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The conduit equation is a dispersive non-integrable scalar equation modeling the flow of a 
low-viscous buoyant fluid embedded in a highly viscous fluid matrix. This equation can be 
written in a particular form reminiscent of the famous Godunov form proposed in 1961 for the 
Euler equations of compressible fluids. We propose a hyperbolic approximation of the conduit 
equation by retaining the Godunov-type structure. The comparison of solutions to the conduit 
equation and those to the approximate hyperbolic system is performed: the wave fission of a 
large initial perturbation of a rectangular or Gaussian form. The results are in good agreement. 
New generalized solutions to the conduit equation composed of a finite set of waves of the 
same period and linked with a constant solution by generalized Rankine-Hugoniot relations are 
discovered. Such multi-hump structures interact with each other almost as solitary waves: they 
collide, merge, and reconstruct after the interaction. This partly indicates the stability of such 
multi-hump solutions under small perturbations. The exact and approximate hyperbolic system 
describes such an interaction with good accuracy.

1. Introduction

Consider the conduit equation:

𝑢𝑡 +
(
𝑢2 + 𝑢𝑥𝑢𝑡 − 𝑢𝑢𝑡𝑥

)
𝑥
= 0, (1)

involving one dependent variable 𝑢(𝑡, 𝑥) and two independent variables 𝑡 (time) and 𝑥 (space coordinate). Physically, the equation 
(1) represents the mass conservation law written in dimensionless variables for the magnitude 𝑢(𝑡, 𝑥) of the non-dimensional circular 
cross-section of a low-viscosity buoyant fluid embedded in a highly viscous fluid at rest (cf. [29,22–24,27,26,25]). Hence, only positive 
solutions 𝑢(𝑡, 𝑥) are physically admissible. Another conservative form which, a priori, has no physical meaning can be found for the 
conduit equation:(1

𝑢
+
𝑢𝑥𝑥

𝑢

)
𝑡
− (2 ln (𝑢))𝑥 = 0. (2)
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Its mathematical importance will be shown later. The dispersion relation for the conduit equation linearized on the solution 𝑢 = 𝑢0 =
𝑐𝑜𝑛𝑠𝑡 > 0 can be written as

𝑐𝑝 =
2𝑢0

1 + 𝑢0𝑘2
, (3)

where 𝑘 is the wave number, and 𝑐𝑝 is the corresponding phase velocity. It has the same dispersive properties as the Benjamin-Bona-

Mahony (BBM) equation [1]. The derivation of the modulation equations to the conduit equation and their stability study for small 
amplitude waves has been performed in [26,16].

In [8,6,4,10,2,32], a general method of hyperbolic regularization of dispersive equations that are the Euler-Lagrange equations 
for a “master” Lagrangian has been proposed: the original high order derivative dispersive equations were approximated by a first 
order hyperbolic system of the Euler-Lagrange equations for a one or two-parameter family of “extended” Lagrangians. The “master” 
Lagrangian is obtained from the “extended” Lagrangian in some limit. Thus, the variational structure of the governing equations 
was conserved. In a particular case of long gravity surface waves described by the Serre-Green-Naghdi equations, the method of 
“extended Lagrangian” was mathematically justified in [7]. The advantage of such an approach is obvious: one can use the full 
range of finite volume methods developed for hyperbolic equations for dispersive equations. Furthermore, some non-linear dispersive 
equations admit shock-type solutions: the dispersion cannot always prevent the formation of such singularities [11,9]. A hyperbolic 
approximation is therefore a natural option for dealing with strong discontinuities.

Despite a large number of works on the conduit equation, unlike the almost similar BBM equation (at least in the linear limit), 
neither other linearly independent conservation laws for this equation, nor the existence of a Lagrangian allows this equation to be 
considered as the Euler-Lagrange equation, are known [16]. Having in mind to approximate the conduit equation by a system of 
hyperbolic equations, we then ask the following question: what is the mathematical structure (different from a classical variational 
structure) of the conduit equation, and should it be retained when a system of hyperbolic equations approximates the equation?

In this paper, we will exhibit such a structure and will formulate an approximating hyperbolic system of equations conserving this 
structure. Comparing numerical solutions to the exact conduit equation and to its “structure conserving” hyperbolic approximation 
shows very good convergence results.

2. Mathematical structure of the conduit equation

In 1961 [13] S.K. Godunov proposed the following abstract form of a system of conservation laws for the vector variable 𝒗 =
(𝑣1, 𝑣2, … , 𝑣𝑛)𝑇 :(

𝜕𝐿0(𝒗)
𝜕𝒗

)
𝑡

+
𝑚∑
𝑖=1

(
𝜕𝐿𝑖(𝒗)
𝜕𝒗

)
𝑥𝑖

= 0, (4)

with given functions (potentials) 𝐿𝑖(𝒗), 𝑖 = 0, 1, … , 𝑚. This system admits an additional conservation law(
𝜕𝐿0(𝒗)
𝜕𝒗

⋅ 𝒗−𝐿0(𝒗)
)
𝑡

+
𝑚∑
𝑖=1

(
𝜕𝐿𝑖

𝜕𝒗
⋅ 𝒗−𝐿𝑖

)
𝑥𝑖

= 0. (5)

If the Hessian matrix of 𝐿0 is positive definite, the equations can be written in the symmetric form of Friedrichs. Denoting the variable 
𝑡 by 𝑥0, we can rewrite the system (4) and its consequence (5) in a compact form:

𝜕

𝜕𝑥𝛽

(
𝜕𝐿𝛽

𝜕𝑣𝛼

)
= 0, 𝜕𝐸𝛽

𝜕𝑥𝛽
= 0, 𝐸𝛽 = 𝑣𝛼 𝜕𝐿

𝛽

𝜕𝑣𝛼
−𝐿𝛽, (6)

with 𝛽 = 0, 1, … , 𝑚, 𝛼 = 1, 2, … , 𝑛. Here the summation is taken over repeated indexes. A number of reversible models of continuum 
mechanics can be written in Godunov’s form (6) [14].

A generalization of such a class of models with multiple examples from the reversible continuum mechanics was proposed in 
[12], with potentials 𝐿𝛽 depending not only on unknowns but also on their first derivatives. More precisely, let us denote 𝑣𝛼

, 𝛾
= 𝜕𝑣

𝛼

𝜕𝑥𝛾
. 

Consider functions 𝐿𝛽 (𝑣𝛼, 𝑣𝛼
, 𝛾
) (we will use the same notations as for the old potentials 𝐿𝛽 depending only on 𝑣𝛽 ) and a conservative 

system in the form

𝜕

𝜕𝑥𝛽

(
𝛿𝐿𝛽

𝛿𝑣𝛼

)
= 0. (7)

Here we used conventional notations for the variational derivatives:

𝛿𝐿𝛽

𝛿𝑣𝛼
= 𝜕𝐿

𝛽

𝜕𝑣𝛼
− 𝜕

𝜕𝑥𝛾

(
𝜕𝐿𝛽

𝜕𝑣𝛼
, 𝛾

)
.

