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1 Introduction

Our aim in this project is to develop a Mach-uniform method for nearly compressible two-phase

flow problems where the flow speed is much less than the speed of sound of the underlying fluid

components. The accuracy and efficiency of the method under development should depend weakly

on the Mach number in the full range from zero to supersonic values. Representative applications

of this kind are such as the rising of gas bubbles in liquids, the falling of liquid drops in the air

under gravitational force field, and bubbly flow in liquids, see [12, 15] for more examples. To

get a quick impression of some of the difficulties that may occur when one attempts to extend

a state-of-the-art compressible solver to a low speed flow scenario, we begin by considering the

one-dimensional Euler equations of gas dynamics of the form

∂q

∂t
+
∂f(q)

∂x
= 0, (1)

where the vector for the conservative variables q and the flux vector f are defined by

q =





ρ

ρu

ρE



 and f(q) =





ρu

ρu2 + p

ρEu+ pu



 .

Here ρ, u, p, and E, denote the density, the particle velocity, the pressure, and the specific total

energy, respectively. For simplicity, we assume that the thermodynamical behavior of the flow

satisfies a γ-law gas as

p = (γ − 1)ρe, (2)

where e is the specific internal energy, γ is the ratio of specific heats (1 < γ ≤ 5/3), and as usual

E = e+ ρu2/2.

Now by introducing the following set of the dimensionless variables into the above equations:

ρ̃ = ρ/ρ0, ũ = u/u0, p̃ = p/(ρ0c
2
0), Ẽ = E/c20, x̃ = x/x0, t̃ = (u0t)/x0,

we find easily a dimensionless form of (1) and (2) as

∂

∂t̃





ρ̃

ρ̃ũ

ρ̃Ẽ



 +
∂

∂x̃





ρ̃ũ

ρ̃ũ2

ρ̃Ẽũ+ p̃ũ



 +







0
1

M2

0

∂p̃
∂x̃

0






= 0, (3)

and

p̃ = (γ − 1)

(

ρ̃Ẽ −
M2

0

2
ρ̃ũ2

)

, (4)

1



respectively, where M0 = u0/c0 is a dimensionless Mach number, and the quantity κ0 represents a

reference state for the variable κ, for κ = ρ, u, and so on. For M0 → 0 (incompressible flow limit),

it is easy to see that (3) develops a singularity, because ∂x̃p̃/M0 → ∞. Moreover, it can be shown

that the eigenvalues of the Jacobian matrix of the flux function in (3) are ũ and ũ± c̃/M0, where

c2 = γp/ρ. Clearly, the acoustic wave speeds ũ± c̃/M0 degenerate as M0 → 0.

Surely, one possible way to simulate low speed flow problems is to treat such a flow as a fully

compressible flow and use an explicit method. It is known that with the use of an explicit method

we would have a time step restriction, the CFL condition,

νa =
∆t maxj (|uj| + cj)

∆x
≤ 1, (5)

which states that, with a given mesh spacing ∆x, for stability the time step size must be inversely

proportional to the maximum of the sum of flow speed and the sound speed. Because of this,

explicit methods are well-suited only for problems where the flow speed is on the same order of or

larger than the sound speed. In the current interests of low speed problems, however, the sound

speed could be orders of magnitude larger than the flow speed, thus grossly over resolving in time

features of the fluid flow, see [10, 11] for more details.

The central idea of many numerical solver for low-speed flow is then somehow to separate out

the “ill-conditioned” part of the flow and treat it implicitly, while hoping that the rest of the flow

may be advanced at an acceptable time step with an economical and accurate method. Such is

the approach first taken by Harlow and Amsden [5] and later expanded by many others [2, 8, 18]

for examples. A common theme in all these method is splitting. That is, we separate the flow

variable into various parts, and identify the part of the flow that needs implicit treatment. When

this is done properly, we may bypass the stringent CFL condition dominated by the sound speed

as in (5), and use a more robust flow speed-based CFL condition as

νf =
∆t maxj |uj|

∆x
≤ 1. (6)

