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We propose high-resolution numerical schemes for two-phase compressible flow simulations to 
reproduce dynamically created gas/vapor-liquid interfaces with phase change. In the Godunov-

type finite volume framework, suppressing numerical dissipation errors in numerical schemes is 
crucial for capturing the discontinuous solutions. The MUSCL scheme has second-order accuracy 
for smooth solutions and non-oscillatory behavior near discontinuous solutions. However, the 
MUSCL scheme introduces excessive numerical dissipation and diffuses the discontinuities 
nonphysically, leading to difficulties in distinguishing gas/vapor and liquid phases, and thus 
causing a blur in the interfaces during the multi-phase flow simulations.

The hybrid-type boundary variation diminishing (BVD) scheme in this paper combines the MUSCL 
scheme and the THINC scheme to reduce the numerical dissipation errors near the discontinuities. 
The MUSCL-THINC-BVD scheme applies the MUSCL scheme for smooth solutions and the THINC 
scheme for discontinuous solutions, resulting in the successful capture of the discontinuities 
including the dynamically created gas/vapor-liquid interfaces. The Adaptive THINC-BVD scheme, 
which switches two types of THINC schemes with different values of gradient parameter, also 
captures the discontinuities clearly. The numerical results of the benchmark tests show that the 
proposed BVD schemes can lucidly reproduce the vapor-liquid interfaces newly created during 
the dynamical process of phase change.

1. Introduction

The compressible gas/vapor-liquid two-phase flows with cavitation and evaporation are observed in various engineering situa-

tions, such as propellers, airfoils, hydraulic systems, and so on. The flow field simultaneously has smooth solutions and discontinuous 
solutions, like vortices, rarefaction waves, shock waves, contact discontinuities, and gas/vapor-liquid interfaces. Furthermore, dis-

continuities, such as interfaces, can dynamically form and diminish as phase changes take place. As these flow structures interfere 
with each other, which makes the flow dynamics extremely complicated, the numerical simulation of such flow remains a challenging 
issue.

The important issue in the computation of the gas/vapor-liquid two-phase flows is how to numerically deal with the gas/vapor-

liquid interfaces. The sharp-interface model (SIM) regards the interface as a sharp discontinuity. Each side of the interface is assumed 
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to be filled with a bulk fluid of gas or liquid. The Volume-of-Fluid (VOF) method [1–3], level-set method [4,5], and front-tracking 
method [6,7] are typical methods to compute the location of interface. Although the SIM is widely used to track the interface in the 
incompressible multiphase flow simulations, it is reported [8] that these methods are not able to solve interfaces separating pure fluid 
and mixtures and to dynamically create the interface as seen in phase change phenomenon. On the other hand, the diffuse-interface 
model (DIM) deals with the interface as a numerical mixture region. The gas and liquid are artificially relaxed and mixed in this 
region, where a state of numerically consistent thermodynamic laws is reached [8]. The main advantages of DIM are the simplicity 
of using the same computational algorithm over the entire computational domain, the ease of ensuring conservation of mixed mass, 
momentum, and energy, and the ability to naturally reproduce dynamically created interfaces. Conversely, the disadvantage of DIM 
is that it requires a method to prevent non-physical diffusion of the interface due to numerical dissipation errors.

Various two-fluid numerical models have been developed based on the DIM approach. The seven-equation models [9–11] have 
conservation laws of mass, momentum, and energy for each phase and the VOF transport equation. In [10], the pressure and velocity 
are assumed to reach equilibrium states at infinite rates. After that, the five-equation models [12–15] were developed reducing 
the number of equations and eliminating the relaxation source terms in the seven-equation model. Because of its simplicity, the 
five-equation models have been widely used as the governing equations for the compressible two-phase flow. However, since the 
mixture sound speed of Kapila’s five-equation model, which is called the “sound speed of Wood”, has non-monotonic behavior to 
the volume fraction, it has been reported that the transport of the mixture zone is possible to be numerically unstable [8,16]. The 
six-equation models [8,11,17,18] solved this problem by applying pressure relaxation term into one-velocity two-pressure form. Heat 
and mass transfer were implemented [11,17] by adding thermal and chemical relaxation terms into the six-equation model. In [18], 
the six-equation model was proposed so as to be consistent with the conservation of total mixture energy, and allows for a more 
simple and efficient numerical method for chemical relaxation. In this work, we use the six-equation model [18] as the governing 
equations of the two-phase compressible flow.

Another long-standing drawback of the Eulerian numerical frameworks is the numerical dissipation which makes the discon-

tinuities vanish as the computational time lasts. The dissipation is particularly crucial in the multi-phase fluid simulation, as the 
numerical dissipation blurs the interfaces separating different phases and makes them difficult to identify. Godunov finite-volume 
method [19], which was proposed originally for the single phase flow, now becomes the primary methodology to solve the DIM 
model in the multi-phase flows.

Many high-order accuracy schemes have been so far developed under the framework of the Godunov-type finite-volume method. 
The MUSCL (Monotone Upstream-centered Schemes for Conservation Law) [20] and WENO (Weighted Essentially Non-Oscillatory) 
[21–23] schemes have been widely recognized as the mainstream high-order numerical schemes. Also, the MP5 (Fifth-order Mono-

tonicity Preserving) [24] and MP5-R (fifth-order improved MP scheme) [25] schemes are well recognized. The MUSCL scheme 
employs piecewise-linear interpolation and introduces the slope limiter that restricts the gradient of the interpolation function to 
achieve second-order accuracy and satisfy TVD (Total Variation Diminishing) [26] property. Because of its computational stability, 
the MUSCL scheme is widely used in various applications. The WENO scheme achieves high-order accuracy and essentially avoids the 
numerical oscillation error near the discontinuities by weighting the multiple interpolations in sub-stencils according to the smooth-

ness of the numerical solution. However, both the MUSCL and WENO schemes are known to include numerical dissipation errors 
introduced by nonlinear limiters that increase with time evolution. This numerical dissipation error is significant specifically in high-

frequency waves. Thus, the discontinuous solutions (e.g., shock wave, contact discontinuity, and gas/vapor-liquid free interface) and 
small-scale vortex in turbulence flow diffuse nonphysically due to the excessive numerical dissipation error. The significantly diffused 
flow structures make it difficult to implement and reproduce interfacial phenomena like phase change. The stable and low-dissipation 
computation of high-frequency solutions in compressible flows remains a crucial challenge in the Godunov-type numerical schemes.

Focusing on numerical simulations of the compressible gas/vapor-liquid two-phase flows with phase transition, in our knowledge, 
there have been few studies that report dynamically created interfaces clearly captured in multidimensional tests. Generally, in the 
DIM models the initial size of the dynamically created bubble or droplet by phase change is smaller compared to a computational 
mesh, and thus the new interface is sensitive to the artificial viscosity in the numerical scheme. To keep the dynamically generated 
interface from vanishing, a numerical scheme that does not diffuse discontinuities is essential.

Stemming from using merely the continuous reconstruction functions in each stencil meshes, the numerical dissipation has posed 
the persistent and unresolved challenge for the Eulerian formulations. A class of Godunov-type numerical methods has been reported 
that low-dissipation numerical schemes can be constructed based on the BVD (Boundary Variation Diminishing) principle [27–37]. 
The BVD principle suggests that the difference between left- and right-side values interpolated on the cell boundary should be 
minimized to reduce the numerical dissipation error. The BVD strategy is often incorporated into the hybrid-type numerical scheme 
as the algorithm to select an appropriate scheme at each computational cell. For example, the MUSCL-THINC-BVD scheme [28] has 
two candidate interpolants: the MUSCL scheme and the THINC (Tangent Hyperbola for INterface Capturing) scheme [38,39], and 
chooses an appropriate one using the BVD selection algorithm. The MUSCL scheme has second-order accuracy for the smooth solution, 
and the THINC scheme captures the discontinuous solution without introducing the unnecessary numerical dissipation error. Since 
the BVD algorithm selects the MUSCL scheme in the smooth solution and the THINC scheme in the discontinuous solution which 
allows a discontinuous reconstruction in corresponding cell, the MUSCL-THINC-BVD scheme achieves low numerical dissipation 
errors in both the smooth and discontinuous solutions. This property is crucial for the DIM for the multiphase flow simulation to 
suppress the excessive numerical dissipation error in the gas-liquid interface. Some BVD schemes have already demonstrated that the 
discontinuities in the compressible multiphase flows are captured clearly despite the complex deformation of interfaces [28,34,40].

In this work, we apply the BVD schemes to the compressible two-phase flow with phase change and demonstrate that the 
2

BVD schemes reduce the numerical dissipation errors and keep the dynamically created interfaces well identified from vanishing. 
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Considering that a numerical scheme that has accuracy higher than third-order may introduce spurious oscillation error due to the 
reconstruction of primitive variables, we use second-order BVD schemes like MUSCL-THINC-BVD [28] and Adaptive THINC-BVD 
[29] schemes. We employ numerical tests which are typical for compressible two-phase flows where the interfaces are dynamically 
generated by phase change to showcase the capability of the BVD. The numerical results indicate that the BVD schemes preserve 
clearly the interfaces created by the phase change, whereas the traditional scheme fails to identify the interfaces due to the too-large 
numerical dissipation.

The rest of this paper is organized as follows. In section 2, the six-equation model [18] without and with phase change is briefly 
introduced. In section 3, the low-dissipation numerical schemes based on the BVD principle are described. The numerical results of 
benchmark tests are shown in section 4. The conclusion is given in section 5 to end this paper.

2. Governing equations

2.1. Six-equation two-phase model

To solve the compressible two-phase flow, we adopt the six-equation model proposed by Pelanti and Shyue [18],

𝜕𝛼1
𝜕𝑡

+ 𝒖 ⋅𝛁𝛼1 = 𝜇(𝑝1 − 𝑝2), (1a)

𝜕(𝛼1𝜌1)
𝜕𝑡

+𝛁 ⋅
(
𝛼1𝜌1𝒖

)
= 0, (1b)

𝜕(𝛼2𝜌2)
𝜕𝑡

+𝛁 ⋅
(
𝛼2𝜌2𝒖

)
= 0, (1c)

𝜕(𝜌𝒖)
𝜕𝑡

+𝛁 ⋅
(
𝜌𝒖⊗ 𝒖+ (𝛼1𝑝1 + 𝛼2𝑝2)𝕀

)
= 𝟎, (1d)

𝜕(𝛼1𝐸1)
𝜕𝑡

+𝛁 ⋅
(
𝛼1(𝐸1 + 𝑝1)𝒖

)
+𝛴 = −𝜇𝑝I(𝑝1 − 𝑝2), (1e)

𝜕(𝛼2𝐸2)
𝜕𝑡

+𝛁 ⋅
(
𝛼2(𝐸2 + 𝑝2)𝒖

)
−𝛴 = 𝜇𝑝I(𝑝1 − 𝑝2), (1f)

where 𝛼𝑘 is volume fraction, 𝜌𝑘 is phasic density, 𝒖= (𝑢, 𝑣, 𝑤)𝖳 is velocity vector, 𝐸𝑘 is phasic total energy, and 𝑝𝑘 is phasic pressure. 
Variables with the subscript 𝑘 (= 1, 2) indicate that they are physical quantities of the 𝑘-th phase, while variables without subscript 
represent mixture quantities of the two phases. The mixture quantities are defined to be consistent in the artificial mixture region in 
the DIM. The mixture rules of the volume fraction, density, internal energy, and total energy are respectively given as,

𝛼1 + 𝛼2 = 1, (2a)

𝛼1𝜌1 + 𝛼2𝜌2 = 𝜌, (2b)

𝛼11 + 𝛼22 =  , (2c)

𝛼1𝐸1 + 𝛼2𝐸2 =𝐸, (2d)

where 𝑘 =𝐸𝑘 − 1
2𝜌𝑘‖𝒖‖2 is phasic internal energy.

