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SUMMARY
We describe a novel interface-sharpening approach for the

efficient numerical simulation of compressible two-phase flow
with cavitation. The algorithm uses a five-equation transport
model developed by Allaire et al. (J. Comput. Phys. 181 (2002)
577-616) as the basis, and incorporates both the auxiliary anti-
diffusive terms to the equations as a model for interface sharp-
ening and an energy-preserving pressure cutoff procedure as a
model for cavitation. A standard fractional-step method is em-
ployed to solve the proposed model equations in two separate
steps, yielding an easy implementation of the algorithm. Sam-
ple numerical results for underwater explosions in two dimen-
sions are shown to demonstrate the feasibility of the algorithm
for practical problems.

INTRODUCTION
Consider an unsteady, inviscid, compressible homogeneous

two-phase flow that is modeled by a five-equation transport equa-
tions of the form

∂t (α1ρ1)+∇ · (α1ρ1~u) = 0,
∂t (α2ρ2)+∇ · (α2ρ2~u) = 0,

∂t (ρ~u)+∇ · (ρ~u⊗~u)+∇p = 0,
∂tE +∇ · (E~u+ p~u) = 0,

∂tα1 +~u ·∇α1 = 0,

(1)

for the principal motion of the state variables such as the partial
densities, momentum, total energy, and volume fraction, respec-
tively (cf. [1]). Here ρk and αk ∈ [0,1] denote in turn the kth
phasic density and volume fraction for k = 1,2, ρ = α1ρ1+α2ρ2
denotes the total density, ~u the vector of particle velocity, and p
the mixture pressure. For simplicity, we assume that the consti-
tutive law for the material of interest can be characterized by the
stiffened gas equation of state

pk = (γk−1)ρkek− γk p∞,k,

where ek is the specific internal energy, γk > 1 is the ratio of
specific heats, and p∞,k is a pressure-like constant. As usual,
E = ρe+ρ|~u|2/2 is the total energy with ρe = ∑

2
k=1 αkρkek rep-

resenting the internal energy and |~u| being the Euclidean distance
of the velocity vector. In this model, we have the saturation con-
dition α1 +α2 = 1 imposed for the volume fractions as well.

If we assume further the isobaric closure where p1 = p2 = p
in a region that contains more than one fluid component, we may
derive easily the expression for the mixture pressure

p =

(
ρe−

2

∑
k=1

αk
γk p∞,k

γk−1

)/ 2

∑
k=1

αk

γk−1
, (2)

and also the expression for the mixture acoustic impedance

ρc2 =
2

∑
k=1

αk
γk(p+ p∞,k)

γk−1

/ 2

∑
k=1

αk

γk−1
, (3)

where c is the mixture speed of sound. Then it can be shown
that this five-equation model is hyperbolic when each physically
relevant value of the state variables of the flow are defined in the
region of thermodynamic stability, see [1] for the detail.

It is clear that since the volume fraction plays an important
role in this compressible two-phase flow modelling, the devise of
a robust scheme that attains non-oscillatory, positivity-preserving
resolution of volume fraction near the interface before and after
wave interactions is highly desirable and necessary when solving
this model system numerically. In this work, motivated by the
recent success of the anti-diffusion Eulerian interface sharpening
approach proposed by So, Hu, and Adams [2] for viscous incom-
pressible two-phase flow, we are interested in a novel extension of
the method from incompressible to compressible two-phase flow
with and without cavitation. Our goal here is to describe the basic
idea of this extension, and give a preliminary assessment of the
method for some sample problems, see [3–5] for previous works
in this direction.
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It should be mentioned that for incompressible flow interface
sharpening of some kind (cf. [6–13]) is a popular technique that
is applied in an underlying advection scheme to compute sharp
solution profile for the volume fraction equation arising from
the modelling of numerical mixing between two different incom-
pressible fluid components in a control volume. Since the result-
ing volume fraction solution is used solely to the definition of the
averaged material quantities that are present as coefficients in the
Navier-Stokes equations, it is a common practice to decouple this
volume fraction computation from the remaining part of the flow
solver, yielding an efficient implementation of the method.

