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Abstract

Our goal is to present a simple interface-capturing approach for barotropic two-fluid flow problems in more than one

space dimension. We use the compressible Euler equations in isentropic form as a model system with the thermodynamic

property of each fluid component characterized by the Tait equation of state. The algorithm uses a non-isentropic form

of the Tait equation of state as a basis to the modeling of the numerically induced mixing between two different

barotropic fluid components within a grid cell. Similar to our previous work for multicomponent problems, see [J.

Comput. Phys. 171 (2001) 678] and references cited therein, we introduce a mixture type of the model system that

consists of the full Euler equations for the basic conserved variables and an additional set of evolution equations for the

problem-dependent material quantities and also the approximate location of the interfaces. A standard high-resolution

method based on a wave-propagation formulation is employed to solve the proposed model system with the dimen-

sional-splitting technique incorporated in the method for multidimensional problems. Several numerical results are

presented in one, two, and three space dimensions that show the feasibility of the method as applied to a reasonable class

of practical problems without introducing any spurious oscillations in the pressure near the smeared material interfaces.
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1. Introduction

In this paper, we are concerned with a model barotropic two-fluid flow problem where the flow regime of

interest is assumed to be homogeneous with no jumps in the pressure and velocity (the normal component

of it) across a material interface in an Nd P 1 spatial domain. In the problem formulation, we use the is-

entropic version of the compressible Euler equations of the form
E-mail addresses: shyue@math.ntu.edu.tw, shyue@jacobi.math.ntu.edu.tw (K.-M. Shyue).

0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.05.003

mail to: shyue@math.ntu.edu.tw,


K.-M. Shyue / Journal of Computational Physics 200 (2004) 718–748 719
o

ot
q
qui

� �
þ
XNd

j¼1

o

oxj

quj
quiuj þ pðqÞdij

� �
¼ 0 for i ¼ 1; 2; . . .Nd ð1Þ

for the basic equations of motion of each fluid component, where q, uj, p, and dij denote the density, the

particle velocity in the xj-direction, the pressure, and the Kronecker delta function, respectively (cf. [9]). To

complete the model, the constitutive law for the thermodynamic property of the fluid is taken to satisfy the

Tait equation of state for compressible liquids (or called the Murnaghan equation of state in the context of

an elastic solid [34]),
pðqÞ ¼ p0ð þBÞ q
q0

� �c

�B: ð2Þ
Here p0 and q0 are the reference pressure and density, respectively, B is a pressure-like constant, and c is a
dimensionless parameter, see [31] for a typical set of material-dependent quantities of practical importance.

Representative applications of this two-fluid model are, for instance, to the simulation of the propagation

of shock waves in a water–human tissue media in Extracorporeal Shock Wave Lithotripsy [35], or in a

water–silicone oil media in the semiconductor industry [57].

To solve this barotropic flow problem numerically, we want to use a generalization of the classical

shock-capturing method designed originally for single component flows. For non-barotropic multicom-
ponent problems, it is known in the literature that the principal difficulty in the usual extension is the

occurrence of spurious pressure oscillations when two or more fluid components are present in a uniform

Cartesian grid cell, see the sample numerical methods proposed in [1–3,12,15,18,21,30,43] for more ex-

position. For the current application of barotropic flows, there is, however, a relatively few methods de-

veloped for the matter, see the recent work of Koren et al. [23], and van Brummelen and Koren [54] for a

concise survey.

The approach we take here is to first introduce a non-isentropic form of the Tait equation of state as a

basis to the modeling of the mixing between two different barotropic fluid components. Then with the help
of a volume-fraction function, we define a hybrid equation of state so that the pressure of the fluid can be

determined explicitly no matter what fluid component (pure or not) is within a grid cell (see Section 2).

Having that, as in the previous work [45–48], we are able to derive a mixture type of the model system that

consists of the full Euler equations for the basic conserved variables and an additional set of evolution

equations for the problem-dependent material quantities and also the approximate location of the inter-

faces. In our approach, the latter equations are included in the algorithm primarily for an easy computation

of the pressure from the equation of state, and are put in a form so as to ensure a consistent modeling of the

energy equation near the smeared interfaces, and also the fulfillment of the mass equation in the other single
component regions. A standard high-resolution method based on a wave-propagation formulation is

employed to solve the proposed model system with the dimensional-splitting technique incorporated in the

method for multidimensional problems. Numerical results to be presented in Section 6 show that this is a

viable approach to a reasonable class of practical problems without producing any wrong oscillations in the

pressure near the interfaces.

It should be emphasized that the approach we have proposed here is by no means limited to the two-fluid

flows with a Tait equation of state. Extension of the algorithm to other barotropic flow problems with the

more general pressure law as occurred in cases with some solid materials (cf. [32,33]), for example, and also
to problems involving more than two-flow components, can be made in a similar manner by following the

idea described in this paper. Without going into the details for that here, we want to focus our attention to

the establishment of the basic solution strategy and validate its use via numerical experimentation of some

sample problems.
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This paper is organized as follows. In Section 2, we propose a new equation of state for the modeling of

the mixing between two different barotropic flows within a grid cell. In Section 3, we describe the model

equations that is easy to use for numerical approximation of barotropic two-fluid problems. The con-
struction of the approximate solution for the one-dimensional Riemann problem of the model is discussed

in Section 4, and a brief review of numerical methods based on wave propagation is given in Section 5. In

Section 6, we present a sample test of results for problems in one, two, and three space dimensions.
2. Equations of state

One of the key elements in our fluid-mixture approach for multicomponent problems is the introduction
of a hybrid version of the equation of state that is necessary in the algorithm for modeling the numerical

mixing between two different fluid components within a grid cell. In the current instance of barotropic

flows, the basic idea of the proposed method is simple. We view the mixture of two different barotropic

fluids, where each of them is described by the same Tait equation of state (2) but possibly with a different set

of material-dependent quantities: c, B, and q0, as a non-barotropic fluid, and use an entropy-dependent

equation of state for describing the thermodynamic behavior of the fluid mixture instead. By using the first

and second laws of thermodynamics (cf. [13,59]) together with (2), it is easy to derive such an equation of

state for the pressure p in terms of the mixture density q and the specific entropy S as:

pðq; SÞ ¼ AðSÞ p0ð þBÞ q
q0

� �c

�B; ð3Þ

whereAðSÞ ¼ exp½ðS � S0Þ=CV� and CV denotes the specific heat at constant volume. Clearly, (3) reduces to

the barotropic flow case (2), when the change of the entropy DS ¼ S � S0 ! 0. In the non-limiting case,

however, when DS is not close to zero, (3) does give a way to the representation of the cases in between, that
is to the mixing of two different barotropic fluids. Numerical experiences indicate that when DS is not large,

i.e., entropy variation of the fluids is somewhat small, (3) is a good model to use for a reasonable class of

practical problems, see Section 6.

It is worthwhile to mention that when we rewrite (3) in terms of the often-used variables in gas dynamics,

q and the internal energy e, it takes the form

pðq; eÞ ¼ ðc� 1Þq e
�

þ B

q0

�
� cB ð4Þ

and when we rewrite (3) in terms of q and the temperature T , it becomes

pðq; T Þ ¼ qRT �B;

where R is the universal gas constant. Note that in the fluid dynamical literature an equation of state of the

form (4) is typically called the stiffened gas or Tammann equation of state (cf. [14,17]). It is also easy to

show that the internal energy of the purely barotropic fluid can be computed by (4) but with the use of (2)

directly for the pressure term.
For convenience in the later development, we use a volume-fraction function Y to indicate the type of

fluid component within a grid cell (this is a standard way to do in many two-phase flow solver [42,56,58]).

For instance, when grid cells contain only fluid-component 1 we may set Y ¼ 1, and so when grid cells

contain only fluid-component 2 we set Y ¼ 0. In case there are some cells cut by the interfaces where

Y 2 ð0; 1Þ, we then have both the fluid-components 1 and 2 occupied by the volume fractions Y and 1� Y ,
respectively. With this definition of Y , the pressure of a barotropic two-fluid flow problem in all the fluid-

component scenarios within a grid cell can be determined straightforwardly by:
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p ¼

p01 þB1ð Þ q
q01

� �c1
�B1 if Y ¼ 1 ðbarotropic fluid 1Þ;

p02 þB2ð Þ q
q02

� �c2
�B2 if Y ¼ 0 ðbarotropic fluid 2Þ;

ðc� 1Þq eþ B
q0

� �
� cB if Y 2 ð0; 1Þ ðmixture of two barotropic fluidsÞ

8>>><>>>: ð5Þ

provided that all the variables appeared there are defined and known a priori.

Finally, it should be remarked that, in this work, the thermodynamical description of the materials of

interest is limited by the stability requirement that the speed of sound of the fluid belongs to a set of real

numbers. Certainly, it is both interesting and important to include the cavitation and phase-transition

effects to the present constitutive model in a region where the pressure drops to a critical value, but this

subject matter is a very difficult one, and is beyond the scope of this paper, see [4,5,11,44,55] and references

cited therein for some possible models and approaches proposed in the literature.
3. Equations of motion

We now discuss the model equations that will be used in our numerical methods for constructing ap-

proximate solutions of barotropic two-fluid problems. To begin, clearly, in regions where Y ¼ 0 or Y ¼ 1, it

is enough to use (1) and (2) for the complete description of the behavior of the underlying single-component

barotropic flow. In regions where Y 2 ð0; 1Þ, however, since the mixture of two barotropic fluid components
is modeled in a non-isentropic manner, see Section 2, the original isentropic Eq. (1) are not sufficient to this

instance, and so some supplementary equations need to be considered to provide further information of the

fluid mixture.

