system of the
form

(αkρk)t + ∇ · (αkρk~u) = 0

(ρ~u)t + ∇ · (ρ~u ⊗ ~u) + ∇p = 0

(ρE)t + ∇ · (ρE~u + p~u) = 0

(α1)t + ~u · ∇α1 = 0

ρ~u =
∑2

k=1
αkρk~u: total momentum

ρE =
∑2

k=1
αkρkEk: total energy

This gives 4 +Nd equations in total, Nd + 1 less than
previous model system
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Homogeneous Flow Model (cont.)

Note that it is easy to include, for instance, gravity &
capillary effects to the model

(αkρk)t + ∇ · (αkρk~u) = 0 (k = 1, 2)

(ρ~u)t + ∇ · (ρ~u ⊗ ~u) + ∇p = ~φ

(ρE)t + ∇ · (ρE~u + p~u) = ~φ · ~u

(α1)t + ~u · ∇α1 = 0

1. Gravity case: ~φ = ~g

2. Capillary case: ~φ = σκ∇α

~g: gravitational constant, σ: surface tension coef.
κ: curvature at interface
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Homogeneous Flow Model (cont.)

Mixture equation of state: p = p(α2, α1ρ1, α2ρ2, ρe)

Isobaric closure: p1 = p2 = p

For a class of EOS, explicit formula for p is available
(examples are given next)
For some complex EOS, from (α2, ρ1, ρ2, ρe) in model
equations we recover p by solving

p1(ρ1, ρ1e1) = p2(ρ2, ρ2e2) &
2
∑

k=1

αkρkek = ρe

This homogeneous two-phase model was called a
five-equation model by Allaire, Clerc, & Kokh (JCP
2002) or a volume-fraction model by Shyue (JCP 1998)
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Homogeneous Flow Model (cont.)

Polytropic ideal gas: pk = (γk − 1)ρkek

ρe =
2
∑

k=1

αkρkek =
2
∑

k=1

αk

p

γk − 1
=⇒

p = ρe

/ 2
∑

k=1

αk

γk − 1
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Homogeneous Flow Model (cont.)

Polytropic ideal gas: pk = (γk − 1)ρkek

ρe =
2
∑

k=1

αkρkek =
2
∑

k=1

αk

p

γk − 1
=⇒

p = ρe

/ 2
∑

k=1

αk

γk − 1

Van der Waals gas: pk = ( γk−1

1−bkρk

)(ρkek + akρ2

k) − akρ2

k

ρe =
2
∑

k=1

αkρkek =
2
∑

k=1

αk

[(

1 − bkρk

γk − 1

)

(p + akρ2

k) − akρ2

k

]

=⇒

p =

[

ρe −
2
∑

k=1

αk

(

1 − bkρk

γk − 1
− 1

)

akρ2

k

]

/ 2
∑

k=1

αk

(

1 − bkρk

γk − 1

)
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Homogeneous Flow Model (cont.)

Two-molecular vibrating gas: pk = ρkRkT (ek), T satisfies

e =
RT

γ − 1
+

RTvib
exp

(

Tvib/T
)

− 1

As before, we now have

ρe =
2
∑

k=1

αkρkek =
2
∑

k=1

αk





(

ρkRkTk

γk − 1

)

+
ρkRkTvib,k

exp
(

Tvib,k
/Tk

)

− 1





=
2
∑

k=1

αk





(

p

γk − 1

)

+
pvib,k

exp
(

pvib,k
/p
)

− 1



 (Nonlinear eq.)
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Homogeneous Flow Model (cont.)

It is easy to show entropies, Sk, k = 1, 2, satisfy
(

∂p1

∂S1

)

ρ1

DS1

Dt
−

(

∂p2

∂S2

)

ρ2

DS2

Dt
=
(

ρ1c
2

1
− ρ2c

2

2

)

∇ · ~u
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Homogeneous Flow Model (cont.)