The non-conservative term 𝛴 appearing in the phasic total energy equations (1e) and (1f) reads,

𝛴 = −𝒖 ⋅ (𝑌2𝛁(𝛼1𝑝1) − 𝑌1𝛁(𝛼2𝑝2)), (3)

where 𝑌𝑘 =
𝛼𝑘𝜌𝑘

𝜌
is a mass fraction of phase 𝑘 (𝑌1 + 𝑌2 = 1). Note that 𝛼1, 𝛼1𝐸1, and 𝛼2𝐸2 are not indeed conservative.

The source terms appearing in (1a), (1e), and (1f) act to ensure that the mechanical equilibrium across the interface is satisfied, 
where 𝜇 > 0 is pressure relaxation parameter and 𝑝I is interface pressure. An infinite-rate pressure relaxation is assumed with 𝜇→∞, 
hence mechanical equilibrium is reached instantaneously.

2.2. Stiffened gas equation of state (SG EOS)

To close the system (1), we introduce the equation of states for each phase. For solving the system without heat and mass transfer, 
we need to specify only the pressure law 𝑝𝑘 = 𝑝𝑘(𝑘, 𝜌𝑘). However, with heat and mass transfer, we need in addition the caloric law 
𝑇𝑘 = 𝑇𝑘(𝑝𝑘, 𝜌𝑘), where 𝑇𝑘 is the phasic temperature, to completely describe the thermodynamic state of the fluid [18]. With the SG 
EOS assumption, the pressure 𝑝𝑘 and the temperature 𝑇𝑘 are given as,

𝑝𝑘(𝑘, 𝜌𝑘) = (𝛾𝑘 − 1)(𝑘 − 𝜂𝑘𝜌𝑘) − 𝛾𝑘𝜋𝑘, (4a)

𝑇𝑘(𝑝𝑘, 𝜌𝑘) =
𝑝𝑘 + 𝜋𝑘

(𝛾𝑘 − 1)𝐶v𝑘𝜌𝑘
, (4b)
3

and associated phasic specific entropy 𝑠𝑘 and phasic specific Gibbs energy 𝑔𝑘 are given as,
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𝑠𝑘(𝑝𝑘, 𝑇𝑘) = 𝐶v𝑘 ln
𝑇
𝛾𝑘
𝑘

(𝑝𝑘 + 𝜋𝑘)𝛾𝑘−1
+ 𝜂′

𝑘
, (4c)

𝑔𝑘(𝑝𝑘, 𝑇𝑘) = ℎ𝑘 − 𝑇𝑘𝑠𝑘

= (𝛾𝑘𝐶v𝑘 − 𝜂′𝑘)𝑇𝑘 −𝐶v𝑘𝑇𝑘 ln
𝑇
𝛾𝑘
𝑘

(𝑝𝑘 + 𝜋𝑘)𝛾𝑘−1
+ 𝜂𝑘,

(4d)

where 𝛾𝑘, 𝜋𝑘, 𝐶v𝑘, 𝜂𝑘, 𝜂′𝑘 are material-dependent parameters, ℎ𝑘 =
𝑘+𝑝𝑘
𝜌𝑘

is phasic specific enthalpy.

With isobaric assumption 𝑝1 = 𝑝2 = 𝑝 in the mixture rule of the internal energy (2c):

𝛼11(𝑝, 𝜌1) + 𝛼22(𝑝, 𝜌2) =  , (5)

we can obtain an explicit expression of mixture pressure 𝑝 as,

𝑝 =
 − (𝛼1𝜌1𝜂1 + 𝛼2𝜌2𝜂2) −

(
𝛼1𝛾1𝜋1
𝛾1−1

+ 𝛼2𝛾2𝜋2
𝛾2−1

)
𝛼1
𝛾1−1

+ 𝛼2
𝛾2−1

. (6)

2.3. Mixture sound speed

According to the pressure formula of the SG EOS (4a), the phasic sound speed 𝑐𝑘 can be derived as,

𝑐𝑘 =

√
𝜕𝑝(𝑘, 𝜌𝑘)
𝜕𝜌𝑘

+ ℎ𝑘
𝜕𝑝(𝑘, 𝜌𝑘)
𝜕𝑘

=

√
𝛾𝑘(𝑝𝑘 + 𝜋𝑘)

𝜌𝑘
. (7)

Then, the mixture sound speed of the model (1) (without heat and mass transfer) is expressed as,

𝑐 =
√
𝑌1𝑐

2
1 + 𝑌2𝑐

2
2 . (8)

This type of the mixture sound speed is called “frozen sound speed” [41,42], and is known to have monotonicity with respect to the 
volume fraction [18]. This monotonicity property helps avoid numerical oscillation errors in the mixture region [8].

2.4. Heat and mass transfer model

The heat and mass transfer effects have been treated by introducing additional thermal and chemical relaxation terms (cf. [10,

11,18,43–46]). Following this way, the six-equation model with heat and mass transfer takes the form:

𝜕𝛼1
𝜕𝑡

+ 𝒖 ⋅𝛁𝛼1 = 𝜇(𝑝1 − 𝑝2) +

𝜅

+ 𝑚̇

𝜌I
, (9a)

𝜕(𝛼1𝜌1)
𝜕𝑡

+𝛁 ⋅
(
𝛼1𝜌1𝒖

)
= 𝑚̇, (9b)

𝜕(𝛼2𝜌2)
𝜕𝑡

+𝛁 ⋅
(
𝛼2𝜌2𝒖

)
= −𝑚̇, (9c)

𝜕(𝜌𝒖)
𝜕𝑡

+𝛁 ⋅
(
𝜌𝒖⊗ 𝒖+ (𝛼1𝑝1 + 𝛼2𝑝2)𝕀

)
= 𝟎, (9d)

𝜕(𝛼1𝐸1)
𝜕𝑡

+𝛁 ⋅
(
𝛼1(𝐸1 + 𝑝1)𝒖

)
+𝛴 = −𝜇𝑝I(𝑝1 − 𝑝2) ++ 𝑒I𝑚̇, (9e)

𝜕(𝛼2𝐸2)
𝜕𝑡

+𝛁 ⋅
(
𝛼2(𝐸2 + 𝑝2)𝒖

)
−𝛴 = 𝜇𝑝I(𝑝1 − 𝑝2) −− 𝑒I𝑚̇, (9f)

where  = 𝜃(𝑇2 −𝑇1), 𝑚̇ = 𝜈(𝑔2 −𝑔1) are thermal relaxation term and chemical relaxation term, respectively. Although the parameters 
𝜅, 𝜌I (interface density), 𝑒I (interface specific total energy) can be derived by imposing appropriate thermodynamic constraint [11], 
we assume infinite-rate relaxations for thermal and chemical equilibrium, and the specific formulas of 𝜅, 𝜌I, and 𝑒I are not required 
in the relaxation calculations [18]. We activated the thermal and chemical relaxations only at the liquid-gas interface to reduce 
computational costs. Since these relaxations have minimal impact far from the interfaces, we found that this approach does not 
affect the numerical solution, provided that the problem-dependent parameter 𝜖I in equations (10) and (11) is sufficiently small. 
Moreover, we consider evaporation but not condensation, so the chemical relaxation is activated under a metastable state (the liquid 
temperature 𝑇liq is higher than the saturation temperature 𝑇sat (𝑝) at the given pressure). Hence, the relaxation parameters 𝜃 and 𝜈
4

are determined as,
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Table 1

SGEOS parameters of water for 300-500 K.

𝛾 𝜋 [Pa] 𝜂 [J∕kg] 𝜂′ [J∕(kg K)] 𝐶v [J∕(kg K)]

water liquid 2.35 109 −1167 × 103 0 1816
vapor 1.43 0 2030 × 103 −23.4 × 103 1040

Table 2

SGEOS parameters of dodecane for 300-500 K.

𝛾 𝜋 [Pa] 𝜂 [J∕kg] 𝜂′ [J∕(kg K)] 𝐶v [J∕(kg K)]

dodecane liquid 2.35 4 × 108 −775.269 × 103 0 1077.7
vapor 1.025 0 −237.547 × 103 −24.4 × 103 1956.45

𝜃 =

{
∞ if 𝜖I ≤ 𝛼1 ≤ 1 − 𝜖I,
0 otherwise,

(10)

𝜈 =

{
∞ if 𝜖I ≤ 𝛼1 ≤ 1 − 𝜖I and 𝑇liq > 𝑇sat (𝑝),
0 otherwise,

(11)

where parameter 𝜖I = 10−4 indicates the interface location. The influence of this parameter 𝜖I is under small perturbation, provided 
that 𝜖I is sufficiently small.

The pressure-temperature (p-T) saturation curve under the SG EOS assumption can be obtained from the chemical equilibrium 
condition, 𝑔1 = 𝑔2 [43,47]. Using the formula of Gibbs energy (4d) of each phase, the p-T saturation curve is determined as an 
implicit function of pressure and temperature as follows,

𝐴s +
𝐵s
𝑇

+𝐶s ln𝑇 +𝐷s ln
(
𝑝+ 𝜋1

)
− ln

(
𝑝+ 𝜋2

)
= 0, (12)

with

𝐴s =
𝐶p1 −𝐶p2 + 𝜂′2 − 𝜂

′
1

𝐶p2 −𝐶v2
, 𝐵s =

𝜂1 − 𝜂2
𝐶p2 −𝐶v2

, 𝐶s =
𝐶p2 −𝐶p1

𝐶p2 −𝐶v2
, 𝐷s =

𝐶p1 −𝐶v1

𝐶p2 −𝐶v2
. (13)

Here, 𝐶p𝑘 = 𝛾𝑘𝐶v𝑘 is a heat capacity of phase 𝑘 with constant pressure. The material-dependent parameters in the SG EOS (4) can be 
set so that the p-T saturation curve (12) fits the experimental curve [47]. We use the values of the SGEOS parameters as in Table 1

for water and Table 2 for dodecane that have been adopted in [18,43].