For compressible flow, however, because of the intrinsic cou-
pling of genuinely nonlinear and linearly degenerate waves in the
solution states, the development of an efficient interface sharp-
ening method requires some thoughts, see [14] for an example
based on artificial interface compression.

ANTI-DIFFUSION INTERFACE SHARPENING MODEL
To begin with, we recall that the anti-diffusion interface

sharpening model proposed by So, Hu, and Adams [2] for solving
the volume-fraction transport equation

∂tα1 +~u ·∇α1 = 0 (4)

with given~u and discontinuous initial α1 takes the form

∂tα1 +~u ·∇α1 =−
1
µ

∇ · (ε∇α1) , (5)

where ε > 0 is the diffusion coefficient, and µ is a free parameter.
To approximate (5) numerically, a fractional step method that
consists of the following steps in each time iteration is employed:

ALGORITHM 1

(1) (Advection step) Solve the homogeneous part of the model
equation, i.e., (4), using a monotone scheme [15] over a time
step ∆t.

(2) (Anti-diffusion step) Take the solution obtained in step 1 as
the initial condition, and solve the model equation with only
source term

∂τ α1 =−∇ · (ε∇α1)

using a simple explicit method, for example, over a time step
∆τ towards a “sharp layer”.

Here τ = t/µ is a scaled time variable. Note that numerical reg-
ularization is required such as employing the MINMOD limiter
to stabilize the computation of ∇α and so the flux ε∇α in step
2 of the method (cf. [16, 17]). Sample numerical results in two
dimensions are present that show the feasibility of this interface-
sharpening approach for passive advection problems and prob-
lems arising from incompressible two-phase flow [14].

To extend this method for interfaces governed by the five-
equation compressible two-phase model (1), as before (cf. [18]),

it is useful to begin with an interface-only problem where both the
pressure and each component of the particle velocities are con-
stant in the domain, while the other variables such as the density
and the material quantities are having jumps across some inter-
faces. Then we write (1) in the following non-conservative form,

∂t (α1ρ1)+~u ·∇(α1ρ1)+α1ρ1∇ ·~u = 0,
∂t (α2ρ2)+~u ·∇(α2ρ2)+α2ρ2∇ ·~u = 0,
∂t (ρ~u)+~u∇ · (ρ~u)+ρ~u ·∇~u+∇p = 0,[

∂t

(
ρ

1
2
|~u|2
)
+~u∇ ·

(
ρ

1
2
|~u|2
)
+ρ

1
2
|~u|2∇ ·~u

]
+

[∂t (ρe)+~u ·∇(ρe)+ρe∇ ·~u]+∇ · (p~u) = 0,
∂tα1 +~u ·∇α1 = 0,

yielding easily the basic transport equations for this interface-
only problem

∂t (α1ρ1)+~u ·∇(α1ρ1) = 0,
∂t (α2ρ2)+~u ·∇(α2ρ2) = 0,

~u(∂tρ +~u ·∇ρ) = 0,

|~u|2

2
(∂tρ +~u ·∇ρ)+ [∂t (ρe)+~u ·∇(ρe)] = 0,

∂tα1 +~u ·∇α1 = 0.

Having (5) in mind for the volume fraction, it should be sen-
sible to assume that the anti-diffusion model for the phasic den-
sities α1ρ1 and α2ρ2 take the form

∂t (α1ρ1)+~u ·∇(α1ρ1) =−
1
µ

∇ · (ε∇α1ρ1) , (6)

and

∂t (α2ρ2)+~u ·∇(α2ρ2) =−
1
µ

∇ · (ε∇α2ρ2) , (7)

respectively. By summing up the above phasic-density equations,
we have our model for the total density

∂tρ +~u ·∇ρ =− 1
µ

∇ · (ε∇ρ) . (8)