Equations (7) also admit an additional conservation law

𝜕𝐸𝛽 𝛽 𝛼 𝛿𝐿
𝛽

𝛽 𝛼 𝜕𝐿𝛽
2

𝜕𝑥𝛽
= 0, 𝐸 = 𝑣

𝜕𝑣𝛼
−𝐿 + 𝑣

, 𝛾 𝜕𝑣𝛼
, 𝛾

. (8)
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Let us rewrite the conduit equation in the form (7). For this, we will use the conservative form (2) with 𝑥0 = 𝑡 and 𝑥1 = 𝑥. Let us 
consider the change of variables

𝑢 =
√
1 + 2𝑣 (9)

and potentials 𝐿(𝑣, 𝑣𝑥) and 𝑀(𝑣) (instead of generic potentials 𝐿0 and 𝐿1) defined as:

𝐿(𝑣, 𝑣𝑥) =
√
1 + 2𝑣−

𝑣2
𝑥

2(1 + 2𝑣)
, 𝑀(𝑣) = −1

2
(1 + 2𝑣)(ln(1 + 2𝑣) − 1). (10)

Then, one obtains:

𝛿𝐿

𝛿𝑣
= 1√

1 + 2𝑣
+

𝑣𝑥𝑥

1 + 2𝑣
−

𝑣2
𝑥

(1 + 2𝑣)2
=

1 + 𝑢𝑥𝑥
𝑢

= 1
𝑢
+
𝑢𝑥𝑥

𝑢
, (11)

𝜕𝑀(𝑣)
𝜕𝑣

= −ln(1 + 2𝑣) = −2 ln (𝑢). (12)

Hence, the equation (2) is written of the form (7):(
𝛿𝐿(𝑣, 𝑣𝑥)
𝛿𝑣

)
𝑡

+
(
𝜕𝑀(𝑣)
𝜕𝑣

)
𝑥

= 0. (13)

The equation (13) admits an additional conservation law:(
𝑣
𝛿𝐿

𝛿𝑣
−𝐿

)
𝑡
+
(
𝑣𝑡
𝜕𝐿

𝜕𝑣𝑥
+ 𝑣𝜕𝑀

𝜕𝑣
−𝑀

)
𝑥

= 0. (14)

Unfortunately, it is not a new conservation law, but just a linear combination of (1) and (2). The equations (13) also admit a symmetric 
form. Indeed, consider the partial Legendre transform of 𝐿:

𝐿⋆(𝑣,𝑤) =𝑤𝑣𝑥 −𝐿(𝑣, 𝑣𝑥), where 𝑤 = 𝜕𝐿

𝜕𝑣𝑥
. (15)

It implies, by using the implicit function theorem,

𝜕𝐿⋆

𝜕𝑣
= − 𝜕𝐿

𝜕𝑣
and

𝜕𝐿⋆

𝜕𝑤
= 𝑣𝑥. (16)

One has(
𝜕𝐿⋆

𝜕𝑣

)
𝑡

−
(
𝜕𝑀

𝜕𝑣

)
𝑥
+𝑤𝑡𝑥 = 0,

(
𝜕𝐿⋆

𝜕𝑤

)
𝑡

− 𝑣𝑡𝑥 = 0. (17)

It implies the following symmetric form:

𝑨𝑼 𝑡 +𝑩𝑼𝑥 +𝑪𝑼 𝑡𝑥 = 𝟎, with 𝑼 =

(
𝑣

𝑤

)
, (18)

and

𝑨 =𝑨
𝑇 =

⎛⎜⎜⎜⎝
𝜕2𝐿⋆

𝜕𝑣2
𝜕2𝐿⋆

𝜕𝑣𝜕𝑤

𝜕2𝐿⋆

𝜕𝑣𝜕𝑤

𝜕2𝐿⋆

𝜕𝑤2

⎞⎟⎟⎟⎠ , 𝑩 =𝑩
𝑇 =

⎛⎜⎜⎝
𝜕2𝑀

𝜕𝑣2
0

0 0

⎞⎟⎟⎠ , 𝑪 = −𝑪𝑇 =
(

0 1
−1 0

)
.

3. Extended hyperbolic system

The idea of the hyperbolic approximation of the equation (1) is to replace it by an “extended” parametric family of reversible 
hyperbolic systems also having the Godunov-type form (7). The word “extended” means that the governing equations contain an extra 
unknown 𝑧(𝑡, 𝑥) which is asymptotically close to the unknown 𝑢(𝑡, 𝑥) when parameters of the model go to infinity. Such a “penalization” 
method was already used in [8,6,4,10,2,3] for mathematical models admitting a variational formulation. The “extended” system of 
equations was obtained as the Euler-Lagrange equations for an “extended” Lagrangian. Equation (13) does not correspond to any 
Euler–Lagrange equation. Indeed, it involves two potentials, 𝐿 and 𝑀 , while the Euler-Lagrange equations are written in terms of 
a single potential (Lagrange function). By doing so, we expect a better approximation of the conduit equation by the corresponding 
hyperbolic system of equations.

Consider a two-parameter family of potentials

(𝑣, 𝑧, 𝑧𝑥, 𝑧𝑡) =
√
1 + 2𝑣+

𝑧2
𝑡

2𝑐2
−
𝑧2
𝑥

2
− 𝜆

2

(
𝑧−

√
1 + 2𝑣

)2
, (19)
3

where 𝜆 and 𝑐 are large parameters. Let us replace the equation (13) by a system of equations for two unknowns 𝑣 and 𝑧:
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𝜕
𝜕𝑣

)
𝑡
+
(
𝜕𝑀

𝜕𝑣

)
𝑥
= 0 and

𝛿
𝛿𝑧

= 0, (20)

with

𝛿
𝛿𝑧

= 𝜕
𝜕𝑧

−
(
𝜕
𝜕𝑧𝑡

)
𝑡

−
(
𝜕
𝜕𝑧𝑥

)
𝑥

.

It admits the conservation law:(
𝑧𝑡
𝜕
𝜕𝑧𝑡

+ 𝑣𝜕
𝜕𝑣

−
)
𝑡

+
(
𝑧𝑡
𝜕
𝜕𝑧𝑥

+ 𝑣𝜕𝑀
𝜕𝑣

−𝑀
)
𝑥

= 0. (21)

Indeed, straightforward computations give the identity(
𝑧𝑡
𝜕
𝜕𝑧𝑡

+ 𝑣𝜕
𝜕𝑣

−
)
𝑡

+
(
𝑧𝑡
𝜕
𝜕𝑧𝑥

+ 𝑣𝜕𝑀
𝜕𝑣

−𝑀
)
𝑥

=

𝑣

((
𝜕
𝜕𝑣

)
𝑡
+
(
𝜕𝑀

𝜕𝑣

)
𝑥

)
− 𝑧𝑡

𝛿
𝛿𝑧

= 0.

Since 𝑀 is a function of 𝑣 only, and  does not depend on space and time derivatives of 𝑣, (20) can be rewritten in the form(
𝜕
𝜕𝑣

)
𝑡
+
(
𝜕𝑀

𝜕𝑣

)
𝑥
= 0 and

(
𝛿
𝛿𝑧

)
𝑡
+
(
𝜕𝑀

𝜕𝑧

)
𝑥
= 0,

which is exactly the form (7) with (21) corresponding to (8).

