Journal of Computational Physi&§1,678-707 (2001)

®
doi:10.1006/jcph.2001.6801, available online at http://www.idealibrary.col DE &l.

A Fluid-Mixture Type Algorithm for
Compressible Multicomponent Flow
with Mie-Grilneisen Equation of State

Keh-Ming Shyue

Department of Mathematics, National Taiwan University, Taipei, Taiwan 106, Republic of China
E-mail: shyue@math.ntu.edu.tw

Received October 10, 2000; revised April 6, 2001

A simple interface-capturing approach proposed previously by the author for effi-
cient numerical resolution of multicomponent problems with a van der Waals fluid
[J. Comput. Phys 156 (1999), pp. 43—-88] is extended to a more general case with
real materials characterized by a MieBeisen equation of state. As before, the
flow regime of interests is assumed to be homogeneous with no jumps in the pres-
sure and velocity (the normal component of it) across the interfaces that separate
two regions of different fluid components. The algorithm uses a mixture type of
the model system that is formed by combining the Euler equations of gas dyna-
mics for the basic conserved variables and an additional set of effective equations
for the problem-dependent material quantities. In this approach, the latter equations
are introduced in the algorithm primarily for an easy computation of the pressure
from the equation of state, and are derived so as to ensure a consistent modeling
of the energy equation near the interfaces where two or more fluid components are
present in a grid cell, and also the fulfillment of the mass equation in the other single
component regions. A standard high-resolution wave propagation method designed
originally for single component flows is generalized to solve the proposed system for
multicomponent flows, giving an efficient implementation of the algorithm. Several
numerical results are presented in both one and two space dimensions that show
the feasibility of the method with the Roe Riemann solver as applied to a reason-
able class of practical problems without introducing any spurious oscillations in the
pressure near the interfaces. This includes results obtained using a multicomponent
version of the AMRCLAW software package of Berger and LeVeque for the simu-
lation of the impact of an underwater aluminum plate to a copper plate in two space
dimensions. (© 2001 Academic Press
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1. INTRODUCTION

In this paper, we describe extensions of a fluid-mixture type algorithm proposed pre
ously by the author for efficient numerical resolution of multicomponent problems wi
a van der Waals gas (cf. [45]) to a more general case with materials characterized |
Mie—Gnrlineisen equation of state of the form

P(p, € = Prei(p) + T'(p)p [€ — €ei(p)]. 1)

Here p, p, ande denote the pressure, density, and specific internal energy of the flc
respectivelyl” = (1/p)(9p/0e)|, isthe Grineisen coefficient, angler, € are the properly
chosen states of the pressure and internal energy along some reference curve (e.g.,
an isentrope, a single shock Hugoniot, or the other empirically fitting curves) in order
match the experimental data of the material being examined. Note that, for simplicity, e
of the expressionE, prer, anders is taken as a function of the density only. Even with this
simplification, the analytical form of the equation of state (1) is an adequate approximat
to a wide variety of materials of interest. This includes some gaseous or solid explosi
and solid metals under high pressure; see Section 2 for the details.

It is known that for a general multicomponent flow system (compressible or not), c
pending specifically on conditions such as the topological structure of the interfaces
jumps of fluid properties across them, one can distinguish various type of flow regimes
practical importance, e.g., annular flow, slug flow, bubbly flow, and so on (cf. [10, 49, &
53]). Among them, in this work (cf. [44, 45, 46] also), we are interested in problems arisi
from a so-called homogeneous flow in which there is typically a strong coupling betwe
the motion of each fluid component, and assumes a simple flow condition with no jun
in the pressure and velocity (the normal component of it) across interfaces that sepe
two different fluid components. Consider a one-dimensional inviscid compressible flc
for example. The basic conservation laws for the fluid mixtures of mass, momentum, :
energy are

ap a

L4+ —(puy=0

8t+ax('0) ,
O ow + Lo+ p =0 @)
g P TP TR =0

0 0
—(pE —(pEu u =20
at(p )+3X(p + pu) =0,

respectively, whera is the particle velocity, ané = e + u?/2 is the specific total energy.
Clearly, (2) takes the same form as the standard Euler equations of gas dynamics |
single component flow, and has been used quite extensively in modeling the beha
of a homogeneous flow (cf. [44, 45, 46]). Note that, in contrast to the case mentiol
above, the use of a separate set of equations for each fluid component is often preferre
nonhomogeneous multicomponent problems; see [2, 12, 39] for an example.

To solve a compressible multicomponent problem with a general. Migr€isén equa-
tion of state (1), we want to use an Eulerian formulation of the equations as in the fo
described in (2), and to employ a state-of-the-art shock capturing method on a uniform r
angular grid for numerical approximation. Aside from the basic properties that a numeri
method should follow in regions where the solutions contain only a single compont
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(cf. [7]), one major problem in the method development of a multicomponent solver is t
need to devise a proper model and treatment of the numerical mixing between more t
one fluid component within a grid cell. For the homogeneous flow problems considel
here, in particular, it is imperative to construct the method so that both the pressure

velocity remain in equilibrium without introducing any spurious oscillations for these mi»
ture cells. With applications to materials modeled by (1), some representative method
the previous efforts in this direction are the volume-of-fluid approach of Miller and Pucke
[31], the two-phase flow approach of Saurel and Abgrall [41], and the ghost-fluid approz
of Fedkiwet al.[13]; see also [47] for an Lagrangian—Eulerian approach and [18, 42] f
other up-to-date multicomponent algorithms.

With (1), our approach to model grid cells that contain more than one fluid compone
follows essentially the same idea as developed in [44, 45] for stiffened and van der W
gases, and is a further generalization of the quasi-conservative method of Abgrall [1]
ideal gases. That is to say, we begin by considering an interface-only problem in ¢
dimension where both the pressure and velocity are constants in the domain, while t
are jumps in the other material-dependent variables across some interfaces. Then, fror
energy equation, we derive a set of effective equations for the mixtures of the proble
dependent material quantities near the interfaces, see (11a) and (11b), so as to ensu
pressure remains in equilibrium for this problem. As in the previous work [45], in ord
to keep the material quantities unchanged as it should be in a single component regiol
a more general problem with shock and rarefaction waves as well, we proceed to moi
these equations and obtain (11c) and (11d).