It is apparent that, because the thermodynamic behavior of the fluid mixture depends on the entropy as

we have postulated, the conservation law for the total energy of the form

o

ot
qEð Þ þ

XNd

j¼1

o

oxj
qEuj
�

þ puj
�
¼ 0 ð6Þ

should be incorporated in the model system, where E ¼ eþ
PNd

j¼1 u
2
j=2 is the specific total energy. In ad-

dition to that, as in our previous work on numerical methods for compressible multicomponent problems

(cf. [45,46,48]), we also introduce a set of effective equations for the problem-dependent material quantities

so that the pressure can be computed easily from the equation of state.

3.1. c-based effective equations

To derive the aforementioned effective equations for the mixture of material quantities in the present

stiffened gas case, it is usual to start with an interface-only problem where both the pressure and each
component of the particle velocities are constant in the domain, while the other variables such as the density

and the material quantities are having jumps across some interfaces. In this instance, from (1) and (6), it is

easy to obtain equations for the time-dependent behavior of the density and total internal energy as

oq
ot

þ
XNd

j¼1

uj
oq
oxj

¼ 0;

o

ot
qeð Þ þ

XNd

j¼1

uj
o

oxj
qeð Þ ¼ 0;
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in a respective manner. By inserting the equation of state (4) into the latter one, we find an alternative

description of the energy equation

o

ot
p þ cB
c� 1

�
� B

q0

q

�
þ
XNd

j¼1

uj
o

oxj

p þ cB
c� 1

�
� B

q0

q

�
¼ 0 ð7Þ

that is in relation to not only the pressure, but also the material quantities: c, B, and q0.

In our algorithm, to maintain the pressure in equilibrium as it should be for our model interface-only

problem, we split (7) into the following two equations for the fluid mixtures of 1=ðc� 1Þ and

cB=ðc� 1Þ �Bq=q0 as

o

ot
1

c� 1

� �
þ
XNd

j¼1

uj
o

oxj

1

c� 1

� �
¼ 0; ð8aÞ
o

ot
cB
c� 1

�
� B

q0

q

�
þ
XNd

j¼1

uj
o

oxj

cB
c� 1

�
� B

q0

q

�
¼ 0; ð8bÞ

respectively. We emphasize that in order to have the correct pressure equilibrium in (7), these are the two key

equations that should be satisfied and approximated consistently (when the problem is solved numerically, see

Section 5). On the other hand, as a practical matter, it is obvious that, in addition to (8a) and (8b), we need to

impose one more additional condition so as to have enough equations for the three material quantities: c,B,

and q0. In our approach (cf. [46,48]), this is done by simply splitting (8b) into the following two parts:

o

ot
cB
c� 1

� �
þ
XNd

j¼1

uj
o

oxj

cB
c� 1

� �
¼ 0; ð8cÞ
o

ot
B

q0

q

� �
þ
XNd

j¼1

uj
o

oxj

B

q0

q

� �
¼ 0: ð8dÞ

Having done so, we arrive at a system of three equations. (8a), (8c), and (8d) for the variables 1=ðc� 1Þ,
cB=ðc� 1Þ, and Bq=q0, respectively. Combining them to (1) and (6) yields a model system that is fun-

damental in our algorithm for describing the behavior of the numerical mixing between two barotropic

fluids near the interface. With that, there is no difficulty to compute the pressure from (4) as

p ¼ qE

"
�
PNd

j¼1ðqujÞ
2

2q
þ B

q0

q� cB
c� 1

#
1

c� 1

� ��
:

Up to this point, our discussion stresses only on an approach that is capable of keeping the pressure in

equilibrium for amodel interface-only problem. Since in practice we are interested in shock wave problems as
well, we should take the equations, i.e., (8a), (8c), and (8d), in a form such that c,B, and q0 remain unchanged

across both shocks and rarefaction waves. In this regard, it is easy to see that with c andB governed by (8a)

and (8c), respectively, there is no problem to do so (cf. [1,45]). For q0 or B=q0, however, due to the ap-

pearance of the density term in (8d), it turns out that, in a time when such a situation occurs, for consistent

with the mass conservation law of the fluid mixture the primitive form of (8d) should be modified by

o

ot
B

q0

q

� �
þ
XNd

j¼1

o

oxj

B

q0

quj

� �
¼ 0; ð8eÞ

so that the mass-conserving property of the solution in the single component region can be acquired also

(cf. [46]). We note that, for convenience, we call the set of equations (8a), (8c), and (8e), a c-based effective
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equations for the mixture of the material quantities of the stiffened gas equation of state to be distinct from

the other one presented below.

3.2. Y -based effective equations

Before proceeding further, we note that to find the initial fluidmixtures, 1=ðc� 1Þ, cB=ðc� 1Þ, andBq=q0,

that is necessary when we initialize the data for multicomponent flow computations, we use the equation of

state (4), where written as a function of the volume fraction Yi, for i ¼ 1; 2, and Y1 þ Y2 ¼ 1, it reads

p þ cB
c� 1

� B

q0

q ¼ qe ¼
X2
i¼1

Yiqiei ¼
X2
i¼1

Yi
pi þ ciBi

ci � 1

�
� Bi

q0i

qi

�
: ð9aÞ

Here the subscript ‘‘i’’ denotes the state variable of fluid component i. By taking a similar approach as

employed in Section 3.1 for the derivation of the c-based effective equation (cf. [45,46] also), it comes out

easily a splitting of (9a) into the following set of relations:

1

c� 1
¼
X2
i¼1

Yi
ci � 1

;
cB
c� 1

¼
X2
i¼1

Yi
ciBi

ci � 1
; and

B

q0

q ¼
X2
i¼1

Yi
Bi

q0i

qi; ð9bÞ

where in the process of splitting the terms the pressure p is chosen to satisfy the relation as

p
c� 1

¼
X2
i¼1

Yi
pi

ci � 1
: ð9cÞ

With the first part of (9b), it is easy to see that when each of the partial pressures is in equilibrium within a

grid cell, the pressure obtained from (9c) would remain in equilibrium also, i.e., p ¼ pi, for i ¼ 1; 2, see [37]
for a different way to derive the same result.

Now with the volume-fraction notion of the states 1=ðc� 1Þ, cB=ðc� 1Þ, and Bq=q0 being defined by

(9b), the c-based effective equations may be rewritten into the form:

o

ot

X2
i¼1

Yi
ci � 1

 !
þ
XNd

j¼1

uj
o

oxj

X2
i¼1

Yi
ci � 1

 !
¼ 0; ð10aÞ
o

ot

X2
i¼1

Yi
ciBi

ci � 1

 !
þ
XNd

j¼1

uj
o

oxj

X2
i¼1

Yi
ciBi

ci � 1

 !
¼ 0; ð10bÞ
o

ot

X2
i¼1

Yi
Bi

q0i

qi

 !
þ
XNd

j¼1

o

oxj

X2
i¼1

Yi
Bi

q0i

qiuj

 !
¼ 0: ð10cÞ

After some simple algebraic manipulations (cf. [45]), from both (10a) and (10b), we find the transport

equation for each volume fraction Yi as

oYi
ot

þ
XNd

j¼1

uj
oYi
oxj

¼ 0; ð10dÞ

while from (10c) we find the mass conservation equation for each fluid component i as

o

ot
Yiqið Þ þ

XNd

j¼1

o

oxj
Yiqiuj
� �

¼ 0; ð10eÞ
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for i ¼ 1; 2. Clearly, when the set of Yi and Yiqi are known from (10d) and (10e), we may therefore compute

1=ðc� 1Þ, cB=ðc� 1Þ, and Bq=q0 directly from (9b). Thus, instead of using the c-based effective equations,

it is a viable approach to use the Y -based equations (10d) and (10e), for the motion of the mixture of the
material quantities of the problem.
3.3. Complete model system

Note that to constitute a complete model system that is capable of dealing with all the fluid phase cases,

Y ¼ 0, Y ¼ 1, or Y 2 ð0; 1Þ, we have to know the approximate location of the interfaces so that the correct

equations of motion as well as the equation of state can be employed to each part of the domain, from the

current time to the next. Here, since Y1 þ Y2 ¼ 1, it is clear that if we choose Y1 ¼ Y and so Y2 ¼ 1� Y , the
two transport equations in (10d) for each of Y1 and Y2 can be combined, without affecting anything, to a

single one for Y as

oY
ot

þ
XNd

j¼1

uj
oY
oxj

¼ 0; ð10fÞ

leading to the evolution equation we use in practice for that matter. It is important to mention that, in

devising a fluid-mixture type algorithm for multicomponent problems, one common practice (cf. [45,46,48])

is to consider the mixture of the total density, q ¼ Y1q1 þ Y2q2, as one of the basic variables, but is not to
use the mixtures of the separate fluid densities, Y1q1 and Y2q2, as the basic variables, in the proposed model

system. When this is the case, it should be more sensible to use (8e) as the governing equation for the time-

evolution of the variableBq=q0 than the use of the last relation in (9b) together with one of the equations in

(10e) for the determination of Bq=q0.