Now we will write the equations (20) in explicit form by using the expressions for derivatives:

𝜕
𝜕𝑣

= 1√
1 + 2𝑣

+ 𝜆
𝑧−

√
1 + 2𝑣√

1 + 2𝑣
, (22a)

𝜕
𝜕𝑧

= −𝜆
(
𝑧−

√
1 + 2𝑣

)
, (22b)

𝜕
𝜕𝑧𝑥

= −𝑧𝑥, (22c)

𝜕
𝜕𝑧𝑡

=
𝑧𝑡

𝑐2
. (22d)

The first equation of (20) becomes:(
1√

1 + 2𝑣
+ 𝜆
𝑧−

√
1 + 2𝑣√

1 + 2𝑣

)
𝑡

− 2
1 + 2𝑣

𝑣𝑥 = 0. (23)

The second equation of (20) becomes:

− 1
𝑐2
𝑧𝑡𝑡 + 𝑧𝑥𝑥 = 𝜆(𝑧−

√
1 + 2𝑣). (24)

Finally, we return back to 𝑢-variable (𝑢 =
√
1 + 2𝑣):(1

𝑢
+ 𝜆𝑧− 𝑢

𝑢

)
𝑡
−

2𝑢𝑥
𝑢

= 0, − 1
𝑐2
𝑧𝑡𝑡 + 𝑧𝑥𝑥 = 𝜆(𝑧− 𝑢). (25)

Similar to the conduit equation, this system is reversible in the sense that it is invariant under the change of independent variables 
𝑡 → −𝑡, 𝑥 → −𝑥. Its first order quasi-linear formulation can then be written as:(1

𝑢
+ 𝜆𝑧− 𝑢

𝑢

)
𝑡
−

2𝑢𝑥
𝑢

= 0, (26a)

− 1
𝑐
𝑧𝑡 + 𝑧𝑥 = 𝑝, (26b)

1
𝑐
𝑝𝑡 + 𝑝𝑥 = 𝜆(𝑧− 𝑢). (26c)

The eigenvalues are 𝑠1 = −𝑐, 𝑠2 = 2𝑢∕(1 + 𝜆𝑧), and 𝑠3 = 𝑐. The associated eigenvectors are

𝑹1 =
⎛⎜⎜⎝
−2𝜆𝑐∕(2𝑢+ 𝑐(1 + 𝜆𝑧))

1
0

⎞⎟⎟⎠ , 𝑹2 =
⎛⎜⎜⎝
1
0
0

⎞⎟⎟⎠ , 𝑹3 =
⎛⎜⎜⎝
0
0
1

⎞⎟⎟⎠ .
For large enough 𝑐 and 𝜆, the equations are strictly hyperbolic. The initial conditions for (26) are:

𝑑𝑢 (𝑥)
4

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑧(0, 𝑥) = 𝑢0(𝑥), 𝑝(0, 𝑥) = 0
𝑑𝑥

. (27)
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Fig. 1. Comparison of the exact dispersion relation for 𝑢0 = 1 (black dashed curve) and approximate one (red curve for 𝑐 = 15, 𝜆 = 𝑐2 = 225) is shown. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

These are the conditions we used for the numerical tests in Section 7. In the following, we will take 𝜆 = 𝑐2. The system (25) admits 
the conservation law (21) which is equivalent to the following one:(

𝑧2
𝑡

𝑐2
+ 𝑧2

𝑥
+ 𝜆𝑧2 − 𝑢(1 + 𝜆𝑧)

)
𝑡

− (𝑢2 + 2𝑧𝑡𝑧𝑥)𝑥 = 0. (28)

4. Dispersion relation

The dispersion relation for the hyperbolic system (26) linearized on the solution 𝑢 = 𝑢0, 𝑧 = 𝑢0, 𝑝 = 0 is:

1
𝑘2

=
1 + 𝜆𝑢0
𝜆

(𝑐2
𝑝
∕𝑐2 − 1)(𝑐𝑝 − 2𝑢0∕(1 + 𝜆𝑢0))

𝑐𝑝 − 2𝑢0
. (29)

For any wave number 𝑘 the real root 𝑐𝑝 approximating the exact dispersion relation (3) satisfies the inequality

2𝑢0
1 + 𝜆𝑢0

< 𝑐𝑝 < 2𝑢0. (30)

For large 𝜆 and 𝑐2 the approximate dispersion relation can be written as:

1
𝑘2

=
𝑐𝑝𝑢0

2𝑢0 − 𝑐𝑝
+

(
1
𝜆
+ 1
𝑐2

)
. (31)

Fig. 1 shows the “quality” of the approximate dispersion relation (29). The asymptotic formula (31) suggests a natural choice of 
𝜆 = 𝑐2 to pass to one parameter family of penalty functions (𝑣, 𝑧, 𝑧𝑡, 𝑧𝑥) defined by (19).

5. Periodic solutions

Periodic and solitary wave solutions to the conduit equation can be found, for example, in [29]. Here a quick overview of the 
solutions is given. Looking for traveling solutions to (2) depending only on 𝜉 = 𝑥 −𝐷𝑡, 𝐷 = 𝑐𝑜𝑛𝑠𝑡 > 0 is the wave velocity, one obtains 
the ODE:

𝐷𝑢′′ = (𝐶 − 1)𝑢− 2𝑢 ln(𝑢) −𝐷, 𝐶 = 𝑐𝑜𝑛𝑠𝑡, (32)

admitting the first integral

𝐷𝑢′ 2 = 𝑃 (𝑢) = 𝐶𝑢2 − 2𝑢2 ln(𝑢) − 2𝐷𝑢−𝑄, 𝑄 = 𝑐𝑜𝑛𝑠𝑡. (33)

Here “prime” means the derivative with respect to 𝜉. Since 𝑢 ln(𝑢) is convex for 𝑢 > 0, the function 𝑃 (𝑢) has maximum two critical 
points for 𝑢 > 0, and hence maximum three roots. In the last case we denote them 𝑢𝑖 , 𝑃 (𝑢𝑖) = 0, 𝑖 = 1, 2, 3, 0 < 𝑢1 < 𝑢2 < 𝑢3. A typical 
behavior of 𝑃 (𝑢) is shown in Fig. 2. One can construct periodic solution oscillating between 𝑢2 (minimum of the wave amplitude) 
and 𝑢3 (maximum of the wave amplitude). The case 𝑢1 = 𝑢2 gives the solitary wave solutions. The wave velocity 𝐷, and the constants 
𝐶 and 𝑄 are thus calculated from the linear system:

𝐶𝑢2
𝑖
− 2𝑢2

𝑖
ln(𝑢𝑖) − 2𝐷𝑢𝑖 −𝑄 = 0, 𝑖 = 1,2,3. (34)

Its solution is unique if 𝑢1 ≠ 𝑢2 ≠ 𝑢3. The wave length 𝐿 and averaged over the wave length the periodic solution 𝑢 are given by the 
5

following expressions coming directly from (33):
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Fig. 2. A typical behavior of the function 𝑃 (𝑢) is shown. In a domain of parameters 𝐶, 𝐷 > 0, 𝑄 < 0 it has three roots 0 < 𝑢1 < 𝑢2 < 𝑢3 . The periodic solution oscillates 
between 𝑢2 and 𝑢3 .

𝐿 = 2
√
𝐷

𝑢3

∫
𝑢2

𝑑𝑢√
𝑃 (𝑢)

, 𝑢 =

𝑢3

∫
𝑢2

𝑢𝑑𝑢√
𝑃 (𝑢)

𝑢3

∫
𝑢2

𝑑𝑢√
𝑃 (𝑢)

. (35)

To study traveling wave solutions to (26), we will use the conservative form of equations:(1
𝑢
+ 𝜆𝑧− 𝑢

𝑢

)
𝑡
− (ln(𝑢2))𝑥 = 0,(

𝑧2
𝑡

𝑐2
+ 𝑧2

𝑥
+ 𝜆𝑧2 − 𝑢(1 + 𝜆𝑧)

)
𝑡

− (𝑢2 + 2𝑧𝑡𝑧𝑥)𝑥 = 0.