It is easy to show entropies, Sk, k = 1, 2, satisfy
(

∂p1

∂S1

)

ρ1

DS1

Dt
−

(

∂p2

∂S2

)

ρ2

DS2

Dt
=
(

ρ1c
2

1
− ρ2c

2

2

)

∇ · ~u

Murrone & Guillard (JCP 2005) propsed a reduced
two-phase flow model in which

(α1)t + ~u · ∇α1 = α1α2

(

ρ2c
2

2
− ρ1c

2

1
∑

2

k=1
αkρkc2

k

)

and now entropy of each phase satisfy

DSk

Dt
=

∂Sk

∂t
+ ~u · ∇Sk = 0, for k = 1, 2
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Some Remarks

1. Model system is hyperbolic under suitable
thermodynamic stability condition
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Some Remarks

1. Model system is hyperbolic under suitable
thermodynamic stability condition

2. When α2 = 0 (or = 1), ρ2 (or ρ1) can not be recovered
from α2 & α2ρ2 (or α1 & α1ρ1), and so take αk ∈ [ε, 1 − ε]

3. In the model, it is not at all clear on how to compute
nonlinear term ρι, ι > 1 from αk & αkρk

4. In fact, there are other set of model systems proposed
in the literature that are more robust for homogeneous
flow & in other more complicated context (examples)

5. In cases when individual pressure law differs in form
(see below), new mixture pressure law should be
devised first & construct model equations based on that
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Barotropic & Non-Barotropic Flow

Fluid component 1: Tait EOS

p(ρ) = (p0 + B)

(

ρ

ρ0

)γ

− B

Fluid component 2: Noble-Abel EOS

p(ρ, e) =

(

γ − 1

1 − bρ

)

ρe

Mixture pressure law (Shyue, Shock Waves 2006)

p =



















(p0 + B)

(

ρ

ρ0

)γ

− B if α = 1

(

γ − 1

1 − bρ

)

(ρe − B) − B if α 6= 1
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Barotropic Two-Phase Flow

Fluid component ι: Tait EOS

p(ρ) = (p0ι + Bι)

(

ρ

ρ0ι

)γι

− Bι, ι = 1, 2

Mixture pressure law (Shyue, JCP 2004)

p =



















(p0ι + Bι)

(

ρ

ρ0ι

)γι

− Bι if α = αι (0 or 1)

(γ − 1) ρ

(

e +
B

ρ0

)

− γB if α ∈ (0, 1)

HYP2006, July 17-21, 2006 – p. 18/46



Wave Propagation Method

Finite volume formulation of wave propagation method, Qn
S

gives approximate value of cell average of solution q over
cell S at time tn

Qn
S ≈

1

M(S)

∫

S

q(X, tn) dV

M(S): measure (area in 2D or volume in 3D) of cell S

C

E

D
F

G H
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Wave Propagation Method (cont.)

First order version: Piecewise constant wave update
Godunov-type method: Solve Riemann problem at
each cell interface in normal direction & use resulting
waves to update cell averages

Qn+1

S := Qn+1

S −
M (Wp ∩ S)

M(S)
Rp, Rp being jump from RP

↓

↓

Wp

Wp
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Wave Propagation Method (cont.)

First order version: Transverse-wave included
Use transverse portion of equation, solve Riemann
problem in transverse direction, & use resulting
waves to update cell averages as usual
Stability of method is typically improved, while
conservation of method is maintained

↓
↓

Wpq
Wpq
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Wave Propagation Method (cont.)

High resolution version: Piecewise linear wave update

wave before propagation after propagation

a) b)

c) d)

α
p
r
p
/2 

α
p
r
p
/2 

λ
p
∆ t 

λ
p
∆ t 
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Volume Tracking Algorithm

1. Volume moving procedure
(a) Volume fraction update

Take a time step on current grid to update cell
averages of volume fractions at next time step

(b) Interface reconstruction
Find new interface location based on volume
fractions obtained in (a) using an interface
reconstruction scheme. Some cells will be
subdivided & values in each subcell must be
initialized.

2. Physical solution update
Take same time interval as in (a), but use a method to
update cell averages of multicomponent model on new
grid created in (b)
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Interface Reconstruction Scheme
Given volume fractions on current grid, piecewise linear
interface reconstruction (PLIC) method does:

1. Compute interface normal
Gradient method of Parker & Youngs
Least squares method of Puckett

2. Determine interface location by iterative bisection

00

00

00

00

00

0

0

0

0

0

0

0

0

0

0

1

0.29

0.68

0.09

0.51

0.51

0.09

0.68

0.29
↓↓

interfaceinterface

Data set Parker & Youngs Puckett
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Volume Moving Procedure

(a) Volume fractions given in previous slide are updated
with uniform (u, v) = (1, 1) over ∆t = 0.06

(b) New interface location is reconstructed

0

0

0

0

0

0

0

0

0

0000

00000

1

0.01

0.38

0.11

0.25

0.72

0.06

0.85

0.74 5(−3)

1(−3)

↑

↓

old interface

new interface

(a) (b)
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Surface Moving Procedure