In later explanations, to simply refer to the equations (1) and (9), we denote 𝒒 = (𝛼1, 𝛼1𝜌1, 𝛼2𝜌2, 𝜌𝒖, 𝛼1𝐸1, 𝛼2𝐸2)𝖳 as a vector of 
solution variables and express the equations in a compact form:

𝜕𝒒

𝜕𝑡
+𝛁 ⋅ 𝒇 (𝒒) + 𝝈(𝒒,𝛁𝒒) =𝝍p(𝒒) (without heat and mass transfer), (14)

and

𝜕𝒒

𝜕𝑡
+𝛁 ⋅ 𝒇 (𝒒) + 𝝈(𝒒,𝛁𝒒) =𝝍p(𝒒) +𝝍T(𝒒) +𝝍g(𝒒) (with heat and mass transfer), (15)

where

𝒒 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝛼1
𝛼1𝜌1
𝛼2𝜌2
𝜌𝒖

𝛼1𝐸1
𝛼2𝐸2

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝒇 (𝒒) =

⎡⎢⎢⎢⎢⎢⎢⎣

𝟎
𝛼1𝜌1𝒖
𝛼2𝜌2𝒖

𝜌𝒖⊗ 𝒖+ (𝛼1𝑝1 + 𝛼2𝑝2)𝕀
𝛼1(𝐸1 + 𝑝1)𝒖
𝛼2(𝐸2 + 𝑝2)𝒖

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝝈(𝒒,𝛁𝒒) =

⎡⎢⎢⎢⎢⎢⎢⎣

𝒖 ⋅𝛁𝛼1
0
0
𝟎
𝛴

−𝛴

⎤⎥⎥⎥⎥⎥⎥⎦
,

𝝍p(𝒒) =

⎡⎢⎢⎢⎢⎢
𝜇(𝑝1 − 𝑝2)

0
0
𝟎

−𝜇𝑝I(𝑝1 − 𝑝2)

⎤⎥⎥⎥⎥⎥, 𝝍T(𝒒) =

⎡⎢⎢⎢⎢⎢

𝜃(𝑇2−𝑇1)
𝜅

0
0
𝟎

𝜃(𝑇2 − 𝑇1)

⎤⎥⎥⎥⎥⎥, 𝝍g(𝒒) =

⎡⎢⎢⎢⎢⎢

𝜈(𝑔2−𝑔1)
𝜌I

𝜈(𝑔2 − 𝑔1)
−𝜈(𝑔2 − 𝑔1)

𝟎
𝜈𝑒I(𝑔2 − 𝑔1)

⎤⎥⎥⎥⎥⎥.
(16)
5

⎢⎣ 𝜇𝑝I(𝑝1 − 𝑝2) ⎥⎦ ⎢⎣−𝜃(𝑇2 − 𝑇1)⎥⎦ ⎢⎣−𝜈𝑒I(𝑔2 − 𝑔1)⎥⎦
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3. Numerical methods

For simply describing the numerical methods, the computational domain is assumed to be 1D and divided into uniform non-

overlapping cells Ω𝑖 =
[
𝑥
𝑖− 1

2
, 𝑥

𝑖+ 1
2

]
, (𝑖 = 1, … , 𝑁), with cell size Δ𝑥 = 𝑥

𝑖+ 1
2
− 𝑥

𝑖− 1
2
. We note that the numerical methods described 

below can be applied to multi-dimensional problems straightforwardly in a dimension-by-dimension manner.

We apply the fractional-step method [18] to solve the system (14) and (15). Firstly, the homogeneous hyperbolic portion of the 
1D system:

𝜕𝒒

𝜕𝑡
+
𝜕𝒇 (𝒒)
𝜕𝑥

+ 𝝈
(
𝒒,
𝜕𝒒

𝜕𝑥

)
= 𝟎, (17)

is solved over time interval Δ𝑡. After that, based on the solution obtained from solving (17), the ordinary differential equation (ODE) 
that consists of the remaining part of (14) and (15) (the relaxation terms) is solved. For example, in the case of (14) (without heat 
and mass transfer), the ODE system becomes,

𝜕𝒒

𝜕𝑡
=𝝍p(𝒒). (18)

When the operation of solving the homogeneous hyperbolic portion of the system (17) and the operation of solving pressure relaxation 
equation (18) are denoted as Δ𝑡

hyp and p respectively (as in [48]), the complete solution of the six-equation model without heat and 
mass transfer is expressed as,

𝒒𝑛+1 =pΔ𝑡
hyp𝒒

𝑛. (19)

In the case of phase change, the additional ODE systems are solved. When the operation of solving thermal and chemical relaxation 
equations is denoted as pT and pTg respectively, one possible complete solution of the six-equation model with phase change reads,

𝒒𝑛+1 =pTgpTpΔ𝑡
hyp𝒒

𝑛. (20)

The operations p, pT, and pTg are corresponding to solving the source terms 𝝍p(𝒒), 𝝍p(𝒒) +𝝍T(𝒒), and 𝝍p(𝒒) +𝝍T(𝒒) +𝝍g(𝒒)
respectively in (14) and (15).

In the remainder of this section, the operation of solving the homogeneous hyperbolic portion and relaxation procedures is ex-

plained separately. In a framework of the Godunov-type finite-volume method, we describe the high-fidelity reconstruction methods 
based on BVD principle in section 3.2. The spatial discretization is conducted by the wave-propagation method, described in sec-

tion 3.3. The calculation procedures of mechanical, thermal, and chemical relaxation are shown in section 3.4. At the end of this 
section, the overall calculation procedure is summarized in section 3.5.

3.1. Godunov-type finite-volume method

For solving the homogeneous hyperbolic equation (17), we briefly review the calculation procedure of the Godunov-type finite-

volume method [19]. The semi-discrete form of the hyperbolic system (17) reads,

d𝒒̄𝑖(𝑡)
d𝑡

= − 1
Δ𝑥

(
𝒇

(
𝒒

(
𝑥
𝑖+ 1

2
, 𝑡

))
− 𝒇

(
𝒒

(
𝑥
𝑖− 1

2
, 𝑡

)))
, (21)

where the numerical solution 𝒒̄𝑖(𝑡) is defined as a volume-integrated average of the computational cell Ω𝑖,

𝒒̄𝑖(𝑡) ≡ 1
Δ𝑥

𝑥
𝑖+ 1

2

∫
𝑥
𝑖− 1

2

𝒒(𝑥, 𝑡) d𝑥 . (22)

Here, we omitted the non-conservative term 𝝈 in (17) for brevity. In the Godunov-type finite-volume method, the fluxes at cell 
boundaries 𝑥 = 𝑥

𝑖+ 1
2

and 𝑥 = 𝑥
𝑖− 1

2
in the right-hand-side of the semi-discrete formula (21) are evaluated as numerical fluxes 𝒇̂ ,

d𝒒̄𝑖
d𝑡

≈ − 1
Δ𝑥

(
𝒇̂
𝑖+ 1

2
− 𝒇̂

𝑖− 1
2

)
. (23)

The numerical flux 𝒇̂
𝑖+ 1

2
at the cell boundary 𝑥 = 𝑥

𝑖+ 1
2

is calculated by solving the Riemann problem consisting of left- and right-side 
states of the cell boundary,

𝒇̂
𝑖+ 1

2
= 𝒇̂Riemann

(
𝒒L,𝑖+ 1

2
,𝒒R,𝑖+ 1

2

)
, (24)

where 𝒒L,𝑖+ 1
2

and 𝒒R,𝑖+ 1
2

are interpolated values on the left and right sides of the cell boundary, respectively. The numerical flux 
6

𝒇̂
𝑖+ 1

2
is obtained using an approximate Riemann solver, which is clearly distinguished from the physical flux 𝒇 (𝒒(𝑥

𝑖+ 1
2
)), as the 
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numerical flux is determined from upstream-biased information resulting in the artificial viscosity. Once the values of the numerical 
fluxes 𝒇̂

𝑖+ 1
2

and 𝒇̂
𝑖− 1

2
are obtained, the time derivative of the numerical solution can be calculated from (23), and the numerical 

solution can be updated using the ODE solver like Runge-Kutta method [49].

The remaining task is to obtain the left- and right-side cell-boundary values 𝒒L,𝑖+ 1
2

and 𝒒R,𝑖+ 1
2
, which is the most important 

point for the numerical accuracy in the Godunov-type FVM. The cell-boundary values 𝒒L,𝑖+ 1
2

and 𝒒R,𝑖− 1
2

are interpolated by the 
cell-wise reconstruction function 𝑸𝑖(𝑥) constructed using information from surrounding numerical solutions (… , ̄𝒒𝑖−1, ̄𝒒𝑖, ̄𝒒𝑖+1, … ), 
i.e., 𝒒L,𝑖+ 1

2
=𝑸𝑖(𝑥𝑖+ 1

2
) and 𝒒R,𝑖− 1

2
=𝑸𝑖(𝑥𝑖− 1

2
).

Many studies for constructing accurate and robust reconstruction functions have been reported. The MUSCL scheme [20] and 
the WENO scheme [21–23] are representative reconstruction methods that have high-order accuracy and non-oscillatory property. 
These schemes have been widely used and researched over two decades, however, as we mentioned before, they have problems of 
too large numerical dissipation error especially for high-frequency solutions. This excessive numerical dissipation error is known to 
non-physically smear the short wavelength flow structures such as shock waves, contact discontinuity, small-scale vortices, and so 
on. Especially, in our knowledge, the dynamically created gas/vapor-liquid interfaces in the two-phase flows with phase change have 
never been captured due to the significant numerical dissipation error. To solve this problem, we need high-fidelity schemes that 
capture both smooth and discontinuous solutions simultaneously.

3.2. High-fidelity reconstruction method

We propose high-fidelity reconstruction methods that reduce the numerical dissipation error in the discontinuous solutions based 
on the boundary variation diminishing (BVD) principle. In this section, we firstly explain about the BVD principle, and next each 
candidate reconstruction function, BVD selection algorithm.

3.2.1. Boundary variation diminishing (BVD) principle

We consider the 1D scalar advection equation:

𝜕𝑞(𝑥, 𝑡)
𝜕𝑡

+ 𝜕𝑓 (𝑞(𝑥, 𝑡))
𝜕𝑥

= 0, (25)

where 𝑞 is a conservative variable, 𝑓 (𝑞) = 𝑎𝑞 is a flux function, and 𝑎 is a characteristic speed. It is well known that the numerical 
flux, which is calculated by an approximated Riemann solver, can be written in a canonical form as,

𝑓Riemann(𝑞L, 𝑞R) =
1
2
(𝑓 (𝑞L) + 𝑓 (𝑞R)) −

|𝑎|
2
(𝑞R − 𝑞L). (26)

As in (26), the numerical flux consists of the consistent term (the first term) and the artificial viscosity term (the second term). 
Although the artificial viscosity term helps avoid the numerical oscillation error near the discontinuous solution, this term often 
works excessively and smears the numerical solution non-physically. To suppress the excessive numerical dissipation error, the value 
of |𝑞R − 𝑞L| in the artificial viscosity term should be decreased. The difference between the left- and right cell-boundary values |𝑞R − 𝑞L| is here defined as Boundary Variation (BV), and the idea that the value of BV should be diminishing was proposed as 
Boundary Variation Diminishing (BVD) principle [27].

We introduce two hybrid-type BVD schemes that have multiple candidate reconstruction functions. The first one is the MUSCL-

THINC-BVD scheme [28], which contains the MUSCL scheme and the THINC scheme as the candidate reconstruction functions. 
Another one is the Adaptive THINC-BVD scheme [29], which contains two THINC schemes with different gradient parameters. These 
hybrid-type BVD schemes select one candidate interpolant for each computational cell based on the BVD principle. The details of the 
MUSCL scheme and the THINC scheme with the BVD selection algorithm are described below.

3.2.2. Candidate reconstruction function 1: MUSCL scheme

The MUSCL scheme [20] is one of the mainstream shock-capturing numerical methods in the compressible flow simulations. 
The MUSCL scheme adopts piecewise-linear interpolation and limits the gradient of the reconstruction function so that both the 
second-order accuracy and the TVD condition [26] are satisfied. For its simplicity and robustness, the MUSCL scheme has been used 
in various applications.

