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An advantage of the wave propagation form is that rea-
sonable time steps can be taken even if some of the subcellsWe present a fully conservative, high resolution approach to front

tracking for nonlinear systems of conservation laws in two space created by the interface are orders of magnitude smaller
dimensions. An underlying uniform Cartesian grid is used, with than the uniform Cartesian cells. Uniform time steps are
some cells cut by the front into two subcells. The front is moved

used throughout the computation, with the time step cho-by solving a Riemann problem normal to each segment of the front
sen so that the Courant number is near one, relative toand using the motion of the strongest wave to give an approximate

location of the front at the end of the time step. A high resolution the size of the uniform grid cells. The method remains
finite volume method is then applied on the resulting slightly irregu- stable despite the small cells near the front. This is dis-
lar grid to update all cell values. A ‘‘large time step’’ wave propaga-

cussed further in Section 3.tion algorithm is used that remains stable in the small cut cells with
The grid is modified in each time step based on thea time step that is chosen with respect to the uniform grid cells.

Numerical results on a radially symmetric problem show that point- solution of Riemann problems across the interfaces repre-
wise convergence with order between 1 and 2 is obtained in both senting the front. The motion of strong waves in these
the cell values and location of the front. Other computations are

Riemann solutions gives an indication of the motion ofalso presented. Q 1996 Academic Press, Inc.
the front. One major feature of the method is that the
subdivision of cells is not assumed to give the definitive
location of the true shock. It is viewed rather as an approxi-1. INTRODUCTION

mate location yielding a ‘‘refined grid’’ that is better able
We will describe a fairly simple approach to front to represent the discontinuous solution than the Cartesian

tracking in two space dimensions, giving a general formula- grid alone. Since the high resolution method is fully conser-
tion and then concentrating on shock tracking for the Euler vative and capable of capturing shocks even on a uniform
equations of gas dynamics. The method is fully conserva-

grid, this gives a robust method for achieving increasedtive and based on modern high-resolution shock capturing
resolution. Numerical results indicate that this can be quitemethods. An underlying uniform Cartesian grid is used,
successful and that, in fact, the grid interfaces can do awith some rectangles subdivided into two or more compu-
very good job of tracking a shock.tational cells where discontinuities in the solution are ex-

In previous work [40] (see also [29, 33]) we have devel-pected (see Fig. 9 for an example grid). A high resolution
oped a one-dimensional shock tracking algorithm basedfinite volume method is applied on the resulting grid, based
on the same principles and demonstrated that it gives veryon the solution of Riemann problems and appropriate
good results on a variety of problems, including unstableslope limiters. This method is implemented in a ‘‘wave-
detonation waves.propagation’’ form, as developed in [31, 35], for example.

In one space dimension, collisions of fronts are easilyThe cell average at the end of a time step is computed
handled simply by adjusting the time step so that any colli-from the cell average at the beginning of the step with
sion occurs at the end of a time step and is then properlymodifications due to all waves that enter the cell. The waves
resolved in the solution to the Riemann problem at thecome from solving one-dimensional Riemann problems at
start of the next time step. This has been used very success-each cell interface in the direction normal to the interface.
fully in the one-dimensional version of this algorithm de-Transverse propagation of these waves is also introduced
veloped in [40], but unfortunately does not extend to twoto improve numerical stability and incorporate the cross-
dimensions. In the current two-dimensional implementa-derivative terms needed for second-order accuracy.
tion of our method we have assumed a simple structure
in the front, namely a single connected curve with no self-1 E-mail: rjl@amath.washington.edu.
intersections. This is clearly a limitation in regard to many2 E-mail: shyue@math.ntu.edu.tw.
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interesting problems where fronts collide with one another, complicated interactions of interfaces, Mach triple points,
and other such structures despite the lack of conservationjoin together at triple points, or split up into disconnected

pieces. We have not yet tackled many of the topological at the interface and is currently being extended to three
space dimensions.difficulties, although some preliminary experiments with

triple points in Section 5 indicate that this approach can Our feeling is that it is better to maintain conservation
if possible, both to insure that discontinuities are really inbe applied to deal with intersecting discontinuities also.

There are, moreover, many applications where the front the correct locations and to increase the robustness by
allowing the possibility that some shocks are capturedtopology remains simple and the approach described here

is directly applicable to obtain high resolution results. Al- while others are tracked (see the ramp examples in Section
5, for example). Also, in some calculations, with interfacesthough for pure gas dynamics the most interesting prob-

lems often involve complicated shock structures with inter- between different fluids, for example, it may be important
to exactly conserve the mass of each fluid. With our ap-actions and reflections, for these problems there are

numerous high resolution ‘‘shock capturing’’ methods proach it does not seem to be difficult to couple high
resolution conservative methods with propagation of theavailable that often do a very good job on a fixed grid,

avoiding the complication of shock tracking altogether. front using the Rankine–Hugoniot condition, which comes
out automatically from the solution of the Riemann prob-The real need for tracking seems to be in problems where

more complicated phenomena near the front require lem at the front.
In this sense our method is closest to that of Chern andtracking in order to efficiently obtain high quality results.