Note that here because of the strongly nonlinear coupling between many of the mate
guantities in the Mie—Gurieisen equation of state (1), see Section 2, it is not possible
manipulate those equations further to find out a suitable effective equation for eack
the material quantities as we have hope for in the van der Waals gas case [45], wl
yields the calculation of some of the material quantities from the equation of state
explicit step out of the question. To remedy this situation, through a process of splitti
from the equation for the internal energy, we come up with a set of three equations, |
Egs. (11c¢), (11e), and (11f), which together with a local model based on the volume fract
of fluid components within a grid cell can be used to the determination of the materi
dependent functionB, prer, anders. Therefore, we are able to compute the pressure fror
the equation of state in an easy manner with a reasonable amount of cost. A combine
of the Euler's equation (2) with this set of three equations and the evolution equatic
for volume fractions gives a complete model system that is a viable one to use in
algorithm for numerical approximation of multicomponent problems. This will be discusst
further in Section 3 for the one-dimensional case, and Section 6 for the multidimensio
extension.

It should be mentioned that the multicomponent model we have derived, i.e., Eq. (12
(23), is not written in the full conservation form, but is rather a quasi-conservative systernr
equations. Nevertheless, as in the case for single component flows, this model is a hyper
system when each physically relevant value of the state variables of the flow is define
the region of thermodynamic stability; see Sections 2 and 3. As before (cf. [44, 45]), h
we use the high-resolution method based on the wave-propagation viewpoint to com|
approximate solution of the problem, giving an efficient implementation of the algorith
and also very accurate results for a variety of one- and two-dimensional problems;
Sections 5 and 6.1 for the details.
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This paper is organized as follows. In Section 2, we discuss two important types
the curves (i.e., the isentropic and Hugoniot loci) for the reference states in the M
Griineisen equation of state, and give some examples of interests for an explicit expres
of the material-dependent functiols pres, andeet. In Section 3, we describe in detall
the construction of our fluid-mixture type multicomponent model in one dimension. Tl
numerical method used to find approximate solution of the model system is briefly reviev
in Section 4. Thisincludes some discussion of the approximate Riemann solver of Roe. C
dimensional results obtained using our multicomponent algorithm are shown in Sectior
In Section 6, we extend the one-dimensional algorithm to multiple space dimensions,
show some numerical results in two dimensions.

2. EQUATIONS OF STATE

We are interested in a model for real materials (cf. [56]) where the thermodynar
behavior, such as the specific internal energy and the pressure of the material, ca
characterized by the following two-terms relations

(V)
PV, T) = Prer(V) + TeT(Vv . (3b)

HereV = 1/p denotes the specific volum€,denotes the temperature, and the subscript
ref of (p,e) and T ofe refer to the “reference” and “thermal” states of the variables
respectively. Note that to determine the valueTofrom those ofV ande, we use the
well-known relation in thermodynamics,

T

e— eu(V) = er (V. T) = (V) + / Cy(V, THdT,
To

whereCy is the specific heat at constant volume: Assume @adepends only on the
specific volume, from the above, we simply get= Cy (T — Tp), yieldingT = To + (e —
€ef)/Cy. Clearly when we chooseande as our nature state-variables, from (3a) and (3b)
we simply get the Mie—Girieisen equation of state (1).

Here, for simplicity, we assume thBtis a function ofV only, and takes the form

INQY r AN 4
=0y ) @
wherel'y = y9 — 1 represents the @neéisen coefficientat = Vp, y9 > 1isthe usual def-
inition of the ratio of specific heats, ande [0, 1] is a dimensionless parameter. Depending
on the specific reference curve on which the states of the funcpgnand e lie, the
explicit relation betweem,es andees will be different. We next discuss two typical cases
of practical importance; see [26, 55] also for some other possible instances.

2.1. Reference State along a Isentropic Locus

We begin by considering a class of materials where the thermodynamictate ) of
the model equation of state (1) lies along an isentropic locus from a centering pgieg)(
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i.e., the specific entropy, denoted Byis a constant on the curve. In this case, from the
basic thermodynamics relati@ge = T dS— pesdV andd S= 0, we obtain easily the
condition betweerp,er andees as pref(V) = —deges(V)/dV. Among many materials that
belong to this type, in this paper we are mainly concerned with the following two samy
examples which have been used quite extensively for modeling the behavior of explos|
and other materials (cf. [35] for an example of solids).

(i) The Jones—Wilkins—Lee (JWL) equation of state (for gaseous explosives [9, 54]),

r'(V) =TIq
AVo —R1V BV —RoV
Eef(V) = R exp< Vo >+RZGXP( Vo >—eo 5
RV —RoV
Pref(V) ZAeXp( Vol >+Bexp( V; ),
(i) The Cochran—Chan (CC) equation of state (for solid explosives [6]),
r'(v) =TIg
—AVp [ [V \TE BVo |/V\"%
V) = — -1 — —1] -
GV =1 %, <Vo) T1is <Vo> %
(6)

VAN (VAN
Prei(V) = A (VO) - B (Vo) .

Note that in each of these cases we have a total of seven material-dependent quantities
description of the material property, i.e., in the former case, therEai, ey, A, B, R1,
andR,, while in the latter case, there drg, Vo, &, A, B, £1, and&,. Table | shows typical
set of numerical values for some sample materials of interest.