The cell-boundary values interpolated by the MUSCL scheme are expressed as,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪

𝑞MUSCL
L,𝑖+ 1

2
=𝑄MUSCL

𝑖

(
𝑥
𝑖+ 1

2

)
= 𝑞𝑖 +

1
2
𝛷

(
𝑟L,𝑖+ 1

2

)
(𝑞𝑖+1 − 𝑞𝑖),

𝑞MUSCL
R,𝑖− 1

2
=𝑄MUSCL

𝑖

(
𝑥
𝑖− 1

2

)
= 𝑞𝑖 −

1
𝛷

(
𝑟R,𝑖− 1

)
(𝑞𝑖 − 𝑞𝑖−1),

(27)
7

⎩ 2 2
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where 𝛷(𝑟) is the slope limiter function of the slope ratio 𝑟L,𝑖+ 1
2
= 𝑞𝑖+1−𝑞𝑖
𝑞𝑖−𝑞𝑖−1

, or 𝑟R,𝑖− 1
2
= 𝑞𝑖−𝑞𝑖−1
𝑞𝑖+1−𝑞𝑖

. We adopt the following limiter function 
that is called “van Leer limiter” [50],

𝛷vanLeer (𝑟) =
𝑟+ |𝑟|
1 + |𝑟| . (28)

The MUSCL scheme has second-order accuracy for the smooth solutions and avoids numerical oscillation errors near the discon-

tinuous solutions by introducing a non-linear limiter such as the slope limiter 𝛷(𝑟). However, it is well-known that such a non-linear 
limiter often produces excessive numerical dissipation error, resulting in non-physical diffusion of discontinuous solutions. To address 
this issue, we also utilize another type of reconstruction method.

3.2.3. Candidate reconstruction function 2: THINC scheme

The THINC scheme [38,39] was originally developed as a moving-interface capturing method. The THINC reconstruction func-

tion has a step-like shape that mimics the discontinuous solution. Recently, the general adaptability of the THINC scheme to the 
discontinuous solution has extended it to the compressible flow simulation [27–33,35,51–54] for capturing the shock waves, contact 
discontinuities, and two-phase interfaces. We describe the symmetry-preserving formulation of the THINC scheme [51,54], which 
is mathematically equivalent to the original formulation, but can strictly preserve the spatial-symmetry property of the numerical 
solution (see Appendix A).

If the numerical solution satisfies the local monotonicity condition: (𝑞𝑖+1 − 𝑞𝑖)(𝑞𝑖 − 𝑞𝑖−1) > 10−20, the step-like reconstruction 
function in the THINC scheme can be determined as [51],

𝑄THINC
𝑖

(𝑥) = 𝑞a,𝑖 + 𝑞d,𝑖 tanh (𝛽(𝑋𝑖(𝑥) − 𝑑𝑖)), (29)

where

𝑞a,𝑖 =
𝑞𝑖−1 + 𝑞𝑖+1

2
, 𝑞d,𝑖 =

𝑞𝑖+1 − 𝑞𝑖−1
2

, 𝑋𝑖(𝑥) =
𝑥− 𝑥𝑖
Δ𝑥

. (30)

The parameter 𝑑𝑖 in (29) indicates the location of the jump center of the reconstruction function, and is determined so that the 
reconstruction function satisfies the conservative condition:

1
Δ𝑥

𝑥
𝑖+ 1

2

∫
𝑥
𝑖− 1

2

𝑄THINC
𝑖

(𝑥) d𝑥 = 𝑞𝑖. (31)

Solving (31), we can derive 𝑑𝑖 as,

𝑑𝑖 =
1
2𝛽

ln
1 − 2,𝑖∕1
1 + 2,𝑖∕1 , (32)

where

1 = tanh
(
𝛽

2

)
, 2,𝑖 = tanh

(
𝛽

2
𝑞𝑖 − 𝑞a,𝑖
𝑞d,𝑖

)
. (33)

Substituting (32) into (29), the cell-boundary values can be obtained as,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑞THINC
L,𝑖+ 1

2
=𝑄THINC

𝑖

(
𝑥
𝑖+ 1

2

)
= 𝑞a,𝑖 + 𝑞d,𝑖

1 + 2,𝑖∕1
1 + 2,𝑖 ,

𝑞THINC
R,𝑖− 1

2
=𝑄THINC

𝑖

(
𝑥
𝑖− 1

2

)
= 𝑞a,𝑖 − 𝑞d,𝑖

1 − 2,𝑖∕1
1 − 2,𝑖 .

(34)

If the solution is locally non-monotonic, as the step-like reconstruction function (29) cannot be determined, the THINC scheme offers 
piecewise constant interpolation, i.e., 𝑄THINC

𝑖
(𝑥) = 𝑞𝑖.

The only undetermined parameter in (29) is 𝛽, which represents a gradient of the THINC reconstruction function. The THINC 
function becomes more discontinuous as the value of 𝛽 increases, while it becomes smoother as the value of 𝛽 decreases. It has been 
reported [29,30,32] that when 𝛽 has a small value like 1.1, the THINC scheme exhibits characteristics equivalent to the MUSCL 
scheme with the van Leer limiter. The THINC scheme with 𝛽 = ln (3.0) (≈ 1.0986) has analytically second-order accuracy [55]. On 
the other hand, when the value of 𝛽 is large, such as 1.6 to 2.0, the THINC scheme can resolve discontinuous solutions with a width 
of approximately 3 to 4 cells. In other words, depending on the value of 𝛽, the characteristics of the THINC scheme differ: it excels in 
8

interpolating smooth solutions when 𝛽 is small and in interpolating discontinuous solutions when 𝛽 is large. In this paper, we denote 
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THINC with a small 𝛽 as THINC(𝛽s) and THINC with a large 𝛽 as THINC(𝛽l) for brevity. The value of 𝛽 is set as 1.1 in the THINC(𝛽s), 
and 1.6 in the THINC(𝛽l).

For computational efficiency, we note that if the value of 𝛽 is independent of space and time, the value of 1 in (33) can be 
pre-calculated and is not necessarily calculated in each computational cell and time step.

3.2.4. BVD selection algorithm

As stated in section 3.2.1, we introduce the hybrid-type BVD schemes that select an appropriate reconstruction function among 
the candidate interpolants according to the BVD principle. The MUSCL-THINC-BVD scheme has the MUSCL and THINC(𝛽l) schemes, 
and the Adaptive THINC-BVD scheme has the THINC(𝛽s) and THINC(𝛽l) schemes as the candidate interpolants, respectively. These 
BVD schemes select one candidate interpolant for each cell following the BVD selection algorithm proposed in [28,34]. We describe 
the detail of the BVD selection algorithm among numerical schemes “A” and “B” below.

The BVD selection algorithm has two steps. The first step is to compute the values of minimum total boundary variation (mTBV) 
for both schemes “A” and “B”, which is defined as,

𝑚𝑇𝐵𝑉
𝜉

𝑖
≡min

(|||||𝑞AL,𝑖− 1
2
− 𝑞𝜉

R,𝑖− 1
2

|||||+
|||||𝑞𝜉L,𝑖+ 1

2

− 𝑞A
R,𝑖+ 1

2

|||||,|||||𝑞AL,𝑖− 1
2
− 𝑞𝜉

R,𝑖− 1
2

|||||+
|||||𝑞𝜉L,𝑖+ 1

2

− 𝑞B
R,𝑖+ 1

2

|||||,|||||𝑞BL,𝑖− 1
2
− 𝑞𝜉

R,𝑖− 1
2

|||||+
|||||𝑞𝜉L,𝑖+ 1

2

− 𝑞A
R,𝑖+ 1

2

|||||,|||||𝑞BL,𝑖− 1
2
− 𝑞𝜉

R,𝑖− 1
2

|||||+
|||||𝑞𝜉L,𝑖+ 1

2

− 𝑞B
R,𝑖+ 1

2

|||||
)
,

(35)

for 𝜉 = A and B. The second step is to compare the values of 𝑚𝑇𝐵𝑉 A
𝑖

and 𝑚𝑇𝐵𝑉 B
𝑖

, and determine a reconstruction function whose 
value of the 𝑚𝑇𝐵𝑉 𝑖 is small,

𝑄𝑖(𝑥) =

{
𝑄A
𝑖
(𝑥), if 𝑚𝑇𝐵𝑉 A

𝑖
< 𝑚𝑇𝐵𝑉 B

𝑖
,

𝑄B
𝑖
(𝑥), otherwise.

(36)

This selection algorithm can be reasonable to perform the high-fidelity reconstruction because the numerical scheme which gives 
smaller value of 𝑚𝑇𝐵𝑉 𝑖 can reduce the value of |𝑞R−𝑞L| in the numerical flux (26), resulting in decreases of the numerical dissipation 
and anti-dissipation errors. The MUSCL-THINC-BVD scheme sets the numerical scheme “A” as MUSCL and “B” as THINC(𝛽l) schemes. 
The Adaptive THINC-BVD scheme sets “A” as THINC(𝛽s) and “B” as THINC(𝛽l) schemes.

The reconstruction is conducted on quasi-primitive variables 𝒒qp =(𝛼1, 𝛼1𝜌1, 𝛼2𝜌2, 𝒖, 𝑝)𝖳. Replacement of the reconstruction func-

tion to the THINC(𝛽l) according to the BVD selection procedure is conducted for the variables 𝛼1, 𝛼1𝜌1, and 𝛼2𝜌2, whose values vary 
in gas/vapor-liquid interfaces and contact discontinuities. In other words, for 𝒖 and 𝑝, the reconstruction function is fixed to MUSCL 
in the MUSCL-THINC-BVD scheme and THINC(𝛽s) in the Adaptive THINC-BVD scheme.

3.3. Wave-propagation method

After obtaining the cell-boundary values by the reconstruction, the spatial discretization is performed by the wave-propagation 
method [56,57]. The wave-propagation method is often adopted for its efficiency in dealing with non-conservative terms in hy-

perbolic equations [18,28,46,56,58,59]. The formulation proposed in [57] allows for more varied reconstruction methods, such as 
higher than second-order schemes or the THINC scheme. In that formulation, the spatial discretization is performed as,

d𝒒̄𝑖
d𝑡

= − 1
Δ𝑥

(+𝚫
𝑖− 1

2
+

−𝚫
𝑖+ 1

2
+𝚫𝑖), (37)

where ±𝚫
𝑖+ 1

2
indicates so-called fluctuations at cell boundary 𝑥 = 𝑥

𝑖+ 1
2
. +𝚫

𝑖+ 1
2

and −𝚫
𝑖+ 1

2
are right-going and left-

going fluctuations respectively, and 𝚫𝑖 is a total fluctuation between cell boundaries 𝑥 = 𝑥
𝑖− 1

2
and 𝑥

𝑖+ 1
2
. These fluctuations are 

calculated by solving local Riemann problems; ±𝚫
𝑖+ 1

2
is obtained from the cell-boundary values 𝒒L,𝑖+ 1

2
and 𝒒R,𝑖+ 1

2
, and 𝚫𝑖 is 

obtained from 𝒒R,𝑖− 1
2

and 𝒒L,𝑖+ 1
2

[57,59].