While ultimately there is a need to handle complicated Colella [9]. They use a volume of fluid (VOF) approach
to keep track of the front location and then use high resolu-topologies as well as more complicated phenomena at the

front, there are already very interesting problems with tion conservative finite volume methods on the resulting
grid. See also the work of Bell, Colella, and Welcome [1].simple front topologies. Examples include detonation

waves (e.g., [5]), unstable interface problems (such as Ray- The key difference is that they use a more traditional
flux differencing form, together with a flux redistributionleigh–Taylor and Kelvin–Helmholz instabilities), and vis-

cous fingering phenomena in porous media flow. Some algorithm to maintain stability in the presence of small
cells. Bourlioux [5] has obtained very nice results for unsta-preliminary results obtained with our approach on unstable

interfaces and porous media flow are given in [54, 55] and ble two-dimensional detonation waves using Chern and
Colella front-tracking, coupled with adaptive mesh re-work is continuing on these problems.

The main purpose of the present paper is to explain finement.
We believe that our wave-propagation form gives a morein some detail our basic approach to conservative front

tracking and to demonstrate that it is viable and promising physical propagation of information near the front. We
also explicitly track the front location, maintaining a datain two space dimensions. This will be done in the context

of the Euler equations of gas dynamics with shock tracking. structure similar to what is used by Glimm’s group (in the
simple case of a single front); a list of points that, whenWe hope that this new set of tools can be applied in the

development of more powerful algorithms for a variety of joined by curves, give the location of the front. These
points are moved in each time step as the front propagates.interface tracking problems.

Numerous other approaches to front tracking have been It would be possible to combine our wave-propagation
approach to updating the solution with a different repre-proposed over the years and we will mention only a few

basic approaches. Many tracking methods are based on sentation of the front location. Other techniques may have
advantages, especially in dealing with complex topologies.advancing the front, using the Rankine–Hugoniot condi-

tions, or other appropriate jump conditions, and then using The volume of fluid approach used by Chern and Colella
(see also [6, 11, 26, 45, 46]) is one possible approach, ina nonconservative method on each side of the front. In

theory it is necessary to worry about conservation only in which an additional scalar field is introduced that measures
the fraction of each cell that is on one particular sidethe case where discontinuities are being captured, since a

lack of conservation may lead to incorrect weak solutions. of the front. A differential equation is developed for the
advection of this scalar in each time step, and the front isAs long as all discontinuities are properly tracked, the

smooth flow can be accurately represented with a noncon- reconstructed in each time step from the information
stored in this field. Work by Swartz [56] and Pilliod andservative method. Early methods of this form can be seen

in [17, 43, 53]. Puckett [49] shows that it is possible to obtain second-
order accuracy with this type of method and appropriateGlimm and coworkers have developed a very extensive

set of tools for shock and interface tracking in two space reconstructions.
Another promising approach for maintaining informa-dimensions with this type of approach that have been suc-

cessfully applied to a wide variety of problems (e.g., [10, tion on the location of the front is the level set approach
(e.g., [44, 48]). Here an additional scalar field c(x, y, t) is15, 19–24]). This package includes procedures to deal with
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for (4) (actually the Roe approximation to this problem), great issue. Away from the front either approach can be
used, or any other multidimensional finite volume methodwhich then yields a splitting of UR 2 UL 5 aprp into eigen-

vectors of the Roe matrix B 5 B(UL, UR): for that matter.
The method just described is still only first-order accu-

rate, although the inclusion of transverse propagation gives
aprp 5 Om

q51
bqwq where Bwq 5 eqwq . (5) better stability properties than the method in which waves

are only propagated normal to interfaces. The method is
typically stable as long as the time step k satisfies.Each piece of the wave then propagates in the y-direction

with speed given by the corresponding eigenvalue eq . The
wave shown in Fig. 1a is thus split into m maves and a k

h
max

p,q
(FlpF, FeqF) # 1. (6)

typical one is shown in Fig. 1b for the case eq . 0. This
wave updates the cell averages in cells (i, j) and (i, j 1 1),

For a scalar problem this same approach has been sug-based on the area that the wave overlaps each cell.
gested in many different forms (e.g., the corner transportThe algorithm is implemented by first initializing each
upwind scheme described by Colella [12].) Although thecell average to its value at the previous time step,
method is not second order, it turns out that the terms
included by this modification give the correct cross-deriva-U n11

ij :5 U n
ij for all i, j

tive terms needed for second-order accuracy. For example,
for the linear system of equations ut 1 Aux 1 Buy 5 0, aand then updating the average based on each wave. The
Taylor series expansion of the truncation error shows thatwaves Wpq shown in Fig. 1b, for example, would give the up-
for second-order accuracy we need to include an approxi-dates
mation to the term