2.2. Reference State along a Hugoniot Locus

Our next example is concerned with a popular model for solid media such as metals
this instance, in the absence of pronounced dynamic yielding effects or phase transiti
the hydrostatic pressure is commonly expressed by the MigigBén equation of state
(1) together with a linear fit assumption for the shock velocity as a function of the partic
velocity, i.e.,

o =C+Ssu (7)

Hereo represents the shock velocity,is the zero-pressure isentropic speed of sound, an
s is a dimensionless parameter which is related to the pressure derivative of the isentr
bulk modulusKs = p(dp/dp)|s by (0Ks/9p)|s = 4s — 1 (cf. [40]). By virtue of (7), it
is easy to deduce that the reference curve s, (ees) is simply a single Hugoniot locus
from an initial point (g, &p). With this in mind, using the standard Rankine—Hugoniot jumg
conditions for the Euler equations (2), after some simple algebraic manipulations, we f
the explicit expression fopres ande; as

c5(Vo— V)
[Vo — s(Vo — V)]?

pref(V) = po+

1 (8)
ef(V) = € + é[pref(v) + po] (Mo — V);
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TABLE |
Typical Material-Dependent Quantities for Three Different Models That
Are in the Mie—GrUneisen Form (1)

JWL EOS o (Kg/m?) A(GPa) B(GPa) Rs R, o o
TNT 1840 854.5 20.5 4.6 1.35 0.25 0
Water 1004 1582 —4.67 8.94 1.45 1.17 0
CCEOS o (Kg/m?) A(GPa) B(GPa) & & To o
Copper 8900 145.67 147.75 2.99 1.99 2 0
TNT 1840 12.87 13.42 4.1 3.1 0.93 0
Shock EOS po (kg/m?®) Co (M/s) s Iy a Po &
Aluminum 2785 5328 1.338 2.0 1 0 0
Copper 8924 3910 151 1.96 1 0 0
Molybdenum 9961 4770 1.43 2.56 1 0 0
MORB 2660 2100 1.68 1.18 1 0 0
Water 1000 1483 2.0 2.0 10 0 0

Note.Data adapted from [26, 27, 55].

see [28] for the details. Note that withand (pref, €f) defined by (4) and (8), respectively,
the resulting form of the Mie—Girieisen equation of state is often called the shock wave
HOM equation of state [17, 26].

It had been discussed in detail (cf. [29]) that this shock wave equation of state has cel
limitations. Nevertheless, it is observed experimentally that the model considered here i
adequate approximation for many metals, when the pressure is up to several megaba
typical set of parameter values for metals, such as aluminum and copper, is given in Tak
for the reference (cf. [27]). See [17, 40] for a more general discussion of the equatior
state when (7) is replaced by a higher-order polynomial in the particle velocity.

It should be mentioned that to fulfill the conditions for the thermodynamic stability
the materials of interests, we assume that for each given physical state the speed of s

c defined by
ap ap p [op
- (2),- (23
/s o)e p*\0e/,

, _ ©)
- (F +1+4 prr) (pppf> + F% + Ples — Tl
belong to a set of real numbers, whéYe p;;, ande/; are the derivatives df, pref, anderes
with respect tq, respectively. Of course, it is both interesting and important to include tt
cavitation and spallation effects to materials modeled by (1) in a region where the pres:
drops to a critical value. But this subject matter is a very difficult one, and is beyond t
scope of this paper.

3. EQUATIONS OF MOTION

The basic governing equations in our multicomponent model consist of two parts.
use (2) as a model system that describes the motion of the fluid mixtures of the conse
variablesp, pu, andp E in a multicomponent grid cell. Assume a homogeneous flow witl
a single velocity and pressure on grid cells that contain more than one fluid compone
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From the basic physical principles of mass and energy conservations, we derive a st
effective equations for the problem-dependent material functions in those cells (see bel
that can be used easily to the determination of the pressure from the equation of s
Combining these two set of the equations together with the equation of state constitut
complete model system that is fundamental in our algorithm for numerical approximati
of multicomponent problems.

To find out the aforementioned effective equations for the mixture of material quantiti
in a general Mie—Qrrieisen equation of state (1), similar to the previous work (cf. [44, 45]
we begin by considering an interface only problem where both the pressure and part
velocity are constants in the domain, while the other variables such as the density anc
material quantities are having jumps across some interfaces. In this case, from the E
Egs. (2), itis easy to obtain equations for the time-dependent behavior of the density
total internal energy as

ap ap

— — =0 10a

ot TU =0 (10a)
9 pe) +u(pe) =0 (10b)
at P ax PP T

in a respective manner. By inserting the MiedBeisen equation of state (1) into (10b), we
have an equation of the form

0 (p_pref

o d [ P— Pref
ot r

ui
+ ,Oeref> + X .

+ pewr) =0 (100
that is in relation to not only the pressure, but also the material quantities appearing in
functionsT’, pref, andeyes.

In our algorithm, to maintain the pressure in equilibrium as it should be for our mod
interface only problem, we split (10c) into the following two equations for the fluid mixture
of 1/T and—(pret/ I') + perer @s

9 /1 9 /1

9 (2 2 (Z)=o 11

ot <r>+“ax (r) ’ (11a)
il Pref 0 Pref
9(_ A =0 11b
8t< = +,0eref>+uax( T +,Oeref> ) (11b)

respectively. We emphasize that in order to have the correct pressure equilibrium in (1
near the interfaces, these are the two key equations that should be satisfied and approxir
consistently (when the problem is solved numerically) for any given expressidhaf,
ande; appearing in the equation of state. As before (cf. [45]), because the solution of (1
and (11b) would depend on not only the material quantities, but also the density, to be «
to handle more general problems with shock and rarefaction waves, we need to modify ¢
of them so that the mass-conserving behavior of the solution in the single component re
can be obtained as well.