With that, to ensure the velocity remains at a constant state across
the interfaces the momentum equation should be modified by

~u(∂tρ +~u ·∇ρ) =− 1
µ
~u ∇ · (ε∇ρ) . (9)

Furthermore, to ensure the pressure retain in equilibrium, us-
ing (2), (5), and (8), it is not difficult to show that the energy
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equation should be modified also by

|~u|2

2
(∂tρ +~u ·∇ρ)+ [∂t (ρe)+~u ·∇(ρe)] =

− 1
µ

[
|~u|2

2
∇ · (ε∇ρ)−∆(ρe)∇ · (ε∇α1)

]
,

(10)

where ∆(ρe) = ρ2e2−ρ1e1.
Since in general we are interested in shock wave problems

as well, we should apply the anti-diffusion terms described above
only locally near the interfaces. For this reason, it is common to
introduce an interface indicator, denoted by HI , to the model so
that it takes effect near the interfaces only, and has no effect on
the other genuinely nonlinear shock and rarefaction waves.

In summary, with the stiffened gas equation of state (2), the
anti-diffusion interface-sharpening model we propose to solve
compressible two-phase flow takes the form

∂t (α1ρ1)+∇ · (α1ρ1~u) =−
1
µ

HIDα1ρ1 ,

∂t (α2ρ2)+∇ · (α2ρ2~u) =−
1
µ

HIDα2ρ2 ,

∂t (ρ~u)+∇ · (ρ~u⊗~u)+∇p =− 1
µ

HIDρ~u,

∂tE +∇ · (E~u+ p~u) =− 1
µ

HIDE ,

∂tα1 +~u ·∇α1 =−
1
µ

Dα1 .

(11)

Here, for convenience, we use the notation Dz = ∇ · (ε∇z) to
denote the differential term for the state variable z for z = α1,
α1ρ1, α2ρ2, ρ appearing in (5), (6), (7), and (8), respectively.
Thus, without causing any confusion, we may use the notation
Dρ~u = ~uDρ to denote the differential term appearing in (9) and
DE = (|~u|2/2)Dρ +∆(ρe)Dα1 for the differential term appearing
in (10).

To find approximate solutions of our interface sharpening
model (11), we use a similar fractional-step method as described
in ALGORITHM 1 where in step 1 a standard wave propagation
method developed by LeVeque [19, 20] is employed to solve the
homogeneous part of the model equations, and in step 2 the model
equation with the source term only is solved using a standard ex-
plicit finite difference method (cf. [21]) for the anti-diffusion heat
equation towards a “sharp layer” (in practice, only 1 or 2 itera-
tions are enough for the interface-sharpening purpose).

Here the local interface indicator HI is considered to be a
Heaviside function in the volume-fraction jump whose value is
one when this jump in the nearby state exceeds some tolerance
and zero otherwise. Alternatively, we may choose HI to be a
hyper-tangent function of the volume fraction, see [14], or use
the other measure based on physical quantities such as entropy,
pressure, and velocity on this matter. Note that we have taken the
diffusion coefficient ε to be a function of the local velocity that
varies both in space and time in the computation shown below,
which is unlike the case considered in [14] where only a single
diffusion constant is used in the entire domain at each time.

CAVITATION MODEL
Before proceeding further, we pause to discuss a simple pres-

sure cutoff procedure that can be included in (11) as a model
for cavitation, see [22–25] and references therein for other state-
of-the-art cavitation models. In this case, when the pressure p
computed by (2) is lower than a cavitation threshold such as the
saturated vapor pressure psat, we assume it to be the value of
this quantity, and so the cutoff phasic internal energy may be set
by (ρkek)sat = (psat + γk p∞,k)/(γk−1) in a cavitated region for
k = 1,2. With that, it is quite common to implement this cav-
itation model as a post-processing step in a numerical method,
where after each time step, we apply the usual non-conservative
energy correction

E := Esat =
2

∑
k=1

αk(ρkek)sat +
1
2

ρ|~u|2, (12)

see [26], or alternatively the energy-preserving volume-fraction
correction proposed here,

α1 := (α1)sat =
ρe− (ρ2e2)sat

(ρ1e1)sat− (ρ2e2)sat
. (13)

Here (α1)sat can be derived directly from the α-weighted aver-
age of ρe. Note that, in the former case, the other state variables
such as α1ρ1, α2ρ2, ρ~u, and α1 are kept as constants during the
correction, while in the latter case, all the conservative variables
in (1) are kept as constants.