As k2utt 5 As k2(A2uxx 1 ABuxy 1 BAuyx 1 B2uyy).U n11
ij :5 U n11

ij 2 Sklp

h D S1 2
1
2

keq

h D bqwq ,

The wave-splitting method described above can be shown
U n11

i, j11 :5 U n11
i, j11 2

1
2 Sk2lpeq

h2 D bqwq . to give a consistent approximation to the As k2(ABuxy 1
BAuyx) term [35]. To achieve full second-order accuracy
we need only add in the A2uxx and B2uyy terms and adjustThe factors multiplying bqwq are simply the fractions of
the one-sided first-order approximations to Aux and Buy toeach cell that is overlapped by the wave.
the second-order accurate centered approximations. TheseNote that with this tangential splitting the method re-
corrections are accomplished by the updatesmains conservative because the total contribution of the

subwaves satisfies (5) and the area swept out by each sub-
wave is the same as the area of the original wave. U n11

ij :5 U n11
ij 1 Sklp

h D S1 2
1
2

klp

h D aprp ,
This method is rather expensive for general use since at

each interface m 1 1 Riemann problems must be solved—
one normal to the interface to obtain the decomposition U n11

i21, j :5 U n11
i21, j 2 Sklp

h D S1 2
1
2

klp

h D aprp .
(2) followed by a Riemann problem in the orthogonal
direction for each of the m waves to obtain the decomposi-
tions (5). This results in m2 waves, each of which must be In practice the strength of each wave is limited using a

‘‘slope-limiter,’’ so each ap in the above corrections is re-propagated over the grid. Actually, for the Euler equations
in two dimensions, where m 5 4, we can reduce this to placed by a limited value ãp obtained by comparing ap

with the corresponding ap from the neighboring Riemannthree waves in each direction since two waves always move
at the same speed and can be combined. problem to the left (if lp . 0) or to the right (if lp , 0).

More details can be found in [37, 31, 35], but they will notA more substantial savings can be made by splitting the
rightward and leftward going flux differences into upward be repeated here since we currently do not implement

these correction terms in the irregular cells at the front.and downward moving pieces rather than splitting each
wave separately. This modified method, described in [35, There is some discussion in [31] of how such corrections

might be applied on irregular cells, and the algorithm36], appears to work just as well, in general. However, for
our present purpose of extending the method to irregular would perhaps be improved by implementing this. How-

ever, since there is expected to be a large jump at thecells near the front, the original approach of splitting each
wave appears preferable. Since the irregular cells cut by tracked interface, this is precisely where the limiters are

expected to minimize the effect of these ‘‘second-order’’the front are relatively few in number, efficiency is not a
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FIG. 2. Wave propagation in irregular cells created by the tracked front: (a) The grid. (b) A wave propagating from the interface between cell
A and the cell to its left updates the solution in both cells A and B. (c) A wave propagating from the interface between cells A and B updates
four cell averages.

corrections and to reduce the method to Godunov. It seems for S 5 A, B. Here Wp represents the region swept out by
reasonable to drop these corrections altogether with con- the wave and aprp is the jump across the wave.
siderable simplification of the algorithm. At the interface between cells A and B, a Riemann

problem is solved in the direction normal to the interface
with data Un

A and Un
B . Note that the Euler equations are3. FINITE VOLUME METHODS WITH A

isotropic and easily rotated to this frame. The wave indi-MOVING FRONT
cated in Fig. 2c overlaps four cells and modifies the cell
area in each of these cells by the jump across this wave,As in our one-dimensional algorithm [40], our grid con-

sists of two parts. We choose a uniform underlying grid that weighted by the fraction of the cell area covered by the
remains fixed for all time, and we also introduce tracked wave.
interfaces which vary from step to step for the discontinu- Again transverse propagation can be included by using
ities in the flow field. These tracked interfaces subdivide these waves to define Riemann problems in the orthogonal
some regular cells into two or more subcells, creating some direction. This will give a splitting of the wave Wp into
irregular cells. We use a piecewise linear representation subwaves Wpq for q 5 1, 2, ..., m moving oblique to the
of the front, so that each irregular cell is polygonal as interface rather than normal to it. Each of these waves is
shown in Fig. 2a. We then view the union of the regular then propagated in an analogous manner, computing its
cells and irregular cells as our global grid. In each grid cell, intersection with the neighboring cells. The method re-
the cell average is defined by integrating the solution over mains fully conservative. These methods are described in
the cell and dividing by the area of the cell. In Fig. 2a the more detail in [31, 54].
numerical approximation to the cell average over the cell A crucial step in computing the update (7) is to deter-
marked A is denoted by mine the area of intersection of the wave with each grid

cell. This is accomplished by representing both the wave
and each grid cell as a polygon with the vertices stored

U n
A P

1
M(A)

E
A

u(x, y, tn) dx dy
as a linked list. A standard algorithm for computing the
intersection of two polygons is then used [47, 50].