It should be remarked that a somewhat different approach is proposed by Colella and Pao [3]

where by using the Hodge decomposition, they write the velocity field as the sum of a divergence-

free vector field and a gradient of a scalar function. On the divergence-free part, the solution of

the equations would vary on a time scale determined by the flow speed, while on the other part,

the solution of the equations would depend on fast sound waves. Sensible results were reported

by their method for some sample problems. Besides this projection method, Klein and co-workers

have also proposed a numerical method based on asymptotic [7, 9], which were an extension of the

low Mach number asymptotic of Klainermann and Majda [6]. As to the other possible approaches

to low speed flow in the literature, see [1, 4, 16] for an example.

It is important to note that almost all the low speed flow methods mentioned above is to single

component flow problems. The objective of the current work is devoted to the generalization of

many of these methods to problems with more than one fluid component, and with real fluids

characterized by non-convex equations of state.

2 Pressure-Correction Methods

As a first attempt to tackle the problem, we are interested in a class of pressure-correction methods.
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2.1 Conservative formulation

We begin by generalizing the barely implicit correction method of Patnaik et al. [8] originally

devised for single phase flows to two phases. To do this, analogously to [8], there are two basic

steps in the algorithm. In the first step, we solve the continuity and momentum equations of (1)

explicitly as

ρ∗ − ρn

∆t
= −Dx (ρu)n , (7)

(ρu)∗ − (ρu)n

∆t
= −Dx

(

ρu2 + p
)n
, (8)

over a time step ∆t (which is chosen based on the local flow speed νf, but is not based on the

local acoustic wave speed νa) for an intermediate states of ρ∗ and (ρu)∗ using the initial data at

time tn. Here Dx represents a finite-difference operator to the differential operator ∂/∂x, and for

simplicity we have omitted the subscript for discretizing the spatial variables. Then, in the second

step, we consider an implicit finite-difference scheme of the form for the momentum and energy

equations as

(ρu)n+1 − (ρu)n

∆t
= −Dx

{

(

ρu2
)n

+
[

ωpn+1 + (1 − ω)pn
]

}

, (9)

(ρE)n+1 − (ρE)n

∆t
= −Dx

{

(ρE + p)
n [

ωun+1 + (1 − ω)un
]}

, (10)

where ω is an implicitness parameter, typically 0.5 ≤ ω ≤ 1 for a stable calculations. Note that

we have only treated u and p as implicit variables, but leave ρ as an explicit one.

If we now define the change in pressure as

φ = ω
(

pn+1 − pn
)

, (11)

then the correction equation for momentum can be obtained in terms of φ by subtracting (8) from

(9), yielding
(ρu)n+1 − (ρu)∗

∆t
= −Dx

[

ω
(

pn+1 − pn
)]

= −Dxφ, (12)

and so

un+1 = u∗ −
∆t

ρ∗
Dxφ, (13)

after rearranging (12) and letting ρn+1 = ρ∗. Now, with (13), we may derive a single equation for

φ by eliminating un+1 from (9) and (10).

To accomplish this, we first use the equation of state

(ρe)n+1 =
pn+1

γn+1 − 1
=

(

γn − 1

γn+1 − 1

)

(ρe)n +
φ

ω(γn+1 − 1)
(14)

to obtain a correction equation for the internal energy. Note that for single phase flow problems

the ratio of specific heats γ is a fixed constant at all time, but this is no longer true for a multiphase

application concerned here. For this reason, we have to come up with a way to compute γn+1 at

all space and time locations; this can be done in the same way as in [13]. For the moment, suppose

that we have already gotten the value, the procedure for finding φ proceeded by substituting (13)

and (14) into (10), leading to

1

∆t

[

(

γn − γn+1

γn+1 − 1

)

(ρe)n +
φ

ω(γn+1 − 1)
+

(∆tDxφ)2

2ρ∗
+ u∗∆tDxφ+

(

ρu2
)

∗

2
−

(

ρu2
)n

2

]

=

ω∆tDx

[

(ρE + p)n

ρ∗
Dxφ

]

−Dx {(ρE + p)n[ωu∗ + (1 − ω)un]} .