To calculate the values of the fluctuations, we introduce the Harten-Lax-van Leer-Contact (HLLC) [60] Riemann solver. The HLLC 
solver defines a Riemann solution structure by a set of 3 waves  𝑙 and corresponding speeds 𝑆𝑙 , 𝑙 = 1, 2, 3, as,

𝑆1 = 𝑆L, 𝑆2 = 𝑆⋆, 𝑆3 = 𝑆R, (38)

1 2 3
9

 = 𝒒⋆L − 𝒒L,  = 𝒒⋆R − 𝒒⋆L,  = 𝒒R − 𝒒⋆R, (39)
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that separate four constant states 𝒒L, 𝒒⋆L, 𝒒⋆R and 𝒒R. Here, the quantities corresponding to the states 𝒒⋆L and 𝒒⋆R adjacent (to the 
left and right, respectively) to the medium wave propagating at speed 𝑆⋆ are denoted by subscripts ⋆L and ⋆R. The left and right 
wave speeds 𝑆L and 𝑆R are estimated as,

𝑆L = min(𝑢L − 𝑐L, 𝑢R − 𝑐R), 𝑆R = max(𝑢L + 𝑐L, 𝑢R + 𝑐R). (40)

Then, the speed 𝑆⋆ is determined as,

𝑆⋆ =
(𝑝L − 𝑝R) + (𝜌L𝑢L(𝑆L − 𝑢L) − 𝜌R𝑢R(𝑆R − 𝑢R))

𝜌L(𝑆L − 𝑢L) − 𝜌R(𝑆R − 𝑢R)
. (41)

The middle states 𝒒⋆L and 𝒒⋆R are determined so as to satisfy the Rankine-Hugoniot conditions for each wave, as,

𝒒⋆K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝛼1,K
(𝛼1𝜌1)K𝜒K
(𝛼2𝜌2)K𝜒K
𝜌K𝑆⋆𝜒K

(𝛼1𝜌1)K𝜒K
(
𝐸1,K
𝜌1,K

+ (𝑆⋆ − 𝑢K)
(
𝑆⋆ + 𝑝K

𝜌1,K(𝑆K−𝑢K)

))
(𝛼2𝜌2)K𝜒K

(
𝐸2,K
𝜌2,K

+ (𝑆⋆ − 𝑢K)
(
𝑆⋆ + 𝑝K

𝜌2,K(𝑆K−𝑢K)

))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (42)

for K = L and R, where 𝜒K = 𝑆K−𝑢K
𝑆K−𝑆⋆

. Then, the fluctuations are calculated as,


±𝚫

𝑖+ 1
2
=

3∑
𝑙=1

(
𝑆𝑙
𝑖+ 1

2

)±

𝑙

𝑖+ 1
2
. (43)

Here, (𝑆)± = 1
2 (𝑆 ± |𝑆|) splits the fluctuations into positive- and negative-direction.

The total fluctuation 𝚫𝑖 between cell boundaries 𝑥 = 𝑥
𝑖− 1

2
and 𝑥

𝑖+ 1
2

is calculated similarly to ±𝚫
𝑖+ 1

2
. The 𝚫𝑖 is 

calculated as,

𝚫𝑖 =
3∑
𝑙=1
𝑆𝑙
𝑖

𝑙
𝑖
, (44)

where  𝑙
𝑖

and 𝑆𝑙
𝑖

are a 𝑙-th wave and a corresponding speed respectively which come from a Riemann solution structure based on 
the cell-boundary values 𝒒R,𝑖− 1

2
and 𝒒L,𝑖+ 1

2
. In other words, a Riemann problem arising from a data set {𝒒R,𝑖− 1

2
, 𝒒L,𝑖+ 1

2
} is solved, 

and then each wave  𝑙
𝑖

and corresponding speed 𝑆𝑙
𝑖

add up as (44) without splitting.

After obtaining the fluctuations +𝚫
𝑖− 1

2
, −𝚫

𝑖+ 1
2
, and 𝚫𝑖, the time-derivative of the numerical solution d𝒒̄𝑖d𝑡 is calculated 

from (37), and the time-evolution is conducted by the 3rd-order Runge-Kutta method [49].

3.4. Relaxation method

The numerical solution obtained after the time evolution of a homogeneous part of the six-equation model is in non-equilibrium 
states for pressure, temperature, and Gibbs energy. In this section, the relaxation methods to reach the equilibrium states are de-

scribed. Assuming the mechanical relaxation characteristic time 1∕𝜇 is much smaller than the thermal and chemical relaxation 
characteristic times 1∕𝜃 and 1∕𝜈 [18], the pressure relaxation equation is firstly solved. Each operation of solving mechanical, ther-

mal, and chemical relaxation is denoted as p, pT, and pTg, respectively. These operations are corresponding to solving the source 
terms 𝝍p(𝒒), 𝝍p(𝒒) +𝝍T(𝒒), and 𝝍p(𝒒) +𝝍T(𝒒) +𝝍g(𝒒) in (14) and (15).

As discussed in [18], the possible patterns of the relaxation methods in terms of the complete solutions are shown as,

𝒒𝑛+1= pΔ𝑡
hyp𝒒

𝑛, (p-relaxation), (45a)

𝒒𝑛+1= pTpΔ𝑡
hyp𝒒

𝑛, (p-pT-relaxation), (45b)

𝒒𝑛+1=pTg pΔ𝑡
hyp𝒒

𝑛, (p-pTg-relaxation), (45c)

𝒒𝑛+1=pTgpTpΔ𝑡
hyp𝒒

𝑛, (p-pT-pTg-relaxation). (45d)

The p-relaxation (45a) method conducts the pressure relaxation but does not consider the heat and mass transfer. The p-pT-relaxation 
(45b) method conducts the pressure and temperature relaxation but does not perform the mass transfer. The numerical solutions 
of the p-relaxation (45a) and p-pT-relaxation methods (45b) are non-equilibrium for Gibbs energy, thus the phase change is not 
simulated. On the other hand, the numerical solutions of the p-pTg-relaxation (45c) and p-pT-pTg-relaxation (45d) methods reach 
an equilibrium state for Gibbs energy, and a part of the liquid phase is changed to be gas phase under metastable condition. The 
10

relaxation rates for pressure, temperature, and Gibbs energy are assumed to be infinite: 𝜇, 𝜃, 𝜈→∞, hence the equilibrium states can 
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be obtained by simple algebraic operations without any ODE solvers. The calculation procedures of the operations p, pT, and pTg
and their derivations are given in Appendix B, Appendix C, and Appendix D, respectively.

3.5. Overall calculation procedure

We summarize the overall calculation procedure as follows.

(I) Perform the spatial reconstruction on the quasi-primitive variables 𝒒qp = (𝛼1, 𝛼1𝜌1, 𝛼2𝜌2, 𝒖, 𝑝)𝖳 and calculate the cell-boundary 
values 𝒒qp

L,𝑖+ 1
2

and 𝒒qp
R,𝑖− 1

2

. The calculation procedure of the MUSCL-THINC-BVD scheme is briefly described below as an exam-

ple.

i) Calculate the cell-boundary values 𝒒𝜉
L,𝑖+ 1

2

and 𝒒𝜉
R,𝑖− 1

2

where 𝜉 = MUSCL and THINC(𝛽l). The details of the MUSCL and 

THINC schemes are in section 3.2.2 and section 3.2.3, respectively.

ii) Calculate the value of 𝑚𝑇𝐵𝑉 𝜉
𝑖

in (35) for each scheme, using the cell-boundary values 𝒒𝜉
L,𝑖+ 1

2

and 𝒒𝜉
R,𝑖− 1

2

.

iii) Comparing the values of 𝑚𝑇𝐵𝑉 MUSCL
𝑖

and 𝑚𝑇𝐵𝑉 THINC(𝛽l)
𝑖

, select the final reconstruction function that gives smaller 
value of 𝑚𝑇𝐵𝑉 𝑖, as (36).

In the case of the Adaptive THINC-BVD scheme, the MUSCL scheme is replaced by the THINC(𝛽s) scheme.

(II) Using the wave-propagation method, obtain the time derivative of the numerical solutions d𝒒̄𝑖d𝑡 as (37). The detail is described 
in section 3.3.

(III) Time evolution is conducted using the 3rd-order Runge-Kutta method [49]. Now the operation Δ𝑡
hyp is finished.

(IV) Solve the relaxation equation in (45) and update the variables to achieve the equilibrium state.

In this calculation procedure, the spatial symmetry of the numerical solution can be completely preserved by carefully executing 
certain calculations. Special attention is needed for the THINC formulation in the step (I)-i) and the wave-propagation method in the 
step (II). The details on the symmetry preservation are explained in Appendix A.

4. Numerical results

To demonstrate the high fidelity of the proposed schemes, some typical benchmark tests are solved. The numerical results of the 
MUSCL-THINC-BVD and the Adaptive THINC-BVD schemes are compared to those of the MUSCL scheme. The CFL number is set to 
0.5 in all benchmark tests.

4.1. 1D water-cavitation tube problem

In this test, two rarefaction waves moving outward are simulated. The computational domain (𝑥 ∈ [0, 1 m]) is initially filled with 
liquid of water (𝛼1 = 0.99). The SGEOS parameters for this test are shown in Table 1. With pressure reduction at the center of the 
computational domain, the cavitation can be simulated. The initial pressure is 105 Pa around the atmospheric pressure, and the gas 
density is 𝜌2 = 1150 kg∕m3. Then, using isothermal condition, 𝑇1 = 𝑇2 = 354.728 K and 𝜌2 = 0.63 kg∕m3 are obtained. Denoting the 
speed of the two rarefaction waves moving in opposite directions as |𝑢0| [m∕s], the initial condition is summarized as,(

𝛼1, 𝜌1 [kg∕m3], 𝜌2 [kg∕m3], 𝑢 [m∕s], 𝑝 [Pa]
)
𝑡=0 ={(

0.99,1150,0.63,−|𝑢0|,105) for 0 m < 𝑥 < 0.5 m,(
0.99,1150,0.63, |𝑢0|,105) for 0.5 m < 𝑥 < 1 m.

(46)

The boundary condition is set as the outflow condition. Two values of the initial velocity, |𝑢0| = 2 m∕s and |𝑢0| = 500 m∕s are tested. 
The mesh number is set to 500 for the |𝑢0| = 2 m∕s test and 5000 for |𝑢0| = 500 m∕s test. To address the strong rarefaction waves, 
for the problem with |𝑢0| = 500 m∕s, we add the condition 𝛁 ⋅ 𝒖 < 0 (i.e., compressional waves) for selecting the THINC(𝛽l) function 
as the BVD admissible interpolation function.

The numerical results with four-type relaxation methods in (45), namely p-relaxation (red circle marker and solid line), p-pT-

relaxation (blue square marker and dashed line), p-pTg-relaxation (green triangle marker and dotted line), and p-pT-pTg-relaxation 
(orange cross marker and dash-dot line), are shown in Figs. 1 (|𝑢0| = 2 m∕s) and 2 (|𝑢0| = 500 m∕s). The results of the four-type 
relaxation methods are in general agreement with the results in [18]. It is important to emphasize here that the results of MUSCL 
and Adaptive THINC-BVD schemes show generally similar solution structures. From these results, it can be seen that the Adaptive 
THINC-BVD scheme appropriately selects the THINC(𝛽s) at smooth rarefaction waves. We omitted the numerical results for the 
MUSCL-THINC-BVD scheme since they are almost the same as those for the MUSCL scheme. For example, in the distribution of 
mass fraction, the difference between the numerical results of MUSCL and MUSCL-THINC-BVD is negligible, with a maximum of 
11

1.49 × 10−6 at |𝑢0| = 2 m∕s and a maximum of 6.00 × 10−5 at |𝑢0| = 500 m∕s.
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Fig. 1. Numerical results of pressure, velocity, volume fraction, and mass fraction of vapor at 𝑡 = 3.2 ms in 1D water-cavitation tube problem with |𝑢0| = 2 m∕s. 
The top and bottom rows show the numerical results of MUSCL and Adaptive THINC-BVD schemes respectively. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

Fig. 2. Numerical results of pressure, velocity, volume fraction, and mass fraction of vapor at 𝑡 = 0.58 ms in 1D water-cavitation tube problem with |𝑢0| = 500 m∕s. 
The top and bottom rows show the numerical results of MUSCL and Adaptive THINC-BVD schemes respectively.

