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Abstract
The interaction of a solitary wave and a slowly varying mean background or flow for the Serre-Green-Naghdi (SGN)
equations is studied using Whitham modulation theory. The exact form of the three SGN-Whitham modulation
equations—two for the mean horizontal velocity and depth decoupled from one for the solitary wave amplitude
field—is obtained in the solitary wave limit. Although the three equations are not diagonalizable, the restriction
of the full system to simple waves for the mean equations is diagonalized in terms of Riemann invariants. The
Riemann invariants are used to analytically describe the head-on and overtaking interactions of a solitary wave with
a rarefaction wave and dispersive shock wave (DSW), leading to scenarios of solitary wave trapping or transmission
by the mean flow. The analytical results for overtaking interactions prove that a simpler, approximate approach
based on the DSW fitting method is accurate to the second order in solitary wave amplitude, beyond the first order
accurate Korteweg-de Vries approximation. The analytical results also accurately predict the SGN DSW’s solitary
wave edge amplitude and speed. The analytical results are favourably compared with corresponding numerical
solutions of the full SGN equations. Because the SGN equations model the bi-directional propagation of strongly
nonlinear, long gravity waves over a flat bottom, the analysis presented here describes large amplitude solitary
wave-mean flow interactions in shallow water waves.

1. Introduction

A fundamental and important problem in continuum mechanics is the interaction of waves with the
inhomogeneity of the medium through which they propagate. The waves could be linear or nonlinear and,
in many cases, the inhomogeneity can be modelled as externally imposed through prescribed variable
coefficients to a wave-type partial differential equation (PDE) (Chew 1999). When the waves and the
medium are dynamically coupled, a common occurrence in geophysical fluid dynamics (Bühler 2014),
the problem becomes more challenging to describe analytically. A natural framework to approach this
class of problems is to utilize scale separation and derive equations separating the motion of waves and
averaged quantities, e.g., the mean fluid density and velocity. While the focus of analytical studies was
historically on linear or weakly nonlinear waves interacting with mean flows (Bühler 2014), a recent
body of work has emerged for the case where the waves are strongly nonlinear, i.e., solitons or solitary
waves; see, e.g., the review Ablowitz, Cole et al (2023). A schematic of such wave-mean flow scenarios
involving solitary wave interaction with rarefaction and dispersive shock waves is shown in Fig. 1.

For the asymptotic analysis of solitary wave-mean flow interaction, the mean flow is assumed to
vary on a much slower spatial scale than the solitary wave width. In this case, the mean flow evolution
decouples from solitary wave motion so that the interaction is one-way: only the mean influences
the motion of the solitary wave, not vice-versa. This problem was first considered theoretically and
experimentally in the unidirectional case where a solitary wave and either a rarefaction wave (RW)



2 T. Congy et al.

Figure 1. Scenarios of the solitary wave-mean flow interaction in shallow water waves. a), c): solitary
wave transmission; b), d) solitary wave trapping. Reproduced, with permission, from Ablowitz, Cole
et al (2023).

mean flow or a dispersive shock wave (DSW) mean flow exhibited an overtaking interaction (Maiden,
Anderson et al 2018). Depending on the conditions, the solitary wave was observed to be either
transmitted through or trapped by the mean flow as 𝑡 → ∞. The key mathematical insight was the
determination of the solitary wave limit of the Whitham modulation equations—a quasi-linear system
of first order equations that describe the slow evolution of nonlinear wavetrains (Whitham 1999)—and
its subsequent diagonalization in terms of Riemann invariants. A general approach for obtaining the
solitary wave limit in the case of Hamiltonian partial differential equations with a local Hamiltonian can
be found in Benzoni-Gavage et al (2021). While Riemann invariants can in principle be obtained for
any system of two quasi-linear, first order PDEs, they are most easily obtained for completely integrable
equations such as the Korteweg-de Vries (KdV) equation, either directly (Whitham 1965) or using the
finite gap method (Flaschka et al 1980; Kamchatnov 2000). But Whitham theory can be developed for
integrable and non-integrable equations alike (El and Hoefer 2016). A recent paper has obtained the
diagonalization, i.e., the Riemann invariants, for the non-integrable Benjamin-Bona-Mahony (BBM)
equation (Benjamin et al 1972) by deriving an exact representation of the solitary wave limit of the
BBM-Whitham modulation equations (S Gavrilyuk and Shyue 2021).

One of our main results in this paper is the derivation of the modulation solitary wave limit for
the apparently non-integrable Serre-Green-Naghdi (SGN) equations (A Green and Naghdi 1976; AE
Green et al 1974; F Serre 1953; Su and Gardner 1969) describing long, strongly nonlinear free surface
waves on a flat bottom in a fluid of constant density. The Hamiltonian structure of this system is non-
local (S Gavrilyuk and Teshukov 2001; YA Li 2002), so the generic results of Benzoni-Gavage et al
(2021) cannot be used. The SGN system shares many properties with the BBM equation: they have
similar dispersion relations and similar nonlocal Hamiltonian structure (PJ Olver 1980). Compared to
the BBM equation, which is a unidirectional, scalar equation, the SGN system is a Galilean invariant
system containing more physics than the BBM equation. The Whitham modulation equations for the
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SGN equations were obtained in El, Grimshaw and NF Smyth (2006). Their hyperbolicity was proven
in Tkachenko et al (2020). Being second order in time, the SGN equations support bi-directional wave
propagation and the resulting solitary wave limit quasi-linear system of the SGN-Whitham equations is
third order. In this work, we prove the existence of Riemann invariants if and only if simple waves in
the decoupled mean flow equations are considered.

The analysis of unidirectional wave-mean flow interaction has been carried out for solitons and RWs,
DSWs for a general class of unidirectional nonlinear dispersive wave equations in Maiden, Anderson
et al (2018) by analysing the solitary wave limit of the Whitham modulation equations. In the same
paper, the approach was applied to the conduit equation and compared with experiments on viscous fluid
conduits. The approach was further refined and applied to the KdV equation (Ablowitz, Cole et al 2023)
and the modified-KdV equation (Sande et al 2021) where, in addition, the kink (monotone, heteroclinic
travelling wave solution) serves as either the wave or the mean flow. The extension to oblique, two-
dimensional line solitons interacting with RWs and DSWs was developed for the Kadomtsev-Petviashvili
equation in Ryskamp et al (2021). A similar analysis of soliton-mean field interaction was extended to
the bi-directional case of the defocusing nonlinear Schrödinger (NLS) equation where, in addition to
overtaking interactions, RWs and DSWs experience head-on interactions with solitons (Sprenger et al
2018).

The soliton-mean flow interaction problem for integrable equations has also been studied using the
inverse scattering transform (IST) for the the KdV equation (Ablowitz, Luo et al 2018; Ablowitz, Cole
et al 2023) and the focusing NLS equation (Biondini et al 2018) where some solitons were shown to leave
a trailing “wake” inside the DSW after passing through. Other analytical approaches include perturbation
theory (Ablowitz, Cole et al 2023), the Darboux transformation (Mucalica and Pelinovsky 2022), both
for KdV soliton-RW interaction, and a Hamiltonian formulation of the problem that borrows ideas from
soliton perturbation theory and Whitham theory to obtain an approximate, analytical description of
solitary wave-mean flow interaction for a generalized KdV equation (Kamchatnov and Shaykin 2023)
and the NLS equation (Ivanov and Kamchatnov 2022; Kamchatnov 2024).

In this paper, we utilise the derived SGN-Whitham equations in the solitary wave limit to analytically
describe the head-on and overtaking interaction of a solitary wave and a RW mean flow. The results are
then extended to solitary wave-DSW mean flow interaction. One important finding in this paper is that
the original approach proposed in Maiden, Anderson et al (2018) and utilised elsewhere (Kamchatnov
and Shaykin 2023) that rely upon the DSW fitting method and its conjugate wavenumber/dispersion
relation (El 2005) to obtain the soliton Riemann invariant is only approximate. By obtaining the exact
representation of the solitary wave limit of the SGN-Whitham equations and corresponding Riemann
invariants for simple wave mean flows, we are able to prove that the conjugate wavenumber/dispersion
yields a second order in amplitude accurate prediction for solitary wave motion through a RW. It
also provides a second order accurate prediction for the DSW’s solitary wave edge. Careful numerical
simulations of the SGN equations agree with these findings. While this is an improvement to the
first order accurate, weakly nonlinear KdV approximation, it identifies a limitation of the DSW fitting
approach.

The plan of the paper is as follows. In section 2, we give a detailed presentation of the SGN equations
and their periodic travelling wave solutions are presented in section 3. In section 4, the modulation
equations are given both in the mass Lagrangian coordinates and in Eulerian coordinates. The reason
is that the solitary wave limit is mathematically easier to carry out in Lagrangian coordinates, while
the physical interpretation is easier in Eulerian coordinates. In section 5, we study the interaction of
solitary waves with RWs and DSWs. In particular, the transmission and trapping effect is studied. The
closed-form analytical results are in good agreement with the numerical ones for the SGN equations.
Finally, the main technical details (the different forms of the modulation equations, the passage to the
solitary limit, numerical method, etc.) are given in four Appendices.
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2. Serre–Green–Naghdi equations

The SGN equations over a flat bottom approximating the free-surface Euler equations in the long wave
limit are (A Green and Naghdi 1976; AE Green et al 1974; F Serre 1953; Su and Gardner 1969)

ℎ𝑡 + (ℎ𝑢)𝑥 = 0, (2.1)

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑔ℎ𝑥 =
1
ℎ

(
ℎ3

3
(𝑢𝑥𝑡 + 𝑢𝑢𝑥𝑥 − 𝑢2

𝑥)
)
𝑥

, (2.2)

where ℎ is the total depth, 𝑢 is the depth-averaged horizontal velocity, and 𝑔 is the acceleration due to
gravity. In what follows, we scale independent and dependent variables so that 𝑔 = 1.

The SGN equations (2.1), (2.2) are non-integrable and represent a fully nonlinear generalization
of the classical Boussinesq equations (Lannes 2013). The first equation (2.1) is the exact equation
for conservation of mass, and the second equation (2.2) can be manipulated into the equation for
conservation of horizontal momentum

(ℎ𝑢)𝑡 +
(
ℎ𝑢2 + 1

2
ℎ2

)
𝑥

=

(
ℎ3

3

(
𝑢𝑡 𝑥 + 𝑢𝑢𝑥𝑥 − 𝑢2

𝑥

))
𝑥

. (2.3)

An equivalent form of the momentum equation is

(ℎ𝑢)𝑡 +
(
ℎ𝑢2 + 1

2
ℎ2 + 1

3
ℎ2 𝑑

2ℎ

𝑑𝑡2

)
𝑥

= 0, (2.4)

where
𝑑

𝑑𝑡
is the material derivative notation,

𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+𝑢

𝜕

𝜕𝑥
, and

𝑑2

𝑑𝑡2
=

𝑑

𝑑𝑡

(
𝑑

𝑑𝑡

)
is the second material

derivative. The conservation of energy manifests in the additional conservation law(
1
2
ℎ

(
ℎ + 𝑢2 + 1

3
ℎ2𝑢2

𝑥

))
𝑡

+
(
ℎ𝑢

(
ℎ + 1

2
𝑢2 + 1

2
ℎ2𝑢2

𝑥 −
1
3
ℎ2 (𝑢𝑥𝑡 + 𝑢𝑢𝑥𝑥)

))
𝑥

= 0. (2.5)

Finally, a fourth conservation law (the so-called Bernoulli conservation law) can be derived. It is usually

written for the variable K = 𝑢 − 1
3ℎ

(
ℎ3𝑢𝑥

)
𝑥

representing the tangent component of the fluid velocity
at the free surface (S Gavrilyuk, Kalisch et al 2015)

K𝑡 +
(
K𝑢 + ℎ − 𝑢2

2
− 1

2
ℎ2
𝑥𝑢

2
)
𝑥

= 0. (2.6)

A mathematical justification of the SGN model (2.1), (2.2) can be found in Lannes (2013) and Makarenko
(1986). Recent years have seen increased activity in both the study of qualitative properties of the
solutions to the SGN equations and in the development of numerical discretization techniques (Favrie
and S Gavrilyuk 2017; S Gavrilyuk and Klein 2024; S Gavrilyuk and Shyue 2024; Le Métayer et al
2010; M Li et al 2014).