Putting all the things together, with the hybrid equation of state (5), the model equations with which we

propose to solve the barotropic two-fluid flow problems in more than one space dimension take the form:

oq
ot

þ
XNd

j¼1

o

oxj
ðqujÞ ¼ 0;

o

ot
ðquiÞ þ

XNd

j¼1

o

oxj
ðquiuj þ pdijÞ ¼ 0 for i ¼ 1; 2; . . . ;Nd ;

o

ot
qEð Þ þ

XNd

j¼1

o

oxj
qEuj
�

þ puj
�
¼ 0 if Y 2 ð0; 1Þ;

o

ot
B

q0

q

� �
þ
XNd

j¼1

o

oxj

B

q0

quj

� �
¼ 0 if Y 2 ð0; 1Þ;

oY
ot

þ
XNd

j¼1

uj
oY
oxj

¼ 0:

ð11Þ

Notice that when Y 2 ð0; 1Þ we have a system of Nd þ 4 equations for the motion of the mixing between two

barotropic phases. Clearly, the first Nd þ 2 of them are simply the basic conservation of the mass, momenta

(Nd of them), and total energy, while the last two equations are (8e) and (10f) that are introduced to model
the fluid-mixing of Bq=q0 and the volume-fraction function Y (a quantity that is used in the model to

identify the approximate location of the interface and also to find c and B according to the first two re-

lations in (9b)). On the other instance, when Y ¼ 0 or Y ¼ 1, we just have the first Nd þ 1 equations
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governing the single-component barotropic flow as usual. With a system expressing in this way, there is no

problem to compute all the state variables of interest, including the pressure from the equation of state. The

initialization of the state variables in (11) for fluid-mixture cells can be made in a standard way as described
in [45,46] for numerical simulations.

Note that, as before, the proposed model system (11) is not written in the full conservation form, but is

rather a quasi-conservative system of equations. However, for any given Nd , if the state variables of the flow

are all in the region of the thermodynamic stability (this is the case we are interested in here), it is not

difficult to show that (11) is a hyperbolic system in the sense that any linear combination of the matrices Aj,

j ¼ 1; 2; . . . ;Nd , appearing in the quasi-linear form of the equations

oq
ot

þ
XNd

j¼1

AjðqÞ
oq
oxj

¼ 0 ð12aÞ

has real eigenvalues and a complete set of eigenvectors.

As an example, we consider the three-dimensional case Nd ¼ 3 and then have the state vector q in (12a)

defined by

q ¼ q; qu1; qu2; qu3; qE;
B

q0

q; Y
� �T

; ð12bÞ

and the matrices Aj, for j ¼ 1; 2; 3, defined by

A1 ¼

0 1 0 0 0 0 0

K � u21 u1ð2� CÞ �u2C �u3C C �C v

�u1u2 u2 u1 0 0 0 0

�u1u3 u3 0 u1 0 0 0

u1ðK � HÞ H � u21C �u1u2C �u1u3C u1ðCþ 1Þ �u1C u1v

�u1B=q0 B=q0 0 0 0 u1 0

0 0 0 0 0 0 u1

2666666666664

3777777777775
;

A2 ¼

0 0 1 0 0 0 0

�u1u2 u2 u1 0 0 0 0

K � u22 �u1C u2ð2� CÞ �u3C C �C v

�u2u3 0 u3 u2 0 0 0

u2ðK � HÞ �u1u2C H � u22C �u2u3C u2ðCþ 1Þ �u2C u2v

�u2B=q0 0 B=q0 0 0 u2 0

0 0 0 0 0 0 u2

2666666666664

3777777777775
;

A3 ¼

0 0 0 1 0 0 0

�u1u3 u3 0 u1 0 0 0

�u2u3 0 u3 u2 0 0 0

K � u23 �u1C �u2C u3ð2� CÞ C �C v

u3ðK � HÞ �u1u3C �u2u3C H � u23C u3ðCþ 1Þ �u3C u3v

�u3B=q0 0 0 B=q0 0 u3 0

0 0 0 0 0 0 u3

2666666666664

3777777777775
:
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With that, the eigenvalues and the corresponding eigenvectors of the matrices are:for matrix A1,

KA1
¼ diag kð1Þ1 ; kð1Þ2 ; . . . ; kð1Þ7

� �
¼ diagðu1 � c; u1; u1 þ c; u1; . . . ; u1Þ;

RA1
¼ rð1Þ1 ; rð1Þ2 ; . . . ; rð1Þ7

� �
¼

1 1 1 0 0 0 0

u1 � c u1 u1 þ c 0 0 0 0

u2 u2 u2 1 0 0 0

u3 u3 u3 0 1 0 0

H � u1c K=C H þ u1c u2 u3 1 �v=C

B=q0 0 B=q0 0 0 1 0

0 0 0 0 0 0 1

2666666666664

3777777777775
;

for matrix A2,

KA2
¼ diag kð2Þ1 ; kð2Þ2 ; . . . ; kð2Þ7

� �
¼ diagðu2 � c; u2; u2 þ c; u2; . . . ; u2Þ;

RA1
¼ rð2Þ1 ; rð2Þ2 ; . . . ; rð2Þ7

� �
¼

1 1 1 0 0 0 0

u1 u1 u1 1 0 0 0

u2 � c u2 u2 þ c 0 0 0 0

u3 u3 u3 0 1 0 0

H � u2c K=C H þ u2c u1 u3 1 �v=C

B=q0 0 B=q0 0 0 1 0

0 0 0 0 0 0 1

2666666666664

3777777777775
;

and for matrix A3,

KA3
¼ diag kð3Þ1 ; kð3Þ2 ; . . . ; kð3Þ7

� �
¼ diagðu3 � c; u3; u3 þ c; u3; . . . ; u3Þ;

RA3
¼ rð3Þ1 ; rð3Þ2 ; . . . ; rð3Þ7

� �
¼

1 1 1 0 0 0 0

u1 u1 u1 1 0 0 0

u2 u2 u2 0 1 0 0

u3 � c u3 u3 þ c 0 0 0 0

H � u3c K=C H þ u3c u1 u2 1 �v=C

B=q0 0 B=q0 0 0 1 0

0 0 0 0 0 0 1

2666666666664

3777777777775
;

Ajr
ðjÞ
k ¼ kðjÞk rðjÞk , j ¼ 1; 2; 3, and k ¼ 1; 2; . . . ; 7. Here c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðp þBÞ=q

p
is the speed of sound of the fluid, and

the other notations appeared in the above formulae are set by C ¼ c� 1, K ¼ C
P3

j¼1 u
2
j=2, H ¼ E þ p=q,

and v ¼ �C½ðp þ c1B1Þ=ðc1 � 1Þ � ðp þ c2B2Þ=ðc2 � 1Þ�.
For the ease of the latter reference, it is customary to write (11) into a more compact expression by

oq
ot

þ
XNd

j¼1

fj
o

oxj
; q

� �
¼ 0; ð13Þ

where fj is taken as the vector-value function of the form
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fj ¼
o

oxj
quj
� �

;
o

oxj
qu1uj
�	

þ pd1j
�
; . . . ;

o

oxj
quNd uj
�

þ pdNdj

�
;
o

oxj
qEuj
�

þ puj
�
;
o

oxj

B

q0

quj

� �
; uj

oY
oxj


T
;

for j ¼ 1; 2; . . . ;Nd . It is easy to see that the functions fj defined above reduce to the standard flux functions

for a single component flow.