(15)
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For convenience, we define the quantity (ρE)∗ as

(ρE)∗ − (ρE)n

∆t
≡ −Dx {(ρE + p)n[ωu∗ + (1 − ω)un]} , (16)

and this allows us to rewrite (15) in the form

φ

ω(γn+1 − 1)∆t
+

∆t(Dxφ)2

2ρ∗
+ u∗Dxφ− ω∆tDx

[

(ρE + p)n

ρ∗
Dxφ

]

=

(ρE)∗ − (ρE)n

∆t
−

(

ρu2
)

∗

−
(

ρu2
)n

2∆t
−

1

∆t

(

γn − γn+1

γn+1 − 1

)

(ρe)n,

(17)

which provides us with a nonlinear elliptic equation for φ. Note that in the original work of [2, 8],

the second and third terms from the left-hand side of (17) are not considered in the method. Surely,

the effect of these terms to the solution of the method will be one of the major things to look at.

No matter what form of the elliptic equation is being used, its solution can be employed to correct

un+1 and (ρe)n+1 by (12) and (14), respectively.

Up to this point, it should be clear that as compared to the traditional compressible flow

solver, the complexity of this algorithm is increased only by an additional solve for the elliptic

equation (17), where the right-hand size of the equation as well as the coefficients of the equation

can be obtained basically by a predictor solve of (1) and the initial condition of the problem.

The proper discretization of (17) as well as the performance of the method to achieve the Mach

uniformity and the divergence-free constraint as the Mach number is approaching to zero will be

studied and tested carefully in this project.

2.2 Non-conservative formulation

Note that if we start with the basic thermodynamic relation

∆p =

(

∂p

∂ρ

)

e

∆ρ+

(

∂p

∂e

)

ρ

∆e

and with the perfect gas equations of state, we would have

∆p =
p

ρ
∆ρ+ (γ − 1)ρ∆e, (18)

where ∆p = pn+1 − p∗. Suppose that ∆ρ and ∆e can be well-approximated by

∆ρ = −ρ∗∆tDxu
n+1

and

∆e = −
p

ρ∗
∆tDxu

n+1,

respectively. We may then rewrite (18) as

∆p = γp∆tDxu
n+1 = ρc2∆tDxu

n+1,

where ρc2 is assumed to be evaluated at some prescribed state, say at the intermediate state ∗,

but surely it can treated in an implicit manner also. Having that, the velocity un+1 in above can

be eliminated by using the equation of motion:

∆u = un+1 − u∗ = −
Dxp

n+1

ρ∗
∆t,
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and thus we obtain the equation for pn+1

Dx

(

Dxp
∗

ρn

)

=
p∗ − pn

(ρc2)n(∆t)2
+
Dxu

n

∆t
. (19)

The approach just described is basically the method proposed by Yabe and Wang [17] for a universal

treatment of compressible and incompressible flows. The applicability of this method to general

multicomponet problem has yet to be investigated, though some promising results has been shown

for a wide variety of problems [18].

It should be mentioned that, in the method of Yabe and Wang, the Euler equations are rewritten

in the following non-conservative form,

∂q

∂t
+ u

∂q

∂x
= ψ, (20)

where

q =





ρ

u

p



 and ψ =





−ρux

−px

−γpux



 .

In each time step, the method consists of the following steps:

(1) Non-advection step

With the initial condition at the current time and a time step ∆t chosen by (6), solve the

following set of equations,
∂q

∂t
= ψ, (21)

to obtain the intermediate states ρ∗, u∗, and p∗. In practice, this is done by first solving the

Poisson equation (19) for the intermediate state of the pressure p∗, and then it is used in the

discretization of the equations for the density and velocity, yielding ρ∗ and u∗.

(2) Advection step

After ρ∗, u∗, and p∗ have been gotten in the non-advection step, we apply a numerical method

to update the solutions of the transport equations in (21),

∂q

∂t
+ u

∂q

∂x
= 0,

at the next time step ρn+1, un+1, and pn+1.