Solve Riemann problem at tracked interfaces & use
resulting wave speed of the tracked wave family over ∆t to
find new location of interface at the next time step

o
o

o

o

o

o

↑↑
old frontold front

new front
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Boundary Conditions

For tracked segments representing rigid (solid wall)
boundary (stationary or moving), reflection principle is used
to assign states for fictitious subcells in each time step:

zC := zE (z = ρ, p, α)

~uC := ~uE − 2(~uE · ~n)~n + 2(~u0 · ~n)

~u0: moving boundary velocity

C

E
F

G H

~n
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Interface Conditions

For tracked segments representing material interfaces,
pressure equilibrium as well as velocity continuity
conditions across interfaces are fulfilled by

1. Devise of the wave-propagation method

2. Choice of Riemann solver used in the method
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Stability Issues

Choose time step ∆t based on uniform grid mesh size
∆x, ∆y as

∆t maxp,q (λp, µq)

min(∆x,∆y)
≤ 1,

λp, µq: speed of p-wave, q-wave from Riemann
problem solution in normal-, transverse-directions

Use large time step method of LeVeque (i.e., wave
interactions are assumed to behave in linear manner) to
maintain stability of method even in the presence of
small Cartesian cut cells

Apply smoothing operator (such as, h-box approach of
Berger et al. ) locally for cell averages in irregular cells
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Shock-Bubble Interaction Problem
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Shock-Bubble Interaction Problem
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Shock-Bubble Interaction Problem
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Shock-Bubble Interaction (cont.)

Approximate locations of interfaces

time=55µs

airR22

time=115µs time=135µs

time=187µs time=247µs time=200µs

time=342µs time=417µs time=1020µs
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Shock-Bubble Interaction (cont.)

Quantitative assessment of prominent flow velocities:

Velocity (m/s) Vs VR VT Vui Vuf Vdi Vdf

Haas & Sturtevant 415 240 540 73 90 78 78

Quirk & Karni 420 254 560 74 90 116 82

Our result (tracking) 411 243 538 64 87 82 60

Our result (capturing) 411 244 534 65 86 98 76

Vs (VR, VT ) Incident (refracted, transmitted) shock
speed t ∈ [0, 250]µs (t ∈ [0, 202]µs, t ∈ [202, 250]µs )

Vui (Vuf ) Initial (final) upstream bubble wall speed
t ∈ [0, 400]µs (t ∈ [400, 1000]µs)

Vdi (Vdf ) Initial (final) downstream bubble wall speed
t ∈ [200, 400]µs (t ∈ [400, 1000]µs)
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Aluminum-Plate Impact Problem

0 1 2 3
−2

−1

0

1

2
Density

Al target

Al flyer

vacuum

0 1 2 3
−2

−1

0

1

2
Pressure

0 1 2 3
−2

−1

0

1

2
Volume fraction

t = 0µs

HYP2006, July 17-21, 2006 – p. 33/46



Aluminum-Plate Impact Problem

0 1 2 3
−2

−1

0

1

2
Density

Al target

Al flyer

vacuum

0 1 2 3
−2

−1

0

1

2
Pressure

0 1 2 3
−2

−1

0

1

2
Volume fraction

t = 0.5µs

HYP2006, July 17-21, 2006 – p. 33/46



Aluminum-Plate Impact Problem

0 1 2 3
−2

−1

0

1

2
Density

Al target

Al flyer

vacuum

0 1 2 3
−2

−1

0

1

2
Pressure

0 1 2 3
−2

−1

0

1

2
Volume fraction

t = 1µs

HYP2006, July 17-21, 2006 – p. 33/46



Aluminum-Plate Impact Problem

0 1 2 3
−2

−1

0

1

2
Density

Al target

Al flyer

vacuum

0 1 2 3
−2

−1

0

1

2
Pressure

0 1 2 3
−2

−1

0

1

2
Volume fraction

t = 2µs

HYP2006, July 17-21, 2006 – p. 33/46



Aluminum-Plate Impact Problem

0 1 2 3
−2

−1

0

1

2
Density

Al target

Al flyer

vacuum

0 1 2 3
−2

−1

0

1

2
Pressure

0 1 2 3
−2

−1

0

1

2
Volume fraction

t = 4µs

HYP2006, July 17-21, 2006 – p. 33/46



Cylinder lift-off Problem

Moving speed of cylinder is governed by Newton’s law

Pressure contours are shown with a 1000 × 200 grid
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Cylinder lift-off Problem

A convergence study of center of cylinder & relative
mass loss for at final stopping time t = 0.30085s