The Lagrangian for (2.1), (2.2), where the mass conservation law (2.1) is considered a constraint, is
given as (S Gavrilyuk and Teshukov 2001)

L =

∫ +∞

−∞
ℎ

(
𝑢2

2
+ 1

6

(
𝑑ℎ

𝑑𝑡

)2
− ℎ

2

)
𝑑𝑥. (2.7)

In order to obtain analytically tractable expressions, we will make use of mass Lagrangian coordinates
introduced as follows. Let ℎ0 (𝑥) be the initial position of the free surface, and 𝑌 be the classical
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Lagrangian coordinate. The mass Lagrangian coordinate 𝑞 is defined as 𝑞 =

∫ 𝑌

0
ℎ0 (𝑠)𝑑𝑠. Let 𝑥 = 𝑥(𝑡, 𝑞)

be the trajectories of fluid particles. Since the mass conservation law is in the form ℎ
𝜕𝑥

𝜕𝑞
= 1, the

Lagrangian (2.7) can be transformed to

L̃ =

∫ +∞

−∞

(
𝑢2

2
− 𝑒(𝜏, 𝜏𝑡 )

)
𝑑𝑞, (2.8)

where 𝜏 = 1/ℎ and the potential 𝑒(𝜏, 𝜏𝑡 ) is

𝑒(𝜏, 𝜏𝑡 ) =
1

2𝜏
− 1

6

(
𝜕

𝜕𝑡

(
1
𝜏

))2
=

1
2𝜏

−
𝜏2
𝑡

6𝜏4 . (2.9)

For a general potential 𝑒(𝜏, 𝜏𝑡 ), the Euler-Lagrange equations for (2.8) are (SL Gavrilyuk 1994):

𝜏𝑡 − 𝑢𝑞 = 0, 𝑢𝑡 + 𝑝𝑞 = 0, (2.10)

where the pressure 𝑝 is defined by

𝑝 = − 𝛿𝑒

𝛿𝜏
= −

(
𝜕𝑒

𝜕𝜏
− 𝜕

𝜕𝑡

(
𝜕𝑒

𝜕𝜏𝑡

))
. (2.11)

System (2.10) is reminiscent of the 𝑝-system for the barotropic Euler equations. However, in our case,
the pressure 𝑝 defined by (2.11) depends not only on 𝜏, but also on its first and second temporal
derivatives. The variable 𝜏 is the analogue of the specific volume for the corresponding Euler equations.
As a consequence of Noether’s theorem, the variational formulation implies the conservation of energy
and Bernoulli equation (

𝑢2

2
+ 𝜀

)
𝑡

+ (𝑝𝑢)𝑞 = 0, 𝜀 = 𝑒−𝜏𝑡𝑒𝜏𝑡 , (2.12)(
𝜏𝑢 − 𝜏𝑞

𝜕𝑒

𝜕𝜏𝑡

)
𝑡

−
(
𝑢2

2
− 𝜏𝑝 − 𝑒

)
𝑞

= 0. (2.13)

that are the analogues of eqs. (2.5) and (2.6). The conservation laws (2.10), (2.12), (2.13) are averaged
to obtain the modulation equations in Lagrangian coordinates in Appendix A.

3. Periodic travelling wave solutions

We now present the form of periodic travelling wave solutions in both Eulerian and Lagrangian coor-
dinates. Several parametrisations of the four dimensional family of periodic travelling waves will be
presented.

3.1. Eulerian coordinates

The travelling wave solutions ℎ(𝑥, 𝑡) = ℎ(𝜉) = ℎ(𝑥 − 𝑐𝑡), 𝑢(𝑥, 𝑡) = 𝑢(𝜉) = 𝑢(𝑥 − 𝑐𝑡) to the SGN
equations (2.1), (2.2) are specified by(

𝑑ℎ

𝑑𝜉

)2
=

3
ℎ1ℎ2ℎ3

(ℎ − ℎ1) (ℎ − ℎ2) (ℎ3 − ℎ) = 3
ℎ1ℎ2ℎ3

𝑃(ℎ), (3.1)

𝑢 = 𝑐 − 𝜎

√
ℎ1ℎ2ℎ3
ℎ

, 𝜎 = ±1, (3.2)
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where, similar to the defocusing nonlinear Schrödinger equation, the wave is characterised by four
independent parameters ℎ1, ℎ2, ℎ3 (the roots of the third order polynomial 𝑃(ℎ)), the travelling wave
velocity 𝑐, and 𝜎 = +1 (𝜎 = −1) corresponds to the fast (slow) waves. Here, the depth variations in the
wave occur in the interval [ℎ2, ℎ3], for ℎ1 < ℎ2 < ℎ < ℎ3 with the amplitude 𝑎 = ℎ3 − ℎ2. It is assumed
that there are no vacuum points for non-trivial periodic travelling wave solutions: ℎ1 > 0. The ODE in
(3.1) can be integrated to obtain

ℎ = ℎ2 + (ℎ3 − ℎ2)cn2 ©«1
2

√︄
3(ℎ3 − ℎ1)
ℎ1ℎ2ℎ3

𝜉, 𝑚
ª®¬ , 𝑚 =

ℎ3 − ℎ2
ℎ3 − ℎ1

, (3.3)

where cn is the Jacobi cosine elliptic function (FWJ Olver et al 2024). We express the physical parameters
(amplitude 𝑎, wavenumber 𝑘 , and the period averages of depth ℎ and velocity 𝑢) in terms of the basic
parameter set (ℎ1, ℎ2, ℎ3, 𝑐) as

𝑎 = ℎ3 − ℎ2, 𝑘 =

√︄
3(ℎ3 − ℎ1)
ℎ1ℎ2ℎ3

𝜋

2K(𝑚) , ℎ = ℎ1 + (ℎ3 − ℎ1)
E(𝑚)
K(𝑚) ,

ℎ(𝑢 − 𝑐) = −𝜎
√︁
ℎ1ℎ2ℎ3, 𝑢 = 𝑐−𝜎

√︁
ℎ1ℎ2ℎ3

Π

(
1 − ℎ2

ℎ3
, 𝑚

)
ℎ3K(𝑚) ,

(3.4)

where K, E and Π are the complete elliptic integrals of the first, second, and third kinds, respectively
(FWJ Olver et al 2024). We introduce the phase

𝜃 = 𝑘𝜉 = 𝑘𝑥 − 𝜔𝑡, (3.5)

so that the travelling wave is 2𝜋-periodic in 𝜃: ℎ(𝜉) = ℎ(𝜃/𝑘) = ℎ((𝜃 + 2𝜋)/𝑘), 𝑢(𝜉) = 𝑢(𝜃/𝑘) =

𝑢((𝜃 + 2𝜋)/𝑘). The wavelength of the travelling wave 𝐿 is related to the wavenumber 𝑘 by 𝐿 = 2𝜋/𝑘 .
The solitary wave limit of (3.3) is achieved when ℎ2 → ℎ1 so that 𝑚 → 1. Its explicit form is

ℎ(𝑥, 𝑡) = ℎ + 𝑎 sech2

( √
3𝑎

ℎ
√︁
ℎ + 𝑎

(𝑥 − 𝑐𝑡)
)
, 𝑢(𝑥, 𝑡) = 𝑢 + 𝜎

√︁
ℎ + 𝑎

(
1 − ℎ

ℎ(𝑥, 𝑡)

)
. (3.6)

Fast (𝜎 = +1) and slow (𝜎 = −1) elevation solitary waves propagate on the background ℎ = ℎ, 𝑢 = 𝑢,
and are characterised by the speed-amplitude relation

𝑐 = 𝑐𝑠 (𝑎, ℎ̄, 𝑢) ≡ 𝑢 + 𝜎

√︁
ℎ + 𝑎. (3.7)

Fast solitary waves move faster than the dispersionless long-wave velocity 𝑉+ = 𝑢 +
√︁
ℎ, and slow

solitary waves move slower than the dispersionless long-wave velocity 𝑉− = 𝑢 −
√︁
ℎ (see Figure 2).

In the opposite, harmonic, limit, ℎ2 → ℎ3 so that 𝑚 → 0, yields a small-amplitude linear wave char-
acterised by the dispersion relation𝜔0 (𝑘) (frequency-wavenumber relation) for linear waves propagating
on the background (ℎ, 𝑢)

𝜔 = 𝑘𝑐 = 𝜔0 (𝑘, ℎ, 𝑢) ≡ 𝑘𝑢 + 𝜎𝑘

√√
ℎ

1 + ℎ
2
𝑘2/3

. (3.8)
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dx

dt
=cs

dx

dt
=V+

x

t

dx

dt
=cs

dx

dt
=V-

x

t

Figure 2. Relations (3.7) between the velocity of a fast (slow) solitary wave and the corresponding
long-wave velocity 𝑉+ (𝑉−) are represented schematically on the left (right).

3.2. Lagrangian coordinates

Consider now SGN’s travelling wave solutions in the co-moving mass Lagrangian coordinate 𝜁 = 𝑞− 𝑐𝑡

instead of the Eulerian coordinate 𝜉 = 𝑥 − 𝑐𝑡: ℎ = ℎ(𝜁), 𝑢 = 𝑢(𝜁). Since
𝑑𝜁

𝑑𝜉
= ℎ, the equation for

travelling waves is (
𝑑ℎ

𝑑𝜁

)2
=

3
ℎ1ℎ2ℎ3

𝑃(ℎ)
ℎ2 . (3.9)

The velocity 𝑢 is found from the relation

𝑐 𝜏 + 𝑢 = cst, with 𝜏 =
1
ℎ
. (3.10)

The wave velocity 𝑐 is related to the roots of the polynomial 𝑃(ℎ) by the formula (see Appendix A)

𝑐2 = ℎ1ℎ2ℎ3. (3.11)

4. Modulation equations and their solitonic reduction

The SGN equations possess all the necessary prerequisites for the application of Whitham averaging.
They support a family of 2𝜋–periodic travelling wave solutions ℎ(𝜃/𝑘), 𝑢(𝜃/𝑘) specified by (3.3), (3.5)
and characterized by the four independent parameters ℎ1, ℎ2, ℎ3, 𝑐 while admitting four independent
conservation laws (2.1), (2.2), (2.5) and (2.6).

The modulation equations for the SGN equations in Eulerian coordinates are given in El, Grimshaw
and NF Smyth (2006) and Tkachenko et al (2020). According to the general averaging procedure
(Whitham 1965), the modulation system for the SGN equations can be obtained by period averaging any
three conservation laws, such as mass (2.1), momentum (2.3) and energy (2.5), over the periodic family
(3.3), and augmenting them by the wave conservation equation 𝑘𝑡 + (𝑘𝑐)𝑥 = 0. Doing so results in

ℎ𝑡 + (ℎ𝑢)𝑥 = 0,

(ℎ𝑢)𝑡 +
(

1
2 ℎ

2 + ℎ𝑢2 − 1
3 ℎ

3
(
(𝑢 − 𝑐)𝑢 𝜉 𝜉 − 𝑢2

𝜉 𝜉

) )
𝑥

= 0,(
1
2
ℎ

(
ℎ + 𝑢2 + 1

3
ℎ2𝑢2

𝜉

))
𝑡

+
(
ℎ𝑢

(
ℎ + 1

2
𝑢2 + 1

2
ℎ2𝑢2

𝜉
− 1

3
ℎ2 (𝑢 − 𝑐)𝑢 𝜉 𝜉 )

))
𝑥

= 0,

𝑘𝑡 + (𝑘𝑐)𝑥 = 0.