To accomplish this, consider the simpler case with (11a) as an example. Our basic
proach begins with a proper smoothness assumption of the density (such as in the ca
rarefaction waves), and so we may apply the chain rule from differential calculus to t
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partial derivatives in (11a), yielding easily the equivalent relation

LAV W, o

at \ T axr_r2 at  ax
Now by subtracting the terrmpI’/ I'?)du/dx from the above relation on the both sides,
and using the mass conservation on the right, we arrive at an equation of the form

0 (1 (1 r’ au r’ ap 0p ou

ot (F)+u8x (r) (r2>pax (r2> (atJr ax T Pax ) 0. (11c)
Analogously, by following the same procedure as for (11a), the modification of (11b) tal
the form

0 Pref a Pref Ipret— T p;ef au
8t< =+ eref>+uax( =+ eref) < o + et + e ) P = 0.

(11d)

Clearly, (11c) and (11d) reduce to (11a) and (11b), respectively, for a solution near
interfaces whergu/dx = 0, and to the same mass conservation equation of the fluid mixtu
for a solution near rarefaction waves where the variation’gi"? is smooth. Recall that
I, pj» ande,; are the derivatives df, prer, andes With respect tq, respectively.

Note that, at each space and time, given the initial conditionsfordnd—(pres/ ") +
PEef, to compute the solution of (11c) and (11d) would require five evaluations in total to t
mixtures such ab’, pref, Pres. Eref, aNdel, from the equation of state. Here because of the
strongly nonlinear coupling between the material quantities (see Section 2 for an exam|
from (11c) and (11d), it is not possible to come up with additional conditions for the furth
details of the related parameters that makes the evaluation of any of the aforementic
guantities in an explicit step. This is in contrast to the van der Waals case considere
[45], and poses some difficulties in the realization of our multicomponent algorithm f
materials modeled by (1).

To get by the problems involving the extra evaluations of the tepmsand ey, in
particular, one simple way to do is to divide (11d) into the following two parts:

Pref i @ . r’ Pref — 1—‘p;ef 87U _
Bt< )+uax< ) p( r2 x = O (11e)

ou
™ (Peref) + U (Peref) +p (eref + Peref) =0. (11f)

Clearly now instead of a single equation fer(pres/ I') + p€er, We have two separate
ones forprs/ I' and pees, Which together with the solutions of (11c) férand the mass
conservation equation in (2) far are sufficient to determinp,; and e without the use
of the equation of state. Of course, by doing so we still need to d&fingl.;, ande/,; so
as to have a working model system.

Note that if the reference state of the Mie-dBeisen equation of state (1) lies either along
anisentropic or ashock Hugoniotlocus, from the basic thermodynamic relations describe

Section 2, itis an easy matter to 88t = Pret/p? OF €g¢ = [ Pret/ 0 + Plei(£/P0 — 11/ (20)
in arespective manner, provided that the mixturp/gfhas a proper mathematical definition
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for numerical purpose also. Thus, in these two situations, to complete the model it is o
the mixtures ofl”” and p;; needed to be defined. (In fact, provided that some modificatio
of the equations is made, this is also true in a more general case where the reference
lies partially on an isentrope and partially on a Hugoniot. But we will not discuss that ce
here.) Although there may be other better ways, encouraged by the simplicity and alsc
success of the previous work for a van der Waals gas case [45], we first introduce a I¢
model based on the volume-fraction formulation to the computation of all the remaini
undefined material quantities appearing irand p;;. Then we set the mixture statesIof
and p;; from the equation of state as in the single component case of the problem.

To be more specific, consider amcomponent flow problem with materials modeled
by the shock wave equation of state (8), for example, we assign the material-depen:
mixtures:a, pg, Co, ands, according to an averaging operatot defined as follows:

m
M@ => Y0,

and computd” = —al'/p, Pl = C3(1 — n)?(1 +sn)/(L—sp)? in an explicit manner.
HereY® ¢ [0, 1] is the volume-fraction function of thi¢h fluid component with a property
M YD =170 is a material quantity belonging to thi¢h component, and) = 1 —
(po/ p). We use the evolution equation of the form

YO Hy®

u—— =0,
ot + aX

for the motion ofY® (see [31] for the other possibility in choosing the equationy,
1,2,...,m—1, whereu is the underlying particle velocity of the fluid mixture, and set
Ym =1 — Ei";‘llY“). In summary, with the Mie—Gnrieisen equation of state (1), the mul-
ticomponent model we proposed consists of the following system of equations,

ap
ﬁ+—( u) =

0 2
ﬁ(ﬁu) + &(pu +p) =

9 9
S(OE) 4 - (pEu+ puy =0

3 (1 9 (1 au

N T 0 12

i(r) () o) 5 = 02)
0 [ Pret 0 [ Pref I Pref — 1_‘p;ef au
— (= SRt o e Pl ) T
at<r>+uax<r> p( I ox

*(,Oeref) tu (,Oeref) + p(Eef + ,Oeief)

aY® aY<'>
u
at Y ox

=0, fori=12....,m—-1

This gives us a system afi + 5 equations in total that is independent of the number o
material quantities involved in the equation of state (e.g., there are seven of them in (5
(6)), for anm-component flow problemm > 1. It is easy to see that in this system the first
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three are the Euler equations which are used to make certain the conservation of the |
fluid mixtures:p, pu, andpE, while the remaining ones are the effective equations the
are introduced to ensure the correct mixing of the problem-dependent material varial
near the interfaces. With a system written in this way, there is no problem to compute
pressure from the equation of state

i (PU)Z Pref 1
p=|(E) - 20 + <1_,> - (Peref):|/<1_,>.

The initialization of the state variables in (12) for fluid-mixture cells can be made in
standard way as described in [45] for numerical simulation.