4.2. 1D water shock tube problem with a mixture containing mainly water vapor

This shock tube problem was proposed in terms of the four-equation model in [61], and here we solve this problem with the 
six-equation model. The computational domain is 𝑥 ∈ [0, 1 m]. The SGEOS parameters for this test are shown in Table 1. The initial 
pressure is 2 × 105 Pa on the left side of the computational domain, and 105 Pa on the right side. The mass fraction of liquid is 
entirely set to 0.2, and the velocity is 0 m∕s. The temperature is set to be the saturation temperature at the given pressure, namely 
𝑇1 = 𝑇2 = 394.25 K on the left side and 𝑇1 = 𝑇2 = 372.88 K on the right side. From this condition, the initial condition in terms of 
the primitive variables can be derived as,(

𝛼1, 𝜌1 [kg∕m3], 𝜌2 [kg∕m3], 𝑢 [m∕s], 𝑝 [Pa]
)
𝑡=0 ={(

2.7399 × 10−4,1034.8,1.1344,0,2 × 105
)

for 0 m < 𝑥 < 0.5 m,( −4 5) (47)
12

1.3702 × 10 ,1094.0,0.59969,0,10 for 0.5 m < 𝑥 < 1 m.
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Fig. 3. Numerical results of pressure, velocity, volume fraction, and mass fraction of water at 𝑡 = 0.8 ms in 1D water shock-tube problem with a mixture containing 
mainly water vapor. The top, middle, and bottom panels show the results of p-relaxation, p-pT-relaxation (without phase change), and p-pT-pTg-relaxation (with 
phase change) respectively.

The boundary condition is set as the outflow condition. The mesh number is 200 with the cell size Δ𝑥 = 0.005 m. For the relaxation 
method, p-relaxation and p-pT-relaxation are used for no phase change, and p-pT-pTg-relaxation is used for phase change simulation.

The numerical results are shown in Fig. 3. The results of p-pT-relaxation (without phase change) agree well with the results 
in [61], since the four-equation model in [61] assumes pressure and temperature equilibrium. The results of p-pT-pTg-relaxation 
(with phase change) are also reasonable compared to the results in [61], considering that the numerical model does not deal with 
condensation but only with evaporation.

The advantage of the BVD reconstruction schemes is observed in this test. Focusing on the contact discontinuity at 𝑥 ≈ 0.6 m
in plots of the volume fraction and mass fraction of water, we can see that the BVD schemes captured the discontinuity within 
approximately 3 to 4 cells, however, the MUSCL scheme needed more number of cells. Such high-resolution results indicate that the 
BVD schemes properly select the THINC function with large 𝛽 near the discontinuities and have superiority over the existing scheme 
in terms of discontinuity-capturing performance.

4.3. 2D cavitating Richtmyer-Meshkov instability (RMI) problem

This benchmark test is conducted to check the performances of the numerical schemes in a multi-dimensional case. When the 
reflected shock wave passes through the gas/vapor-liquid interface, the Richtmyer-Meshkov instability (RMI) occurs, leading to the 
observation of mushroom-shaped flow structures. This test was introduced in [8,18], however, the phase change has been neglected. 
Here, just using the SGEOS parameters for water in Table 1 and keeping other test settings in [8,18], we consider the phase change 
in this test. To our knowledge, the numerical results with phase change have never been reported.

The computational domain is set as 𝑥 ∈ [0, 3 m] × 𝑦 ∈ [0, 1 m]. The initial condition is,(
𝛼1, 𝜌1 [kg∕m3], 𝜌2 [kg∕m3], 𝑢 [m∕s], 𝑣 [m∕s], 𝑝 [Pa]

)
𝑡=0 ={(

1 − 10−6,1000,100,−200,0,105
)

for 𝑥 < 1.2 m and 𝑟(𝑥, 𝑦) > 0.6 m,( −6 5) (48)
13

10 ,1000,100,−200,0,10 otherwise,
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Fig. 4. Pseudo-color plots of the volume fraction of water (left) and pressure (right) at 𝑡 = 10.0 ms in 2D cavitating Richtmyer-Meshkov instability problem without 
phase change. The top, middle, and bottom panels show the numerical results of MUSCL, MUSCL-THINC-BVD, and Adaptive THINC-BVD schemes respectively.

Fig. 5. Same as Fig. 4, but with phase change.

where 𝑟(𝑥, 𝑦) =
√
(𝑥− 1.2)2 + (𝑦− 0.5)2. The boundary condition is set as an outflow condition for the right boundary and reflective 

walls for the other boundaries. The mesh number is 300 × 100 with the cell size Δ𝑥 = Δ𝑦 = 0.01 m. For the relaxation method, 
p-relaxation is used for no phase change, and p-pT-pTg-relaxation is used for phase change simulation.

The numerical results at 𝑡 = 10.0 ms of the volume fraction of water and pressure are shown in Figs. 4 and 5. Without phase 
14

change (Fig. 4), despite relaxation of pressure only, cavitation pockets are observed near the left wall location in all numerical 
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Fig. 6. Pseudo-color plots of the mass fraction of vapor at 𝑡 = 1.4 ms in 2D vapor-bubble compression problem without phase change. The left, middle, and right 
panels show the numerical results of MUSCL, MUSCL-THINC-BVD, and Adaptive THINC-BVD schemes respectively. The bottom row shows enlarged views of vapor 
bubbles.

schemes as in [8,18]. With phase change (Fig. 5), cavitation pockets and instabilities are observed similarly. However, compared to 
the case without phase change, more vaporization of water is observed near the left wall. The overall flow structures are consistent 
with the results in [8,18].

Comparing the results of each numerical scheme, the RMI due to shock wave propagation is more significant in the BVD schemes. 
This difference indicates the lower dissipation errors of the BVD schemes. No significant numerical oscillations are observed in 
the pressure distribution for all numerical schemes. From these results, it can be concluded that the BVD schemes improve the 
computational results for both cases with and without phase change.

4.4. 2D vapor-bubble compression problem

In this problem [18,45,62,63], a piston compresses vapor bubble dodecane placed inside liquid dodecane. This problem is used 
to verify the absence of pressure oscillations and the validity of phase change calculations in multi-dimensional problems. To our 
knowledge, there are no examples of dynamically generated bubbles due to phase change being captured using existing methods 
such as the MUSCL scheme.

The computational domain is 𝑥 ∈ [0, 1 m] ×𝑦 ∈ [0, 1 m]. The SGEOS parameters for the dodecane are shown in Table 2. The initial 
pressure and temperature are 105 Pa and 600 K. The radius of the bubble is set to 0.2 m. The bubble and surrounding liquid are 
approximated as pure phases by their volume fractions of 1 − 10−6. The initial velocity is 0 m∕s. Then, the initial condition in terms 
of the primitive variables can be derived as,(

𝛼1, 𝜌1 [kg∕m3], 𝜌2 [kg∕m3], 𝑢 [m∕s], 𝑣 [m∕s], 𝑝 [Pa]
)
𝑡=0 ={(

1 − 10−6,458.338,3.408,0,0,105
)

for 𝑟(𝑥, 𝑦) > 0.2 m,(
10−6,458.338,3.408,0,0,105

)
otherwise,

(49)

where 𝑟(𝑥, 𝑦) =
√
(𝑥− 0.5)2 + (𝑦− 0.5)2. The boundary condition is set as a moving reflective wall at constant speed 100 m∕s for the 

left boundary and static reflective walls for the other boundaries. The numerical treatment of the moving wall is referred to [64]. 
The mesh number is 200 × 200 with the cell size Δ𝑥 = Δ𝑦 = 0.005 m. For the relaxation method, p-relaxation is used for no phase 
change, and p-pT-pTg-relaxation is used for phase change simulation.

The numerical results of the vapor mass fraction at 𝑡 = 1.4 ms are shown in Figs. 6 and 7. At 𝑡 = 1.4 ms, the behavior of vapor 
bubbles compressed by the piston is observed. Without phase change (Fig. 6), there is no significant difference between the MUSCL 
scheme and the BVD schemes. On the other hand, with phase change (Fig. 7), a significant difference arises between the MUSCL 
scheme and the BVD scheme. In the results of the MUSCL scheme, the mass fraction of the compressed vapor is low, while the results 
of the BVD scheme approach a value close to 1. Considering that this is a calculation taking into account phase change, it is inferred 
that the results of the BVD schemes reproduce the cavitation phenomenon. This can be attributed to the fact that the BVD scheme 
15

used the THINC function with a large 𝛽 for the interpolation of the vapor-liquid interface, resulting in the suppression of numerical 
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Fig. 7. Same as Fig. 6, but with phase change.

Fig. 8. Pseudo-color plots of the mass fraction of vapor in 2D vapor-bubble compression problem with phase change. The numerical results are computed by the 
Adaptive THINC-BVD scheme. Time passes from left to right and from top to bottom.

dissipation error. On the other hand, the results of the MUSCL scheme show very small bubble sizes and do not sufficiently reproduce 
the phase change phenomenon. To achieve results with the MUSCL scheme that are comparable to those obtained with the BVD 
schemes on a 200 × 200 grid, we increase the grid size to 400 × 400 or 800 × 800 to reach a converged solution, which requires 
significantly higher computational costs. The numerical results of the BVD schemes that clearly capture dynamically generated 
vapor-liquid interfaces due to phase change are, to our knowledge, the first of their kind.

Using the time-lapse of the numerical solutions of the vapor bubble compression problem solved with the Adaptive THINC-BVD 
16

scheme shown in Figs. 8 and 9, we discuss the mechanism of the dynamic interface generation. From the mass fraction time-lapse 
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Fig. 9. Pseudo-color plots and 1D distribution in cross-section at 𝑦 = 0.5 m of the pressure in 2D vapor-bubble compression problem with phase change. The numerical 

results are computed by the Adaptive THINC-BVD scheme. Time passes from left to right and from top to bottom.
17
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(Fig. 8), it is observed that the bubble is compressed between 𝑡 = 0 to 1.2 ms, and a new bubble is generated between 𝑡 = 1.2
to 1.4 ms. Looking at the pressure time-lapse (Fig. 9), large peaks in pressure values are observed at 𝑡 = 1 ms and 1.15 ms. At 
𝑡 = 1 ms, the pressure peak is considered to be caused by shock waves generated by the piston reflecting on the surrounding 
walls and concentrating near 𝑥 = 0.7 m and 𝑦 = 0.5 m. The subsequent pressure peak at 𝑡 = 1.15 ms is attributed to interactive shock 
waves. Meanwhile, two lower-pressure regions are symmetrically generated adjacent to the high-pressure area. These lower pressures 
continue to develop continuously, falling below the saturation pressure, thus leading to the formation of vapor bubbles, newly created 
interfaces. This evaporation process is expected in the physical process and should be clearly reproduced in a numerical simulation. 
See Fig. 7, new interfaces are created between liquid and vapor, which are clearly resolved by the BVD schemes. Conversely, a 
scheme with higher numerical dissipation, such as the MUSCL scheme as showing above, fails to reproduce a clear interface.