(4.1)
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The averages in (4.1) are evaluated using the general definition

𝑓 (ℎ) =

∫ ℎ3

ℎ2

𝑓 (ℎ)𝑑ℎ√︁
𝑃(ℎ)∫ ℎ3

ℎ2

𝑑ℎ√︁
𝑃(ℎ)

, (4.2)

where 𝑓 (ℎ) is any function of ℎ.
The system (4.1) is consistent with the averaged Bernoulli conservation law (2.6):(

𝑢 + 1
6 ℎ

2𝑢 𝜉 𝜉

)
𝑡
+

(
1
2𝑢

2 + ℎ − 1
2 ℎ

2
((

2
3𝑢 − 𝑐

)
𝑢 𝜉 𝜉 − 𝑢2

𝜉

) )
𝑥

= 0, (4.3)

which can be used instead of any of the averaged conservation laws (4.1), e.g., instead of the wave
conservation equation, yielding an equivalent modulation system. This equivalence is proved in the
mass Lagrangian coordinates in Appendix A.

As a result, the system (4.1) can be explicitly represented in canonical quasilinear form for the state
vector b = (ℎ1 (𝑥, 𝑡), ℎ2 (𝑥, 𝑡), ℎ3 (𝑥, 𝑡), 𝑐(𝑥, 𝑡))𝑇 ; see Appendix B. However, due to the lack of integrable
structure for the SGN equations, the associated modulation system cannot be reduced to a diagonal form.
This makes the analysis of its properties—hyperbolicity, genuine nonlinearity, simple waves, etc.—
difficult. The weakly nonlinear regime of the modulation equations was studied in El, Grimshaw and
NF Smyth (2006). The hyperbolicity of the modulation equations was proven in Tkachenko et al (2020).
However, their full analytical study remains a difficult task. This is why we study here a reduction of the
full modulation system in the limit of waves of large wavelength (the solitary wave limit), allowing us
to present some analytical results. The difficulty of obtaining the solitary wave limit of the modulation
equations is that the phase equation 𝑘𝑡 + (𝑐𝑘)𝑥 = 0 is degenerate in this singular limit. One possibility
is to pass to the limit in the wave action conservation law, an exact conservation law of the full SGN-
Whitham system. Such a method was, in particular, exploited in Gurevich, Krylov et al (1990) for the KdV
equation, in S Gavrilyuk and Shyue (2021) for the BBM equation and in Benzoni-Gavage et al (2021) for
Hamiltonian systems of Euler-Korteweg or dispersive Eulerian type (so-called second gradient fluids).
The wave action integral for the SGN-Whitham equations was already obtained in SL Gavrilyuk (1994)
in a general setting that includes the SGN-Whitham equations by using mass Lagrangian coordinates.
We use this result to first find the solitary wave limit in mass Lagrangian coordinates and then re-express
the limit equations in Eulerian coordinates (see Appendix A). In the mass Lagrangian coordinates, one
has only to replace the polynomial 𝑃(ℎ) by 𝑃(ℎ)/ℎ2 when computing averages (see (3.9)):

𝑓 (ℎ) =

∫ ℎ3

ℎ2

ℎ 𝑓 (ℎ)𝑑ℎ√︁
𝑃(ℎ)∫ ℎ3

ℎ2

ℎ𝑑ℎ√︁
𝑃(ℎ)

. (4.4)

To double-check our computation of the solitary wave limit in mass Lagrangian coordinates, we also
compute the limit directly in Eulerian coordinates (see B) using a symbolic package.

A straightforward analysis shows that in the solitary wave limit, one has ℎ = ℎ1, ℎ2 = ℎ2
1 = ℎ

2
,

1/ℎ = 1/ℎ1 = 1/ℎ, and the average of the mass and momentum equations in mass Lagrangian
coordinates (2.10) are thus the classical Saint–Venant equations describing hydrostatic (dispersionless)
shallow water equations (

1
ℎ

)
𝑡

− 𝑢𝑞 = 0, 𝑢𝑡 −
(
ℎ

2

2

)
𝑞

= 0. (4.5)
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This decoupling of the dispersionless limit equations for the evolution of the mean flow in the solitary
wave limit is a general property of dispersive hydrodynamics (El 2005; El and Hoefer 2016; Hoefer
2014). It is also physically intuitive: the effect of a single soliton on a large-scale mean flow is negligibly
small.

A non-trivial amplitude equation comes from the solitary wave limit of the wave action conservation
equation. For general periodic travelling waves in mass Lagrangian coordinates, the wave action equation
is (see Appendix A) ©«𝑐 ©«

ℎ2
𝜁

3𝑘
+ 𝜏2 − 𝜏2

𝑘

ª®¬ª®¬𝑡 +
(
𝑐2 𝜏2 − 𝜏2

𝑘

)
𝑞

= 0. (4.6)

The solitary wave limit (𝑘 → 0) is singular, because ℎ2
𝜁
→ 0 and 𝜏2 − 𝜏2 → 0. In Appendix A, we

show that equation (4.6) limits to
𝐹 (𝑛, ℎ)𝑡 + 𝐺 (𝑛, ℎ)𝑞 = 0, (4.7)

with

𝐹 (𝑛, ℎ) = ℎ
3
2

√
1 − 𝑛

(
(6 − 2𝑛)

√
𝑛

3(1 − 𝑛) + ln
(

1 −
√
𝑛

1 +
√
𝑛

))
, (4.8)

𝐺 (𝑛, ℎ1) = 𝜎
ℎ

3

1 − 𝑛

( √
𝑛

1 − 𝑛
+ 1

2
ln

(
1 −

√
𝑛

1 +
√
𝑛

))
. (4.9)

The quantity 𝑛 is related to the solitary wave amplitude 𝑎 = ℎ3 − ℎ1 as

𝑛 =
𝑎

ℎ + 𝑎
. (4.10)

The characteristic velocity corresponding to equation (4.7) is

𝜆 =
𝐺𝑛

𝐹𝑛

= 𝜎
ℎ

3/2

√
1 − 𝑛

= 𝜎ℎ

√︁
ℎ + 𝑎 = 𝑐𝑠 . (4.11)

The velocity 𝑐𝑠 is related to the Eulerian velocity of solitary waves 𝑐𝑠 by (3.7).
In Eulerian coordinates, the system (4.5), (4.7) becomes

ℎ𝑡 + (ℎ𝑢)𝑥 = 0, (4.12)

𝑢𝑡 + 𝑢 𝑢𝑥 + ℎ𝑥 = 0, (4.13)

𝑧𝑡 +
(
𝑢 + 𝜎

√︃
ℎ(1 + 𝑧2)

)
𝑧𝑥 + 𝜎

3
(
𝑧2 + 1

)3/2

2𝑧
𝑧
√
𝑧2 + 1 − sinh−1 (𝑧)

2𝑧
√
𝑧2 + 1 − sinh−1 (𝑧)

ℎ𝑥√︁
ℎ

(4.14)

−
√
𝑧2 + 1
2𝑧

3𝑧 + 2𝑧3 − 3
√
𝑧2 + 1 sinh−1 (𝑧)

2𝑧
√
𝑧2 + 1 − sinh−1 (𝑧)

𝑢𝑥 = 0.

where 𝑧2 = 𝑎/ℎ and sinh−1 (𝑧) = ln(𝑧 +
√
𝑧2 + 1). We call the system (4.12)–(4.14) the solitonic

modulation system. We stress that the solitonic modulation system is an exact reduction of the full
SGN-Whitham modulation system.

The first two equations of the solitonic modulation system are the Saint-Venant (shallow water)
equations written in Eulerian coordinates. They are completely decoupled from the third equation for
𝑧. Other than classical fast and slow surface waves of the shallow water equations with characteristic
velocities 𝑉± = 𝑢 ±

√︁
ℎ, the characteristic velocity corresponding to the amplitude equation for the
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dimensionless amplitude 𝑧2 also represents fast and slow solitary waves propagating with the third

characteristic velocity 𝑐𝑠 = 𝑢+𝜎

√︃
ℎ(1 + 𝑧2), the solitary wave velocity (3.7). By direct verification, we

find that the system is strictly hyperbolic 𝑉− < 𝑉+ < 𝑐, if 𝜎 = +1, ℎ > 0, and 𝑧 > 0 or 𝑐 < 𝑉− < 𝑉+, if
𝜎 = −1, ℎ > 0, and 𝑧 > 0 and the corresponding eigenfields are genuinely nonlinear in the sense of Lax.

The solitonic modulation system (4.12)–(4.14) inherits two Riemann invariants, those of the decou-
pled shallow water equations (4.12), (4.13). However, the third Riemann invariant does not exist, i.e. the
system cannot be fully diagonalized (see Appendix C for the proof). Nevertheless, given the solution of
(4.12) and (4.13) (obtained for example by the hodograph transform or a simple wave reduction), eq.
(4.14) can then be integrated using the method of characteristics. Moreover, if one of the shallow water
Riemann invariants is constant (the simple wave reduction), there are just two equations left, e.g. (4.13)
and (4.14), and so the amplitude equation (4.14) can also be diagonalized in that case. The resulting
extra Riemann invariant 𝑄(𝑥, 𝑡) plays the role of an adiabatic invariant for solitary wave-mean flow
interaction and determines the transmission (tunnelling) and trapping conditions for the interaction of a
solitary wave with a RW or DSW mean flow generated by step initial data (Riemann) problems.

5. Solitary wave transmission and trapping

The expression “solitary wave tunnelling” comes from quantum mechanics and conveys the possibility
of a quantum particle passing through a classically impenetrable potential barrier. In the context of the
SGN equations, the solitary wave plays the role of the quantum particle. More precisely, for a given
solitary wave amplitude, we are able to use the solitary wave limit of the SGN-Whitham equations to
analytically determine if the solitary wave passes (transmits or tunnels) through a RW or its counterpart,
a DSW. Both a RW and a DSW represent a continuous transition between two constant mean flows and
therefore solitary wave-mean flow transmission occurs when a solitary wave, initiated on one side of a
RW or DSW, emerges on the other side. Otherwise, we say that the solitary wave has been trapped.

The system (4.12), (4.13) is independent of 𝑧 and can be diagonalized. The corresponding Riemann
invariants are:

𝑟+ = 𝑢 + 2
√︁
ℎ, 𝑟− = 𝑢 − 2

√︁
ℎ, (5.1)

yielding

(𝑟+)𝑡 +𝑉+ (𝑟+)𝑥 = 0, 𝑉+ = 𝑢 +
√︁
ℎ =

3𝑟+ + 𝑟−
4

, (5.2)

(𝑟−)𝑡 +𝑉− (𝑟−)𝑥 = 0, 𝑉− = 𝑢 −
√︁
ℎ =

𝑟+ + 3𝑟−
4

. (5.3)

This system has two simple wave solutions:

𝑟−𝜇 = 𝑢 − 2𝜇
√︁
ℎ = cst, 𝑉𝜇 = 𝑥/𝑡, (5.4)

where 𝜇 = +1 for the fast wave and 𝜇 = −1 for the slow wave.