Note that, wherm = 1 (single component flow), the effect to the introduction of the
equations for 1T, pret/ I', @andpes in the model is to reduce extra equation-of-state com
putations in a numerical method to the least possible amount. It is easy to see that
multicomponent model is a hyperbolic system by first writing (12) in a quasi-linear syste
of equations

aq aq
— +AQ) — =0. 1
T (q)ax 0 (13)

Here, for simplicity, in a two-component version of the model, we have the state wpcto
and the matrixA defined by

;
q= p,pU,pE,%,%&eref,Y
and
T 0 1 0 0 0 0 0
K-u u2-1) T -pr - T 0
uK—-H) H-ul' uC+1) —upl —ul' ul' O
A=| —pu ¢ 0 u 0 00
—xu X 0 0 u 0 0
—yu W 0 0 0 u O
0 0 0 0 0 0 u

We then compute the eigen-structure of the ma#xiAt is a straightforward to show that
for each variablegq defined in the region of thermodynamic stability the eigen-structure «
the matrix A possesses real eigenvalues

A =diag(A1, A2, ..., A7) =diaglu — c,u,u+c,U,...,u) (14a)

and a complete set of eigenvectors of the form

1 1 1 0 0 0 Q

u—c u u+c 0 0O O O

H—-uc W2 H+uc p 1 -1 0
R=(1r2....10=| ¢ 0 ¢ 10 0 O (14b)

X 0 X 01 0 O

14 0 v 0 0 1 O

0 0 o 00 0 1
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with Ary = Axrk. HereK =Tu?/2, H = E + (p/p), ¢ = —T"/T2, x = (TPt — I Prer)/

I'?, andy = ewr + p€,. Regarding discontinuous solutions of the system, such as sho
waves or contact discontinuities, it is not difficult to show that (12) has the usual form
the Rankine—Hugoniot jump conditions across the waves; see Section 4.1 for more det

4. NUMERICAL METHODS

To find approximate solutions of our model system (12) for multicomponent problen
we use a high-resolution wave propagation method developed by LeVeque [20, 23]
general hyperbolic systems of partial differential equations. This method is a variant
the fluctuation-and-signal scheme of Roe [37, 38] in that we solve the Riemann proble
at each cell interface, and use the resulting waves (i.e., discontinuities moving at cons
speeds) to update the solutions in neighboring grid cells. To achieve high resolution,
introduce slopes and limiters to the method as in many other high resolution schemes
conservation laws [21, 50].

4.1. Roe Riemann Solver

Clearly, one of the major steps in our multicomponent algorithm is the numerical re
olution of the Riemann problem at each cell interface. Here, with materials characteri:
by the Mie—Gtineisen equation of state (1), this amounts to solving the nonlinear syst:
(12) with piecewise constant datp andgg to the left and right of the interface. It is
well-known that, except under certain extreme conditions (cf. [31, 34, 55, 56]), the soluti
of this Riemann problem would consist of two genuinely nonlinear waves, such as sh
and rarefaction, and a linearly degenerate wave (contact discontinuity); this is just like
Riemann problem for a perfect gas (cf. [48]). In Fig. 1, we plot a typical solution structu
and the variables involved in the Riemann problem considered here. Because in gene

t

Par
contact discontinuity
Pl PxR
Us U
rarefaction D P«
-1
F:i pr*,R
(B, ().
,L *s
(Peyep)}.r (per}‘if)*’R shock
Y R
1 P 1 P
(P,U,p,r 1,%7peref7Y)L p,u,p, I’ 17_Il.'gfaperefaY)R
o D T

FIG. 1. Typical solution structure of the Riemann problem for our multicomponent model discussed
Section 3. The key step in obtaining this solution is to find the midstatep,) in theu — p phase plane. In
general, it is a difficult task to do both exactly and efficiently.



AN ALGORITHM FOR MIE-GRUNEISEN EOS 689

is too complicated to solve the problem exactly, even in the single component case for
materials (cf. [8, 36, 43]), we discuss an approximate Riemann solver of Roe; see [31,
for another approach based on the two-shock approximation.

In a Roe’s approximate Riemann solver, we replace the nonlinear Riemann probl
mentioned above by a linear problem as

aq _fau forx <Xxo
g + A(qu QR) o 7 q(X, 0) - {qR for X > XO, (15)

WhereA(qL, gr) is a constant matrix that depends on the initial data and is a local lineariz
tion of the matrixA in (13) about an average state. To find that matrix, as it is often done
many other Roe solvers (cf. [5, 14, 15]), we want to seek an average state that the differ
of the fluxes in the conservation part of (12) (i.e., the first three equations of the system)
equal to the respective first-order approximation of the flux differences. That is

AFY = (Fr— F)V =[A@L, ar)(@r — aV]V = [A(qL, qr)AQ]©,

fori = 1,2, 3, whereF e R? is the usual definition of the fluxes for conservation laws
andAF® is theith component oA F. With that, it is a straightforward matter to obtain
the results fori and H by the standard “Roe-averaging” approach, i.e., for a given pa
(oL, PR), the average state for a quantitys defined by

5 VP JIRZR (16)
JPL+ PR

Note that in the process of the derivation, as in [44, 45], we have chosen the a\(GT/a\lgles
and(p/T") based on (16) so that the expression

— — — 2
(1)s(2)-(B(0)]/(F)

r r r r r
is satisfied approximately (cf [33] for an review of the other up-to-date approaches forr
gases) With that we s@t= (p/T F)/(l/ ') andl" = 1/(1/ ). To finish the construction of
A(qL, gr), we still need to find the averagesa@fy , andy . Since there is no unique way to
do so, we might as well compute them using the Roe-average (16) also. Itis our experie
that the set of average states described here is a reasonable one to use for many pre
multicomponent problems (see numerical results present in Section 5) as long as the
condition is not too extreme (i.e., with very large density and pressure ratios) across
interfaces, (cf. [11, 45] for more discussions and the possible cures for that matters).