To end this section, it is worth mentioning that if for some reasons the variables Y1q1 and Y2q2 are the

preferable ones to be used in the algorithm, we may reformulate (11) into an analogous form of the five-
equation model advocated by Allaire et al. [3] for compressible multicomponent flow problems. Since this

2-density formulation of the model system will not be considered in the present work, to avoid any possible

confusions that may cause, we omit the full description of that model here.
4. Approximate Riemann solvers

Before describing numerical methods to solve (11), we pause to discuss the construction of the Riemann
problem solutions in one space dimension which is one of the major steps in our barotropic two-fluid

algorithm. If we consider the case Nd ¼ 3 as an example, the problem to be solved now is to find the so-

lution of (11) in the direction normal to one of the x1x2, x2x3, and x1x3 planes, with piecewise constant data

qL and qR to the left and right of the cell interface. It should be noted that in the applications concerned

here, we have chosen the data qL and qR well enough so that the solution of the Riemann problem would

consist of genuinely nonlinear waves such as shock and rarefaction, and linearly degenerate wave such as

contact discontinuity; there is no vacuum region occurring in the solution. To simplify the notation in the

following discussion, rather than using ðu1; u2; u3Þ for the velocity field as before, we use a simpler version
ðu; v;wÞ instead. Without loss of generality, we only look at the Riemann problem in the direction normal

to the x2x3-plane.
4.1. Shock-only solver

To begin, we are interested in a popular shock-only (or called two-shock) approximation of the Riemann

solver that ignores the possibility of rarefaction waves and simply construct a solution in which each pair of

the states is connected along the Hugoniot locus for a shock (cf. [7,8]). In this approach, the key step is to
find the midstate ðum; pmÞ in the u–p phase plane so that it can connect to ðuL; pLÞ by a 1-shock, and to

ðuR; pRÞ by a 3-shock. It is well known that this is equivalent to solving the following nonlinear equation in

an iterative manner for the pressure pm:

hðpmÞ ¼ umRðpmÞ � umLðpmÞ ¼ 0: ð14Þ

Here umL and umR are the velocities defined by connecting the states along the 1-shock and 3-shock curves,

respectively,

umLðpÞ ¼ uL �
p � pL
MLðpÞ

; umRðpÞ ¼ uR þ p � pR
MRðpÞ

; ð15Þ

with Mi denoting the Lagrangian shock speed, for i ¼ L or R. In the current application of the pressure law

(5), we may compute Mi quite easily by evaluating the formula

M2
i pð Þ ¼

p�pi
q�1
i �q�1

mi ðpÞ
if Y ¼ 1 or Y ¼ 0

C2
i 1þ ciþ1

2ci

� �
pþBi
piþBi

� 1
� �h i

if Y 2 ð0; 1Þ;

8<: ð16Þ
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where Ci ¼ qici is the Lagrangian sound speed, and qmi is the midstate density on the i side,

qmiðpÞ ¼
q0i

pþBi
p0iþBi

� �1=ci
if Y ¼ 1 or Y ¼ 0;

q�1
i � p�pi

M2
i ðpÞ

h i�1

if Y 2 ð0; 1Þ:

8><>: ð17Þ

Note that (16) and (17) are as a result derived from the Rankine–Hugoniot jump conditions across the

shock waves (cf. [9]).

When applying a standard root-finding approach such as the secant method to (14), we have a 2-step
iteration scheme as follows:

pðnþ1Þ
m ¼ pðnÞm �

pðnÞm � pðn�1Þ
m

�� ��
uðnÞmL � uðn�1Þ

mL

��� ���þ uðnÞmR � uðn�1Þ
mR

��� ��� uðnÞmR � uðnÞmL

h i
; ð18Þ

where uðnÞmi ¼ umi½pðnÞm �, for i ¼ L or R, and n ¼ 1; 2; . . . (until convergence). With a suitable choice of the
starting values pð0Þm and pð1Þm , method (18) typically converges to the exact solution pm at a superlinear rate

[22]. For gas dynamics, it is a common practice to set pð0Þm and pð1Þm by

pð0Þm ¼ pRCL þ pLCR � ðuR � uLÞCLCR

CL þ CR

;

pð1Þm ¼ pRM
ð0Þ
L þ pLM

ð0Þ
R � ðuR � uLÞM ð0Þ

L M ð0Þ
R

M ð0Þ
L þM ð0Þ

R

;

ð19Þ

where M ð0Þ
i ¼ Mi½pð0Þm �. Having that, we may assign uð0ÞmL and uð0ÞmR by

uð0ÞmL ¼ uL � pð0Þm � pL
CL

; uð0ÞmR ¼ uR þ pð0Þm � pR
CR

;

and uð1ÞmL and uð1ÞmR according to (15). After a satisfactory convergence of the scheme, um can then be cal-

culated based on the formula:

um ¼ pL � pR þ uLMLðpmÞ þ uRMRðpmÞ
MLðpmÞ þMRðpmÞ

:

We note that alternatively we may use a 1-step Newton method for the solution of (14). In this case, the

iteration scheme reads as follows:

pðnþ1Þ
m ¼ pðnÞm � ZðnÞ

L ZðnÞ
R

ZðnÞ
L þ ZðnÞ

R

uðnÞmR

h
� uðnÞmL

i
; ð20Þ

where ZðnÞ
i ¼ Zi½pðnÞm �, for i ¼ L or R, and n ¼ 1; 2; . . . (until convergence). Again with (5) it is an easy matter

to evaluate Zi by

Z2
i pð Þ ¼ dpm

dum

���� ���� ¼ 2C2
miðpÞ

M2
i þC2

miðpÞ
Mi if Y ¼ 1 or Y ¼ 0;

2M2
i

M2
i þC2

i
Mi if Y 2 ð0; 1Þ;

8<: ð21Þ

where Cmi ¼ qmicmi. Here the initial guess of the iteration pð0Þm can be taken in the same way as in (19) for the

secant method. It is known that the rate of convergence of method (20) is quadratic, when pð0Þm is sufficiently

close to pm (cf. [22]).
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Fig. 1 shows a typical solution structure of the two-fluid Riemann problem considered here. Clearly, in a

shock-only approximate solver, we replace the leftward-going rarefaction wave by a 1-shock and so the

solution consists of three discontinuities moving at constant speeds. Here the propagation speed of each
discontinuity is determined by

k1 ¼ um � MLðpmÞ
qmLðpmÞ

; k2 ¼ um; k3 ¼ um þ MRðpmÞ
qmRðpmÞ

; ð22Þ

with the jumps across each of them computed by the difference between the states to the left and right of the

discontinuity,

W1 ¼ qmL � qL; W2 ¼ qmR � qmL; W3 ¼ qR � qmR; ð23Þ

where qmi is calculated from (12b) using the data: qmi, um, pm, vi, wi, Bi, q0i, p0i, and Yi, for i ¼ L or R. As

usual, wave propagation methods (to be described in Section 5) are based on using these propagating

discontinuities to update the cell averages in the cells neighboring each interface.

4.2. HLL-type solver

We are next concerned with a simple variant of the Riemann solver based on the work of Harten et al.

[16] for general hyperbolic systems of conservation laws,

oq
ot

þ o

ox
f ðqÞ ¼ 0; ð24Þ

where q 2 Rn is the vector of conserved variables for a system of n equations, and f is the flux function.

Recall that in the original version of the HLL solver, the solution of the Riemann problem is assumed to be

composed of two discontinuities propagating at constant speeds kL and kR to the left and right, separating

three constant states in the x–t space. If we assume further that kL and kR are known a priori by some simple

estimates based on the local information of the wave speeds (cf. [10,52]), then by using the integral form of

the conservation laws over a sufficiently large control volume ½�M ;M � � ½0; T �, for some M and T 2 R, it is
Fig. 1. (a) A typical solution structure of the Riemann problem. (b) Solution structure of the shock-only and HLLC approximate

Riemann solvers. Note that in the original HLL solver the wave family associated with k2 is not present in the solution.
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an easy matter to find the constant state in the middle region, denoted by qm, as the average of the exact

solution over the interval ½TkL; T kR� at time T ,

qm ¼ 1

T ðkR � kLÞ

Z TkR

TkL

qðx; T Þdx ¼ kRqR � kLqL � f ðqRÞ þ f ðqLÞ
kR � kL

; ð25Þ

where f ðqiÞ is the flux evaluated at the state qi, for i ¼ L or R.

While the above 2-wave HLL solver has been used quite successfully in many numerical methods for

computing approximate solutions of (24), it is known that the numerical result obtained by using this solver

is too diffusive for problems with contact discontinuities (cf. [52]). In addition to that, because of the lack of
information on the structure of the interfaces, it is not an adequate approach at all for general multi-

component problems.

To improve upon this 2-wave Riemann solver, we take a method suggested by Toro et al. [6,53] in that

an additional middle wave of speed um is included in the solution structure for modeling the speed of

contact discontinuity, yielding a 3-wave HLL (or called HLLC) solver. Note that if we have had the first

two components of qm computed from (25), we may simply set um ¼ qð2Þm =qð1Þm , where qðiÞm is the ith com-

ponent of the vector qm, see [52] for the various other ways to compute um.
With that, our goal next is to find the constant states qmL and qmR in the regions mL and mR to the left

and right of the middle wave, respectively. We do this by using the integral form of the conservation laws

again, but now applied over a control volume ½�M ; umT � �� � ½0; T � for the state qmL, and over a control

volume ½umT þ �;M � � ½0; T � for the state qmR, 0 < � � 1. When the aforementioned procedure is applied to

the current two-fluid model (11), it is not difficult to show that the result is

qð1Þmi ¼
f ð1Þ
mi

ki � um
; qð2Þmi ¼ umqð1Þmi ; qð3Þmi ¼ viqð1Þmi ; qð4Þmi ¼ wiqð1Þmi ;

qð5Þmi ¼
f ð5Þ
mi þ um umf ð1Þ

mi � f ð2Þ
mi

� �
ki � um

; qð6Þmi ¼
f ð6Þ
mi

ki � um
; qð7Þmi ¼ qð7Þi ;

ð26Þ

where f ðiÞ
mi ¼ kiqðiÞi � f ðiÞðqiÞ represents the ith component of the vector fmi, for i ¼ L or R. It is easy to check

that qðiÞmL and qðiÞmR satisfy the basic consistency condition of the integral form of the conservation laws,

um � kL
kR � kL

� �
qðiÞmL þ kR � um

kR � kL

� �
qðiÞmR ¼ qðiÞm ;

for i ¼ 1; 2; . . . ; 6. As in the shock-only solver, we then set the speed of the three moving discontinuities by

k1 ¼ kL, k2 ¼ um, k3 ¼ kR, with the choice of kL ¼ minðuL � cL; uR � cRÞ and kR ¼ maxðuL þ cL; uR þ cRÞ as
an example, and the jumps across each of them by (23) using the result (26).