Using again the sign “prime” for the derivative with respect to the traveling wave coordinate 𝜉 = 𝑥 −𝐷𝑡, one gets the following ODE 
system

−𝐷
(1
𝑢
+ 𝜆𝑧− 𝑢

𝑢

)
− ln(𝑢2) = 𝑐1, (36a)

𝐷

(
1 − 𝐷

2

𝑐2

)
𝑧′ 2 =𝐷(𝜆𝑧2 − 𝑢(1 + 𝜆𝑧)) + 𝑢2 + 𝑐2, (36b)

where 𝑐𝑖, 𝑖 = 1, 2 are constants. It can be reduced to only one equation for 𝑢. Indeed, one has

𝑧 = 𝑢− 𝑢

𝐷𝜆

(
𝑐1 + ln(𝑢2) + 𝐷

𝑢

)
, (36c)

that yields

𝑑𝑧

𝑑𝑢
= 1 − 1

𝐷𝜆

(
𝑐1 + 2 + 2 ln(𝑢)

)
. (36d)

Then the equation (36b) becomes

𝐷

(
1 − 𝐷

2

𝑐2

)(
1 − 1

𝐷𝜆

(
𝑐1 + 2 + 2 ln(𝑢)

))2
𝑢′ 2 =

𝑢2

𝐷𝜆

(
𝐷𝜆− 𝑐1 − 2 ln(𝑢) − 𝐷

𝑢

)2
−𝐷𝜆𝑢2 + 𝑐1𝑢2 + 𝑢2 + 2𝑢2 ln(𝑢) + 𝑐2.

Finally, a compact form of this equation is:

𝑢′ 2 = 𝐹 (𝑢)
𝐺(𝑢)

, (37a)

where

𝐹 (𝑢) = 𝑢2

𝐷𝜆

(
𝐷𝜆− 𝑐1 − 2 ln(𝑢) − 𝐷

𝑢

)2
+ 𝑢2

(
1 + 𝑐1 −𝐷𝜆+ 2 ln(𝑢)

)
+ 𝑐2, (37b)

𝐺(𝑢) =𝐷
(
1 − 𝐷

2)(
1 − 1 (

𝑐1 + 2 + 2 ln(𝑢)
))2

. (37c)
6

𝑐2 𝐷𝜆
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To find the solution of (37) numerically using an ODE solver, we need to determine the parameters 𝑐1 , 𝑐2, and 𝐷 first. Given 
three constant states 𝑢1 , 𝑢2, and 𝑢3, 0 < 𝑢1 < 𝑢2 < 𝑢3, that are the equilibrium solutions of 𝐹 (𝑢), this amounts solving the system of 
nonlinear equations:

𝐹 (𝑢1) = 0, 𝐹 (𝑢2) = 0, 𝐹 (𝑢3) = 0;

we do this by employing a quasi-Newton method (cf. [28]) using the coefficients from the periodic solution of the conduit equation 
as the initial guess, see (33), achieving the convergent results after 1 or 2 iterative steps, depending on the convergence tolerance. 
Once we get 𝑢, we may set 𝑧 and 𝑝 =

(
1 − 𝐷

𝑐

)
𝑧′ based on (36c) and (36d), respectively.

6. Numerical methods

As in [8,10], we use a fractional-step approach for the numerical resolution of the hyperbolic conduit system: at each time step, 
we alternate between by solving the homogeneous (hyperbolic) part of the system (26)⎛⎜⎜⎝

1∕𝑢+ 𝜆 (𝑧− 𝑢) ∕𝑢
−𝑧∕𝑐
𝑝∕𝑐

⎞⎟⎟⎠𝑡 +
⎛⎜⎜⎝
−ln

(
𝑢2
)

𝑧

𝑝

⎞⎟⎟⎠𝑥 = 0 (38a)

over a time step Δ𝑡, and the ODEs⎛⎜⎜⎝
1∕𝑢+ 𝜆 (𝑧− 𝑢) ∕𝑢

−𝑧∕𝑐
𝑝∕𝑐

⎞⎟⎟⎠𝑡 =
⎛⎜⎜⎝

0
𝑝

𝜆 (𝑧− 𝑢)

⎞⎟⎟⎠ (38b)

using the initial data from the previous step and the same time step. Here, the numerical approach we employed for solving (38a)

is the same as for the conduit equation, see Appendix A. To update the solution of the ODEs (38b), we need to solve the linear 
second-order ODE:

𝑧𝑡𝑡 +
𝜆𝑐2𝐸0
𝐸0 + 𝜆

𝑧 = 𝜆𝑐2

𝐸0 + 𝜆
(39a)

with the initial conditions(1
𝑢
+ 𝜆𝑧− 𝑢

𝑢

)||||𝑡=0 =𝐸0, 𝑧(0) = 𝑧0, 𝑝(0) = 𝑝0. (39b)

If 𝐸0 > 0, its exact solution is:

𝑧 = 1
𝐸0

(
1 +

(
𝐸0𝑧0 − 1

)
cos (𝜔𝑡) −

𝑐𝑝0𝐸0
𝜔

sin (𝜔𝑡)
)
, (40a)

where 𝜔2 = 𝜆𝑐2𝐸0∕(𝐸0 + 𝜆). We then have

𝑝 = −1
𝑐
𝑧𝑡 = 𝑝0 cos (𝜔𝑡) +

𝜔
(
𝐸0𝑧0 − 1

)
𝑐𝐸0

sin (𝜔𝑡) . (40b)

If 𝐸0 < 0 (𝐸0 + 𝜆 > 0 for large 𝜆), we find the exact solution:

𝑧 = 1
2𝐸0

(
2 +

(
𝐸0𝑧0 − 1 −

𝑐𝑝0𝐸0
𝜇

)
𝑒𝜇𝑡 +

(
𝐸0𝑧0 − 1 +

𝑐𝑝0𝐸0
𝜇

)
exp−𝜇𝑡

)
, (40c)

𝑝 = −1
𝑐
𝑧𝑡 = − 𝜇

2𝑐𝐸0

((
𝐸0𝑧0 − 1 −

𝑐𝑝0𝐸0
𝜇

)
𝑒𝜇𝑡 −

(
𝐸0𝑧0 − 1 +

𝑐𝑝0𝐸0
𝜇

)
exp−𝜇𝑡

)
, (40d)

where 𝜇2 = −𝜆𝑐2𝐸0∕(𝐸0 + 𝜆). Recall that 𝐸0, 𝑧0 and 𝑝0 are the solution of the homogeneous system (38a).

7. Numerical tests

For the tests in this section, we take a uniform mesh size Δ𝑥 = 0.05, and a time step Δ𝑡 determined from the Courant-Friedrich-

Lewy (CFL) condition for the stability of the hyperbolic solver. The homogeneous Neumann boundary condition was employed on 
the left and right of the boundaries during the computations. The CFL number for all computations was 0.5. For comparison, we will 
present results obtained using four different schemes for the homogeneous system (38a): MUSCL, WENO3, WENO5, and BVD35. (see 
Appendix A for the details). The ODEs (38b) is solved using the exact solution (40) in all cases.

7.1. Box test

Our first test is an example studied in [25] for solitary wave fission of a large disturbance in a viscous fluid conduit. In this test, 
7

the initial condition for the conduit equation is the box:
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Fig. 3. Numerical results for the box test. Snapshots of solutions are obtained using BVD35 case of the method are shown at time 𝑡 = 350 for 𝐿 = 48 and 𝐿 = 96. In 
both cases, parameter values 𝑐 = 30 and 𝜆 = 900 were used in the computations. The blue line legend “conduith” means the results obtained using the hyperbolic 
approximation of the conduit equation, while the red line legend “conduit” is for the exact conduit equation.