In contrast to the solution structure for a nonlinear Riemann problem (see Fig. 1),
solution of the linear problem (15) consists of seven discontinuities propagating at cons
speeds (for a two-component system of seven equations). The jump across each di
tinuity is a multiple of the eigenvector of the matr and the propagating speed is the
corresponding eigenvalue. We thus have

Ap =

7
AQ=0r— QL = Z&kfk, (17)
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wherefy is thekth eigenvector ofA; see (14a) and (14b). The scadardives the strength
across the discontinuity that can be determined easily from (17). We find

rr o R R
G, =Aq? + |- - Aq® + 0Aq®@ — Aq® + pAg? — Ag® + Aq®|,

1
43 = [(€—0AqY +Aq? -8z, @1=Aq" —a; —ds,
G4 = AQ® — §(Ap — &2), a5 = AQ® — 3 (Ap — @), (18)
G = AQ® — Y/ (Ap — @), a7 = Aq?,

wheret = +/T[H — (02/2) + x — ¥ is the speed of sound.

Notice that in this Riemann solution, except the discontinuitieg for 0 — ¢ andi; =
0 + €, all the other discontinuities (five of them) are propagating at the same &p€ed
practical purposes, we may view these discontinuities as a single one with the oper
W, defined by combining all the jumps across thewave family, i.e., seW, = @,f, +
ZZ:4&kr“k. With this notation, we also writg) = axfx to represent the jump across the
k-wave fork = 1 or 3. Thus, without causing any confusion, we may assume that the wa
family in total is 3 for the solution of this Riemann problem.

4.2. High-Resolution Wave Propagation Scheme

Consider a uniform grid with fixed mesh spacing, for example. We use a standard
finite-volume formulation in which the valu®' approximates the cell average of the
solution over the grid cellyj, x;.+1] at timet,:

Qn,\, 1 /XHl (Xt)dx
AN y qXx, tn .

The time step from the current tinigto the next, . is denoted byAt.
In this numerical discretization setup, a first-order accurate version of the method
wave- propagation form is a Godunov-type scheme that can be written as

At o5
QM =Qf = > i WM + MY (19)
k=1
wherelx € R and Wy € R™ are solutions of théth wave family, fork = 1,2, ..., m,,

obtained from solving the Riemann problems at cell interfagesdx;1; see Section 4.1.
As usual, we defing~ = min(x, 0) andA™ = max(x, 0). Clearly, the method belongsto a
class of upwind schemes (cf. [15, 21]), and by following the same procedure as descri
in [45], it is quasi-conservative in the sense that when applying the method to (12) not o
the conservation equations but also the transport equations are approximated in a cons
manner by the method with the chosen Riemann solver.

To achieve high resolution in this method, we begin by introducing correction wav
in a piecewise-linear form with zero mean value. We then propagate each wave over
time stepAt, and update the cell averages it overlaps. Without going into the detail he
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(cf. [24]), with the corrections, (19) is modified by

At Qo At n At n

n+1. n+1

A N 6 | — Al { 1= Akl — W — 1l [ 1=kl — )Wl . (20
Qj i 2A% 2 [I k|( |Ak] x) k]Hl [I k|< Akl x> k] (20)

J

It is important to mention that, in practice, the jump of each wave in the above formt
should be limited by using a “slope-limiter” (cf. [21]) to avoid unnecessary fluctuatior
near discontinuities. We want to do this by replacing edéhin (20) with a limited value
W obtained by comparingVk with the correspondinyVk from the neighboring Riemann
problem to the left (if.x > 0) or to the right (ifAx < 0).

Now with the use of the Roe solver to the computations, it is quite common to limit ov
each strength of the wavg; via a limiter functiong (e.g., by using the minmod function
¢ (0) = max(0, min(1, 6)) or some others as discussed in [50]), and set
&kJ 3 {j—l if ’)\ijZO

B = P00 WIn - Ga =G, 41 0 g <0
Kij ,

(21)
fork=1,2,..., 7 (cf. [15, 22, 23]). In this approach, we then replace the waves in (20)
7
(W1, Wa, W) = (071f1, aafz + Z axfy, &3f3),
k=4
by a limited version as
P 7
(W1, Wa, W3) = <&1f1, aofz + Z aklk, &3f3>-
k=4

It is not difficult to show that for the interface only problem we again have the require
pressure equilibrium that is independent of the limiter being employed to the high-resolut
method (20). Moreover, we obtain a better resolution of the result as compared to the f
order result. Concerning stability of the method, it is observed numerically that the mett
is stable under the usual CFL (Courant—Friedrichs—Lewy) condition for hyperbolic syste
of conservation laws; see Section 5 for an example.

5. NUMERICAL RESULTS IN ONE DIMENSION

We now present some sample numerical results obtained using our multicompor
algorithm with the Roe solver described in Section 4.

5.1. Single-Component Case

As a preliminary, we begin by showing results for problems with only a single flui
component presence in the problem formulation.

ExAMPLE 5.1. Our first test problem is a Riemann problem in a shock tube with t
material inside the tube modeled by the Jones—Wilkins—Lee equation of state (5).
comparison purposes, we take the similar initial data as studied by Rider [36], where on
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FIG. 2. High-resolution results for a single component Riemann problem with the gaseous explosives at t
t = 12us. The solid line is the fine grid solution computed Ay = 1/2000, and the points show the solution
with Ax = 1/100. The dashed line in each subplot is the initial condition at tiszed. The gaseous explosive is
modeled by the Jones—Wilkins—Lee equation of state (5).

left of the interface, G< x < 1/2 m, we have
(p,u, p, &)L = (1700 kg/ni, 0 m/s 10'? Pa 0 kJ/kg),
and on the right of the interface/2 m < x < 1 m, we have
(p, U, p, &)r = (1000 kg/ni, 0 m/s 5 x 10*°Pa 0kJ/kg.

In this problem, the seven material-dependent quantjiigsd, 13, R1, Rz, I'g, anda, have
been chosen for the product gases of the explosive TNT as given in Table I.

In Fig. 2, we show results for the density, velocity, pressure, and the speed of soun
timet = 12 us, where the test has been carried out by using the high-resolution mett
with themINMOD limiter, the Courant number = 0.9, and the mesh sizeéx = 1/100. By
comparing the computed solution with the fine grid solution obtained using the same met
but Ax = 1/2000, we observe good agreement in the region of rarefaction wave where
flow is smooth, and reasonable resolution in the region of shock and contact discontin
where the flow is not smooth (judging from the approximate location and the monotonic
of the solution profile for the discontinuity). In addition, it is easy to make comparisons a
see that our solution agrees quite well with the result present in [36] where a MUSCL-ty
scheme with an approximate Riemann solver based on the two-shock approximation
used in the computation.