To end this section, it should bementioned that,when computing theRiemannproblem solutionof (11), the

iterative shock-only solver described in the beginning of this section is amuchmore expensivemethod to use as

compared to the non-iterative 3-wave HLLC solver. But due to the careful construction of the middle state

solution for the contact discontinuity, which is extremely important for many difficult multicomponent
problems with strong shock waves and stiff equations of state, we observe typically a better behavior of the

results when the shock-only solver is in use than the HLLC solver is in use in a numerical method for ap-

proximating solutions of practical problems. Surely, to improve efficiency, one may take a hybrid approach

that utilizes the HLLC solver only in case for a single-fluid Riemann problem, but employs the shock-only

solver in case for two-fluid Riemann problems otherwise. Finally, we note that it is still unclear on how to

define the associated average states in a suitable way that linearizes thematrices in (12a), leading to an efficient

and accurate Roe solver for the class of two-fluid Riemann problem considered here.
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5. Numerical methods

To find approximate solutions of our model system (11) for barotropic two-fluid problems, we use a
high-resolution wave propagation method developed by LeVeque [25,27] for general hyperbolic systems of

partial differential equations. This method is a variant of the fluctuation-and-signal scheme of Roe [39,40]

in that we solve one-dimensional Riemann problems at each cell interface, and use the resulting waves (i.e.,

discontinuities moving at constant speeds) to update the solutions in neighboring grid cells. To achieve high

resolution (i.e., second-order accurate on smooth solutions, and sharp and monotone profiles on discon-

tinuous solutions), we introduce slopes and limiters to the method as in many other high-resolution schemes

for conservation laws [14,26,51]. Here, for simplicity, rather than using x1, x2, and x3 for the spatial vari-

ables, we take the often-employed x, y, and z in a respective manner, instead.

5.1. One-dimensional case

We begin our discussion by reviewing the basic idea of the method for solving the simplest Nd ¼ 1 case of

our model system,

oq
ot

þ f1
o

ox
; q

� �
¼ 0;

with q and f1 defined as in (13). To discretize the solution state, we take a uniform grid with fixed mesh

spacing Dx in the x-direction and use a standard finite-volume formulation in which the value Qn
j ap-

proximates the cell average of the solution over the grid cell ½xj; xjþ1� at time tn,

Qn
j �

1

Dx

Z xjþ1

xj

qðx; tnÞdx:

The time step from the current time tn to the next tnþ1 is denoted by Dt.

5.1.1. First-order method

In this numerical discretization setup, a first-order accurate version of the method in wave-propagation

form is a Godunov-type scheme that can be written as

Qnþ1
j ¼ Qn

j �
Dt
Dx

Xmw

m¼1

k�mWm

� �n
jþ1

þ kþmWm

� �n
j
; ð27Þ

where km and Wm are solutions of the mth wave family, for m ¼ 1; 2; . . . ;mw, obtained from solving the

Riemann problems at cell interfaces xj and xjþ1 with the properly chosen approximate solver as described in
Section 4, and k� ¼ minðk; 0Þ, kþ ¼ maxðk; 0Þ. It is known that method (27) belongs to a class of upwind

schemes and is stable when the typical CFL (Courant–Friedrichs–Lewy) condition is satisfied (cf.

[14,26,28]). Moreover, it is not difficult to show that the method is quasi-conservative in the sense that when

applying the method to (11) not only the conservation laws but also the transport equations are approx-

imated in a consistent manner by the method, see [46] for the details.

In devising an efficient solver for multicomponent problems, it is of fundamental importance to look into

an interface-only problem (cf. [45,46]) and check to see whether or not an oscillation-free results can be

obtained by using the proposed numerical algorithm. Without loss of generality, here we consider a single
two-fluid Riemann problem where at cell interface xj the initial data consists of uniform pressure p0 and

constant velocity u0 to the left and right of the interface, but having jumps on the other state variables such

as q, c, B, q0, and Y . If we now assume a positive velocity u0 > 0, and take a shock-only solver (see Section

4.1) for the Riemann problem solution, from (27) the cell average Qn
j would be updated by
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Qnþ1
j ¼ Qn

j �
Dt
Dx

k2W2ð Þnj ; ð28aÞ

or equivalently by

q
qu
qE

Bq=q0

Y

266664
377775

nþ1

j

¼

q
qu0
qE

Bq=q0

Y

266664
377775

n

j

� Dt
Dx

u0

Dq
u0Dq
DðqEÞ

DðBq=q0Þ
DY

266664
377775

n

j

; ð28bÞ

when expressing (28a) in terms of the solution states of the problem. Noting that in this case the difference

operator D is simply applied to the Riemann data Qn
j�1 and Qn

j on the left and right of the interface.

Ifwe substitute the first equation of (28b) into the second one, it follows quite easily thatwe have the expected

quantity of the particle velocity unþ1
j ¼ u0. With this result, the third equation of (28b) can be simplified to

ðqeÞnþ1

j ¼ ðqeÞnj �
Dt
Dx

u0D qeð Þnj

or alternatively to

p þ cB
c� 1

�
� B

q0

q

�nþ1

j

¼ p þ cB
c� 1

�
� B

q0

q

�n

j

� Dt
Dx

u0D
p þ cB
c� 1

�
� B

q0

q

�n

j

;

when employing the equation of state of the form (4). It is important to note that, when the fluid is

barotropic, the total internal energy of the flow can be calculated directly by using (4) together with (2) for

the pressure term. Thus we may use it to define the total energy for purely barotropic flows as in the case for

the non-barotropic flows (i.e., the mixture of two different barotropic fluid components), yielding the vi-

ability of the above formula, no matter what type of the fluid component is present in the Riemann data.

If we proceed our computation by applying the fourth equation of (28b) to the above equation, we

obtain further simplification

p þ cB
c� 1

� �nþ1

j

¼ p þ cB
c� 1

� �n

j

� Dt
Dx

u0D
p þ cB
c� 1

� �n

j

:

Now the replacement of c and B by the volume-fraction relations in (9b) would lead to an alternative form

of the above equation as

X2
i¼1

Yi
p þ ciBi

ci � 1

 !nþ1

j

¼
X2
i¼1

p0 þ ciBi

ci � 1
Yið Þnj

 !
� Dt
Dx

u0
X2
i¼1

p0 þ ciBi

ci � 1
DYið Þnj

 !
:

Then, after a simple manipulation, we get the desired pressure equilibrium pnþ1
j ¼ p0, under the condition of

the fulfillment of the difference equations for the volume fraction Yi,

Yið Þnþ1

j ¼ Yið Þnj �
Dt
Dx

u0D Yið Þnj

for i ¼ 1; 2. Note that this is exactly the last equation of (28b), because we have employed the notations in

which Y1 ¼ Y and Y2 ¼ 1� Y .
Having shown this, it is also easy to demonstrate that, if the HLLC solver (see Section 4.2) is used

instead for solving the aforementioned interface-only problem, we get the same Riemann problem solution

as presented in (28b), and hence obtain the same numerical result of the problem.
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5.1.2. High-resolution method

To improve the accuracy of method (27) to second-order, it is a customary approach by first introducing

correction waves in a piecewise-linear form with zero mean value and then propagating each wave over the
time step Dt to update the cell averages it overlaps. Without providing the details here (cf. [28,29] for

example), with the corrections, (27) is modified by

Qnþ1
j :¼ Qnþ1

j � Dt
2Dx

Xmw

m¼1

jkmj 1

�	
� jkmj

Dt
Dx

�fWm


n
jþ1

� jkmj 1

�	
� jkmj

Dt
Dx

�fWm


n
j

; ð29Þ

where fWm is a limited value of Wm obtained by comparing Wm with the corresponding Wm from the

neighboring Riemann problem to the left (if km > 0) or to the right (if km < 0).

Note that with the use of the wave-form representation of theRiemann solver as described in Section 4, it is

quite common to perform the limiting procedure over each component of the wave via a limiter function U
(e.g., by using the minmod function UðhÞ ¼ maxð0;minð1; hÞÞ or some others as discussed in [51]), and set

fWðiÞ
mj ¼ U hðiÞmj

� �
W

ðiÞ
mj with hðiÞmj ¼

W
ðiÞ
mJ

W
ðiÞ
mj

; J ¼ j� 1 if kmj P 0;
jþ 1 if kmj < 0;

�
ð30Þ

where W
ðiÞ
mj is the ith component of Wmj. While this approach works in a satisfactory manner without

causing any wrong oscillations for the 1- and 3-waves, it was mentioned in [46,48] that, for the 2-wave, the

third limited component on the total energy fWð3Þ
2j should be modified to ensure a consistent approximation

of that term, yielding the desired pressure equilibrium near the interfaces.