𝑢(0, 𝑥) = 1 + 𝛼
2

(
tanh

(
𝑥− 𝑥0
𝛽

)
− tanh

(
𝑥− 𝑥0 −𝐿

𝛽

))
, (41)

where 𝛼 = 0.88, 𝛽 = 2.5, and 𝑥0 = 300 for 𝑥 ∈ [0, 1500].
For the hyperbolic model, the parameter values we set for 𝑐 and 𝜆 are 30 and 900, respectively.

Fig. 3 shows numerical results for 𝐿 = 48 and 96 at time 𝑡 = 350 obtained using BVD35 case of the algorithm, observing good 
agreement of the state variable 𝑢 between the conduit equation and its hyperbolic variant. In addition, we observe the similar solution 
structure between 𝑢 and 𝑧 which confirms the validity of our formal approach. For comparison, we repeat the computations using 
MUSCL, WENO3, and WENO5 cases. In Fig. 4 we show snapshots of the state variable 𝑢 at time 𝑡 = 350 only partially in the region 
𝑥 ∈ [1000, 1500] (for completeness, the BVD35 results are included). It is clear that among them WENO5 and BVD35 give better 
solutions than WENO3 and MUSCL. For the MUSCL case, in particular, it is surprising to see the nonconvergence on the phase and 
amplitude for the foregoing solitary waves; this may mean that the third-order truncation (dispersive) error is too large for this 
8

problem, when discretizing the hyperbolic conduit equation based on the MUSCL approach.
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Fig. 4. Numerical methods comparison for the box test. Snapshots of the state variable 𝑢 obtained using four different hyperbolic solvers are shown at time 𝑡 = 350 in 
the case of 𝐿 = 48 and 𝐿 = 96; only partial solutions in the region 𝑥 ∈ [1000, 1500] are shown. In both cases, parameter values 𝑐 = 30 and 𝜆 = 900 were used in the 

computations.
9
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Fig. 5. Numerical results for the Gaussian test. Snapshots of solution obtained using BVD35 case of the method are shown at time 𝑡 = 150 for 𝐿 = 20 and 𝐿 = 50. In 
both cases, parameter values 𝑐 = 30 and 𝜆 = 900 were used in the computations.

7.2. Gaussian test

Our second test is an example studied in [10] for the BBM equation. In this test, for the conduit equation, we take the Gaussian 
profile:

𝑢(0, 𝑥) = 1 + 2√
𝜋

exp(−𝑥2∕𝐿2) (42)

for 𝑥 ∈ [−200, 600]. For the hyperbolic model, we use the same initialization procedure as before under (42), and the same parameter 
values for 𝑐 and 𝜆 during the computations.

Fig. 5 shows numerical results in the case of 𝐿 = 20 and 50 at time 𝑡 = 150 obtained using BVD35 case of the algorithm. We again 
observe good agreement of the state variable 𝑢 between the conduit equation and its hyperbolic variant, and also the same solution 
behavior between 𝑢 and 𝑧. As in the previous test, we perform the computations using MUSCL, WENO3, and WENO5 cases also, and 
show numerical results in Fig. 6; only the partial solutions in the region 𝑥 ∈ [200, 600] are shown. We find sensible good agreement 
10

of the solutions, even in the MUSCL case.
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Fig. 6. Numerical methods comparison for the Gaussian test. Snapshots of the state variable 𝑢 obtained using four different hyperbolic solvers are shown at time 
𝑡 = 150 for 𝐿 = 20 and 𝐿 = 50; only the partial solutions in the region 𝑥 ∈ [200, 600] are shown. In both cases, parameter values 𝑐 = 30 and 𝜆 = 900 were used in the 

computations.
11
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Fig. 7. A parameter study of the solutions on 𝑐 and 𝜆 = 𝑐2 for the hyperbolic model. On the first row, the solutions are for the box test in the case of 𝐿 = 96 at time 
𝑡 = 350, and on the second row, the solutions are for the Gaussian test in the case of 𝐿 = 50 at time 𝑡 = 150; only the snapshots of the state variable 𝑢 are shown 
together with the conduit solution. In both cases, we used parameter values 𝑐 = 20 and 𝑐 = 100 in the computations.

Table 1

The CPU time (sec) taken for the numerical results shown 
in Fig. 7.

conduit hyperbolic model

𝑐 = 20 𝑐 = 100

box test 1021.528 3057.535 14572.31
Gaussian test 247.996 1238.719 6150.387

7.3. Parameter study

To end, we show the convergence of the hyperbolic conduit solution to the conduit one. For this, we perform a parameter study 
on 𝑐 and 𝜆 = 𝑐2 for 𝑐 = 20 and 100. In Fig. 7, the solutions of 𝑢 for the box test in the case of 𝐿 = 96 and the Gaussian test in the 
case of 𝐿 = 50 are shown at times 𝑡 = 350 (the first row) and 𝑡 = 150 (the second row), respectively. Here, for clarity, only the partial 
solutions in the region 𝑥 ∈ [1210, 1450] and 𝑥 ∈ [300, 530] are drawn. It is clear that the solution is more accurate when a larger 
parameter is used in the computations. Table 1 gives the timing study in CPU (sec) for the results shown in Fig. 7, where the tests 
were performed in a Mac mini M2 Pro with 32GB RAM by using the BVD35 scheme. We observe the higher computational cost when 
12

the hyperbolic model (26) is used as compared to the dispersive conduit equation (2).
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Fig. 8. The general solution structure of Cauchy problem (44) for the conduit equation is shown in (𝑥, 𝑡)–plane. The wave train in the middle consists of 48 periodic 
waves, where the initial parameters for each of them are: 𝑢1 = 1, 𝑢3 = 2 and 𝑢2 = 2 − 𝑚0 , 𝑚0 = 0.999. The wave average on the left and right of the wave train is 
𝑢 ≈ 1.216.

8. Generalized Riemann problem

We call a generalized Riemann problem (GRP) the Cauchy problem

𝑢(0, 𝑥) =
{
𝑢𝐿(𝑥), 𝑥 < 0,
𝑢𝑅(𝑥), 𝑥 > 0, (43)

where 𝑢𝐿 and 𝑢𝑅(𝑥) are different periodic travelling wave solutions of the corresponding dispersive equations (in particular, of the 
conduit equation). Such a problem was studied in [11] for the Serre-Green-Naghdi and Boussinesq equations with linear dispersion, 
in [10] for the BBM equation, and in [31] for the fifth order KdV equation. In particular, in the first reference new stable shock-like 
travelling wave solutions were found linking a constant solution (denoted further by 𝑢⋆) to a periodic wave train. The shock-like 
transition zone between the constant state and the wave train was well described by the half of solitary wave having the wave crest 
at the maximum of the nearest periodic wave. Such a configuration was stable under certain conditions. For example, for the BBM 
equation such a shock-like structure is stable if the phase velocity of the periodic wave train is not less than the solution wave averaged 
representing indeed the characteristic velocity of a dispersionless homogeneous state [10]. In our case, the characteristic velocity of 
the dispersionless equation (𝑢𝑡 + (𝑢2)𝑥 = 0) is 2𝑢. Since the dispersive properties of the BBM equation are similar to those of the 
conduit equation, we expect that the stable configuration linking a constant state 𝑢⋆ to a periodic wave train having the velocity 𝐷
can be also realized for 𝐷 > 2𝑢 (see the definition (35) of the wave averaged.) The aim of this section is thus to reveal the analogous 
solutions for the conduit equation numerically.