Because waves are allowed to propagate through more
where M(A) is the measure (area) of this cell. For a fixed than one grid cell and are not confined to remain within
grid of this form, the wave-propagation method described neighboring cells, this method satisfies the CFL condition
in the previous section is easily extended to work in these and is stable with a timestep chosen relative to the uniform
irregular cells. For example, Fig. 2b shows a typical p-wave grid, even when there are very small irregular cells near
arising from the Riemann problem in x between cell A the interface. The method with transverse propagation typ-
and the cell to its left. This wave overlaps part of cell A

ically remains stable as long as k is chosen so that (6) is
and part of cell B. These cell averages are updated by

satisfied relative to the uniform grid size h.
Extending this method to a moving grid requires more

care. In each time step our front tracking algorithm consistsU n11
S :5 U n11

S 2
M(Wp > S)

M(S)
aprp (7)

of the following steps:
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FIG. 3. (a) shows the old grid at time tn and (c) shows the new grid at time tn11 . The intermediate grid shown in (b) can be used to propagate
the waves as shown in (d).

(1) Determine the new location of the tracked inter- on higher order interpolation, but there are problems with
this which already appear in one dimension, as discussedfaces at the next time step.
in [40].)(2) Insert these new tracked interfaces into the grid.

Figure 3d shows a typical wave Wp propagating from theSome cells will be subdivided and the values in each subcell
interface between cells A and C into cells C and D. If themust be initialized.
jump across this wave is aprp then the updated formulas

(3) Take a time step on this nonuniform grid using
are given as usual by (7) for S 5 C, D and, more generally,

the finite volume method described above to update the
for any cell that the wave overlaps.

cell averages.
In a similar manner we update cell averages due to all

(4) Delete the old tracked interfaces from the previous waves from all the Riemann problems at each cell interface
time step. Some subcells will be combined, and a value in on the intermediate grid. Note that there are no waves
the combined cell must be determined from the subcell generated from the interface between cells C and D since
values. there is no jump across this interface due to the initializa-

tion (8).In this section we discuss steps 2, 3, and 4. The determina-
To delete the old front, we merge cells A and C into ation of the new front is discussed in the next section. For

single cell E on the new grid. The value U n11
E is determinednow we assume that we know the location of the front

by the appropriate weighted average of the cell averagesboth at the beginning of the time step (the ‘‘old grid’’ at
in cells A and C :time tn) and at the end (the ‘‘new grid’’ at time tn11). An

example is shown in Fig. 3, where a single grid cell is split
U n11

E 5 [M(A)U n11
A 1 M(C)U n11

C ]/M(A < C).into two subcells A and B on the old grid and into two
different pieces D and E on the new grid (one of these
may be empty if the front moves into or out of the cell in In practice this approach has difficulties if the old and
this step). new fronts are not well separated, as illustrated in Fig. 4.

One way to implement the wave propagation algorithm Here the old and new fronts cross within the cell. In princi-
is to apply it on the ‘‘intermediate grid’’ shown in Fig. 3b, ple the approach outlined above could still be applied, but
which contains both the old and new subdivisions and so now the intermediate grid would have this cell subdivided
the cell is split inot three pieces, A, C, and D. We will first into four pieces with some complication of the algorithm.
describe this version since it is easiest to understand (and is To avoid this difficulty we use a more robust algorithm in
a direct generalization of the method used in one dimesion which the wave propagation is applied on the new grid
[40]), but it is not used in practice because of difficulties rather than the intermediate grid. The cell averages
when the old and new interfaces cross, as indicated below U n11

E and U n11
D are first initialized by weighted averages of

in Fig. 4. Instead a different approach is used in practice the values U n
A and U n

B :
that is described below.

On the intermediate grid of Fig. 3b, the values U n11
S for U n11

S :5 [M(A > S)U n
A 1 M(B > S)U n

B]/M(S)
S 5 A, B, C must first be initialized to their values at time

for S 5 D, Etn . However, at time tn we only know the values U n
A and

U n
B . Since cells C and D are created by subdividing cell

and are then updated by all waves propagating across theB, we initialize
grid, as before. The waves are still computed, based on
the old grid, solving a Riemann problem at each of theU n11

C :5 U n
B , U n11

D :5 U n
B . (8)

old interfaces. But then the wave is applied on the new
grid. Figure 4d illustrates a typical wave obtained by solving(One could consider a more accurate initialization, based
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FIG. 4. In this case the intermediate grid in (b) has four subcells since the old and new fronts cross. Instead of using the intermediate grid, it
is possible to propagate the waves defined by the old grid directly onto the new grid as shown in (d).