5. Conclusion

We proposed low-dissipation numerical schemes for compressible gas/vapor-liquid two-phase flows including phase change phe-

nomena such as cavitation. To suppress numerical dissipation errors in existing schemes, a hybrid approach combining multiple 
numerical schemes based on the BVD principle was demonstrated. The numerical results from several benchmark tests show that the 
BVD schemes capture discontinuous solutions with higher resolution compared to a conventional scheme. Particularly, the numer-

ical results capturing dynamically generated gas/vapor-liquid interfaces due to phase change in the 2D vapor-bubble compression 
problem have not been reported before. The improvements in such numerical results suggest the capability of the BVD schemes to 
accurately compute both smooth and discontinuous solutions. Thus, the proposed methods are suitable for reproducing interface 
phenomena such as cavitation in two-phase flow simulations. Although we have focused on the evaporation effects in the chemical 
relaxation process, the condensation effects are also important and will be an important direction for our future work.
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Appendix A. Preservation of the spatial symmetry in the flow structures

Flow structures with spatial symmetry are commonly observed (indeed, in all problems in this study except section 4.2), but the 
preservation methods of this symmetry are not obvious. While some researches [51,65] have been reported on preserving spatial 
symmetry for single-phase flow using the Euler equations, to our knowledge, no symmetry-preserving methods have been proposed 
for two-phase flow. Symmetry errors are usually not prominent due to the numerical dissipation errors. However, in the case of 
low-dissipation schemes, these errors can become significant. Therefore, in this section, based on the proposed schemes, we highlight 
key points to be considered in preserving symmetry.

Generally, symmetry errors occur in operations involving three or more numbers. In floating-point arithmetic, as shown in the 
following equations, the introduction of rounding errors depends on the order of operations:

(𝑎+ 𝑏) + 𝑐 ≠ 𝑎+ (𝑏+ 𝑐), (A.1)

(𝑎 × 𝑏) × 𝑐 ≠ 𝑎 × (𝑏 × 𝑐). (A.2)

In other words, when the asymmetric introduction of rounding errors in floating-point operations is repeated many times, the flow 
structure finally loses spatial symmetry. Below, we summarize recommended computational approaches effective for symmetry 
18

preservation.
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• If the initial values are spatially asymmetric, the new physical quantities at symmetric locations are modified to the average of 
the physical quantities at the symmetric locations.

• The spatial reconstruction should follow the procedures described in section 3.2.2 and 3.2.3. Especially, the THINC reconstruc-

tion needs careful implementation because calculations involving non-polynomial functions may yield results that are not exactly 
correct in floating-point arithmetic, as ln (𝑎) ≠ − ln

(
1
𝑎

)
, even if mathematically correct [51].

• The spatial discretization of the wave-propagation method (37) has the addition of three numbers. The term of the total fluctu-

ation should be added later as,

d𝒒̄𝑖
d𝑡

= − 1
Δ𝑥

((((


+𝚫
𝑖− 1

2
+

−𝚫
𝑖+ 1

2

)))
+𝚫𝑖

)
. (A.3)

• Each fluctuation (43) and (44) has the addition of three numbers due to the wave structures in the HLLC-type solution. We 
recommend that the waves corresponding to the eigenvalues 𝑢 − 𝑐 and 𝑢 + 𝑐 should be added first as,


±𝚫

𝑖+ 1
2
=
((((
𝑆1
𝑖+ 1

2

)±


1
𝑖+ 1

2
+
(
𝑆3
𝑖+ 1

2

)±


3
𝑖+ 1

2

)))
+
(
𝑆2
𝑖+ 1

2

)±


2
𝑖+ 1

2
, (A.4)

𝚫𝑖 =
(((
𝑆1
𝑖


1
𝑖
+𝑆3

𝑖


3
𝑖

)))
+𝑆2

𝑖


2
𝑖
. (A.5)

It is noted that these symmetry-preserving formulations are based on symmetry computational mesh and are required in all space-

dimension directions in the multi-dimensional problem.

Appendix B. Mechanical relaxation

To achieve the mechanical equilibrium between phase 1 and phase 2, pressure relaxation is necessary in the six-equation model. 
The relaxation equations to be solved read,

𝜕𝛼1
𝜕𝑡

= 𝜇(𝑝1 − 𝑝2), (B.1a)

𝜕(𝛼1𝜌1)
𝜕𝑡

= 0, (B.1b)

𝜕(𝛼2𝜌2)
𝜕𝑡

= 0, (B.1c)

𝜕(𝜌𝒖)
𝜕𝑡

= 𝟎, (B.1d)

𝜕(𝛼1𝐸1)
𝜕𝑡

= −𝜇𝑝I(𝑝1 − 𝑝2), (B.1e)

𝜕(𝛼2𝐸2)
𝜕𝑡

= 𝜇𝑝I(𝑝1 − 𝑝2), (B.1f)

with assuming the relaxation rate is infinite, 𝜇→∞. Variables before and after reaching the mechanical equilibrium state are denoted 
with superscripts 0 and ∗, respectively. The conditions to solve the conservative variables 𝒒∗ are derived from (B.1) as,

𝑝∗1 = 𝑝
∗
2 ≡ 𝑝∗, (B.2a)

(𝛼1𝜌1)0 = (𝛼1𝜌1)∗, (B.2b)

(𝛼2𝜌2)0 = (𝛼2𝜌2)∗, (B.2c)

(𝜌𝒖)0 = (𝜌𝒖)∗, (B.2d)

𝜕(𝛼1𝐸1)
𝜕𝑡

= −𝑝I
𝜕𝛼1
𝜕𝑡
, (B.2e)

𝜕(𝛼2𝐸2)
𝜕𝑡

= 𝑝I
𝜕𝛼1
𝜕𝑡
. (B.2f)

The relaxed pressure is defined as 𝑝∗ in (B.2a). Conditions (B.2b)–(B.2d) mean that 𝛼1𝜌1, 𝛼2𝜌2, and 𝜌𝒖 are constant in the pressure 
relaxation, as (B.1b)–(B.1d) indicate. These relations also lead to 𝜌0 = 𝜌∗, 𝒖0 = 𝒖∗ from the mixture rule: 𝛼1𝜌1 + 𝛼2𝜌2 = 𝜌. Conditions 
(B.2e) and (B.2f) are obvious from (B.1a), (B.1e), and (B.1f), and lead to 𝐸0 =𝐸∗. Assuming 𝑝I is constant, integration of (B.2e) and 
(B.2f) gives,

(𝛼𝑘𝐸𝑘)∗ − (𝛼𝑘𝐸𝑘)0 = (𝛼𝑘𝑘)∗ − (𝛼𝑘𝑘)0 = −𝑝I(𝛼∗𝑘 − 𝛼
0
𝑘
), (𝑘 = 1,2), (B.3)

using 
(
1
2𝜌‖𝒖‖2)0

=
(
1
2𝜌‖𝒖‖2)∗

and 𝜕𝛼1
𝜕𝑡

= − 𝜕𝛼2
𝜕𝑡

obtained from 𝛼1 + 𝛼2 = 1. The phasic total energy 𝑘 in (B.3) is calculated using 
19

SGEOS (4a), then (B.3) reads,



Journal of Computational Physics 513 (2024) 113164H. Wakimura, T. Li, K.-M. Shyue et al.

𝛼∗
𝑘
=

(𝛾𝑘 − 1)𝑝I + 𝑝0𝑘 + 𝛾𝑘𝜋𝑘
(𝛾𝑘 − 1)𝑝I + 𝑝∗ + 𝛾𝑘𝜋𝑘

𝛼0
𝑘
, (𝑘 = 1,2), (B.4)

with definition (B.2a). Under the assumption 𝑝I = 𝑝∗ [46], we can derive a quadratic equation for 𝑝∗ using 𝛼∗1 + 𝛼
∗
2 = 1 as,

𝑎(𝑝∗)2 + 𝑏𝑝∗ + 𝑑 = 0, (B.5)

where

𝑎 = 𝛾1𝛼02 + 𝛾2𝛼
0
1 , (B.6a)

𝑏 = −𝛾1𝛼02(𝑝
0
2 − 𝜋1) − 𝛾2𝛼

0
1(𝑝

0
1 − 𝜋2), (B.6b)

𝑑 = −𝛾1𝛼02𝑝
0
2𝜋1 − 𝛾2𝛼

0
1𝑝

0
1𝜋2. (B.6c)

To avoid cancellation of significant digits in floating-point arithmetic, the relaxed pressure 𝑝∗ is calculated as follows (see Ap-

pendix E),

𝑝∗ =
⎧⎪⎨⎪⎩

2𝑑
−𝑏−

√
𝐷

if 𝑏 > 0,
−𝑏+

√
𝐷

2𝑎 otherwise,
(B.7)

where 𝐷 = 𝑏2 − 4𝑎𝑑. Once the value of 𝑝∗ is obtained, 𝛼∗
𝑘

is calculated using (B.4). Other variables that vary in pressure relaxation 
procedure are updated as,

𝜌∗
𝑘
=

(𝛼𝑘𝜌𝑘)0

𝛼∗
𝑘

, (B.8)

∗
𝑘
=
𝑝∗ + 𝛾𝑘𝜋𝑘
𝛾𝑘 − 1

+ 𝜂𝑘𝜌∗𝑘, (B.9)

𝐸∗
𝑘
= ∗

𝑘
+ 1

2
𝜌∗
𝑘

‖‖‖𝒖0‖‖‖2. (B.10)

It is noted that these updated variables satisfy mixture-energy-consistency (in Definition 3.1 in [18]).

Appendix C. Thermal relaxation

In this relaxation procedure, the mechanical and thermal equilibrium between phase 1 and phase 2 are achieved. This relaxation 
is conducted in the interface, as shown in (10). The relaxation equations to be solved read,

𝜕𝛼1
𝜕𝑡

= 𝜇(𝑝1 − 𝑝2) +
𝜃(𝑇2 − 𝑇1)

𝜅
, (C.1a)

𝜕(𝛼1𝜌1)
𝜕𝑡

= 0, (C.1b)

𝜕(𝛼2𝜌2)
𝜕𝑡

= 0, (C.1c)

𝜕(𝜌𝒖)
𝜕𝑡

= 𝟎, (C.1d)

𝜕(𝛼1𝐸1)
𝜕𝑡

= −𝜇𝑝I(𝑝1 − 𝑝2) + 𝜃(𝑇2 − 𝑇1), (C.1e)

𝜕(𝛼2𝐸2)
𝜕𝑡

= 𝜇𝑝I(𝑝1 − 𝑝2) − 𝜃(𝑇2 − 𝑇1), (C.1f)

with assuming the relaxation rates are infinite, 𝜇, 𝜃 → ∞. Variables before and after reaching the thermal equilibrium state are 
denoted with superscripts 0 and ∗∗, respectively. The conditions to solve the conservative variables 𝒒∗∗ are derived from (C.1) as,

𝑝∗∗1 = 𝑝∗∗2 ≡ 𝑝∗∗, (C.2a)

𝑇 ∗∗
1 = 𝑇 ∗∗

2 ≡ 𝑇 ∗∗, (C.2b)

(𝛼1𝜌1)0 = (𝛼1𝜌1)∗∗, (C.2c)

(𝛼2𝜌2)0 = (𝛼2𝜌2)∗∗, (C.2d)

(𝜌𝒖)0 = (𝜌𝒖)∗∗, (C.2e)

0 ∗∗
20

𝐸 =𝐸 . (C.2f)
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The relaxed pressure and temperature are defined as 𝑝∗∗ in (C.2a) and as 𝑇 ∗∗ in (C.2b) respectively. From (C.2c) and (C.2d), in the 
thermal relaxation the mixture density 𝜌 = 𝛼1𝜌1 +𝛼2𝜌2 is constant, and then the mass fraction 𝑌𝑘 =

𝛼𝑘𝜌𝑘

𝜌
is also constant. From (C.2e)

and (C.2f), the mixture internal energy  is constant. Then, the mixture rules (2a) and (2c) after the thermal relaxation read,