8.1. Rankine-Hugoniot relation test

We begin by looking into a modified version of (43) in the form

𝑢(0, 𝑥) =
⎧⎪⎨⎪⎩
𝑢, 𝑥 < 𝑥0,
𝑢(𝑥), 𝑥0 < 𝑥 < 𝑥1,
𝑢, 𝑥 > 𝑥1,

(44)

where 𝑢(𝑥) is a wave profile that consists of 𝑁 periodic waves in the interval (𝑥0, 𝑥1), and 𝑢 is the average value of a single periodic 
wave over a wavelength. In the numerical experiments performed here, the parameters we take for the initial periodic solution are 
𝑢1 = 1, 𝑢3 = 2 and 𝑢2 = 2 − 𝑚0, 𝑚0 = 0.999. Then with Wolfram Mathematica, Version 12, one gets the phase speed 𝐷 ≈ 2.546, the 
average state 𝑢 ≈ 1.216, and the wave length 𝐿 ≈ 42.72. The initial wave train is formed by introducing 𝑁 = 48 of such a periodic 
solution into one.

In Fig. 8, we show the pseudo-color plot of the solution in (𝑥, 𝑡)–plane, observing clearly the formation of a constant state 𝑢⋆ on 
the left of the primary periodic wave train and on the right of the left rarefaction wave. This is as expected, because as in [10] we 
have the phase speed 𝐷 ≈ 2.546 larger than the characteristic speed 2𝑢 ≈ 2.432, a necessary condition for the existence of the stable 
shock-like travelling structure. The snapshot of the solution for the problem at time 𝑡 = 600 is shown in Fig. 9, where the solution 
shown on the left is obtained using the conduit equation, and on the right is obtained using the hyperbolic model. We observe good 
agreement of the results qualitatively.

To determine analytically the state 𝑢⋆ , we use the Rankine-Hugoniot relation coming from the conservative form (1) (the mass 
13

conservation law). We consider the jump relation for (1) on the travelling wave solutions for a shock having the same velocity 𝐷 as 
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Fig. 9. The snapshot of the solution for the Cauchy problem (44) at time 𝑡 = 600. The solution shown on the left is obtained using the conduit equation, and on the 
right is obtained using the hyperbolic model with the parameters 𝑐 = 30 and 𝜆 = 900.

that of the travelling wave train, and linking the maximum amplitude 𝑢3 of the wave train with the constant state 𝑢⋆ (see [11,9] for 
details):

−𝐷(𝑢3 − 𝑢⋆) + (𝑢23 − 𝑢
2
⋆
+ 𝑢3𝐷𝑢′′|𝑢=𝑢3 ) = 0. (45)

We have used the fact that in the 𝑢3 state and extremal state “star” the derivative 𝑢′ vanishes. The roots 𝑢𝑖 are related by:

𝐶𝑢21 − 2𝑢21 ln(𝑢1) − 2𝐷𝑢1 = 𝐶𝑢22 − 2𝑢22 ln(𝑢2) − 2𝐷𝑢2
= 𝐶𝑢23 − 2𝑢23 ln(𝑢3) − 2𝐷𝑢3.

It is a system of two linear equations for 𝐶 and 𝐷. If 0 < 𝑢1 < 𝑢2 < 𝑢3, the solution is unique. Hence, one can estimate 𝐷𝑢′′ at the 
maximum 𝑢3 from (32):

𝐷𝑢′′|𝑢=𝑢3 = (𝐶 − 1)𝑢3 − 2𝑢3 ln(𝑢3) −𝐷. (46)

We can now replace all into (45) to obtain the following quadratic equation for 𝑢⋆ :

−𝐷(𝑢3 − 𝑢⋆) + (𝑢23 − 𝑢
2
⋆
+ 𝑢3(𝐶 𝑢3 − 2𝑢3 ln(𝑢3) − 𝑢3 −𝐷)) = 0. (47)

It has two possible solutions, 𝑢−
⋆

and 𝑢+
⋆

, with the properties 0 < 𝑢1 < 𝑢−⋆ < 𝑢2 < 𝑢3 and 0 < 𝑢1 < 𝑢2 < 𝑢+⋆ < 𝑢3. As in the case of the BBM 
equation [10], one can numerically check that only the solution 𝑢−

⋆
linked to the periodic wave train by jump relations is stable. In 

the following, this constant solution 𝑢−
⋆

is denoted simply 𝑢⋆. The expression for 𝑢⋆ is quite complex, and cannot be easily analyzed 
analytically as for the BBM equation. So, 𝑢⋆ state was numerically calculated.

8.2. Multi-hump solitary waves

In this test problem we take the same 𝑢2, 𝑢3, and 𝐷 as in the Cauchy problem (44), we find the value 𝑢⋆ ≈ 1.000499. Then we 
may construct a multi-hump structure in the form

𝑢(0, 𝑥) = 𝑢̃(𝑥) =
⎧⎪⎨⎪⎩
𝑢⋆, 𝑥 < 𝑥0,
𝑢𝑀 (𝑥), 𝑥0 < 𝑥 < 𝑥1,
𝑢⋆, 𝑥 > 𝑥1,

(48)

with 𝑢𝑀 as a periodic wave train linked to 𝑢⋆. Fig. 10, the left column, shows 𝑢𝑀 composed of 𝑁 = 11 periodic wave solutions. 
We call this wave multi-hump solitary wave. This multi-hump solitary wave propagates stably as we can see in Fig. 11 where the 
snapshot solutions obtained using the conduit equation and the hyperbolic model at time 𝑡 = 1000 are shown. We are next concerned 
with a double multi-hump problem for the interaction of two multi-hump waves. The initial condition is:

𝑢(0, 𝑥) =
{
𝑢̃𝐿(𝑥), 𝑥 ≤ 𝑥0,
𝑢̃𝑅(𝑥), 𝑥 > 𝑥0,

(49)

where 𝑢̃𝐿 and 𝑢̃𝑅 are having analogous structure to (48), see the right column of Fig. 10 for an illustration. To be specific, for each 
wave train it consists of 𝑁 = 11 periodic waves together with a hybrid half wavelength periodic and solitary waves, and 𝑥0 = 1600. 
The state values we take for 𝑢̃𝐿 are 𝑢𝐿1 = 0.9, 𝑢𝐿2 = 0.907, 𝑢𝐿3 = 1.7, and that give 𝐷𝐿 ≈ 2.25, 𝑢𝐿 ≈ 1.123, and 𝑢𝐿

⋆
≈ 0.903477. For 𝑢̃𝑅, 

we have 𝑢𝑅1 = 0.9, 𝑢𝑅2 = 0.907, 𝑢𝑅3 = 1.25, and get 𝐷𝑅 ≈ 2.01871, 𝑢𝑅 ≈ 1.00894, and 𝑢𝑅
⋆
≈ 0.903467. Since the states 𝑢⋆

𝐿
and 𝑢⋆

𝑅
are 
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approximately the same, and 𝐷𝐿 >𝐷𝑅, we can study the interaction of multi-hump solitary waves propagating on the same level 𝑢⋆ .
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Fig. 10. Illustration of the initial conditions for the multi-hump problems. The plot shown on the left is for the single hump problem (48), and on the right is for the 
double hump problem (49).

Fig. 11. The snapshot of the conduit solution for the multi-hump problem (48) at time 𝑡 = 1000. The solution on the left is for the conduit equation, and on the right 
is for the hyperbolic model. The computation domain is 𝑥 ∈ [0, 4000]; only the partial solutions in the region 𝑥 ∈ [3130, 3730] are shown.