5.1. Exact simple wave Riemann invariants

To study the interaction of the solitary wave with the simple wave (5.4), we hold one of the Riemann
invariants 𝑟−𝜇 constant, yielding a relation between ℎ and 𝑢 (5.4) (Sprenger et al 2018). The reduced
solitonic modulation system is thus obtained by substituting (5.4) in (4.12), (4.14) (or equivalently
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(4.13), (4.14)), yielding the system of two equations:

ℎ𝑡 +
(
𝑟−𝜇 + 3𝜇

√︁
ℎ

)
ℎ𝑥 = 0, (5.5)

𝑧𝑡 +
(
𝑟−𝜇 + 2𝜇

√︁
ℎ + 𝜎

√︃
ℎ(1 + 𝑧2)

)
𝑧𝑥 + 𝜎𝑔𝜎𝜇 (𝑧)

ℎ𝑥√︁
ℎ

= 0, (5.6)

with

𝑔𝜎𝜇 (𝑧) =
3
(
𝑧2 + 1

)3/2

2𝑧
𝑧
√
𝑧2 + 1 − sinh−1 (𝑧)

2𝑧
√
𝑧2 + 1 − sinh−1 (𝑧)

− 𝜎𝜇
1 + 𝑧2

2𝑧
(3𝑧 + 2𝑧3) (1 + 𝑧2)−1/2 − 3 sinh−1 (𝑧)

2𝑧
√

1 + 𝑧2 − sinh−1 (𝑧)
.

(5.7)
Since now this is a quasi-linear system of just two equations, it is diagonalizable with one Riemann
invariant manifestly ℎ. By making the simple-wave ansatz 𝑧 = 𝑧(ℎ) in eqs. (5.5) and (5.6), the second
Riemann invariant can be obtained as the constant of integration of the ODE

𝑑𝑧

𝑑ℎ
+

𝑔𝜎𝜇 (𝑧)

ℎ

(√
1 + 𝑧2 − 𝜎𝜇

) = 0. (5.8)

The integral of (5.8) can be written in the form

𝑄𝜎𝜇 (ℎ, 𝑧) = ℎ exp( 𝑓𝜎𝜇 (𝑧)), 𝑓𝜎𝜇 (𝑧) =
∫ 𝑧

√
1 + 𝑠2 − 𝜎𝜇

𝑔𝜎𝜇 (𝑠)
𝑑𝑠. (5.9)

One can see that the Riemann invariant 𝑄𝜎𝜇 (5.9) only depends on the sign 𝜎𝜇, which determines the
interaction type. The value 𝜎𝜇 = +1 corresponds to the overtaking interaction between a fast solitary
wave and a fast simple wave (or equivalently slow-slow waves) whereas 𝜎𝜇 = −1 corresponds to the
head-on interaction between a fast solitary wave and a slow simple wave (or equivalently slow-fast
waves).

Note that in the small amplitude limit 𝑧 → 0, we obtain the following expansion for the Riemann
invariant in the case of an overtaking interaction (𝜎𝜇 = +1)

𝑄+ (ℎ, 𝑧) = ℎ

(
1 + 𝑧2

2
− 𝑧4

48
− 61

1440
𝑧6 +𝑂 (𝑧8)

)
. (5.10)

As we will now show, this expression is asymptotically equivalent, to order O(𝑧4), to the Riemann
invariant obtained by the DSW fitting method.

5.2. Approximate simple wave Riemann invariants: the DSW fitting method

An efficient approach to obtain the solitary wave limit of the Whitham equations can be deduced from
the dispersive shock wave (DSW) fitting method (El 2005). This method enables the determination,
under certain assumptions, of the harmonic and solitary wave edges of a DSW directly, bypassing the
derivation and asymptotic analysis of the full Whitham modulation system. The DSW fitting method
has been successfully applied to many dispersive hydrodynamic systems, both integrable and non-
integrable, see e.g., Congy et al (2021), El, Gammal et al (2007), El, Grimshaw and NF Smyth (2006),
El, Khodorovskii et al (2005), Esler and Pearce (2011), Hoefer (2014), Jamshidi and Johnson (2020),
and Lowman and Hoefer (2013). In cases when the dispersive equation is integrable such as in the
KdV, NLS, and Kaup-Boussinesq equations, the method’s results are consistent with the available exact
modulation solutions. For non-integrable systems, when the exact theory is not available, the method
yields an excellent comparison with direct numerical simulations of the dispersive equation, beyond
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the classical weakly nonlinear KdV approximation. Here, we shall use the part of the DSW fitting
construction pertaining to the determination of the DSW’s solitary wave edge.

A major assumption in the DSW fitting method is that of convexity (strict hyperbolicity and genuine
nonlinearity) of the full Whitham modulation system. This assumption is not always easily verifiable
for the entire range of parameters involved, so one can say that DSW fitting generally provides a convex
approximation of the exact DSW edge dynamics. In particular, it is known that the SGN-Whitham
modulation system exhibits non-convexity for sufficiently large amplitudes (El, Grimshaw and NF
Smyth 2006; Hoefer 2014) but nevertheless, the DSW fitting results agree with direct SGN numerics
remarkably well for a broad range of amplitudes, far beyond the weakly nonlinear KdV regime.

The DSW fitting method relies on the existence of exact reductions of the Whitham modulation system
in two distinguished limits: the harmonic limit 𝑎 → 0 and the solitary wave limit 𝑘 → 0. The latter one
is our interest here and has the general form of an equation for the solitary wave amplitude (or a related
amplitude type variable), coupled to the dispersionless limit system for the large-scale background (the
mean flow) (El and Hoefer 2016). In the present context of the SGN-Whitham equations, the solitary
wave reduction is given by the system (4.12)–(4.14), however, the derivation of the exact form of the
amplitude equation (4.14) and further, of the Riemann invariant 𝑄𝜎𝜇 in eq. (5.9)—the main technical
hurdle in the analysis of the solitary wave limit of the modulation system—is not required for the
application of the DSW fitting method. Instead, the determination of the requisite Riemann invariant
involves only the linear dispersion relation 𝜔0 (𝑘, ℎ, 𝑢) for waves on the mean background (ℎ, 𝑢) along
with the simple-wave relation 𝑢(ℎ) for the dispersionless limit equations. All of this information is
readily available with no additional analysis of the SGN-Whitham modulation system required. In the
context of soliton-mean flow interaction, the Riemann invariant 𝑄 acquires the meaning of an adiabatic
invariant (Maiden, Anderson et al 2018). This adiabatic invariant also plays a key role in the solitary
wave resolution method (El, Grimshaw and N Smyth 2008; Maiden, Franco et al 2020), where it is an
analogue of the spectral parameter in the Lax pair associated with integrable equations in the semi-
classical limit. See also the recent papers Kamchatnov (2024) and Kamchatnov and Shaykin (2023)
where soliton-mean field interaction has been interpreted in terms of Hamiltonian mechanics of the
motion of a soliton along a large-scale background.

Note that the DSW fitting construction applies directly to the overtaking solitary wave-mean field
interaction, not the head-on interaction, due to the unidirectional nature of DSW generation in Riemann
problems. The DSW fitting method was applied to undular bore theory for the SGN system in El,
Grimshaw and NF Smyth (2006), so we shall take advantage of the results of that work and adapt them
to the current setting of the overtaking solitary wave-mean flow interaction. To be definite, we consider
the fast-fast interaction, 𝜎 = 𝜇 = +1.

For the fast simple-wave mean field we have (cf. (5.5))

𝑢(ℎ) = 𝑟− + 2
√︁
ℎ, ℎ𝑡 +𝑉+ (ℎ)ℎ𝑥 = 0, 𝑉+ = 𝑟− + 3

√︁
ℎ, (5.11)

where 𝑟− = 𝑢 − 2
√︁
ℎ = 𝑐𝑜𝑛𝑠𝑡 is the Riemann invariant of the dispersionless shallow-water equations.

The fast branch of the dispersion relation (3.8) for linearised waves on the simple-wave background
(5.11) is given by

𝜔0 (𝑘, ℎ, 𝑢(ℎ)) = 𝑘

(
𝑟− + 2

√︁
ℎ

)
+ 𝑘

√√
ℎ

1 + ℎ
2
𝑘2/3

. (5.12)

Solitary wave motion on the simple-wave background is defined by the conjugate dispersion relation
(see El (2005) for details)

𝜔( �̃� , ℎ) = −𝑖𝜔0

(
𝑖 �̃� , ℎ, 𝑢(ℎ)

)
= �̃�

(
𝑟− + 2

√︁
ℎ

)
+ �̃�

√√
ℎ

1 − ℎ
2
�̃�2/3

, (5.13)
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where the conjugate wavenumber �̃� (essentially the inverse width of the solitary wave) is related to the
solitary wave amplitude 𝑎 by

𝜔

�̃�
= 𝑐𝑠 (𝑎, ℎ, 𝑢(ℎ)), (5.14)

with 𝑐𝑠 (𝑎, ℎ, 𝑢) = 𝑢 +
√︁
ℎ + 𝑎 the fast branch of the SGN solitary wave speed-amplitude relation (3.7).

Within the fitting approach to solitary wave-mean flow interaction, the amplitude modulation equation
is obtained directly in diagonal form. The corresponding Riemann invariant �̃�+ ( �̃� , ℎ) satisfying

𝜕�̃�+
𝜕𝑡

+ 𝐶 (�̃�+, ℎ)
𝜕�̃�+
𝜕𝑥

= 0, 𝐶 (�̃�+, ℎ) = 𝑐𝑠 (𝑎( �̃� , ℎ), ℎ, 𝑢(ℎ)), (5.15)

is found as an integral of the characteristic ODE

𝑑�̃�

𝑑ℎ
=

𝜔
ℎ

𝑉+ (ℎ) − 𝜔
�̃�

=

�̃�

((
1 + ℎ

2
�̃�2

3

)
+ 2

(
1 − ℎ

2
�̃�2

3

)3/2
+ 1

)
2ℎ

((
1 − ℎ

2
�̃�2

3

)3/2
− 1

) . (5.16)

Equation (5.16) is a convex approximation counterpart to the ODE (5.8) obtained by the exact evaluation
of the solitary wave limit of the SGN-Whitham modulation system.

With the change of variable

𝛼 =
1√︃

1 − ℎ
2
�̃�2

3

=

√︂
1 + 𝑎

ℎ
=

√︁
1 + 𝑧2, (5.17)

eq. (5.16) reduces to the separable ODE

𝑑𝛼

𝑑ℎ
=

𝛼
(
𝛼2 − 1

)
(4 − 𝛼)

2ℎ
(
1 − 𝛼3) , (5.18)

which is readily integrated with the constant of integration

�̃�+ =
22/5321/10ℎ𝛼1/2

(𝛼 + 1)2/5 (4 − 𝛼)21/10 . (5.19)

The normalization coefficient in (5.19) is chosen by the natural requirement that in the zero-
amplitude/infinite width limit 𝑎 → 0 of the solitary wave (3.6), the Riemann invariant �̃�+ → ℎ so
that equation (5.15) degenerates into the simple wave mean flow equation (5.11) for ℎ. Equation (5.19)
is equivalent to eq. (49) in El, Grimshaw and NF Smyth (2006).

One can see that the expression (5.19) does not coincide with the rigorous asymptotic result (5.9) for
𝑄+ corresponding to 𝜇 = 𝜎 = 1. However, it provides a quite accurate approximation in the physically
relevant range of amplitude-depth ratios 𝑧2 = 𝑎/ℎ. Indeed, the small amplitude expansion of the fitting
approach result (5.19) is

�̃�+ = ℎ

(
1 + 𝑧2

2
− 𝑧4

48
− 37

864
𝑧6 + O(𝑧8)

)
. (5.20)

The first two terms in this expansion correspond to the Riemann invariant of the KdV modulation
system in the soliton limit (El and Hoefer 2016), i.e., is accurate to O(𝑎) (O(𝑧2)) as 𝑎 → 0. But the
fitting approach improves upon the classical KdV prediction since (5.20) and the exact result (5.10)
asymptotically agree up to O(𝑎2) (O(𝑧4)). Even further, the difference between the two expansions
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Figure 3. Left: comparison between the exact Riemann invariant 𝑄+ (5.9) (solid line) and its convex
approximation �̃�+(5.19) (dashed line); Right: the difference Δ = (𝑄+ − �̃�+)/ℎ .

at O(𝑎3) (O(𝑧6)) is just ∼ 10−3𝑎3, i.e. the exact (5.9) and convex approximation (5.19) curves are in
excellent agreement for physically admissible 𝑎/ℎ < 𝑎max/ℎ ≈ 0.8 (El, Grimshaw and NF Smyth 2006),
see Fig. 3. At the same time, the existence of such a discrepancy poses the important question: what is
the cause of this O(𝑎3) asymptotic discrepancy and what does it mean for the asymptotic validity of the
DSW fitting method, particularly for non-integrable systems?