3 Numerical Examples

We now present sample one-dimensional results obtained using a preliminary version of the Mach-

uniform method based on the non-conservative formulation of Yabe and Wang, see [14] for more

numerical examples.

Example 3.1. We begin by considering an interface only problem that the solution of a

Riemann problem consists of a single contact discontinuity in gas dynamics. The initial condition

we use is








ρ

u

p

γ









L

=









1

1

1

1.4









and









ρ

u

p

γ









R

=









0.125

1

1

1.2









,

5



Here L is the state used for x ∈ [0, 0.5) and R is the state used for x ∈ [0.5, 1].

Numerical results obtained using the Mach-uniform method as well as the classical non Mach-

uniform method are shown in Fig. 1 at time t = 0.2 with a 100 grid. From the graphs, it is clear

that in each of these methods there is no spurious oscillation in the pressure and also the particle

velocity near the diffused material interface. We have gotten a slightly sharp resolution of the

interface when the Mach-uniform method is in use as it is compared with the non Mach-uniform

method case. Note that in the former case, we have chosen a time step based on the flow speed

CFL condition (6), while in the latter case, we have used a time step based on the acoustic wave

speed CFL condition (5).

Example 3.2. We are next concerned with a two-phase version of the Sod’s Riemann problem.

On the left when x ∈ [0, 0.5), we have the data

(ρ, u, p, γ)L = (1, 0, 1, 1.4),

and on the right when x ∈ [0.5, 1], we have the data

(ρ, u, p, γ)R = (0.125, 0, 0.1, 1.2).

We run the problem in a shock tube with 100 mesh points, and show the results in Fig. 2 at time

t = 0.14 using both the Mach-uniform and non Mach-uniform methods as in the previous example.

From the figure, we observe some spurious oscillations near the shock wave for the Mach-uniform

computation, while there is not any oscillation near the shock wave for the non Mach-uniform

computation. In many non-conservative numerical methods alike, this unexpected oscillation may

be eliminated by adding numerical artificial viscosity in the method formulation.

Example 3.3. Finally, we consider a shock-contact interaction problem that investigates con-

vergence of the computed solutions to the correct weak ones in a multicomponent case. The initial

condition we use consists of a stationary interface at x = 0.3 separating two fluids of different

equation of states, and a rightward going Mach 1.22 shock wave at x = 0.2 traveling from the left

to right. The state on the right of the interface is a helium with

(ρ, u, p, γ)R = (0.138, 0, 1, 1.67),

and the state on the right of the interface, (i.e., on the middle and the preshock state), is an air

with

(ρ, u, p, γ)M = (1, 0, 1, 1.4).

The state behind the shock is

(ρ, u, p, γ)L = (1.3765, 0.3948, 1.57, 1.4).

Figure 3 shows numerical results of this problem at time t = 0.2. In view of the global structure

of the solution is concerned, it is clear that the Mach-uniform method gives the correct solution

behavior, but the result is too diffusive as compared to the result obtained using the non Mach-

uniform method. It is somewhat surprising that (at least in my perspective) the larger the CFL

number is, the more numerical diffusion is in the computed solution (not shown here).

4 Conclusion

The work present here is only the preliminary one. Extension of the basic methodology of the

non-conservation formulation to more than one space dimension is straightforward. However, the

convergence behavior of the non-conservative method to the correct weak solution should be looked

into carefully. In this regards, a conservative formulation should be more favorable for shock-wave

problems.
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Figure 1: Numerical results for an interface only problem at time t = 0.2. a) Mach-uniform

computation with a time step chosen by the flow-based CFL condition (6), and b) Classical non

Mach-uniform computation with a time step chosen by the acoustic-based CFL condition (5). The

solid line is the exact solution and the points shows the computed solution with 100 mesh points.
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Figure 2: Numerical results for a two-phase Riemann problem at time t = 0.14. The graphs of the

solutions are displayed in the same manner as in Fig. 1.
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Figure 3: Numerical results for a shock-contact interaction problem at time t = 0.2. The graphs

of the solutions are displayed in the same manner as in Fig. 1.
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