ExAmMPLE 5.2. We are nextconcerned with an impact problem in which a precompress
semi-infinite aluminum slab at rest witp, p) = (4000 kg/ni, 7.93 x 10° Pa) is being hit
by an ambient aluminum slab traveling at the speed 2 km/s from the right to the left w
the reference stai@, p) = (po, Po). As in [29, 31, 36] and references therein, we use the
popular shock wave equation of state (8) to model the thermodynamical behavior of
aluminum; see Table | for the numerical values of the material constants; s, I'p,ando.

In this setup, it is not difficult to show that the exact solution of this problem woul
consist of a leftward going shock wave to the stationary aluminum, a material interfa
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FIG. 3. High-resolution results for a single component impact problem with two aluminum slabs at tin
t = 50us. The aluminum is modeled by the shock wave equation of state (8). The graphs of the solutions
displayed in the same manner as in Fig. 2.

and a rightward going shock wave to the moving aluminum. Figure 3 shows the numer
result for this problem at time= 50us. As compared to the fine grid solution, which is a
good approximation to the exact solution, it is clear that our result gives the correct solut
behavior of this problem; see [36] also for a similar calculation. Here the computation w
performed in the same manner as in Example 5.1, where the initial point of the projec
impact was set at the center of a meter-wide computational domain.

5.2. Multicomponent Case

We now show results for examples with more than one fluid component in the probl
formulation.

ExaMmpLE 5.3. Tobegin, we are interested in a two-componentimpact problem of Sau
and Abgrall [41]. Initially, under the atmospheric condition (i.e., with uniform pressur
po = latm and temperatuiige = 300 K throughout the domain), there is a rightward going
copper plate with the speed= 1500 m/s interacting with a solid explosive (considered a
an inert material) at rest on the right of the plate. In this problem, to model the matel
properties of the copper and (solid) explosive, we use the same Cochran—Chan equ
of state (6), but with a different set of material-dependent quantities for each of them,
numerical values given in Table I.

As in Example 5.2, the exact solution of this impact problem is composed of a leftwal
going shock wave to the copper, a rightward-going shock waves to the inert explosive, a
material interface lying in between that separates these two different materials. We run
problem using exactly the same method as performed in the previous examples for si
component flow, and show the resulting solution in Fig. 4 at tire85 us for the density,
velocity, pressure, and the thermaliinternal energy. By comparing the computed solution
the fine grid one obtained using the same method\but 1/2000, we observe reasonable
behavior of the solution with the correct shock speeds and free of spurious oscillation
the pressure near the interface. Checking our result with the displayed solution appec
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FIG. 4. High-resolution results for a two-component (solid explosive-copper) impact problem at #me
85us. The solid line is the fine grid solution computed Ay = 1/2000, and the points show the solution with
Ax = 1/100. The dashed line in each subplot is the initial condition at time0. Both the solid explosive and
copper are modeled by the Cochran—Chan equation of state (6), but with a different set of material quantitie
each of them.

in [41] with the same mesh siz&x = 1/100, we find excellent agreement in the density,
pressure, and velocity. Clearly, for detonation problems, it is often necessary to report
solution of the temperaturg as well. As we have seen in the figure (see Fig. 5 also), th
algorithm did quite a good job to the resolution of thermal internal enefgyhich can be
computed directly from the variables obtained in the algorithm.ge= (p — prer)/(0T).

To go one step further 6 by T = er /Cy, we need to do some postprocessing work for the
fluid mixtureC,,. Although there are many ways to g&f, say by using the volume-fraction
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FIG. 5. High-resolution results for a two-component (gaseous explosive—copper) Riemann problem at ti
t = 73us. The gaseous explosive is modeled by the Jones—Wilkins—Lee equation of state (5), while the copy
modeled by the Cochran—Chan equation of state (6). The graphs of the solutions are displayed in the same m
asin Fig. 4.
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function, for example, this is not really in the heart of the whole algorithm, and so the p
of the temperature is not shown here. Note that, we Rave- 393 and 1087/4kg - K) for
copper and explosive, respectively.

ExAMPLE 5.4. Ournextexample concerns atwo-component Riemann problem of Sat
and Abgrall [41] that involves the interaction of gaseous detonation products with a cop
plate. In this test, as in Example 5.3, copper is modeled by the Cochran—Chan eque
of state (6), while the detonation products are modeled by the widely employed Jon
Wilkins—Lee equation of state (5). Initially, on the left where [0, 0.5)m, we have the
detonation product with the data

(p,u, p, &)L = (248537 kg/n?, 0, 3.7 x 10 Pa 8149158 kJ/kg)
and on the right wher € [0.5, 1]m, we have the copper with data
(p, U, p, &)r = (8900 kg/ni, 0,10° Pa 1179 kJ/kg)

We note that the data on the left is at the Chapman—Jouget state (see [41] for the det
while the data on the right is at the usual atmospheric conditions. In Table I, we list 1
material quantities of these two substances to this run. For this problem, it is known that
exact solution consists of a shock wave moving to the right in the copper and a rarefac
wave propagating to the left in the explosive; see [41].

To solve this problem numerically, we need to define a hybrid version of the equati
of state that is necessary in the algorithm for the numerical mixing between these
different materials. This can be done by following the same approach as described in
for a case with the mixing between stiffened and van der Waals gases, yielding easi
Mie—Gnlineisen equation of state of the form

P(p, € = Pref(p) + 1:/O[e — &ef(p)] (22)
for the copper-explosive mixture, whefe = pf' - + prf’fc) and&er = e + eﬁgfc)

are defined by simply combining the two differgmts andees from (5) and (6) into one,
respectively, and’ = I'y. Here the computation was performed in the same way as befol
and the results are shown in Fig. 5 at time 73 us for the variable®, u, p, ander also.
Comparing our solution with the one shown in [41] using a two-phase flow solver, we ag
observe good agreement for this problem.