5.3. Riemann problem and transmission condition

We consider the Riemann problem for the system (4.12), (4.13), (4.14), for which the initial condition
is a step function:

(
ℎ(𝑥, 0), 𝑢(𝑥, 0), 𝑧(𝑥, 0)

)
=



(
ℎ− , 𝑢− , 𝑧− ≡

√︂
𝑎−
ℎ−

)
, 𝑥 < 0,

(
ℎ+, 𝑢+, 𝑧+ ≡

√︂
𝑎+
ℎ+

)
, 𝑥 > 0,

(5.21)

with the constraint 𝑢− − 2𝜇
√
ℎ− = 𝑢+ − 2𝜇

√
ℎ+. The solution of interest is the simple wave solution

𝑄𝜎𝜇 (ℎ, 𝑧) = 𝑄𝜎𝜇 (ℎ− , 𝑧−) = 𝑄𝜎𝜇 (ℎ+, 𝑧+), 𝑉𝜇 = 𝑟−𝜇 + 3𝜇
√︁
ℎ = 𝑥/𝑡. (5.22)

Equation (5.22) implicitly determines ℎ and 𝑧2 = 𝑎/ℎ as functions of 𝑥/𝑡. It describes the fast RW
with ℎ− < ℎ+. To simplify the discussion of the solution, we restrict our study to fast solitary waves
(𝜎 = +1). In this case, the Riemann problem for the modulation system models the interaction of
an incident solitary wave with parameter 𝑧− , initially located far to the left of the initial step 𝑥 < 0,
interacting with a RW or a DSW generated by the initial step.

It is important to note here that, although the solitary wave limit of the SGN-Whitham equations
(4.12)–(4.14) do not admit DSW modulation solutions, they can be used to determine the nature of
the interaction between a solitary wave and a DSW. The only region of space-time where equations
(4.12)–(4.14) break down is within the DSW itself. Outside of the DSW, equations (4.12)–(4.14) are
perfectly valid, so that the simple wave solution (5.22) applies outside of the DSW. If all we wish to
determine is whether the solitary wave has been transmitted or trapped by the DSW and, if transmitted,
the transmitted solitary wave amplitude, we can use the Riemann invariant relation from (5.22) with
ℎ− > ℎ+ to ascertain this as described below. This concept of hydrodynamic reciprocity was first
theoretically predicted and simultaneously experimentally observed in the interfacial fluid dynamics of
a viscous fluid conduit (Maiden, Anderson et al 2018). The concept has since been applied to solitary
wave-DSW interaction for other equations (Ablowitz, Cole et al 2023; Ryskamp et al 2021; Sande et al
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Figure 4. a) Variation of 𝑓+ (𝑧). b) The critical transmission curve 𝑧2
min (ℎ+/ℎ−) for the overtaking

interaction between a fast solitary wave and a fast RW (ℎ− < ℎ+) given by the exact formula (5.25)
(continuous line) and the convex approximation formula (5.26) (dashed line). c) Relation between 𝑧2

+ and
𝑧2
− for the interaction with a fast RW, (ℎ− , ℎ+) = (1, 1.5) (solid line) and a fast DSW, (ℎ− , ℎ+) = (1.5, 1)

(dashed line).

2021; Sprenger et al 2018). In order to describe the interaction of the solitary wave within the DSW, one
must appeal to multi-phase Whitham modulation theory as has been carried out for the KdV equation
(Ablowitz, Cole et al 2023).

The first equation in (5.22) yields a relation between the left and right parameters (ℎ±, 𝑧±) of the
initial condition, i.e., a relation between the parameters of the incident and transmitted waves

𝑓𝜎𝜇 (𝑧+) + ln ℎ+ = 𝑓𝜎𝜇 (𝑧−) + ln ℎ− , 𝑧2
± =

𝑎±
ℎ±

. (5.23)

If transmitted, the solitary wave amplitude 𝑎+ > 0 is determined by solving for 𝑧+ in eq. (5.23).
In the interaction with a fast simple wave, where 𝜎𝜇 = +1, one can choose the constant of integration

in (5.9) such that 𝑓+ (0) = 0. In that case, 𝑓+ (𝑧) ≥ 0 (see Fig. 4(a)) and one can find 𝑧+ from Eq. (5.23) if

𝑓+ (𝑧−) + ln
(
ℎ−
ℎ+

)
> 0. (5.24)

This condition is called the transmission condition. It is always fulfilled in the interaction with a fast
DSW where ℎ− > ℎ+. In the interaction with a fast RW, this condition can be written in the form:

𝑧− > 𝑧min (ℎ+/ℎ−) = 𝑓 −1
+

(
ln

(
ℎ+
ℎ−

))
, (5.25)

plotted in Fig. 4(b)—solid line. If the normalized amplitude of the incident solitary wave is smaller than
𝑧min, then the wave becomes trapped inside the RW, similar to Maiden, Anderson et al (2018) in the
case of the KdV and conduit equations, see Fig. 1(b).

If the approximate Riemann invariant �̃�+ (5.19) is used in the transmission relation (5.23) then the
fitting counterpart of the exact condition (5.25) assumes the form

𝑧− > 𝑧min (ℎ+/ℎ−) = 𝑓 −1
+

(
ℎ+
ℎ−

)
, (5.26)

where

𝑓+ (𝑧) =
22/5321/10𝛼1/2

(𝛼 + 1)2/5 (4 − 𝛼)21/10 , 𝛼 =
√︁

1 + 𝑧2. (5.27)

The curve (5.26) is plotted in Fig. 4(b) in dashed line. There is a very close agreement between the exact
and convex approximation curves.
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Figure 5. a) Variation of 𝑓− (𝑧). b) Relation between 𝑧2
+ and 𝑧2

− for the head on interaction of a fast
solitary wave with a slow DSW, (ℎ− , ℎ+) = (1, 1.5) (solid line) and a slow RW, (ℎ− , ℎ+) = (1.5, 1)
(dashed line) .

If the fast solitary wave is placed in front of the fast DSW two scenarios are possible depending on
the solitary wave amplitude 𝑧+ relative to the DSW leading edge amplitude 𝑧∗+ (see Equation (5.28)
below). If 𝑧+ > 𝑧∗+ then the solitary wave propagates faster than the DSW and no interaction occurs.
If 𝑧+ < 𝑧∗+ then the DSW overtakes the solitary wave and the latter gets trapped inside the DSW, see
Fig. 1(d) for the illustration. The analysis of the trapping dynamics characterised by the formation of
travelling breathers (Ablowitz, Cole et al 2023; Mao et al 2023) is beyond the scope of this paper.

In the head on interaction with a slow simple wave, where 𝜎𝜇 = −1, 𝑓− (𝑧) is singular at 𝑧 = 0 (see
Fig. 5(a) where 𝑓− (1) = 0), and the range of 𝑓− (𝑧) spans the whole real axis. One can always find 𝑧−
from Eq. (5.23). The transmission condition is always satisfied in this case, i.e., the incident fast solitary
wave is never trapped by the RW or DSW.

5.4. DSW: solitary wave edge

The transmission condition (5.23) can also be used to approximate the SGN DSW’s solitary wave leading
edge amplitude and speed. When ℎ− > ℎ+, a DSW is generated by the simple wave Riemann problem
(5.21). The DSW’s solitary wave leading edge amplitude 𝑎+ = ℎ+ (𝑧∗+)2 can be estimated by evaluating
the Riemann invariant at the transmission/trapping bifurcation point when 𝑧− = 0. In other words, a fast
solitary wave of infinitesimally small amplitude gets transmitted exactly to the DSW leading edge. As
follows from the transmission relation (5.23) this corresponds to

𝑧∗+ = 𝑓 −1
+

(
ln

(
ℎ−
ℎ+

))
. (5.28)

The DSW solitary wave amplitude is 𝑎+ = ℎ+ (𝑧∗+)2 and edge speed is therefore 𝑐s (𝑎+, ℎ+, 𝑢+) =

𝑢+ +
√
ℎ+ + 𝑎+.

The SGN DSW leading solitary wave amplitude prediction from eq. (5.28) is an approximation of the
amplitude that results from integrating the appropriate integral curve (in this case, for ℎ− > ℎ+, a 3-wave)
of the full SGN-Whitham equations. The approximation rests upon the hypothesis of hydrodynamic
reciprocity—in which the solitary wave Riemann invariant𝑄+1 (ℎ, 𝑧) (5.9) is the same behind and ahead
of a DSW (Maiden, Anderson et al 2018)—and a more subtle, convexity condition that the full Whitham
modulation system remains strictly hyperbolic along the entire solitary wave trajectory for all so-called
admissible states; see, Section 3.2 in Sande et al (2021) for a discussion. Although these conditions are
exactly true, within the context of Whitham modulation theory, for a fast (slow) solitary wave interacting
with a fast (slow) rarefaction wave mean-field, they are assumed to be true for the fast (slow) DSW
mean-field. Because of this, we refer to eq. (5.28) as the mean-field DSW approximation.

If instead of the exact Riemann invariant (5.9), its convex (DSW fitting) approximation (5.19) is used
in the transmission condition (5.22), the DSW leading edge amplitude �̃�+ = ℎ+ (𝑧∗+)2 is found by solving
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Figure 6. DSW lead solitary wave amplitude. Solid line: mean-field DSW solution (5.28); dashed line:
DSW fitting formula (5.29); circles: SGN numerical simulations.

the equation (El, Grimshaw and NF Smyth 2006)

ℎ−/ℎ+
((𝑧∗+)2 + 1)1/4 −

(
3

4 −
√︁
(𝑧∗+)2 + 1

)21/10 (
2

1 +
√︁
(𝑧∗+)2 + 1

)2/5

= 0 . (5.29)

Equation (5.29) is subject to the admissibility conditions—the convexity restrictions ensuring monotone
behaviour of the DSW edge speeds as functions of ℎ− , ℎ+ (Hoefer 2014). This yields the admissible
range of initial steps 1 < ℎ−/ℎ+ ≲ 1.43 for which the SGN DSW fitting results are applicable (El,
Grimshaw and NF Smyth 2006).

The small-jump expansions of (5.28) and (5.29) give

𝑎+
ℎ+

= 2𝛿 + 1
6
𝛿2 + 127

180
𝛿3 + O(𝛿4), (5.30)

�̃�+
ℎ+

= 2𝛿 + 1
6
𝛿2 − 71

108
𝛿3 + O(𝛿4), (5.31)

respectively, where 𝛿 =
ℎ−
ℎ+

− 1 ≪ 1. To leading order, both results agree with the famous result for the
KdV equation that the lead solitary wave amplitude is twice the initial DSW jump height (Gurevich and
Pitaevskii 1974). The mean-field DSW and DSW fitting approximations agree at second order as well,
consistent with the agreement between the expansions of the exact (5.10) and convex approximation
(5.20) for the solitary wave Riemann invariants. The curves 𝑎+ (ℎ−/ℎ+) given by (5.28), (5.29) along
with the values of 𝑎+ extracted from the numerical simulations are shown in Fig. 6. One can see
that both the mean-field DSW equation (5.28) and the DSW fitting formula (5.29) provide very good
approximations of the SGN DSW solitary wave edge amplitude within the admissible range of initial
steps. The numerical results in Fig. 6 suggest that the mean-field DSW prediction somewhat improves
upon the DSW fitting result.