Mesh size Center of cylinder Relative mass loss
250 × 50 (0.618181, 0.134456) −0.257528

500 × 100 (0.620266, 0.136807) −0.131474

1000 × 200 (0.623075, 0.138929) −0.066984

Results are comparable with numerical appeared in
literature
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Falling Rigid Object in Water Tank
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Falling Rigid Object in Water Tank

−2 0 2
−3

−2

−1

0

1

2

3
Density

air

water

−2 0 2
−3

−2

−1

0

1

2

3
Pressure

−2 0 2
−3

−2

−1

0

1

2

3
Volume fraction

t = 1ms

HYP2006, July 17-21, 2006 – p. 36/46



Falling Rigid Object in Water Tank
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Falling Rigid Object in Water Tank
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Future Work

3D volume tracking method

General curvilinear grid system
Body-fitted grid for complicated geometries

Low Mach number flow
Remove sound-speed stiffness by preconditioning
techniques or pressure-based method

Include more physics towards real applications

Diffusion, phase transition, or elastic-plastic effect

Hybrid surface-volume tracking algorithm for balance
laws with interfaces & boundaries

HYP2006, July 17-21, 2006 – p. 37/46



Liquid Drop Problem (Revisit)

Tracking Capturing

airair

t = 0t = 0
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Liquid Drop Problem (Revisit)

Tracking Capturing

airair

t = 0.2st = 0.2s
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Liquid Drop Problem (Revisit)

Tracking Capturing

airair

t = 0.4st = 0.4s
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Liquid Drop Problem (Revisit)

Tracking Capturing

airair

t = 0.6st = 0.6s
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Liquid Drop Problem (Revisit)

Tracking Capturing

airair

t = 0.8st = 0.8s
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Liquid Drop Problem (Revisit)

Tracking Capturing

airair

t = 1st = 1s

HYP2006, July 17-21, 2006 – p. 38/46



Thank You
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Thermodynamic Stability

Fundamental derivative of gas dynamics

G = −
V

2

(∂2p/∂V 2)S
(∂p/∂V )S

, S : specific entropy

Assume fluid state satisfy G > 0 for thermodynamic
stability, i.e.,

(∂2p/∂V 2)S > 0 & (∂p/∂V )S < 0

(∂2p/∂V 2)S > 0 means convex EOS
(∂p/∂V )S < 0 means real speed of sound, for

c2 =

(

∂p

∂ρ

)

S

= −V 2

(

∂p

∂V

)

S

> 0
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Homogeneous Flow Model (cont.)

Mie-Grüneisen EOS: pk = pref(ρk) + ρkΓ(ρk)[ek − eref(ρk)]

ρe =
2
∑

k=1

αkρkek =
2
∑

k=1

αk

[

p − pref(ρk)

Γ(ρk)
+ ρkeref(ρk)

]

=⇒

p =

[

ρe −
2
∑

k=1

αk

(

−pref(ρk)

Γ(ρk)
+ ρkeref(ρk)

)

]
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Mie-Grüneisen Equations of State

(pref, eref) lies along an isentrope

1. Jones-Wilkins-Lee EOS for gaseous explosives

Γ(V ) = γ − 1, V = 1/ρ

eref(V ) = e0 +
A V0

R1

exp

(

−R1V

V0

)

+
B V0

R2

exp

(

−R2V

V0

)

pref(V ) = p0 + A exp

(

−R1V

V0

)

+ B exp

(

−R2V

V0

)

2. Cochran-Chan EOS for solid explosives

Γ(V ) = γ − 1

eref(V ) = e0 +
−A V0

1 − E1

[

(

V

V0

)1−E1

− 1

]

+
B V0

1 − E2

[

(

V

V0

)1−E2

− 1

]

pref(V ) = p0 + A

(

V

V0

)−E1

− B

(

V

V0

)−E2
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Mie-Grüneisen EOS (cont.)