It should be noted that no matter what post-processing cor-
rection, i.e., (12) or (13), is applied to the algorithm, the speed of
sound in the cavitation region is computed consistently with (3).
In addition, it is not difficult to see that the difference in the to-
tal energy between these two different corrections is equal to a
constant times the difference in the volume fraction, i.e.,

∆E = [(ρ2e2)sat− (ρ1e1)sat] ∆α1,

where ∆z = z− zsat for z = E and α1. Thus, even though there
may be no significant compression or expansion of the volume
fraction during some stages of the cavitation inception and termi-
nation where both ∆α1 and ∆E are small, the energy-preserving
approach should be a more viable one to be used in this cutoff
model as opposed to the non-conservative energy approach.

NUMERICAL EXAMPLES
We now present sample results for underwater explosions in

two dimensions obtained using our interface sharpening method
with cavitation. Additional results that further validate the pro-
posed method will be reported elsewhere.

UNDERWATER EXPLOSIONS NEAR A FLAT WALL
As a first example, we consider a model underwater explo-

sion problem studied by Pishevar and Amirifar [27] near a solid
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wall. In this test, the initial condition consists of a stationary cir-
cular explosive charge of radius 1m that is placed at the origin of
a rectangular region (x1,x2) ∈ [−15,15]× [−3,15]m2 that is full
of water. Here, for simplicity, the explosive is modeled as a per-
fect gas with the state variables ρ = 1,270 kg/m3, p = 9,000 bar,
γ = 2.0, and p∞ = 0, and the water is modeled as a stiffened gas
with ρ = 1,000 kg/m3, p = 1 bar, γ = 4.4, and p∞ = 6,000 bar.
In carrying out the computation, the saturation pressure we use
in the cutoff model for cavitation is psat = 0.3619 bar, and
the boundary conditions are solid wall on the bottom, and non-
reflecting on the remaining sides of the domain.

Due to the presure difference, the explosion of the gas bubble
leads to an outward-going shock wave in water, an inward-going
rarefaction wave in gas, and a contact discontinuity lying in be-
tween that separates the gas and water. As times go along, the
outward-going shock wave would be reflected from the flat wall
that generates shock and bubble interaction, creating a reflected
rarefaction wave that lower the pressure and the incept of cavita-
tion in a region between the bubble and the wall.

Figure 1 shows a sequence of pressure contours at four dif-
ferent times t = 1, 3, 4, 6ms obtained using our anti-diffusion
interface sharpening algorithm using a 300× 180 grid, where in
the graph we have also included contour lines indicating the loca-
tions of the gas bubble as well as the region of cavitation. From
the figure, we observe the general features of the solutions as
described above. It is easy to see that there is no spurious oscil-
lations in the pressure near the bubble interface, showing that our
anti-diffusion algorithm works in a satisfactory manner for this
problem.

The time histories of the pressure and the velocity at the cen-
ter of the wall are shown in Fig. 2, where a fine grid solution ob-
tained using the method without the anti-diffusion is included for
comparison. From the figure, we observe, on the one thing, good
agreement between the results with and without anti-diffusion,
and on the other thing, minor effect to the pressure and velocity
field due to sharpening of interface at this plotted location at the
least. We note that, qualitatively our results are in good agree-
ment with the one appeared in [27] using an adaptive Arbitrary
Lagrangian-Eulerian method and a barotropic model for water
with cavitation, see [28, 29] for similar results but are obtained
using different constitutive laws and numerical methods.