5.5. Transmission: comparison between analytical and numerical results

Figure 7 shows the interaction of a fast solitary wave with fast and slow rarefaction waves. The amplitude
of the transmitted solitary wave 𝑎+ obtained by the direct numerical simulation of the SGN equations
(2.1), (2.2) compares well with the analytical prediction (5.23). The details of the numerical scheme are
given in Appendix D. In the case of a fast solitary wave with a slow rarefaction wave, the amplitude of
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Figure 7. Left figure: comparison between the transmission relation (5.23) and the numerical simulation
for the fast solitary wave interaction with a fast RW (dashed red line) and a slow rarefaction wave (solid
blue line). Middle figure: an example of the interaction with a fast RW. Right figure: an example of the
interaction with a slow RW.

Figure 8. Left figure: comparison between the transmission relation (5.23) and the numerical simulation
for the fast solitary wave interaction with a fast DSW (dashed red line) and a slow DSW (solid blue
line). Middle figure: an example of the interaction with a fast DSW. Right figure: an example of the
interaction with a slow DSW.

the transmitted solitary wave is always larger than that of the incident solitary wave. Physically speaking,
the slow rarefaction wave is formed by retracting a piston to the right, so it will accelerate the right-
going solitary wave (see Figure 7). A new feature also appears in this case: a small amplitude solitary
wave forms behind the transmitted large amplitude solitary wave. This is in contrast with the typical
radiation emitted when a solitary wave interacts with another wave in non-integrable systems. Despite
the generation of additional solitary waves in this Riemann problem due to the non-integrable nature
of the SGN equations, the accuracy of the analytical predictions from Whitham theory is remarkable.
Figure 8 shows the interaction of a solitary wave with fast and slow DSWs. The analytical formulas are
in agreement with direct numerical simulations. This time, small amplitude radiation is generated after
the solitary wave passes through the slow DSW.

6. Conclusion

We have studied the interaction of a solitary wave with a slowly varying mean flow for the Serre-Green-
Naghdi (SGN) equations that model fully nonlinear, bidirectional shallow water gravity waves over a
flat bottom. This was achieved by the determination and analysis of the exact solitary wave limit of
the Whitham modulation equations for the SGN system. The derivation of the Whitham equations was
performed via the averaged conservation law approach in both Eulerian and Lagrangian coordinates.
The SGN system is not integrable so the SGN-Whitham equations cannot be diagonalized, which makes
their analysis a nontrivial problem.
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Due to the singular nature of the solitary wave limit, the appropriate choice for the modulation
parameters is crucial. We utilize the wave action density, which is shown to be a particularly well-
behaved conserved quantity in the solitary wave limit. The resulting solitonic modulation system consists
of the shallow water equations for the mean flow coupled to an amplitude equation for the solitary
wave. Although the SGN solitonic system is not diagonalizable, its restriction to simple waves for
the mean flow equations admits Riemann invariants that we use to analytically describe the head-
on and overtaking interactions of a solitary wave with a rarefaction wave and dispersive shock wave
(DSW). These scenarios lead to solitary wave trapping or transmission by the mean flow. The analytical
results are shown to be in excellent agreement with corresponding numerical solutions of the full SGN
equations. This work extends previous results on solitary wave-mean flow interaction in unidirectional,
non-integrable systems (BBM and conduit equations) to the bidirectional case.

One important outcome of this paper is the comparison between the exact analytical results from SGN
modulation theory for overtaking interactions with the results obtained from a simpler approach that is
based on the DSW fitting method. The latter method, involving several major assumptions of the full
modulation system (strict hyperbolicity, convexity), has been successfully applied to many dispersive
hydrodynamic equations. It yields exact results for integrable equations, relies only upon knowledge
of the linear dispersion relation and the dispersionless, mean-flow equations, and provides consistently
good comparisons with direct numerical simulations for non-integrable equations. However, analytical
estimates of DSW fitting theory accuracy have not been available. In this paper, we show that the DSW
fitting results for the SGN equation are not exact but are accurate to the second order in the solitary
wave amplitude, beyond the first order accurate Korteweg-de Vries approximation. This comparison
between the exact and fitting results for the SGN-Whitham equations provides an important asymptotic
benchmark for the DSW fitting method in non-integrable equations.

This work paves the way for additional studies of solitary wave interactions with mean flows in
bidirectional, strongly nonlinear, physically relevant systems. One of the future directions could be the
generalization of the developed theory for bidirectional solitary wave-mean flow interactions to soliton
gases—large, random ensembles of interacting solitary waves (Suret et al 2024).

A. Lagrangian and Eulerian descriptions

If 𝑡 is time, and 𝑞 is the mass Lagrangian coordinate, the spatial Eulerian coordinate is defined through
the motion of the continuum 𝑥 = 𝑥(𝑡, 𝑞). The mass conservation equation in the Lagrangian coordinates
can be written as 𝜌(𝑡, 𝑞)𝑥𝑞 = 𝜌0 (𝑞), where 𝜌(𝑡, 𝑞) and 𝜌0 (𝑞) are the actual and the reference mass
densities, so that 𝜌(𝑡, 𝑞)𝑑𝑥 = 𝜌0 (𝑞)𝑑𝑞. One can see that if we choose 𝜌0 (𝑞) ≡ 1, the Lagrangian variable
𝑞 will effectively coincide with the mass (one-dimensional). A general conservation law in Lagrangian
coordinates (𝑡, 𝑞)

𝑎𝑡 + 𝑏𝑞 = 0,

is expressed in Eulerian coordinates (𝑡, 𝑥) as

(𝜌𝑎)𝑡 + (𝜌𝑢𝑎 + 𝑏)𝑥 = 0.

When looking for travelling wave solutions that depend on 𝜉 = 𝑞 − 𝑐𝑡 in Lagrangian coordinates, or
𝜉 = 𝑥 − 𝑐𝑡 in Eulerian coordinates, the velocities 𝑐 and 𝑐 are related by the mass conservation law

𝜌(𝑢 − 𝑐) = −𝑐.

We will first pass to the solitary wave limit in the modulation equations expressed in terms of mass
Lagrangian coordinates and then we transform the limit equations to Eulerian form.

The governing Euler-Lagrange equations derived from the Lagrangian (2.8) are

𝜏𝑡 − 𝑢𝑞 = 0, 𝑢𝑡 + 𝑝𝑞 = 0, (A.1)
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where 𝑝 is given in (2.11). Here, 𝜏 = 1/ℎ is the specific volume, 𝑢 is the velocity, and 𝑒(𝜏, 𝜏𝑡 ) is the
potential (2.9). The system admits the energy equation (2.12) and Bernoulli equation (2.13). Following
Whitham (Whitham 1999), we are looking for the solution of (A.1) subject to (2.11) in the form(

𝜏

𝑢

)
=

(
𝜏(𝑇, 𝑋, 𝜃, 𝜖)
𝑢(𝑇, 𝑋, 𝜃, 𝜖)

)
, 𝑇 = 𝜖𝑡, 𝑋 = 𝜖𝑞, 𝜃 =

Θ (𝑇, 𝑋)
𝜖

,

where 0 < 𝜖 ≪ 1 is a small, positive parameter. The function Θ(𝑇, 𝑋) is called the phase. We define
the local wave number 𝑘 and the local frequency 𝜔 by the relations:

𝑘 = Θ𝑋, 𝜔 = −Θ𝑇 . (A.2)

We will suppose that the solution is 2𝜋-periodic with respect to the rapid variable 𝜃. Below, for any
function 𝑓 (𝑇, 𝑋, 𝜃, 𝜖), 𝑓 is the 2𝜋-period-average with respect to 𝜃

𝑓 (𝑇, 𝑋, 𝜖) = 1
2𝜋

∫ 2𝜋

0
𝑓 (𝑇, 𝑋, 𝜃, 𝜖) 𝑑𝜃. (A.3)

Expanding 𝑓 in an asymptotic series in 𝜖

𝑓 = 𝑓0 (𝑇, 𝑋, 𝜃) + 𝜖 𝑓1 (𝑇, 𝑋, 𝜃) + ...,

and substituting this ansatz into the governing system (A.1), we obtain a system of ordinary differential
equations with respect to 𝜃 at leading order. One has the following first integrals (the zero subscript is
omitted)

𝑐𝜏 + 𝑢 = 𝑐𝜏 + 𝑢, −𝑐𝑢 + 𝑝 = −𝑐𝑢 + 𝑝, 𝑐 =
𝜔

𝑘
. (A.4)

The system (A.4) admits the following useful consequences

𝑢2 − (𝑢)2 = 𝑐2 (𝜏2 − (𝜏)2), (A.5)

𝑢𝜏 − 𝑢 𝜏 = −𝑐(𝜏2 − (𝜏)2), (A.6)

𝑝𝑢 − 𝑝 𝑢 = 𝑐3 (𝜏2 − (𝜏)2), (A.7)

𝑝𝜏 − 𝑝 𝜏 = −𝑐2 (𝜏2 − (𝜏)2). (A.8)

To leading order, O(1) as 𝜖 → 0, one has

𝑒(𝜏, 𝜏𝑡 ) ≈ 𝑒(𝜏, 𝜂), 𝜂 = −𝜔𝜏𝜃 , 𝑝 = −
(
𝑒𝜏 + 𝜔

(
𝑒𝜂

)
𝜃

)
. (A.9)

The system (A.4) also admits the first integral in the form:

−𝑐
(
𝑒 − 𝜂𝑒𝜂 + 𝑢2

2

)
+ 𝑝𝑢 = −𝑐

(
𝑒 − 𝜂𝑒𝜂 + 𝑢2

2

)
+ 𝑝𝑢. (A.10)

The integral (A.10) allows us to obtain the nonlinear dispersion relation because the solution is 2𝜋-
periodic. At O(𝜖), after averaging with respect to the rapid variable 𝜃, one obtains the following systems
of five compatible conservation laws containing only the leading order terms (the zero subscript is again
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omitted):

𝜏𝑇 − 𝑢𝑋 = 0,
𝑢𝑇 + 𝑝𝑋 = 0,(
𝑢2

2
+ 𝜀

)
𝑇

+ (𝑝𝑢)𝑋 = 0, 𝜀 = 𝑒 − 𝜂𝑒𝜂 ,(
𝜏𝑢 − 𝑘𝜏𝜃

𝜕𝑒

𝜕𝜂

)
𝑇

−
(
𝑢2

2
− 𝜏𝑝 − 𝑒

)
𝑋

= 0,

𝑘𝑇 + 𝜔𝑋 = 0.

The last equation is just the compatibility condition coming from the definition of the phase (A.2). It
can be also written in the form

𝑘𝑇 + (𝑐𝑘)𝑋 = 0, 𝑐 =
𝜔

𝑘
.

Introducing

Δ = 𝑢𝜏 − 𝑢 𝜏, 𝜀 = 𝑒 − 𝜂𝑒𝜂 , 𝐸 = 𝜀 + 𝑢2 − 𝑢2

2
, Σ = 𝜏𝜃𝑒𝜂 ,

one can obtain a Gibbs-type identity relating the unknowns (see SL Gavrilyuk (1994) and SL Gavrilyuk
and D Serre (1995) for proof)

𝑑𝐸 + 𝑝 𝑑𝜏 + 𝑐𝑑Δ = 𝜔𝑑Σ. (A.11)

It can also be written in the form:

𝑑𝜀 + 𝑝 𝑑𝜏 − 𝑐2

2
𝑑𝛿 = 𝜔𝑑Σ, 𝛿 = 𝜏2 − (𝜏)2. (A.12)

The Gibbs identity (A.11) or (A.12) is equivalent to an algebraic nonlinear dispersion relation coming
from (A.10) when we are looking for 2𝜋-periodic solutions (Whitham 1999).