𝑌 0
1

𝜌∗∗1 (𝑝∗∗, 𝑇 ∗∗)
+

𝑌 0
2

𝜌∗∗2 (𝑝∗∗, 𝑇 ∗∗)
= 1
𝜌0
, (C.3a)

𝑌 0
1 ∗∗

1 (𝑝∗∗, 𝑇 ∗∗)
𝜌∗∗1 (𝑝∗∗, 𝑇 ∗∗)

+
𝑌 0
2 ∗∗

2 (𝑝∗∗, 𝑇 ∗∗)
𝜌∗∗2 (𝑝∗∗, 𝑇 ∗∗)

= 0

𝜌0
. (C.3b)

We note that both the phase density 𝜌𝑘 and phase internal energy 𝑘 can be a function of the pressure 𝑝𝑘 and temperature 𝑇𝑘 from 
SGEOS formulations (4a) and (4b). From (C.3), we can derive a quadratic equation for 𝑝∗∗ as,

𝑎′(𝑝∗∗)2 + 𝑏′𝑝∗∗ + 𝑑′ = 0, (C.4)

where

𝑎′ = 𝑌 0
1 𝐶v1 + 𝑌 0

2 𝐶v2, (C.5a)

𝑏′ = 𝑌 0
1 𝐶v1

(
𝛾1𝜋1 + 𝜋2 − (𝛾1 − 1)̂0)+ 𝑌 0

2 𝐶v2
(
𝛾2𝜋2 + 𝜋1 − (𝛾2 − 1)̂0), (C.5b)

𝑑′ = 𝑌 0
1 𝐶v1𝜋2

(
𝛾1𝜋1 − (𝛾1 − 1)̂0)+ 𝑌 0

2 𝐶v2𝜋1
(
𝛾2𝜋2 − (𝛾2 − 1)̂0). (C.5c)

Here, ̂0 ≡ 0 −
(
(𝛼1𝜌1)0𝜂1 + (𝛼2𝜌2)0𝜂2

)
. The relaxed pressure 𝑝∗∗ is calculated as follows (see Appendix E),

𝑝∗∗ =
⎧⎪⎨⎪⎩

2𝑑′

−𝑏′−
√
𝐷′

if 𝑏′ > 0,
−𝑏′+

√
𝐷′

2𝑎′ otherwise,
(C.6)

where 𝐷′ = 𝑏′ 2 − 4𝑎′𝑑′. Once the value of 𝑝∗∗ is obtained, other variables that vary in thermal relaxation procedure are updated as,

𝛼∗∗1 =
𝐶v1(𝛾1 − 1)(𝑝∗∗ + 𝜋2)(𝛼1𝜌1)0

𝐶v1(𝛾1 − 1)(𝑝∗∗ + 𝜋2)(𝛼1𝜌1)0 +𝐶v2(𝛾2 − 1)(𝑝∗∗ + 𝜋1)(𝛼2𝜌2)0
, (C.7)

𝜌∗∗
𝑘

=
(𝛼𝑘𝜌𝑘)0

𝛼∗∗
𝑘

, (C.8)

∗∗
𝑘

=
𝑝∗∗ + 𝛾𝑘𝜋𝑘
𝛾𝑘 − 1

+ 𝜂𝑘𝜌∗∗𝑘 , (C.9)

𝐸∗∗
𝑘

= ∗∗
𝑘

+ 1
2
𝜌∗∗
𝑘

‖‖‖𝒖0‖‖‖2. (C.10)

Appendix D. Chemical relaxation

In this relaxation procedure, the mechanical, thermal, and chemical equilibrium between phase 1 and phase 2 are achieved. This 
relaxation is conducted in the interface under the metastable condition, as shown in (11). The relaxation equations to be solved read,

𝜕𝛼1
𝜕𝑡

= 𝜇(𝑝1 − 𝑝2) +
𝜃(𝑇2 − 𝑇1)

𝜅
+
𝜈(𝑔2 − 𝑔1)

𝜌I
, (D.1a)

𝜕(𝛼1𝜌1)
𝜕𝑡

= 𝜈(𝑔2 − 𝑔1), (D.1b)

𝜕(𝛼2𝜌2)
𝜕𝑡

= −𝜈(𝑔2 − 𝑔1), (D.1c)

𝜕(𝜌𝒖)
𝜕𝑡

= 𝟎, (D.1d)

𝜕(𝛼1𝐸1)
𝜕𝑡

= −𝜇𝑝I(𝑝1 − 𝑝2) + 𝜃(𝑇2 − 𝑇1) + 𝜈𝑒I(𝑔2 − 𝑔1), (D.1e)

𝜕(𝛼2𝐸2)
𝜕𝑡

= 𝜇𝑝I(𝑝1 − 𝑝2) − 𝜃(𝑇2 − 𝑇1) − 𝜈𝑒I(𝑔2 − 𝑔1), (D.1f)

with assuming the relaxation rates are infinite, 𝜇, 𝜃, 𝜈→∞. Variables before and after reaching the chemical equilibrium state are 
denoted with superscripts 0 and ⊛, respectively. The conditions to solve the conservative variables 𝒒⊛ are derived from (D.1) as,

𝑝
⊛

1 = 𝑝⊛2 ≡ 𝑝⊛, (D.2a)
21

𝑇
⊛

1 = 𝑇⊛2 ≡ 𝑇⊛, (D.2b)
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𝑔
⊛

1 = 𝑔⊛2 , (D.2c)

𝜌0 = 𝜌⊛, (D.2d)

(𝜌𝒖)0 = (𝜌𝒖)⊛, (D.2e)

𝐸0 =𝐸⊛. (D.2f)

The relaxed pressure and temperature are defined as 𝑝⊛ in (D.2a) and as 𝑇⊛ in (D.2b) respectively. From (D.2d)–(D.2f), the mixture 
internal energy  is constant in the chemical relaxation. Similar to the case of the thermal relaxation procedure, using the mixture 
rules (2a) and (2c) after the chemical relaxation we obtain,

𝑌
⊛

1

𝜌
⊛

1 (𝑝
⊛,𝑇⊛)

+
𝑌
⊛

2

𝜌
⊛

2 (𝑝
⊛,𝑇⊛)

= 1
𝜌0
, (D.3a)

𝑌
⊛

1 ⊛1 (𝑝⊛,𝑇⊛)

𝜌
⊛

1 (𝑝
⊛,𝑇⊛)

+
𝑌
⊛

2 ⊛2 (𝑝⊛,𝑇⊛)

𝜌
⊛

2 (𝑝
⊛,𝑇⊛)

= 0

𝜌0
. (D.3b)

In this case, the mass fraction 𝑌𝑘 is not constant. 𝑌 ⊛1 and 𝑌 ⊛2 in (D.3) can be eliminated using 𝑌 ⊛1 + 𝑌 ⊛2 = 1. Then, a quadratic 
equation for 𝑇⊛(𝑝⊛) can be derived as,

𝑎p(𝑝⊛)(𝑇⊛(𝑝⊛))2 + 𝑏p(𝑝⊛)𝑇⊛(𝑝⊛) + 𝑑p(𝑝⊛) = 0, (D.4)

where

𝑎p(𝑝⊛)=𝜌0𝐶v1𝐶v2
(
(𝛾2 − 1)(𝑝⊛ + 𝛾1𝜋1) − (𝛾1 − 1)(𝑝⊛ + 𝛾2𝜋2)

)
, (D.5a)

𝑏p(𝑝⊛)=𝐶v2(𝑝⊛ + 𝜋1)
(
𝑝⊛ + 𝛾2𝜋2 − (𝛾2 − 1)(0 − 𝜌0𝜂1)

)
−𝐶v1(𝑝⊛ + 𝜋2)

(
𝑝⊛ + 𝛾1𝜋1 − (𝛾1 − 1)(0 − 𝜌0𝜂2)

)
, (D.5b)

𝑑p(𝑝⊛)=(𝜂2 − 𝜂1)(𝑝⊛ + 𝜋1)(𝑝⊛ + 𝜋2). (D.5c)

The temperature 𝑇⊛(𝑝⊛) is calculated as follows (see Appendix E),

𝑇⊛(𝑝⊛) =

⎧⎪⎪⎨⎪⎪⎩
2𝑑p(𝑝⊛)

−𝑏p(𝑝⊛)−
√
𝐷p(𝑝⊛)

if 𝑏p(𝑝⊛) > 0,

−𝑏p(𝑝⊛)+
√
𝐷p(𝑝⊛)

2𝑎p(𝑝⊛) otherwise,

(D.6)

where 𝐷p(𝑝⊛) = 𝑏p(𝑝⊛)2 − 4𝑎p(𝑝⊛)𝑑p(𝑝⊛). Then, substituting 𝑇⊛(𝑝⊛) into p-T saturation curve (D.2c):

𝐴s +
𝐵s

𝑇⊛(𝑝⊛)
+𝐶s ln𝑇⊛(𝑝⊛) +𝐷s ln

(
𝑝⊛ + 𝜋1

)
− ln

(
𝑝⊛ + 𝜋2

)
= 0, (D.7)

the relaxed pressure 𝑝⊛ can be obtained. As unfortunately 𝑝⊛ cannot be solved explicitly, the Newton-Raphson method can be used 
to numerically solve 𝑝⊛. Once the value of 𝑝⊛ is obtained, 𝑇 is calculated using (D.6). Other variables that vary in the thermal 
relaxation procedure are updated as,

𝜌
⊛

𝑘
=

𝑝⊛ + 𝜋𝑘
(𝛾𝑘 − 1)𝐶v𝑘𝑇

⊛
, (D.8)

𝛼
⊛

1 =
𝜌0 − 𝜌⊛2
𝜌
⊛

1 − 𝜌⊛2
, (D.9)

⊛
𝑘
=
𝑝⊛ + 𝛾𝑘𝜋𝑘
𝛾𝑘 − 1

+ 𝜂𝑘𝜌
⊛

𝑘
, (D.10)

𝐸
⊛

𝑘
= ⊛

𝑘
+ 1

2
𝜌
⊛

𝑘

‖‖‖𝒖0‖‖‖2. (D.11)

It is noted that instead of this chemical relaxation procedure, an approximate solver [61] is also available to obtain the relaxed 
pressure and temperature.

Appendix E. Cancellation of significant digits in solving quadratic equation

The real solution of the quadratic equation: 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 is usually expressed as,

−𝑏−
√
𝐷 −𝑏+

√
𝐷

22

𝑥1 = 2𝑎
, 𝑥2 = 2𝑎

, (𝐷 ≡ 𝑏2 − 4𝑎𝑐 ≥ 0). (E.1)
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However, in a numerical sense, the solutions (E.1) can generate considerable errors due to the “cancellation of significant digits” in 
floating-point arithmetic. This happens in the case that −𝑏 ±

√
𝐷 ≈ 0. One of the well-known remedies for this issue is as follows,

𝑥1 =
⎧⎪⎨⎪⎩

−𝑏−
√
𝐷

2𝑎 if 𝑏 > 0,
2𝑐

−𝑏+
√
𝐷

otherwise,
𝑥2 =

⎧⎪⎨⎪⎩
2𝑐

−𝑏−
√
𝐷

if 𝑏 > 0,
−𝑏+

√
𝐷

2𝑎 otherwise.
(E.2)

Note that although (E.2) is implemented, the cancellation of significant digits cannot be avoided in the case that the solutions are 
almost the multiple roots (𝐷 ≈ 0).
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