UNDERWATER EXPLOSION IN A RIGID CYLINDER
Our second example is concerned with an explosion of a

spherical gas bubble in a cylinder that contains water. Similar to
the setup considered in [22, 28, 29], we take a cylinder that is of
0.0889m in diameter and 0.2286m height. Initially, a stationary
spherical explosive charge of diameter 0.03m is placed at the cen-
ter of the cylinder. Here, the explosive is modeled as a perfect gas
again with the state variables ρ = 1,770 kg/m3, p = 20,000 bar,
γ = 2.0, p∞ = 0, and the water is modeled as a stiffened gas with
the same parameters as used in the previous example. The sat-
uration pressure we use in this test for the cavitation cutoff is
psat = 0.05 bar. Since the problem is symmetric with respect to
the cylindrical axis, we only take the right-half of the cylinder
during the computations. The boundary conditions we used are
solid wall on the left and right, and non-reflecting on the top and

t = 1ms

water
shock wave

interface

t = 3ms

reflected shock

ace

t = 4ms

cavitation

ace
t = 6ms

cavitation cavitation

ace

Figure 1. ANTI-DIFFUSION RESULTS FOR AN UNDERWATER
EXPLOSION PROBLEM NEAR A FLAT SOLID WALL. A SE-
QUENCE OF PRESSURE CONTOURS IS SHOWN AT FOUR DIF-
FERENT TIMES 1, 3, 4, 6MS USING A 300×180 GRID.
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Figure 2. THE TIME HISTORIES OF THE PRESSURE AND VE-
LOCITY AT THE CENTER OF THE SOLID WALL. THE FILLED
CIRCLES IN THE GRAPH ARE THE RESULTS AT THE SELECTED
TIMES SHOWN IN FIG. 1. RESULTS OBTAINED USING THE
METHOD WITHOUT ANTI-DIFFUSION USING A FINER 600×360
ARE INCLUDED ALSO FOR COMPARISON.
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bottom sides.
For this problem, at the early time, the basic mechanism for

the creation of the cavitation region is the same as in the previ-
ous example. That is, due to the shock wave reflection from the
cylinder wall and the resulting shock-bubble interactions, a lower
pressure region is formed between the bubble and the cylinder
wall. However, due to the geometric effect, complicated wave in-
teraction occurs at a later time, yielding the collapse of the origi-
nal cavitation, and the formation of the others in various parts of
the cylinder.

In Fig. 3, we plot a sequence of the pressure contours at four
different times t = 30, 45, 60, 120µs obtained using our anti-
diffusion interface sharpening algorithm using a 140× 720 grid,
where we have made the graph for the solution in the whole cylin-
drical region so that the basic features of the solution mentioned
above can be seen more clearly. From the figure, we again ob-
serve smooth behavior of the pressure field near the bubble inter-
face computed by the algorithm.

The time histories of the pressure and the velocity at the cen-
ter of the cylindrical wall are shown in Fig. 4, where a fine grid
solution obtained using the method without the anti-diffusion is
included for comparison. From the figure, we again observe good
agreement between the results with and without anti-diffusion,
and not so much effect to the pressure and velocity field due to
sharpening of interface. Furthermore, we notice some qualitative
agreement of solutions when our results are in comparison with
those one appeared in the literature, see [22, 28, 29].

Note that to solve this problem numerically, geometric
source terms have been included in the model (cf. [30]), and
have been handled as one of the fractional steps before the anti-
diffusion step of the original algorithm.

CONCLUSIONS
We have presented a simple interface-sharpening approach

based on the anti-diffusion viewpoint for the numerical resolu-
tion of compressible two-phase flow with cavitation. Numeri-
cal results for underwater explosions show sensible behavior of
the anti-diffusion solutions when comparisons are made with the
finer grid solutions without anti-diffusion. Ongoing work is to
extend this approach further to problems with phase transitions
(cf. [31, 32]).
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