Using the expressions for correlations (A.5)–(A.8), the modulation equations take the conservative
form

𝜏𝑇 − 𝑢𝑋 = 0,
𝑢𝑇 + 𝑝𝑋 = 0,(
𝜀 + 𝑢2

2
+ 𝑐2

2

(
𝜏2 − 𝜏2

))
𝑇

+
(
𝑝 𝑢 + 𝑐3

(
𝜏2 − 𝜏2

))
𝑋
= 0,

(
𝜏 𝑢 − 𝑐

(
𝜏2 − 𝜏2

)
− 𝑘Σ

)
𝑇
−

(
𝑢2

2
+ 𝑐2

2

(
𝜏2 − 𝜏2

)
− 𝜏 𝑝 + 𝑐2

(
𝜏2 − 𝜏2

)
− 𝜀 + 𝜔Σ

)
𝑋

= 0,

𝑘𝑇 + (𝑐𝑘)𝑋 = 0.

(A.13)

The five conservation laws (A.13) form a system of modulation equations (the SGN-Whitham system)
for the four unknowns 𝑘, 𝑐, 𝜏, 𝑢. The equations are compatible because the averaged Bernoulli law is a
consequence of the mass, momentum, energy and wave conservation laws. This can be proved by direct
calculations. Using the Gibbs relation (A.11) or (A.12), one can derive the sixth conservation law for Σ
(an averaged entropy conservation law)(

Σ + 𝑐𝛿

𝑘

)
𝑇

+
(
𝑐2𝛿

𝑘

)
𝑋

= 0. (A.14)
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For the proof, one can use the energy conservation law in the form(
𝜀 + 𝑢2

2
+ 𝑐2

2
𝛿

)
𝑇

+
(
𝑝 𝑢 + 𝑐3𝛿

)
𝑋
= 0.

Expanding it and using Gibbs relation in the form (A.12), one obtains

−𝑝 𝜏𝑇 + 𝑐2

2
𝛿𝑇 + 𝜔Σ𝑇 + 𝑢 𝑢𝑇 + 𝑐2

2
𝛿𝑇 + 𝑐𝑐𝑇𝛿 + 𝑝𝑋𝑢 + 𝑝 𝑢𝑋 + 𝑐(𝑐2𝛿)𝑋 + 𝑐2𝑐𝑋𝛿 = 0.

Using the averaged mass and momentum equations, one obtains

𝑐2𝛿𝑇 + 𝜔Σ𝑇 + 𝑐𝑐𝑇𝛿 + 𝑐(𝑐2𝛿)𝑋 + 𝑐2𝛿𝑐𝑋 = 0.

Or, dividing by 𝑐

(𝑐𝛿)𝑇 + 𝑘Σ𝑇 + (𝑐2𝛿)𝑋 + 𝑐𝛿𝑐𝑋 = 0.

Dividing by 𝑘 , one obtains, after some algebra, the conservation law (A.14).
Finally, the full, compatible SGN-Whitham system (A.13)–(A.14) consists of the averaged conserva-

tion laws of mass, momentum, energy, wave conservation, the averaged Bernoulli conservation law and
that for the averaged entropy Σ. The last conservation law is also called the wave action conservation
law (Whitham 1999).

A.1. Solitary wave limit

The solitary wave limit is 𝑘 → 0, which implies 𝜔 → 0. In this case, the modulation equations become
purely hydrodynamic. For example, the mass and momentum equation become

𝜏𝑇 − 𝑢𝑋 = 0, 𝑢𝑇 + 𝑝𝑋 = 0,

with
𝑝 = −𝑒𝜏 (𝜏, 0). (A.15)

The conservation of waves equation identically vanishes because both 𝑘 and 𝜔 are zero in this limit.
However, in such a limit, the equation for the wave action is non-trivial. Let us first calculate Σ for the

full (non-averaged) SGN equations. With 𝜏 =
1
ℎ

, to leading order O(1), one has

𝑒 =
ℎ

2
−

ℎ2
𝑡

6
=

1
2𝜏

−
𝜏2
𝑡

6𝜏4 ∼ 1
2𝜏

− 𝜂2

6𝜏4 , 𝜂 = −𝜔𝜏𝜃 . (A.16)

Then,

𝑒𝜂 ∼ − 𝜂

3𝜏4 , (A.17)

and

Σ = −𝜏𝜃𝜂

3𝜏4 =
𝜔

3
𝜏2
𝜃

𝜏4 =
𝜔

3
ℎ2
𝜃
. (A.18)

Setting 𝜁 = 𝑞 − 𝑐𝑡 to be the travelling wave coordinate, then

𝑑

𝑑𝜁
= 𝑘

𝑑

𝑑𝜃
. (A.19)
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Using this, we reduce the problem to the following one. Find the limits

lim
𝑘→0

𝑐

©«
(
𝑑ℎ
𝑑𝜁

)2

3𝑘
+ 𝛿

𝑘

ª®®®¬ and lim
𝑘→0

𝑐2 𝛿

𝑘
.

Since the limit of 𝑐 is 𝑐2 = ℎ1ℎ2ℎ3 → ℎ2
1ℎ3 as 𝑘 → 0, we need only to find

lim
𝑘→0

©«
(
𝑑ℎ
𝑑𝜁

)2

3𝑘
+ 𝛿

𝑘

ª®®®¬ and lim
𝑘→0

𝛿

𝑘
.

A.2. Computation of average values in mass Lagrangian coordinates

The wavelength in mass Lagrangian coordinates is

𝐿 =
2|𝑐 |
√

3

∫ ℎ3

ℎ2

ℎ𝑑ℎ√︁
𝑃(ℎ)

. (A.20)

Also,

(
𝑑ℎ

𝑑𝜁

)2
=

2
𝐿

√︂
3
𝑐2

∫ ℎ3

ℎ2

√
𝑃𝑑ℎ

ℎ
. (A.21)

Then, with 𝑘 = 2𝜋/𝐿, the limit as 𝑚 → 1 of the ratio

(
𝑑ℎ
𝑑𝜁

)2

3𝑘
=

1
2𝜋

2
3

√︂
3
𝑐2

∫ ℎ3

ℎ2

√
𝑃𝑑ℎ

ℎ
→ 1

2𝜋
4
√

3

(
(3 − 2𝑛)

√
𝑛

3(1 − 𝑛) − ln
(

1 +
√
𝑛

√
1 − 𝑛

))
=

1
2𝜋

4
√

3

(
(3 − 2𝑛)

√
𝑛

3(1 − 𝑛) − 1
2

ln
(

1 +
√
𝑛

1 −
√
𝑛

))
=

1
2𝜋

4
√

3

(
(3 − 2𝑛)

√
𝑛

3(1 − 𝑛) + 1
2

ln
(

1 −
√
𝑛

1 +
√
𝑛

))
.

Recall,

𝑚 =
ℎ3 − ℎ2
ℎ3 − ℎ1

, 𝑛 =
ℎ3 − ℎ2

ℎ3
, 0 < 𝑛 < 𝑚 < 1. (A.22)
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Indeed, making the change of variables ℎ = ℎ2 + 𝑡 (ℎ3 − ℎ2), 𝑡 ∈ [0, 1] and then 𝑡 = cos2 𝜃,
𝜃 ∈ [0, 𝜋/2], one obtains∫ ℎ3

ℎ2

√
𝑃𝑑ℎ

ℎ
=

(ℎ3 − ℎ2)2√ℎ3 − ℎ1
ℎ3

∫ 1

0

√︁
𝑡 (1 − 𝑡) (1 − 𝑚(1 − 𝑡))

1 − 𝑛(1 − 𝑡) 𝑑𝑡

=
2(ℎ3 − ℎ2)2√ℎ3 − ℎ1

ℎ3

∫ 𝜋/2

0

sin2 𝜃 cos2 𝜃
√︁

1 − 𝑚 sin2 𝜃

1 − 𝑛 sin2 𝜃
𝑑𝜃

→ 2(ℎ3 − ℎ1)5/2

ℎ3

∫ 𝜋/2

0

sin2 𝜃 cos2 𝜃
√︁

1 − sin2 𝜃

1 − 𝑛 sin2 𝜃
𝑑𝜃, as 𝑚 → 1

=
2(ℎ3 − ℎ1)5/2

ℎ3

(
3 − 2𝑛

3𝑛2 − 1 − 𝑛

𝑛5/2 ln
(

1 +
√
𝑛

√
1 − 𝑛

))
.

The next step is the expression for 𝛿/𝑘 . One has

𝛿

𝑘
=

𝜏2 − (𝜏)2

𝑘
=

1
2𝜋

2|𝑐 |
√

3

∫ ℎ3

ℎ2

ℎ𝑑ℎ√︁
𝑃(ℎ)

©«
∫ ℎ3
ℎ2

𝑑ℎ

ℎ
√
𝑃∫ ℎ3

ℎ2
ℎ𝑑ℎ√
𝑃

− ©«
∫ ℎ3
ℎ2

𝑑ℎ√
𝑃∫ ℎ3

ℎ2
ℎ𝑑ℎ√
𝑃

ª®¬
2ª®®¬ . (A.23)

The expressions of the integrals ∫ ℎ3

ℎ2

𝑑ℎ
√
𝑃
,

∫ ℎ3

ℎ2

𝑑ℎ

ℎ
√
𝑃
,

∫ ℎ3

ℎ2

ℎ𝑑ℎ
√
𝑃

(A.24)

are given in Tkachenko et al (2020). They give us

𝛿

𝑘
=

1
2𝜋

4|𝑐 |
√

3
1

ℎ3
√
ℎ3 − ℎ1

(
Π(𝑛, 𝑚) − K2 (𝑚)

(1 − 𝑛/𝑚)K(𝑚) + (𝑛/𝑚)E(𝑚)

)
. (A.25)

As usual, K(𝑚) is the complete elliptic integral of the first kind

K(𝑚) =
∫ 𝜋/2

0

𝑑𝜃√︁
1 − 𝑚 sin2 𝜃

, (A.26)

E(𝑚) is the complete elliptic integral of the second kind

E(𝑚) =
∫ 𝜋/2

0

√︁
1 − 𝑚 sin2 𝜃 𝑑𝜃, (A.27)

and Π(𝑛, 𝑚) is the complete elliptic integral of the third kind

Π(𝑛, 𝑚) =
∫ 𝜋/2

0

𝑑𝜃

(1 − 𝑛 sin2 𝜃)
√︁

1 − 𝑚 sin2 𝜃
. (A.28)

The limit

lim
𝑚→1

(
Π(𝑛, 𝑚) − K2 (𝑚)

(1 − 𝑛/𝑚)K(𝑚) + (𝑛/𝑚)E(𝑚)

)
(A.29)

is singular. It can be obtained in the form

lim
𝑚→1

(
Π(𝑛, 𝑚) − K2 (𝑚)

(1 − 𝑛/𝑚)K(𝑚) + (𝑛/𝑚)E(𝑚)

)
=

𝑛

(1 − 𝑛)2 +
√
𝑛

2(1 − 𝑛) ln
(

1 −
√
𝑛

1 +
√
𝑛

)
. (A.30)
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Hence,

lim
𝑚→1

𝛿

𝑘
= lim

𝑚→1

𝜏2 − (𝜏)2

𝑘
=

1
2𝜋

4
√

3

( √
𝑛

1 − 𝑛
+ 1

2
ln

(
1 −

√
𝑛

1 +
√
𝑛

))
. (A.31)

In particular, this implies

lim
𝑘→0

©«
(
𝑑ℎ
𝑑𝜁

)2

3𝑘
+ 𝛿

𝑘

ª®®®¬ =
4
√

3
2𝜋

(
(6 − 2𝑛)

√
𝑛

3(1 − 𝑛) + ln
(

1 −
√
𝑛

1 +
√
𝑛

))
. (A.32)

Finally, the limiting SGN-Whitham modulation equation for the solitary wave field in mass Lagrangian
coordinates is eq. (4.7) with (4.8) and (4.9). Equation (4.7) is the solitary wave limit of eq. (A.14) and
expresses the conservation of wave action. In the limit 𝑚 → 1, the quantity 𝑛 becomes eq. (4.10).