To demonstrate how the modification needs to be done in the current barotropic flow model (11), we use

the interface-only problem described in Section 5.1.1 as an example. Then from (29) the cell average Qnþ1
j

obtained using (28a) would be updated by

Qnþ1
j :¼ Qnþ1

j � Dt
2Dx

jk2j 1

�
� jk2j

Dt
Dx

� fW2;jþ1

�
� fW2j

�n
; ð31aÞ

or equivalently by

q

qu

qE

Bq=q0

Y

26666664

37777775

nþ1

j

:¼

q

qu

qE

Bq=q0

Y

26666664

37777775

nþ1

j

� l
2

1ð � lÞ

U ðDqÞj=ðDqÞjþ1

h i
ðDqÞjþ1

u0U ðDqÞj=ðDqÞjþ1

h i
ðDqÞjþ1

U ðDqEÞj=ðDqEÞjþ1

h i
ðDqEÞjþ1

U ðDBq=q0Þj=ðDBq=q0Þjþ1

h i
ðDBq=q0Þjþ1

U ðDY Þj=ðDY Þjþ1

h i
ðDY Þjþ1

26666666666664

37777777777775

n

þ l
2

1ð � lÞ

U ðDqÞj�1=ðDqÞj
h i

ðDqÞj

u0U ðDqÞj�1=ðDqÞj
h i

ðDqÞj

U ðDqEÞj�1=ðDqEÞj
h i

ðDqEÞj

U ðDBq=q0Þj�1=ðDBq=q0Þj
h i

ðDBq=q0Þj

U ðDY Þj�1=ðDY Þj
h i

ðDY Þj

26666666666664

37777777777775

n

; ð31bÞ
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when applying the limiter function (30) to the above equation, and letting l ¼ u0Dt=Dx. Note that, from the

first two equations of (31b), we find easily unþ1
j ¼ u0 that is independent of the limiter being employed to the

method. Clearly, as in the first-order case, to maintain the pressure in equilibrium, the results that are used
for the solutions of Bq=q0 and Y in the fourth and fifth components of (31b), respectively, should be in-

corporated into the computation of the total energy, i.e., in the third component of (31b). But the definition

of fWð3Þ
2j employed in (31b) does not respect this fact, in general, for any chosen limiter function, and so it

should not be the correct form to be used in practice for this matter.

Motivated by the previous work (cf. [46,48]), one possible approach is to make a new definition of fWð3Þ
2j as

fWð3Þ
2j :¼ U

ðDjÞj�1

ðDjÞj

" #
ðDjÞj þ

X2
i¼1

ciBi

ci � 1
U

ðDYiÞj�1

ðDYiÞj

" #
ðDYiÞj � U

ðDBq=q0Þj�1

ðDBq=q0Þj

" #
ðDBq=q0Þj;

where j ¼ qE � cB=ðc� 1Þ þBq=q0, or alternatively in addition to that one may set the first term on the

right-hand side of the expression as

U
ðDjÞj�1

ðDjÞj

" #
ðDjÞj :¼

1

2
u2�jU

ðDqÞj�1

ðDqÞj

" #
ðDqÞj þ p�j

X2
i¼1

1

ci � 1
U

ðDYiÞj�1

ðDYiÞj

" #
ðDYiÞj:

Here u�j and p�j are the midstate solutions of the Riemann problem at cell interface xj. With any of these

revisions of the limited 2-wave on the total energy, it is not difficult to show that for the interface-only

problem we again have the required pressure equilibrium in the solution of the method. Moreover, we

obtain a better resolution of the result as compared to the first-order result, see Fig. 2 for an example.
5.2. Multidimensional case

To extend the one-dimensional wave propagation method to more space dimensions, here we take a

simple dimensional-splitting approach in which a multidimensional problem is split into a sequence of one-

dimensional problems. Consider the three-dimensional case Nd ¼ 3, for example. The barotropic two-fluid

flow problem modeled by (13),

oq
ot

þ f1
o

ox
; q

� �
þ f2

o

oy
; q

� �
þ f3

o

oz
; q

� �
¼ 0

can be split into
x
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Fig. 2. Numerical results for an interface-only problem at time t ¼ 0:01. The triangles shows result obtained using the first-order

method, while the filled octagons shows the result using the high-resolution method. The solid line is the exact solution.
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x-sweeps :
oq
ot

þ f1
o

ox
; q

� �
¼ 0; ð32aÞ
y-sweeps :
oq
ot

þ f2
o

oy
; q

� �
¼ 0; ð32bÞ
z-sweeps :
oq
ot

þ f3
o

oz
; q

� �
¼ 0: ð32cÞ

Assuming a uniform Cartesian grid with fixed mesh spacing Dx, Dy, and Dz in the x-, y-, and z-direction,
respectively. In a finite-volume formulation of the solution, the value Qn

ijk would approximate the cell

average of the solution over the ði; j; kÞth grid cell at time tn,

Qn
ijk �

1

DxDyDz

Z Z Z
Cijk

qðx; y; z; tnÞdxdy dz;

where Cijk ¼ ½xi; xiþ1� � ½yj; yjþ1� � ½zk; zkþ1� denotes the cubical region occupied by the grid cell ði; j; kÞ. Then
a dimensional-splitting (or called Godunov-splitting) version of the first-order wave propagation method in

three dimensions can be written as:

Q�
ijk ¼ Qn

ijk �
Dt
Dx

Xmw

m¼1

kðxÞ�m WðxÞ
m

� �n
iþ1;jk

þ kðxÞþm WðxÞ
m

� �n
ijk
; ð33aÞ
Q��
ijk ¼ Q�

ijk �
Dt
Dy

Xmw

m¼1

kðyÞ�m WðyÞ
m

� ��
i;jþ1;k

þ kðyÞþm WðyÞ
m

� ��
ijk
; ð33bÞ
Qnþ1
ijk ¼ Q��

ijk �
Dt
Dz

Xmw

m¼1

kðzÞ�m WðzÞ
m

� ���
ij;kþ1

þ kðzÞþm WðzÞ
m

� ���
ijk
: ð33cÞ

Note that in the x-sweeps we start with cell average Qn
ijk at time tn and solve (32a) along each row of cells Cijk

with j and k fixed, updating Qn
ijk to Q�

ijk by the use of (33a), where kðxÞm;ijk and W
ðxÞ
m;ijk are solutions of the mth

wave family obtained from solving the one-dimensional Riemann problems in the direction normal to the

cell interface between Cijk and Ciþ1;jk with Qn
ijk and Qn

iþ1;jk as initial data. Then in the y-sweeps we can use the

Q�
ijk values as data for solving (32b) along each column of cells Cijk with i and k fixed, which gives us Q��

ijk

from (33b). Finally, in the z-sweeps we use the Q��
ijk values as data for solving (32c) along the other column

of cells Cijk with i and j fixed, yielding the solution of the next time step Qnþ1
ijk from (33c).

To improve numerical accuracy of this splitting method, in each one-dimensional sweep, we may simply

apply the same high-resolution approach as discussed in Section 5.1.2 to the current multidimensional

problem. Note that, for an interface-only problem in multiple space dimensions, by performing a similar
analysis as done in Section 5.1, it is not difficult to show that the method described above gives the correct

pressure equilibrium without introducing any spurious oscillations near the smeared interface, see Fig. 5 for

a numerical example in two space dimensions.

It should be mentioned that, except for some simple problems, there will be generally splitting error of

the method just described (cf. [28]). But from numerical experiences it turns out that the splitting error is

often no worse than the errors introduced by the numerical methods in each sweep, and hence it is typically

not necessary to use a more accurate splitting approach such as the Strang splitting [50] to reduce the

splitting error, see [28] for some discussion of why one might not want to use a higher order splitting
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method. In addition, a sample of three-dimensional computations done by J.O. Langseth for vorticity

generated by a shock wave hitting a cylinder of low-density gas even shows good result using the present

method as compared to the fully discrete wave propagation method (cf. [24,25,27]), see the CLAWPACK
webpage: ‘‘http://www.amath.washington.edu/~claw’’, for the details. For these reasons, we will use the

one-dimensional high-resolution wave propagation method together with the Godunov splitting for all the

multidimensional tests done in the next section.
6. Numerical results

We now present results to validate our numerical algorithm described in Section 5 for barotropic two-
fluid problems. We start our computations by performing a couple of tests in one space dimension and then

do some more tests in multiple space dimensions. Without stating otherwise, we run all the problems using

the HLLC Riemann solver, the ‘‘minmod’’ limiter in a high-resolution method, and the Courant number

m ¼ 0:9.
6.1. One-dimensional case

Example 6.1.1. To begin with, we consider an interface-only problem of van Brummelen and Koren [54] in

which the exact solution of the problem is a single air–water material interface evolving in air with uniform

equilibrium pressure p0 ¼ 1 and constant particle velocity u0 ¼ 100. Initially, the interface is located at the

center of the computational domain x 2 ½�2; 2�. On the left of the interface, the fluid is a water-like material

with

q0; c;B; Yð ÞL ¼ 1; 7; 3000; 1ð Þ;

while on the right of the interface, the fluid is an air-like material with

q0; c;B; Yð ÞR ¼ 10�3; 1:4; 0; 0
� �

:

Note that with the data given above we may determine the density q by simply using the Tait equation of

state (2).
For this problem, calculations were carried out by using both the first-order and high-resolution version

of the method with a 200-cell grid. Snapshots of the density and pressure at time t ¼ 0:01 are shown in

Fig. 2. It is clear that the pressure obtained using each of these methods remains at the correct constant

state p0 without any spurious oscillations near the numerically diffused air–water interface. Moreover, we

get a better result in the density when the high-resolution method is in use in the computation.