(pref, eref) lies along a Hugoniot locus

Assume linear shock speed us & particle velocity up

us = c0 + s up

We may derive the relations

Γ(V ) = Γ0

(

V

V0

)α

, Γ0 = γ − 1

pref(V ) = p0 +
c0

2(V0 − V )

[V0 − s(V0 − V )]2

eref(V ) = e0 +
1

2

[

pref(V ) + p0

]

(V0 − V )
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Material Quantities for Model EOS
JWL EOS ρ0(kg/m3) A(GPa) B(GPa) R1 R2 Γ

TNT1 1630 371.2 3.23 4.15 0.95 0.30

TNT2 1630 548.4 9.375 4.94 1.21 1.28

Water 1004 1582 −4.67 8.94 1.45 1.17

CC EOS ρ0(kg/m3) A(GPa) B(GPa) E1 E2 Γ

TNT 1840 12.87 13.42 4.1 3.1 0.93

Copper 8900 145.67 147.75 2.99 1.99 2

Shock EOS ρ0(kg/m3) c0(m/s) s Γ0 α

Aluminum 2785 5328 1.338 2.0 1

Copper 8924 3910 1.51 1.96 1

Molybdenum 9961 4770 1.43 2.56 1

MORB 2660 2100 1.68 1.18 1

Water 1000 1483 2.0 2.0 10−4
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Falling Liquid Drop Problem

HYP2006, July 17-21, 2006 – p. 46/46



Falling Liquid Drop Problem

HYP2006, July 17-21, 2006 – p. 46/46



Falling Liquid Drop Problem

HYP2006, July 17-21, 2006 – p. 46/46



Falling Liquid Drop Problem

HYP2006, July 17-21, 2006 – p. 46/46



Falling Liquid Drop Problem

HYP2006, July 17-21, 2006 – p. 46/46


	Overview
	Falling Liquid Drop Problem
	Falling Liquid Drop Problem
	Falling Liquid Drop Problem
	Falling Liquid Drop Problem
	Falling Liquid Drop Problem
	Falling Liquid Drop Problem

	Flying Projectile & Ocean Surface
	Flying Projectile & Ocean Surface
	Flying Projectile & Ocean Surface
	Flying Projectile & Ocean Surface
	Flying Projectile & Ocean Surface
	Flying Projectile & Ocean Surface

	Two Phase Flow Problem
	Two-Phase Flow Model
	Two-Phase Flow Model (cont.)
	Two-Phase Flow Model (cont.)
	Homogeneous $2$-Phase Flow Model
	Homogeneous Flow Model (cont.)
	Homogeneous Flow Model (cont.)
	Homogeneous Flow Model (cont.)
	Homogeneous Flow Model (cont.)
	Homogeneous Flow Model (cont.)

	Homogeneous Flow Model (cont.)
	Homogeneous Flow Model (cont.)
	Homogeneous Flow Model (cont.)

	Some Remarks
	Some Remarks
	Some Remarks
	Some Remarks
	Some Remarks

	Barotropic & Non-Barotropic Flow
	Barotropic Two-Phase Flow
	Wave Propagation Method
	Wave Propagation Method (cont.)
	Wave Propagation Method (cont.)
	Wave Propagation Method (cont.)
	Volume Tracking Algorithm
	Interface Reconstruction Scheme
	Volume Moving Procedure
	Surface Moving Procedure
	Boundary Conditions
	Interface Conditions
	Stability Issues
	Shock-Bubble Interaction Problem
	Shock-Bubble Interaction Problem
	Shock-Bubble Interaction Problem
	Shock-Bubble Interaction Problem
	Shock-Bubble Interaction Problem
	Shock-Bubble Interaction Problem
	Shock-Bubble Interaction Problem
	Shock-Bubble Interaction Problem
	Shock-Bubble Interaction Problem
	Shock-Bubble Interaction Problem

	Shock-Bubble Interaction (cont.)
	Shock-Bubble Interaction (cont.)
	Aluminum-Plate Impact Problem
	Aluminum-Plate Impact Problem
	Aluminum-Plate Impact Problem
	Aluminum-Plate Impact Problem
	Aluminum-Plate Impact Problem

	Cylinder lift-off Problem
	Cylinder lift-off Problem
	Falling Rigid Object in Water Tank
	Falling Rigid Object in Water Tank
	Falling Rigid Object in Water Tank
	Falling Rigid Object in Water Tank

	Future Work
	Liquid Drop Problem (Revisit)
	Liquid Drop Problem (Revisit)
	Liquid Drop Problem (Revisit)
	Liquid Drop Problem (Revisit)
	Liquid Drop Problem (Revisit)
	Liquid Drop Problem (Revisit)

	References
	Thermodynamic Stability
	Homogeneous Flow Model (cont.)
	Mie-Gr"{u}neisen Equations of State
	Mie-Gr"{u}neisen EOS (cont.)
	Material Quantities for Model EOS
	Falling Liquid Drop Problem
	Falling Liquid Drop Problem
	Falling Liquid Drop Problem
	Falling Liquid Drop Problem
	Falling Liquid Drop Problem