B. Solitary wave limit of the modulation equations in Eulerian coordinates

The solitary wave limit (4.7) can also be obtained from the modulation equations written in Eulerian
coordinates (4.1), obtained previously in El, Grimshaw and NF Smyth (2006) and Tkachenko et al
(2020). Here, we use the formulation of Tkachenko et al (2020) with the notation 𝑐 for the phase velocity
and 𝑔 = 1. Note that in Tkachenko et al (2020), the phase velocity was denoted by 𝐷 and the roots
of the polynomial were ℎ0 < ℎ1 < ℎ2 instead of ℎ1 < ℎ2 < ℎ3 used in this work. The SGN-Whitham
modulation equations in Eulerian coordinates are

ℎ𝑡 + (𝑝 + ℎ𝑐)𝑥 = 0, (B.1)

(𝑝 + ℎ𝑐)𝑡 +
(
ℎ𝑐2 + 1

2
𝐼2 + 2𝑝𝑐

)
𝑥

= 0, (B.2)(
1
2
ℎ𝑐2 + 1

2
𝐼1ℎ −

1
2
𝐼2 + 𝐼3ℎ−1 + 𝑝𝑐

)
𝑡

+
(

1
2
ℎ𝑐3 + 1

2
𝐼1ℎ𝑐 + 𝐼3ℎ−1𝑐 + 3

2
𝑝𝑐2 + 1

2
𝑝𝐼1

)
𝑥

= 0, (B.3)

𝑘𝑡 + (𝑘𝑐)𝑥 = 0, (B.4)

with

𝐼1 = ℎ1 + ℎ2 + ℎ3, 𝐼2 = ℎ1ℎ2 + ℎ2ℎ3 + ℎ1ℎ3, 𝐼3 = ℎ1ℎ2ℎ3, 𝑝 = −𝜎
√︁
𝐼3, (B.5)

ℎ = ℎ1 + (ℎ3 − ℎ1)
E(𝑚)
K(𝑚) , ℎ−1 =

Π(𝑛, 𝑚)
ℎ3K(𝑚) ,

2𝜋
𝑘

= 𝐿 = 4
√︂

ℎ1ℎ2ℎ3
3

K(𝑚)
√
ℎ3 − ℎ1

, 𝑛 = 1 − ℎ2
ℎ3

.

(B.6)

We first rewrite the quasi-linear system above in the new variables

(ℎ1, ℎ2, ℎ3, 𝑐) −→ 𝒉 =

(
ℎ1, ℎ2, 𝑎 = ℎ3 − ℎ2, 𝑢1 = 𝑐 − 𝜎

√︁
ℎ1 + 𝑎

)
, (B.7)

using a symbolic computation package, e.g., Mathematica. Note that ℎ1, 𝑢1 are the spatial averages ℎ,
𝑢 in the solitary wave limit ℎ2 → ℎ1. The expressions are particularly long and not written here for
brevity. We denote the obtained system in the abstract form

𝒉𝑡 + 𝑀 (𝒉)𝒉𝑥 = 0, (B.8)

where 𝑀 (𝒉) is a 4 × 4 matrix.
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The variables ℎ1, ℎ2, 𝑎, 𝑢1 remain finite in the solitary wave limit ℎ2 → ℎ1 (or 𝑚 → 1), and the limit
of the system (B.8) thus yields non-trivial modulation equations for ℎ1, 𝑢1 and 𝑎. The coefficients of
𝑀 (𝒉) are rational functions of ℎ1, ℎ2, 𝑎, 𝑢1, E(𝑚), K(𝑚) and Π(𝑛, 𝑚). Using the series expansions

E(𝑚) = 1 + O(1 − 𝑚), K(𝑚) = 2 ln(2) − ln(1 − 𝑚)
2

+ O(1 − 𝑚), (B.9)

Π(𝑛, 𝑚) =
√
𝑛 tanh−1 (

√
𝑛) − 2 ln(2) + ln(1 − 𝑚)/2

𝑛 − 1
+ O(1 − 𝑚), (B.10)

where

tanh−1 (
√
𝑛) = 1

2
ln

(
1 +

√
𝑛

1 −
√
𝑛

)
= sinh−1 (𝑧), 𝑛 =

𝑎

ℎ1 + 𝑎
, 𝑧 =

√︂
𝑎

ℎ1
, (B.11)

we obtain the solitary wave limit in Eulerian coordinates

ℎ1,𝑡 + (𝑢1ℎ1)𝑥 = 0, (B.12)
𝑢1,𝑡 + 𝑢1𝑢1,𝑥 + ℎ1,𝑥 = 0, (B.13)

𝑎𝑡 + 𝑐𝑎𝑥 − 𝜎
(2𝑛 − 3)

√
𝑛 + (3 − 𝑛) (1 − 𝑛) tanh−1 (√

𝑛
)

(1 − 𝑛)3/2
(
2
√
𝑛 − (1 − 𝑛) tanh−1 (√

𝑛
) ) √︁

ℎ1 ℎ1,𝑥

−
3
√
𝑛 − (3 − 𝑛) tanh−1 (√

𝑛
)

2
√
𝑛 − (1 − 𝑛) tanh−1 (√

𝑛
) ℎ1 𝑢1,𝑥 = 0, (B.14)

𝑐 = 𝑢1 + 𝜎
√︁
ℎ1 + 𝑎. (B.15)

Equation (B.14) for the wave amplitude 𝑎 is equivalent to the equation for the wave action (4.7) written
in Eulerian coordinates as

(ℎ1𝐹 (𝑛, ℎ1))𝑡 + (ℎ1𝑢1𝐹 (𝑛, ℎ1) + 𝐺 (𝑛, ℎ1))𝑥 = 0, (B.16)

with 𝐹 and 𝐺 given by (4.8) and (4.9), respectively. Using the notation ℎ1 = ℎ, 𝑢1 = 𝑢, and replacing

the amplitude 𝑎 by the dimensionless amplitude 𝑧 =

√︂
𝑎

ℎ
, we recover from (B.12)–(B.14) equations

(4.12)–(4.14).

C. Compatibility condition

Theorem 1
Consider an overdetermined system of equations for the unknown 𝑤(𝑥1, 𝑥2, 𝑥3)

𝑤𝑥1 = 𝛼(𝑥1, 𝑥2, 𝑥3)𝑤𝑥2 , 𝑤𝑥1 = 𝛽(𝑥1, 𝑥2, 𝑥3)𝑤𝑥3 . (C.1)

The system is compatible if and only if

𝛼2𝛽𝑥2 − 𝛽2𝛼𝑥3 + 𝛽𝛼𝑥1 − 𝛼𝛽𝑥1 = 0. (C.2)

Proof The compatibility condition is

(𝜕𝑥1 − 𝛼𝜕𝑥2 ) (𝜕𝑥1 − 𝛽𝜕𝑥3 )𝑤 − (𝜕𝑥1 − 𝛽𝜕𝑥3 ) (𝜕𝑥1 − 𝛼𝜕𝑥2 )𝑤 = 0. (C.3)

It is equivalent to: (
𝛼𝛽𝑥2 − 𝛽𝑥1

𝛽
−

𝛽𝛼𝑥3 − 𝛼𝑥1

𝛼

)
𝑢𝑥1 = 0. (C.4)
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The last expression is equivalent to (C.2).
In our case the governing equations in the solitary wave limit are

𝜏𝑡 − 𝑢𝑞 = 0, 𝑢𝑡 − 𝑔/𝜏3𝜏𝑞 = 0, 𝐹 (𝑛, 𝜏)𝑡 + 𝐺 (𝑛, 𝜏)𝑞 = 0. (C.5)

Here, we replaced ℎ−1
1 by 𝜏 in the functions 𝐹 (𝑛, ℎ1) and 𝐺 (𝑛, ℎ1) and used the same letters 𝐹 and 𝐺

for the functions of new arguments. Let us suppose that there exists the Riemann invariant 𝑅(𝑛, 𝜏, 𝑢)
such that

𝑅𝑡 + 𝜆𝑅𝑞 = 0, 𝜆 =
𝐺𝑛

𝐹𝑛

. (C.6)

Expanding the equation for 𝑅, one obtains

𝑅𝑛 (𝑛𝑡 + 𝜆𝑛𝑞) + 𝑅𝜏 (𝜏𝑡 + 𝜆𝜏𝑞) + 𝑅𝑢 (𝑢𝑡 + 𝜆𝑢𝑞) = 0. (C.7)

Also, replacing the time derivatives 𝑛𝑡 , 𝑢𝑡 and 𝜏𝑡 from (C.5), we obtain two equations corresponding to
the vanishing coefficients in front of the derivatives 𝑢𝑞 and 𝜏𝑞 . They are of the form

𝑅𝑛 = 𝛼(𝑛, 𝜏)𝑅𝜏 , 𝑅𝑛 = 𝛽(𝑛, 𝜏)𝑅𝑢, (C.8)

with coefficients 𝛼 and 𝛽 that are independent of 𝑢. We take thus 𝑥1 = 𝑛, 𝑥2 = 𝜏 and 𝑥3 = 𝑢. According
to Theorem 1, the compatibility condition is:

𝛽𝜏 =

(
𝛽

𝛼

)
𝑛

. (C.9)

One can check with Mathematica software that this condition is not satisfied. Thus, the Riemann
invariant coresponding to the eigenvalue 𝜆 doesn’t exist.

D. Numerical method

Let 𝑝 be the integrated fluid pressure divided by the constant density 𝜌 and defined by

𝑝 =
1
2
ℎ2 + ℎ2

3
𝑑2ℎ

𝑑𝑡2
.

To solve the one-dimensional, homogeneous SGN equations (2.1), (2.2) numerically, as in S Gavrilyuk
and Shyue (2024) for the multidimensional SGN equations over topography, we use the 𝜛 formulation
of the equations:

ℎ𝑡 + (ℎ𝑢)𝑥 = 0, (D.1a)

(ℎ𝑢)𝑡 +
(
ℎ𝑢2 + 1

2
ℎ2

)
𝑥

= −𝜛𝑥 . (D.1b)

Here 𝜛 = 𝑝 − 1
2
ℎ2 denotes the averaged non-hydrostatic part of the pressure that is obtained by solving

the linear elliptic problem

− ℎ3

3

(𝜛𝑥

ℎ

)
𝑥
+𝜛 =

2
3
ℎ3𝑢2

𝑥 +
ℎ3

3
ℎ𝑥𝑥 . (D.1c)

In the algorithm, we employ the hyperbolic-elliptic splitting approach developed previously in S Gavri-
lyuk, Nkonga et al (2020), S Gavrilyuk and Shyue (2024), and Le Métayer et al (2010). This algorithm
consists of two steps. In the first, hyperbolic step, we employ a state-of-the-art method for the numerical
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solution of the hyperbolic systems of equations (D.1a), (D.1b) over the time step Δ𝑡. In the second, ellip-
tic step, using the approximate solution ℎ and 𝑢 computed during the hyperbolic step, we numerically
invert the elliptic operator (D.1c) for 𝜛 with prescribed boundary conditions.

Note that in the hyperbolic step, rather than writing the equations in the conservation form 𝒒𝑡 +
𝒇 (𝒒)𝑥 = 0 with 𝒒 = (ℎ, ℎ𝑢)𝑇 and 𝒇 =

(
ℎ𝑢, ℎ𝑢2 + 1

2 ℎ
2 +𝜛

)𝑇
, which is essential in the conservative

first-order setting (LeVeque 2002) but is difficult to achieve more than first order accuracy, we write it
in the form of a balance law, see S Gavrilyuk, Nkonga et al (2020) and S Gavrilyuk and Shyue (2024)
for the details of the numerical implementation.
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