Example 6.1.2. Our next example is concerned with a more general data for two-fluid Riemann problem. In

this case, in region where x 2 ½�2; 0Þ, we have an air-like material with the state variables

p; u; q0; c;B; Yð ÞL ¼ 103; 0; 10�3; 1:4; 0; 1
� �

;

while in region where x 2 ½0; 2�, we have a water-like material with the state variables

p; u; q0; c;B; Yð ÞR ¼ 1; 0; 1; 7; 3000; 0ð Þ:

Here the reference pressure p0 ¼ 1 is taken throughout the domain. With this initial condition, breaking of

the air–water membrane would result in a self-similar solution in the x–t space that consists of a leftward-

going rarefaction wave, a rightward-going contact discontinuity, and a shock wave.

http://www.amath.washington.edu/~claw


K.-M. Shyue / Journal of Computational Physics 200 (2004) 718–748 737
Fig. 3 shows high-resolution result for the density, momentum, and pressure, at time t ¼ 0:01 using 200

mesh points. From the displayed profiles, we clearly observe the correct behavior and good resolution of

the computed contact discontinuity, and also the shock and rarefaction waves as in comparison with the
exact solution.

Example 6.1.3. As an example to verify convergence of the computed solutions to the correct weak ones,

we consider a shock-contact interaction problem studied by van Brummelen and Koren [54]. In this

problem, the initial condition we take is composed of three constant states with data

p
u
q0

c
B
Y

0BBBBBB@

1CCCCCCA
L

¼

103

6:3386
1

7
3000

1

0BBBBBB@

1CCCCCCA;

p
u
q0

c
B
Y

0BBBBBB@

1CCCCCCA
M

¼

1

0

1

7

3000
1

0BBBBBB@

1CCCCCCA;

p
u
q0

c
B
Y

0BBBBBB@

1CCCCCCA
R

¼

1

0

10�3

1:4
0
0

0BBBBBB@

1CCCCCCA;

which is the same data as used in [54] with the exception that on the state L a larger magnitude of the

pressure and velocity are employed here as opposed to pL ¼ 10 and uL ¼ 0:062. Here L is the state used for

x 2 ½�2;�0:1Þ, M is the state used for x 2 ½�0:1; 0Þ, and R is the state used for x 2 ½0; 2�. We note that this
gives us one example in which a stationary air–water interface is accelerated by a shock wave coming from

the heavy-fluid (water) to the light-fluid (air) region. In one dimension, it is known that the resulting so-

lution after the interaction would consist of a transmitted shock wave, an interface, and a reflected rare-

faction wave.

Numerical result for a run until time t ¼ 0:01 is shown in Fig. 4, where we again solve the problem using

the high-resolution method with 200 mesh points, and plot the snapshot of q, qu, and p at the stopping

time. We can easily see that the shock wave and contact discontinuity are very well located, and the rar-

efaction wave moves at the correct speed with the correct shape. A multidimensional version of the problem
will be considered in the following section.

6.2. Multidimensional case

Example 6.2.1. We now test our algorithm for a two-dimensional form of the interface-only problem that

the solution consists of a circular water column evolving in air with uniform equilibrium pressure and

constant particle velocity throughout the domain. As an example, we take the similar set of data as in

Example 6.1.1 that initially inside the column of radius r0 ¼ 0:16, we have a water-like material as
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Fig. 3. High-resolution results for a two-fluid Riemann problem at time t ¼ 0:01. The solid line is the exact solution and the points

shows the computed solution with 200 mesh points. The dashed line in each subplot is the initial condition at time t ¼ 0.
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Fig. 4. High-resolution results for a shock-contact interaction problem at time t ¼ 0:01. The graphs of the solution are displayed in the

same manner as in Fig. 3.

738 K.-M. Shyue / Journal of Computational Physics 200 (2004) 718–748
p; u; v; q0; c;B; Yð Þr6 r0
¼ 1; 102; 102; 1; 7; 3000; 1
� �

;

while outside the column we have an air-like material as

p; u; v; q0; c;B; Yð Þr>r0
¼ 1; 102; 102; 10�3; 1:4; 0; 0
� �

:

Here r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ2

q
is the distance from a point ðx; yÞ in a unit square domain to the center of

the water column ðx0; y0Þ ¼ ð0:25; 0:25Þ.
In Fig. 5, we show results obtained using the high-resolution method with a 100� 100 grid, where the 3D

surface plots of the density and pressure, and the cross-section plots of the density and pressure along x ¼ y
are presented at time t ¼ 0:005. From the figure, it is easy to observe good agreement of the numerical

solutions as compared with the exact results. Notice in particular that the computed pressure remains in
equilibrium as desired, without any spurious oscillations near the smeared air–water column interface.

Example 6.2.2.We next consider a radially symmetric problem so that the computed solutions in two space

dimensions can be compared to the one-dimensional results for numerical validation. In this test, we use the
following two-phase (air–water) flow data for experiments in which, in the air phase, the state variables are

p; u; v; q0; c;B; Yð Þ ¼ 103; 0; 0; 10�3; 1:4; 0; 1ð Þ if r6 r1
10�3; 0; 0; 10�3; 1:4; 0; 1ð Þ if r > r2;

�
while in the water phase they are

p; u; v; q0; c;B; Yð Þ ¼ 1; 0; 0; 1; 7; 3000; 0ð Þ if r1 < r6 r2;

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, r1 ¼ 0:2, and r2 ¼ 1. Here due to the pressure difference between the fluids at r ¼ r1,

breaking of the inner circular membrane occurs instantaneously, yielding an outward-going shock wave in

water, an inward-going rarefaction wave in air, and a contact discontinuity lying in between that separates

the air and water. As times go along, the inward-going wave would be reflected from the geometric center

that generates a new outward-going wave and induces the subsequent interaction of waves. At a somewhat

later time, the outward-going shock wave would be collided with the outer air–water interface at r ¼ r2 that
results in a wave pattern consisting of a transmitted shock wave, an interface, and a reflected rarefaction
wave. Because of the symmetry of the solution, for simplicity, we only take a quarter of the

½�1:2; 1:2� � ½�1:2; 1:2� domain, and apply the line of symmetry boundary conditions to the bottom and the

left sides during the computations.

Figs. 6 and 7 show numerical results for the density, radial velocity (defined as �u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
), pressure,

and volume fraction at three stopping times, t ¼ 0:0015, 0.003, and 0.007, where the test has been carried
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Fig. 5. High-resolution results for a two-dimensional interface-evolving problem at time t ¼ 0:005. On the first row: Surface plots of

the density and pressure. On the second row: Cross-sectional plots of the density and pressure along line x ¼ y. The solid line in the

cross-sectional plot is the exact solution, the dotted points are the numerical results, and the dashed line is the initial condition at time

t ¼ 0.
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out by using a 240� 240 grid with the high-resolution method. Clearly, from the contour plots shown in

Fig. 6, we observe good resolution of the solution structure (i.e., both the shock and interface remain

circular and appear to be very well located) after the breaking of the membrane and also the interaction of
the shock and the outer interface. Note that, in the contours of pressure at time t ¼ 0:007, there are little

wiggles near 16� to the x- and y-axis which may be viewed as grid-alignment effects with the use of the high-

resolution method. It should be mentioned that this type of error is not present when the problem is solved

by using the first-order method (not shown), and is less visible when the problem is solved by using a

smaller time step in the high resolution method than the time step taken here with the Courant number

m ¼ 0:9.
The scatter plots shown in Fig. 7 provide the validation of our two-dimensional results as in comparison

with the ‘‘true’’ solution obtained from solving the one-dimensional model with appropriate source terms
for the radial symmetry, using the high-resolution method with a 1200 mesh points. That is, for the

equation, we have a modified-version of the model (13) in one dimension as

oq
ot

þ f
o

or
; q

� �
¼ wðqÞ ð34Þ

with f a vector-value function defined by

f ¼ o

or
quð Þ; o

or
qu2
�	

þ p
�
;
o

or
qEuð þ puÞ; o

or
B

q0

qu
� �

; u
oY
or


T
;

and w the source term derived directly from the geometric simplification of a multidimensional flow to a

one-dimensional one,



Fig. 6. High-resolution results for a radially symmetric problem. Contour plots for the density, radial velocity, pressure, and volume

fraction are shown at three different times t ¼ 0:0015, 0.003, and 0.007. The dashed line shown in the graph is the approximate location

of the air–water interface.
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w ¼ � a
r

qu; qu2; qEu
�

þ pu;
B

q0

qu; 0
�T

:

Note that in the case of a 2D radially or 3D spherically symmetric flow, we use the quantity a ¼ 1 or 2,

respectively; u now denotes the particle velocity in the r-(radial) direction. We use a Strang-type time

splitting procedure [50] to deal with the geometric sources of (34) in a high-resolution manner during the

run. From the figure, it is clear that our results agree quite well with the ‘‘true’’ solutions at all the selected
times, and also free of wrong fluctuations in the pressure near the inner and outer interfaces before and

after the interactions of rarefaction and shock waves.