the Riemann problem with data U n
A and U n

B . This wave x 1
l 5 x 2

l21 and y 1
l 5 y 2

l21 as shown in Fig. 6. (We will focus
on explaining the main ideas and ignore the boundary con-updates the cell averages U n11

E and U n11
D by the usual for-

mula (7), now for S 5 D, E. ditions.)
In each time step we first solve a one-dimensional Rie-This method is easy to implement. For the data struc-

tures we keep the old grid and new grid separate. The mann problem in a direction normal to each tracked inter-
face using the values from the adjacent cells as data andvalues U n on the old grid are used to solve Riemann prob-

lems and the values U n11 on the new grid are updated by obtain the resulting jumps ap rp and speeds lp . We expect
the solution to this Riemann problem to consist of onethe waves. Step 4 in the algorithm is essentially eliminated

since the new grid structure contains no reference to the strong wave, corresponding to the shock or interface being
tracked, and other weaker waves. The strong wave is usedold grid. The method is still fully conservative and gives

exactly the same cell values as the first approach with an to help choose the new interface location. We discuss one
simple approach in detail. See Section 6 and [1, 9, 10] forintermediate grid.

Note that each wave is propagated independently of all other ways to advance the front.
Let (x*l , y*l21), p 5 1, 2, be points of the interface l. As-others. In fact for a nonlinear problem there should be

interaction of the waves when they collide. The algorithm sume that the strong wave is in the p th wave family, and
let lp be the speed of the strong wave. Then the newwe used can be viewed as a linearization of these wave

interactions, since for a linear problem (if one space dimen- location (x*l , y*l ) of the point (x*l , y*l ), under the current
` `

time step k, can be calculated by simply using the formulasion, at least) this treatment would be correct. This is dis-
cussed in more detail in [31, 32].

x*l x*l cos(ul)
`

4. FRONT MOVING ALGORITHM 5 1 klp , (9)3y*l
4 3y*l 4 3 sin(ul)4`

In each time step the front is approximated by a
piecewise linear curve with knots at the points where this
curve intersects the grid lines. We call the line segment
dividing a given cell into two subcells an interface, and with
each interface we have associated two points, the endpoints
of the segment. The data structure is illustrated in Fig. 5.
The points defining the interface in the l th subdivided cell
are denoted by (x 1

l ,y 1
l ) and (x 2

l ,y 2
l ), l 5 1, 2, ..., n. In general

FIG. 6. Strong waves propagating from the old interface are used to
determine the new interface location. The point (xl , yl) is halfway between
the corners of the waves, and a piecewise linear curve through theseFIG. 5. Data structure of the tracked interfaces in our front

tracking code. points is intersected with the grid lines to determine the new front location.
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method described in Section 3 is applied, the strong waves
arising from each of the tracked interfaces will move ap-
proximately to the new front boundary, as indicated in Fig.
8. As a result, there is minimal smearing of the sharp
discontinuity in the solution. Recall that smearing occurs
when a large jump propagates only part way through a
grid cell. Averaging it onto the grid gives a smeared inter-
mediate value. With our choice of the new curve, the strong
waves will overlap some cells nearly completely and others
hardly at all as seen in Fig. 8. The ratio M(Wp > S)/M(S)
in (7) will be close to zero or one for each cell S.FIG. 7. Front propagation: (a) Tracked interfaces after propagating

the original interfaces using the strong wave speeds obtained from the
normal Riemann problems during the current time step. (b) Piecewise 5. NUMERICAL RESULTS
linear interpolant through the points (xl , yl) denoted by dots. The final
interfaces and points on the new grid are determined by where this curve We use the Euler equations of gas dynamics in two spaceintersects the grid lines.

dimensions as a model system:

where (cos(ul), sin(ul))T is the normal direction to the inter-
face l at an angle ul to the x-axis, and * 5 1, 2. 

t 1
r

ru

rv

rE
21



x 1
ru

ru2 1 p

ruv

(rE 1 p)u
21



y 1
rv

ruv

rv2 1 p

(rE 1 p)v
25 0, (12)Note that in many problems, e.g., when there is strong

shear layer flow along the discontinuities, the tracked inter-
faces should be advanced not only in the normal direction
to the interface as illustrated in Fig. 7a, but also in the
tangential direction. This can be done quite easily by intro- where r, u, v, p, E are the density, velocity in the x-direc-
ducing a transverse velocity e, for example, the average tion, velocity in the y-direction, pressure, and total energy
transverse velocity from the states on either side of this of gas per unit mass, respectively. We assume a c-law gas,
wave. Then (9) is replaced by in which the internal energy satisfies e 5 p/((c 2 1)r),

where c is the ratio of specific heats (c 5 1.4 is used here).
x*l x*l cos(ul) sin(ul)
`

Then the total energy of the gas per unit mass is E 5 e 1
5 1 klp 1 ke . (10)