Fig. 12 shows the numerical solutions for the conduit equation at times 𝑡 = 500, 2000, 2500, 3000, 4000, 5000, observing the wave 
interaction, merging, and their full reconstruction. Here without introducing a large domain size, the computation domain is adjusted 
in time by the method to have the multi-hump solution stayed inside the region. The solutions for the hyperbolic model are shown 
in Fig. 13, we again observe good qualitative agreement of the solution, and the validation of the numerical solutions.

The stability of multi-hump solutions created “artificially” by combining periodic solutions and constant states related by the 
generalized Rankine-Hugoniot relations show that they are stable weak solutions to the conduit equation. In particular, they are 
stable under a “perturbation” of the conduit equation by a hyperbolic system conserving its original Godunov type form.

It would be interesting to understand whether or not the collision of multi-hump solitary waves presents a phase shift in the wave 
positions compared to the situation without interaction. In Fig. 14, we have shown the final positions of multi-hump solitary waves 
propagating with and without interaction. Numerical results show that the largest amplitude solitary wave without interaction is 
behind the one with interaction, while the smallest amplitude wave without interaction is in front of the one with interaction.

9. Conclusion

We have proposed a hyperbolic approximation of the conduit equation preserving, in particular, invariance properties of the 
conduit equation (reversibility in time and space) and approximating the solutions of the conduit equation with good accuracy. The 
advantage of the hyperbolic approximation is that it allows all the numerical tools developed for hyperbolic equation systems to be 
applied to the study of dispersive equations.

We have constructed new solutions to the conduit equation representing an assemblage of many waves of the same period linked 
to a constant solution by the generalized Rankine-Hugonit relation, also taking into account the curvature of periodic waves. The 
generalized shock linking the maximum of the lateral periodic waves to a constant state has the same velocity as that of the periodic 
wave train. Such a multi-hump solitary wave is stable if the wave velocity is twice as great as 𝑢. This condition means that the phase 
velocity of such a structure must be supercritical with respect to the homogeneous state 𝑢 having the characteristic slope 2𝑢. The 
15

hyperbolic approximation of the conduit equation also admits such stable solutions.
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Fig. 12. The snapshot of the conduit solution for the two multi-hump problem (49) at times 𝑡 = 500, 2000, 2500, 3000, 4000, 5000. The plots are displayed from the left 
top to bottom and continue from the right top to bottom. The computation domain is adjusted in time to have the multi-hump solution stayed in the domain; only the 
partial solutions in the neighborhood of the multi-hump solitons are shown.
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Fig. 13. The snapshot solutions of the hyperbolic conduit model for the two multi-hump problem (49) at times 𝑡 = 500, 2000, 2500, 3000, 4000, 5000. The plots are 
displayed in the same manner as Fig. 13.
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Fig. 14. The snapshot solutions of the conduit model showing the phase shift after the interaction of multi-hump solitary waves.
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Appendix A. Numerical methods for the conduit equation

To find approximate solutions to the conduit equation (2), we use the hyperbolic-elliptic splitting approach developed previously 
in [19,11,10]. This algorithm consists of two steps. In the first step, the hyperbolic step, we employ the state-of-the-art method for 
hyperbolic conservation laws for the numerical resolution of the equation( )
18

𝑡 − ln𝑢2
𝑥
= 0 (50a)
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over a time step Δ𝑡. As in [11,10], the stability condition is the CFL condition: Δ𝑡∕(2Δ𝑥 max𝑖(𝑢𝑖) < 1, where 𝑢𝑖 is the numerical 
solution in the 𝑖th grid cell. In the second step, the elliptic step, using the approximate solution  computed during the hyperbolic 
step, we invert numerically the elliptic operator:

−𝑢𝑥𝑥 +𝑢 = 1 (50b)

for 𝑢 with prescribed boundary conditions based on a finite-difference scheme [21].

It should be mentioned that from (1) one can also find numerical solutions to the conduit equation when we apply the algorithm 
to solve the following hyperbolic-elliptic system:

𝑢𝑡 +
(
𝑢2 +𝜛

)
𝑥
= 0, (51a)

−
(𝜛𝑥
𝑢

)
𝑥
+ 𝜛
𝑢2

= 2𝑢𝑥𝑥, (51b)

separately for 𝑢 and 𝜛 during each time step.

More precisely, in the hyperbolic step, we use the semi-discrete finite volume method written in a wave-propagation form as 
before [11], but employ a different solution reconstruction technique, the BVD (boundary variation diminishing) principle, which is 
more robust than the classical one for the interpolated states ( for (50) or 𝑢 for (51)) at cell boundaries (cf. [5] and the references 
cited therein). These reconstructed variables form the basis for the initial data of the Riemann problems, where the solutions of 
the Riemann problems are then used to construct the fluctuations in the spatial discretization that gives the right-hand side of the 
system of ODEs (cf. [20,17,18]). To integrate the ODE system in time, the strong stability-preserving (SSP) multistage Runge-Kutta 
scheme [15,30] is used. In particular, for the numerical results presented in this paper, the third-order SSP scheme was employed 
together with the pair of third- and fifth-order WENO (weighted essentially non-oscillatory) scheme in the BVD reconstruction process.

It is important to note that for solving the hyperbolic part of the conduit system (38a), in the MUSCL method, we used a piecewise 
linear reconstruction technique for approximating the spatial derivative and a second-order Heun method for the derivative in time. 
In the WENO3 method, we used the third-order WENO reconstruction and the third-order SSP integration in time. In the WENO5
method, we used the fifth-order WENO reconstruction and the third-order SSP integration in time as well. In the BVD35 method, as 
in the exact conduit equation case, we used a hybrid third- and fifth-order WENO reconstruction and a third-order SSP scheme in 
time. The stability condition of each of the method is the classical CFL condition.

References

[1] T.B. Benjamin, J.L. Bona, J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 
272 (1220) (1972) 47–78.

[2] C. Besse, S. Gavrilyuk, M. Kazakova, P. Noble, Perfectly matched layers methods for mixed hyperbolic–dispersive equations, Water Waves 4 (3) (2022) 313–343.

[3] S. Bourgeois, N. Favrie, B. Lombard, Dynamics of a regularized and bistable Ericksen bar using an extended Lagrangian approach, Int. J. Solids Struct. 207 (2020) 
55–69.

[4] S. Busto, M. Dumbser, C. Escalante, N. Favrie, S. Gavrilyuk, On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of 
nonlinear dispersive systems, J. Sci. Comput. 87 (2) (2021) 48.

[5] X. Deng, S. Inaba, B. Xie, K.M. Shyue, F. Xiao, High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces, J. 
Comput. Phys. 371 (2017) 945–966.

[6] F. Dhaouadi, N. Favrie, S. Gavrilyuk, Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation, Stud. Appl. Math. 142 (3) (2019) 
336–358.

[7] V. Duchêne, Rigorous justification of the Favrie– Gavrilyuk approximation to the Serre– Green–Naghdi model, Nonlinearity 32 (2019) 3772–3797.

[8] N. Favrie, S. Gavrilyuk, A rapid numerical method for solving Serre–Green–Naghdi equations describing long free surface gravity waves, Nonlinearity 30 (7) 
(2017) 2718.

[9] S. Gavrilyuk, K.M. Shyue, Singular solutions of the BBM equation: analytical and numerical study, Nonlinearity 35 (1) (2021) 388.

[10] S. Gavrilyuk, K.M. Shyue, Hyperbolic approximation of the BBM equation, Nonlinearity 35 (3) (2022) 1447.