Example 6.2.3. To show how our algorithm works on shock waves in a more general two-dimensional

geometry, we are concerned with the simulation of a shock wave in liquid over a gas bubble. For this

problem, we take a shock tube of size ½0; 2� � ½0; 0:6�, and consider the initial condition that is composed of

a planarly rightward-going shock wave in water traveling at x ¼ 0:4 from left to right, and a stationary air

bubble of radius r0 ¼ 0:2 located at ðx0; y0Þ ¼ ð0:8; 0Þ on the right of the shock wave. Similar to the data
employed in Example 6.1.3, inside the air bubble, we have the data

p; u; v; q0; c;B; Yð Þ ¼ 1; 0; 0; 10�3; 1:4; 0; 1
� �

;

while outside the air bubble (the fluid is water), we use the pre-shock state

p; u; v; q0; c;B; Yð Þ ¼ 1; 0; 0; 1; 7; 3000; 0ð Þ;



Fig. 7. Scatter plots of the results for the run shown in Fig. 6. The solid line is the ‘‘true’’ solution obtained from solving the one-

dimensional model with appropriate source terms for the radial symmetry using the high-resolution method and 1200 mesh points. The

dotted points are the two-dimensional result. The dashed line is the approximate location of the air–water interface.
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and the post-shock state

p; u; v; q0; c;B; Yð Þ ¼ 103; 6:3386; 0; 1; 7; 3000; 0
� �

:

Note that in carrying out the computations below, we have used the non-reflecting boundary condition on

the left and right sides, the solid wall boundary condition on the top and bottom sides.
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Figs. 8 and 9 show numerical results of a sample run using a 400� 120 grid. From Fig. 8, we

observe the distortion of the air bubble and the somewhat complicated wave pattern after the passage

of the shock wave to the bubble, where a Schlieren-type images of the density, pressure, and volume
fraction are presented at four different times t ¼ i� 0:0025, for i ¼ 1; 2; 3; 4. The cross section of the

results for the same run along the bottom boundary is drawn in Fig. 9, giving some quantitative in-

formation about the density, pressure, and volume fraction at the selected times. It is easy to notice that

on the fourth snapshot of the pressure, i.e., the plot at the time t ¼ 0:01, there is a small portion of the

domain in the water phase which contains negative value of the pressure. In the current model with

the pressure law (5), this is, however, permitted as long as the pressure stays within the region of the

thermodynamic stability of the flow, see Section 2. Note that in that figure we have also included results

obtained using the same method but with a finer 800� 240 grid, observing good agreement of these two
solutions.

To check the correctness of the computed solutions further, we perform a mesh refinement test of the

algorithm using a grid sequence: 2ið200� 60Þ, for i ¼ 0; 1; 2. Numerical results of the y-averaged data,

defined as �fðxÞ ¼
PM

j¼1 fðx; yjÞ=M , for f ¼ q, p, or Y , are drawn in Fig. 10 at the snapshot time t ¼ 0:01,
where M is the total number of grid cells in the y-direction. From the plot, we clearly find a good con-

vergence behavior of the solutions under mesh refinement. To show a temporal resolution of the result, in

Fig. 11 we present the circulation of the velocity vector ~V ¼ ðu; vÞ around the closed boundary curve of the

domain, noticing basically the same qualitative behavior of the solution as the mesh is refined, see [38] for a
similar results of a shock wave in air over an R22 bubble, and [36] for more discussion about the vorticity

generation by shock wave propagation through bubbles in gas.
Fig. 8. Two-dimensional results for a planar shock wave in water over an air bubble. Schlieren-type images for the density, pressure,

and volume fraction are shown at four different times t ¼ i� 0:0025, for i ¼ 1; 2; 3; 4, where a 400� 120 grid was used in the com-

putation.
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Fig. 9. Cross-sectional plots of the results for the run shown in Fig. 8 along the bottom boundary, where the solid lines are results

obtained using the same method but with a finer 800� 240 grid.
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over an air bubble. The test is performed using three different grid systems: 2ið200� 60Þ for i ¼ 0; 1; 2, and only the solutions at time

t ¼ 0:01 is shown.
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Example 6.2.4. Finally, we are interested in a shock-contact interaction problem in three space dimensions

which may be thought of a continuation of the test performed in Example 6.2.3. Here the problem is set up

in the same manner as in the two-dimensional counterpart, with the exception that a shock tube of size
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Fig. 11. A convergence study of the total circulation as a function of time for a planar shock wave in water over an air bubble.
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½0; 2� � ½0; 0:5� � ½0; 0:6� is used in the computation and the air bubble is now located at
ðx0; y0; z0Þ ¼ ð0:8; 0:5; 0Þ. Note that the boundary conditions we used in the current case are the non-re-

flecting boundary condition on the left and right faces, and the solid wall boundary condition on the re-

maining top, bottom, front, and back faces.
Fig. 12. Three-dimensional results for a planar shock wave in water over an air bubble. Schlieren-type images for the density, pressure,

and volume fraction are shown on the planes y ¼ 0:5 and z ¼ 0 at four different times t ¼ i� 0:0025, for i ¼ 1; 2; 3; 4. Here a

400� 100� 120 grid was used in the computation.
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Fig. 13. One-dimensional plots of the results for the run shown in Fig. 12, where the averaged data in the z-direction along the y ¼ 0:5

plane are drawn. Here the solid lines are results obtained using the same method but with a finer 500� 125� 150 grid.
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Fig. 14. A convergence study of the averaged density, pressure, and volume fraction in the yz-plane for a three-dimensional case of a

planar shock wave in water over an air bubble. The test is performed using three different grid systems: 2ið100� 25� 30Þ for i ¼ 0; 1; 2,

and only the solutions at time t ¼ 0:01 is shown.
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Numerical results of a sample run using a 400� 100� 120 grid are shown in Figs. 12 and 13, where in the

former a Schlieren-type images of the density, pressure, and volume fraction are plotted on the planes

y ¼ 0:5 and z ¼ 0 at four different times t ¼ i� 0:0025, for i ¼ 1; 2; 3; 4, and in the latter a one-dimensional
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Fig. 15. A convergence study of the circulation around the boundary curve of the y ¼ 0:5 plane as a function of time for a three-

dimensional case of a planar shock wave in water over an air bubble.
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plot of the z-averaged data, defined as �fðxÞ ¼
PN

k¼1 fðx; yM ; zkÞ=N , for f ¼ q, p, or Y , are drawn at the se-

lected times. Here N is the total number of grid cells in the z-direction, and yM ¼ 0:5. Note that, to validate

the computed solutions, in Fig. 13 we also include results obtained using the same method but with a finer

500� 125� 150 grid, and find good agreement of these two solutions. It is interesting to see that, as far as

the global structure of the solution is concerned, from Fig. 12, we observe quite similar results as in

comparison with the two-dimensional result presented in Fig. 8.

Here, to investigate the convergence behavior of the algorithm, we perform a mesh refinement study of
the solution using the following grid sequence: 2ið100� 25� 30Þ, for i ¼ 0; 1; 2. Fig. 14 shows results of the

yz-averaged data, defined as efðxÞ ¼PM
j¼1

PN
k¼1 fðx; yj; zkÞ=MN , for f ¼ q, p, or Y , at the time t ¼ 0:01, where

M and N are the total number of grid cells in the y- and z-direction, respectively. From the plot, we notice

sensible convergence behavior of the solutions in most part of the domain, without any spurious oscilla-

tions in the pressure near the air–water interface. The temporal resolution of the circulation around the

boundary curve of the y ¼ 0:5 plane is presented in Fig. 15, giving further evidence of the viability of the

algorithm to practical barotropic two-fluid problems.
7. Conclusion

We have described a simple interface-capturing approach for barotropic two-fluid flow problems in more

than one space dimension. The algorithm uses a non-isentropic form of the equation of state for the

modeling of the numerically induced mixing between two different barotropic fluid components within a

grid cell. Following the previous work, we devise a mixture-type of the governing equations to ensure a

consistent approximation of the energy equation near the smeared time-dependent material interfaces. Note
that here the pressure is computed directly from the equation of state as in the single component flow. A

standard high-resolution method based on the wave-propagation formulation is employed to solve the

proposed model equations with the dimensional-splitting technique included in the method for multidi-

mensional problems. Numerical results presented in this paper demonstrate clearly the feasibility of the

approach for a reasonable class of two-fluid problems with the thermodynamic property of each fluid

component characterized by the Tait equation of state. In the future, we plan to further extend the algo-

rithm that has the capability of dealing with the effect of the slip condition on the velocity across the in-
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terface which will be important for applications such as the propagation of pressure wave in bubbly flow

(cf. [19,20,41,49]), and also to cavitating flow problems (cf. [4]).
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