As (u 2 1 v 2). The four components of Eq. (12) express3y*l 4 3y*l 4 3 sin(ul)4 32cos(ul)4`

the conservation of mass, momentum in the x-direction,
momentum in the y-direction, and energy, respectivelyAfter moving the points according to (9) or (10), the
[14].points (x*l , y*l ) will no longer be proper points to define

` `

We show some numerical results for problems involvinga set of interfaces (see Fig. 6). The goal is now to use these
shock waves for this model system. As a first example, wepoints to define a new curve that passes close to these
consider a radially symmetric problem in which a circularpoints. This can be done in many ways. One simple ap-

proach is to define average points

xl 5 As (x̂ 2
l21 1 x̂ 1

l ), yl 5 As ( ŷ 2
l21 1 ŷ 1

l ) (11)

as indicated in Fig. 6b and then to interpolate a curve
through these points and finally determine where this curve
intersects the gird lines in order to define the new interfaces
and points. In the simplest case we could do a piecewise
linear interpolation through the points (xl , yl), as indicated
in Fig. 7b. The averaging procedure (11) is performed
(rather than interpolating through the (x̂*l , ŷ*l ) directly)

` `

to avoid difficulties when the neighboring waves overlap
one another rather than spreading out as in Fig. 7.

The new curve does not exactly match the proper front
FIG. 8. Wave propagation in Step 3 (only some of the waves are

location, of course, nor does it even match exactly with drawn). Each wave is propagated independently as described in Section 3.
the waves used to define it. However, it lies in approxi- Note that the tracked waves are propagated close to the tracked interface

introduced in Step 2.mately the correct location so that when the finite volume
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FIG. 9. Grid used for the radially symmetric expanding shock wave. (a) Grid for the initial data. (b) Final grid after 24 time steps (time t 5 0.1).

expanding shock wave is tracked. Outside of a circle of For this problem we can compute the error in each grid
cell using the one-dimensional results for comparison. Weradius r0 5 0.2, we set
can also investigate the error in the location of the tracked
front relative to the true shock location, as is done in Fig.r 5 1.4, u 5 0, v 5 0, p 5 1.
11a. This was obtained by writing each point (x 1

l , y 1
l ) along

the curve in polar coordinates and then plotting r as aInside the circle, the initial data is
function of u. For this circular front, r should be constant.
For small h the graph is fairly flat, showing that the curver(x, y, 0) 5 5.143204
is nearly circular, and pointwise convergence to the correct

u(x, y, 0) 5 2.045108 (x 2 x0)r/r 2
0 radius is clearly observed. If we measure the error in the

location of the front by averaging the function r(u) overv(x, y, 0) 5 2.045108 (y 2 y0)r/r 2
0

u and comparing to the correct radius, we compute an
p(x, y, 0) 5 9.045462, order of accuracy of about 1.77 (see Table I).

Figure 11b shows the value of r in each irregular cell
where r 2 5 (x 2 x0)2 1 (y 2 y0)2 is the distance from the that is behind the shock (towards the origin) again plotted
center (x0 , y0) 5 (0.5, 0.5). The initial grid is shown in Fig. against u (measured from the area-weighted center of the
9a, where the initial shock is inserted as an interface that cell). Figure 11c shows the same situation for the irregular
subdivides some cells in the underlying 40 3 40 grid. cells ahead of the shock. In both cases convergence towards

After 24 time steps (time t 5 0.1 and Courant number the true solution is observed. The large spikes in these
n0 5 0.5), we obtain the results shown in Fig. 10 on the figures typically correspond to small irregular cells. As
grid shown in Fig. 9b. Notice that the tracked shock re- explained in Section 3, there is some unavoidable smearing
mains smooth and circular and appears to be very well of the discontinuity with our simple algorithms for moving
located. The cross section along y 5 0.5 shown in Fig. 10b the front and propagating waves. A tiny cell may be missed
shows the sharpness of our result clearly. The solid line in entirely by the waves or it may be entirely covered by a
this figure is the ‘‘true’’ solution as calculated with our small piece of a wave coming from the wrong side of the
one-dimensional front tracking algorithm [40] on the sys- front. Computing a 1-norm of the error along the front,
tem ut 1 f(u)r 5 c(u) with appropriate source terms for by weighting the error in cell C1 by M(Cl) and summing,
the radial symmetry, using h 5 0.001. The two-dimensional shows reasonable convergence on both sides of the front.
results shown above were obtained using the high resolu- We define
tion method of [31] on the regular cells, with second-order
corrections and slope limiters. On the irregular cells the

kE n
x6k1 5

1
h O

l[x6

M(Cl)FU n
l 2 un

l F,Godunov method with tangential splitting is used, as de-
scribed in Section 3. Second-order slope corrections with
limiters were not applied in the irregular cells, where only
the first-order propagation (with transverse motion) was where the sum is over the set of irregular cells in either

the state behind the shock x2, or the state ahead the shockused.
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FIG. 10. Results for the radially symmetric expanding shock wave. (a) Density contours at time t 5 0.1. (b) Cross section of density along line
y 5 0.5. The solid line is the ‘‘true’’ solution obtained from solving the system ut 1 f(u)r 5 c(u) with appropriate source terms for the radial
symmetry using the one-dimensional front-tracking algorithm. The dotted points are the two-dimensional result.