[11] S.L. Gavrilyuk, B. Nkonga, K.M. Shyue, L. Truskinovsky, Stationary shock-like transition fronts in dispersive systems, Nonlinearity 33 (2020) 5477–5509.

[12] S.L. Gavrilyuk, S.M. Shugrin, Media with equations of state that depend on derivatives, J. Appl. Mech. Tech. Phys. 37 (1996) 177–189.

[13] S.K. Godunov, An interesting class of quasi-linear systems, Dokl. Akad. Nauk SSSR 139 (3) (1961) 521–523.

[14] S.K. Godunov, E. Romenskii, Elements of Continuum Mechanics and Conservation Laws, Springer US, 2003.

[15] S. Gottlieb, C.W. Shu, E. Tadmor, Strong stability– preserving high–order time discretization methods, SIAM Rev. 43 (2001) 89–112.

[16] M.A. Johnson, W.R. Perkins, Modulational instability of viscous fluid conduit periodic waves, SIAM J. Math. Anal. 52 (1) (2020).

[17] D.I. Ketcheson, R. LeVeque, Wenoclaw: a higher order wave propagation method, in: Hyperbolic Problems: Theory, Numerics, Applications, IMA J. Appl. Math. 
(2005) 609–616.

[18] D.I. Ketcheson, M. Parsani, R. LeVeque, High-order wave propagation algorithm for hyperbolic systems, SIAM J. Sci. Comput. 35 (1) (2013) A351–A377.

[19] O. Le Métayer, S. Gavrilyuk, S. Hank, A numerical scheme for the Green-Naghdi model, J. Comp. Physiol. 229 (2010) 2034–2045.

[20] R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.

[21] R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, SIAM, Philadelphia, 2007.

[22] N.K. Lowman, M.A. Hoefer, Dispersive hydrodynamics in viscous fluid conduits, Phys. Rev. E 88 (2013) 023016.

[23] N.K. Lowman, M.A. Hoefer, Dispersive shock waves in viscously deformable media, J. Fluid Mech. 718 (2013) 524–557.

[24] N.K. Lowman, M.A. Hoefer, G.A. El, Interactions of large amplitude solitary waves in viscous fluid conduits, J. Fluid Mech. 750 (2014) 372–384.

[25] M.D. Maiden, N.A. Franco, E.G. Webb, G.A. El, M.A. Hoefer, Solitary wave fission of a large disturbance in a viscous fluid conduit, J. Fluid Mech. 883 (2020) 
A10.

[26] M.D. Maiden, M.A. Hoefer, Modulations of viscous fluid conduit periodic waves, Proc. R. Soc. A 472 (2016) 20160533.

[27] M.D. Maiden, N.K. Lowman, D.V. Anderson, M.E. Schubert, M.A. Hoefer, Observation of dispersive shock waves, solitons, and their interactions in viscous fluid 
conduits, Phys. Rev. Lett. 116 (2016) 174501.
19

[28] J. Nocedal, S.J. Wright, Numerical Optimization, second edition, Springer, 2006.

http://refhub.elsevier.com/S0021-9991(24)00481-9/bibAE725D54F05033C73BB55A0BDF7C8217s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibAE725D54F05033C73BB55A0BDF7C8217s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib52A05021B7C443CAE23E190C9DE5A1CCs1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib98EB958A8965F2A13B59E35B54B82964s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib98EB958A8965F2A13B59E35B54B82964s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib095D1BE6545D0CA2BEC02A94B68FD69Cs1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib095D1BE6545D0CA2BEC02A94B68FD69Cs1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibEBF77008C9A52341BE001D44FAB73873s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibEBF77008C9A52341BE001D44FAB73873s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib62060960B6E820256DCBC2A8ED2C0971s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib62060960B6E820256DCBC2A8ED2C0971s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib43A9FDCEF16500A1584E9F6D40564701s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibF415BBF2EAB60ACE0E116A6C7586981Cs1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibF415BBF2EAB60ACE0E116A6C7586981Cs1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib5C592FBE1F874EC7C36A76ED0C6143CAs1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibFBCE88FA89ED96D373D7A9DD16E22650s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib3E69B6148BAD01D5297DD1775EF09EB4s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibC67CFBD7B5478AA75ABB774C15491186s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibA839084C366065AFB890BAC9D3253FACs1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib485CC3A91A54C1A4B1B4341ECD290342s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib1789695CCFF58200BC649B90C3F8EB64s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib955E3A95308A65FF0D63022016BA81E7s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib2D5A7DF94EFD434BA43A7EA2B09FCD4Es1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib2D5A7DF94EFD434BA43A7EA2B09FCD4Es1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib19EC3DBEB2CBCDA85FD37ADA47530465s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibDEAF42F65D79812CC371CC98632B804Ds1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib0390B39A0639F9D31C59FE01CD9B8A06s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib89D3247FD94B60340EC0951932A6B4C6s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib95163487E73F70CAEEFD5C1508445EA7s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib97153F9E28672D9C0BDD4D4BF97F2F7Ds1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib9220550D476DF1F8846A951FB169B80Fs1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib97D663A5CCC69E4AC17BE36B7B83DF37s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib97D663A5CCC69E4AC17BE36B7B83DF37s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibF6743AFCAF2BCBD4F0462EC46A4DC240s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibEA30337BCF1D1A0D75E35CA9FF0F268As1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibEA30337BCF1D1A0D75E35CA9FF0F268As1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibABA5131DFBC17439330D8E7FA1EC0550s1


Journal of Computational Physics 514 (2024) 113232S. Gavrilyuk, B. Nkonga and K.-M. Shyue

[29] P. Olson, U. Christensen, Solitary wave propagation in a fluid conduit within a viscous matrix, J. Geophys. Res. 91 (1986) 6367–6374.

[30] C.W. Shu, High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev. 5 (2009) 82–126.

[31] P. Sprenger, M.A. Hoefer, Discontinuous shock solutions of the Whitham modulation equations as dispersionless limits of travelling waves, Nonlinearity 33 
(2020) 3268–3302.

[32] S. Tkachenko, S. Gavrilyuk, J. Massoni, Extended Lagrangian approach for the numerical study of multi-dimensional dispersive waves: applications to the 
20

Serre–Green–Naghdi equations, J. Comput. Phys. 477 (2023) 111901.

http://refhub.elsevier.com/S0021-9991(24)00481-9/bibBC2F1D08D9C5A5B4B69C183EBE48F388s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bib50177D480919505B5C6ADBAB02FD0060s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibFCF9F7F88EA391FEF7C2FD02954D7DE8s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibFCF9F7F88EA391FEF7C2FD02954D7DE8s1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibE336A63E13D6FAADD700D7AED937CA3As1
http://refhub.elsevier.com/S0021-9991(24)00481-9/bibE336A63E13D6FAADD700D7AED937CA3As1

	The conduit equation: Hyperbolic approximation and generalized Riemann problem
	1 Introduction
	2 Mathematical structure of the conduit equation
	3 Extended hyperbolic system
	4 Dispersion relation
	5 Periodic solutions
	6 Numerical methods
	7 Numerical tests
	7.1 Box test
	7.2 Gaussian test
	7.3 Parameter study

	8 Generalized Riemann problem
	8.1 Rankine-Hugoniot relation test
	8.2 Multi-hump solitary waves

	9 Conclusion
	Ethics
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Numerical methods for the conduit equation
	References