x1. The factor 1/h is to account for the fact that we are with the grid in front of the shock and cuts through the
underlying Cartesian grid in back of the shock as seen inintegrating only along a one-dimensional curve in the

plane. Table I shows the values of these errors for this grid Figs. 12 and 13.
Figure 12 shows results for a single Mach reflection offrefinement study. Behind the shock we observe a conver-

gence rate of 1.3. Ahead of the shock it is only 0.82, but a 308 ramp. The Mach number of the incident shock is
1.65. In Fig. 12a, we show the tracked shock at 20 equallynote that the magnitude of the error is smaller on this side.

The 1-norm over the entire domain is also shown, summing spaced times. From the figure, it is easy to observe that
the shock–ramp interaction causes a kink to form, whichthe error in each cell weighted by cell area. These errors

are naturally much smaller since the largest errors are corresponds to the location of a triple point. Our shock-
tracking algorithm does quite well in tracking both theconcentrated near the front. We see overall convergence

in the 1-norm with rate 1.67 for this example. Even in the incident shock (above the kink) and the Mach stem (below
the kink). We have not done anything special to followmax-norm (the largest error over any gird cell, including

the irregular cells) we observe convergence at rate 1.43. the kink. The reflected shock behind the triple point is cap-
tured.(See [54] for for more accuracy results.)

Note in Table I the number in the parenthesis represents In Figs. 12b and c, we show the density contours and
the cross section along the ramp, respectively, for the samethe exponent, for example, 9.1615(22) means 9.1615 3

1022. The order of accuracy of a method is computed by run at time t 5 0.64. We employed the same high resolution
shock-tracking method as to the previous cylindrical shockperforming a linear least-squares fit to a sequence of mesh

refinement data {(log hl , logkE nk), l 5 1, ..., m} and taking problem with a 200 3 80 grid on a rectangular region ([0,
2] 3 [0, 0.8]), and Courant number n0 5 0.9 (relative tothe slope as the order of accuracy of the method.

Our next example of shock tracking concerns a shock the uniform cells). On the ramp boundary, the proper
boundary condition for the Euler equations is zero normalreflection problem in which an oblique shock is reflecting

off a ramp. This problem has been studied extensively velocity. Here we used a fictitious cell approach in the part
of the ramp that aligns with the underlying grid boundary,and the solution structure is well documented in many

instances; see [18] for an example. See also [4, 13] for and a wave reflection approach in the part that cuts through
the grid [31]. At the other boundaries, nonreflecting out-numerical results on these ramp-reflection problems using

high resolution shock-capturing methods. flow boundary conditions were applied [40]. The solid line
in Fig. 12b shows the result obtained using shock-capturingAs in the computations done by Chern and Colella [9],

we initialize the incident shock wave at the ramp corner on a uniform grid with twice the resolution.
Figure 13 shows two calculations for a stronger Machwith an angle normal to the ramp where the preshock state

is on the left to the shock. (The shock is moving leftward). 10 shock, in which case a double Mach reflection is ob-
served. In the calculation on the left, the Roe solver isFor convenience, the ramp is arranged so that it is aligned
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FIG. 11. A convergence study of the tracked shock position and density in the irregular cells for a radially symmetric expanding shock wave.
Each figure is plotted as a function of normalized distance around the circular front. The straight line shown in the figure is the ‘‘true’’ solution.

used to solve all Riemann problems, including those at the shock reflection problem, however, we do see some slight
difference. In particular, the Mach stem hits the ramp moretracked front. In the calculation on the right, the exact

Riemann solver is used. For most calculations the two orthogonally with the exact Riemann solver. With the Roe
solver there is some pushing out of this shock, an effectapproaches give essentially the same results and the Roe

solver is preferred because it is quicker. For this strong that is also seen in other contexts with the Roe solver.
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TABLE I are different fluids or very different equations of state on
the two sides of the front. In this case our basic philosophyAn Accuracy Study for a Radially Symmetric Problem
that the computational front subdividing grid cells is only

h kE nk1 kE nky kE n
x2k1 kE n

x1k1 FE n
frontF an approximation to the true front location, and our will-

ingness to accept some smearing of the solution near this0.04 9.1615(22) 1.0567(0) 7.9522(21) 1.5437(21) 9.2733(23)
front in return for a simple algorithm, would probably0.02 2.7025(22) 4.6930(21) 2.6783(21) 8.7165(22) 3.2840(23)

0.01 9.0258(23) 1.4570(21) 1.3099(21) 4.9681(22) 8.0282(24) be inadequate.
There are two related problems that arise with the cur-

Order p 1.67 1.43 1.30 0.82 1.77
rent simplified approach in cases where it is crucial to
maintain the integrity of the fluid on the two sides ofNote. Errors in density are shown, with notation defined in the text.
the front:

1. Our algorithm for moving the front makes no ex-
plicit attempt to maintain conservation of each fluid sepa-(See, for example, Quirk’s description of the ‘‘carbuncle
rately, in the sense of properly conserving the area on eachphenomenon’’ in [51].)
side of the interface.Again the solid lines in Fig. 13c show the results obtained

using shock-capturing on a uniform grid with twice the
resolution. The finer grid is better able to resolve the flow
along the ramp behind the shock and does a fine job of
capturing the shock, as well, for this problem (and also in
the previous single Mach reflection example). Our present
purpose, however, is to demonstrate that our shock-
tracking approach can track the shock at the correct loca-
tion, even in these more complicated problems involving
triple points.

6. EXTENSIONS

Currently work is under way to apply this algorithm to
specific applications, including fluid interface instabilities
and porous media flow. In the latter case, multiphase flow
problems require the solution of an elliptic equation for the
pressure in each time step, with discontinuous coefficients
across the moving interface between different fluids. We
are now studying the use of immersed interface methods
as described by LeVeque and Li [39] for this part of the
problem, coupled with front-tracking as described in this
paper.

The techniques developed here could be applied on arbi-
trary nonuniform grids, for example, on a quadrilateral
body-fitted grid to study shocked flow in an interesting
geometry. We prefer the simplicity of Cartesian grids, how-
ever, and plan to ultimately combine the front-tracking
procedure with a Cartesian grid treatment of irregular ge-
ometries, as developed by Berger and LeVeque [2, 3, 30].
This requires some additional work in cells where a front
intersects the boundary, since an irregular cell cut off by
the boundary is then also subdivided by the front. In princi-

FIG. 12. Results for the single Mach reflection case, a Mach 1.65ple this should not be difficult to handle.
incident shock and a 308 ramp: (a) The tracked shocks at 20 equallyThere are some problems where a more careful job must
spaced times. (b) Contours of density at time t 5 0.64. (c) Cross section

be done in tracking the front. In particular, the present of density along the ramp at this time. The solid line is from a shock-
capturing calculation on a finer grid.approach may be insufficient in some problems where there
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FIG. 13. Results for the double Mach reflection case, a Mach 10 incident shock, and a 308 ramp: (I) Using the Roe Riemann solver. (II) Using
the exact Riemann solver, which gives better results along the ramp for this strong shock case. In each case, we show (a) the tracked shocks at 20
equally spaced times, (b) contours of density at time t 5 0.1, and (c) cross section of density along the ramp at this time. The solid line is from a
shock-capturing calculation on a finer grid.

2. In the wave propagation algorithm used to advance the intersection of each wave with the cells on the proper
side of the new front and only update these cells. To main-the solution on the new grid, waves are allowed to cross

the front, which causes smearing near the front and a tain conservation, however, it would be necessary to in-
crease the strength of the wave used in updating thesemixing of the fluids.
cells. Let ap rp be the jump across one such wave, M(Wp)

These problems could presumably be remedied at the
the area of the wave that should be propagated, and Minexpense of some further complication of the algorithm.
the total area of the intersections of this wave will cells on

Research is underway to develop a more sophisticated
the proper side of the front, so Min # M(Wp). Then replac-

version of our algorithm which attempts to track fronts
ing ap rp by (M(Wp)/Min) ap rp , before using it to update

more accurately and avoid this smearing, for use in applica-
the cells by (7), will ensure that conservation is maintained.

tions where this is essential.
Since Min P M(Wp), in general, we expect that this will

One possibility for solving Problem 1 is to use a volume-
cause no difficulties with stability.

of-fluid (VOF) representation of the front, instead of the
spline approach used here. One could use the strong waves

7. CONCLUSIONSdefining the front motion to propagate a VOF marker on
the ‘‘old grid’’ (as described in Section 3) and then use the
updated marker concentrations to choose the new grid We have described a simple approach to multidimen-
according to a conservative reconstruction algorithm such sional front tracking that is based on the following ideas:
as those in [56] or [49].

1. Use a uniform Cartesian grid with some cells dividedWe would still be faced with Problem 2, however, that
into two or more subcells.waves arising in the wave propagation step of the algorithm

might not respect the front location and may partially cross 2. Choose the subdivisions based on information about
propagation of strong waves from the solution of Rie-the front. Of particular concern are the strong waves that

define the front. One possibility here would be to compute mann problems.
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