ExAMPLE 5.5. Toend this section, we test our algorithm for a model shock-contact prc
lemthatinvolvesthe interaction of a shock wave in molybdenum and an encapsulated MC
(Mid-Ocean Ridge Basalt) liquid (this problem is motivated by a two-dimensional test
Miller and Puckett [31]). The initial condition is composed of a stationary (molybdenun
MORB) interface ak = 0.6 m and a rightward going Mach 1.163 shock wave in molybde
num atx = 0.4 m traveling from left to right in a shock tube of unit length. The material ol
the right of the interface is a MORB liquid modeled by the shock wave equation of state
with the data

(p, u, p, &)r = (2260 kg/ni, 0 m/s 0 Pa 0 kJ/kg,

and the material on the left of the interface (i.e., on the middle and the preshock state
molybdenum modeled by the shock wave equation of state also with data

(o, u, p, &)m = (9961 kg/ni, 0 m/s 0 Pa0 kJ/kg.
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FIG. 6. High-resolution results for a shock wave in molybdenum interacting with an encapsulated MOF
liquid at time 12Qus. The solid line is the fine grid solution computed Ay = 1/2000, and the points show
the solution withAx = 1/100. The dashed line in each subplot is the initial condition at time0. Both the
molybdenum and MORB are modeled by the shock wave equation of state (8), but with different material const
for each of them.

The state behind the shock in the molybdenum is
(p,u, p, &)L = (11042 kg/n, 543 m/s 3 x 10'° Pa 0 kJ/kg,

see the dashed line shown in Fig. 6 for illustration. We note that this gives us one exan
in which the (molybdenum-MORB) interface is accelerated by a shock wave coming frc
the heavy-fluid to the light-fluid region, and it is known that the resulting wave patte
after the interaction would consist of a transmitted shock wave, an interface, and a refle
rarefaction wave (cf. [4, 16]).

Numerical results for this problem are shown in Fig. 6 at ttme 120us for the states
p, U, p, andT. Clearly, we observe sensible resolution and convergence of the soluti
structure as the mesh is refined. Note that because of the passage of the transn
shock wave, the MORB liquid is compressed, yielding the increase of the density,
locity, and pressure. A two-dimensional version of this problem will be considered
Section 6.1.

6. EXTENSION TO MULTIPLE DIMENSIONS

The multidimensional version of our model system (12) for compressible multicompone
problems with the Mie—Grieisen equation of state (1) takes the form

+Zg(ﬁu )=0

d .
e |)+Z puu,+8”p)=0 fori=1,2,...,N
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+

s
<>+§H o () ()] =0 e

-(pEUj + puj) =0

J

Pref 0 Pref I Pret — I Ples du;
— 1 =0
() e () - (PP ) &

1=

0
(Peref) + Z |:U] (Peref) + o (€t + Pdef)_] =0
gy ® Noo ay®

-4 uj——
at et 0X;

=0, fori=212,....m—1.

Here N is the number of spatial dimension & 2 or 3, for example)y; is the particle
velocity in thex;-direction,s'! is the Kronecker delta that takes the value 1 when j,

but equals to O otherwise, aftl= e + Zszl uJZ/Z. As before (cf. [44, 45] and Section 3),
in the model, the firsN + 2 components are simply the Euler equationdlidimensions
that describe the conservation of mass, momenta ix;tftérection, forj =1,2,---, N,
and energy of the problem. The next three are the effective equations that are derived fo
problem-dependent material quantities. We include the transport equation for the volul
fraction functionsy®, fori = 1,2, ..., m — 1, in the model for the evaluation &f and
Prer- IN the algorithm, we again compute the pressure from the equation of state at all si

/()

Note that, for any givemN, if the state variables of the flow are all in the region of the
thermodynamic stability (this is the case we are interested in here), itis not difficult to sh
that (23) is a hyperbolic system in the sense that any linear combination of the matrices

Z;\Izl(louj)z Pref
(oB) - =I5 <?> — (peue)

i =1,2,..., N, appearing in the quasi-linear form of the equations
q. v aq
— Ai(Q— = 24
t+§ 1@ g5 =0 (24)

has real eigenvalues and a complete set of eigenvectors. Consider the most general
dimensional cas& = 3 and for a two-componemh = 2 problem, for example. We then
have the state vectorin (24) defined by

T

1 f
a=|p. pus. puaz. puz, pE. = P e Y]

rr”
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and the matriced\;, for j = 1, 2, 3, defined by

i 0 1 0 0 0 0 0 0 O]
K—-u? u@-T) —ul  —ugl r —-pr - T' O
—uzu2 Uz Ui 0 0 0 0 0 O
—UujUs3 us 0 Up 0 0 0 0O O
A= 0i(K —H) H—ul' —ugul —ugusl ug(l +1) —ugpl’ —ugl ul 0 |
—pu @ 0 0 0 U 0 0O O
—xUp X 0 0 0 0 up 0 O
—ruy W 0 0 0 0 0 u O
i 0 0 0 0 0 0 0 0 up|
r 0 0 1 0 0 0 0 0 0
—U1U2 Uo Uq 0 0 0 0 0 0
K—-u3 —ul' up(2-T) —ugl r —pI' - T O
—U2U3 0 us Uo 0 0 0 0O O
Ao=|up(K — H) —ujupl’ H —u3l' —upusl’ ux(T' +1) —uppl’ —upl Ul O |
—pUy 0 7 0 0 U 0O 0 O
—xUy 0 X 0 0 0 u 0 O
—yruy 0 v 0 0 0 0 u O
L 0 0 0 0 0 0 0 0 up]
) 0 0 1 0 0 0 0 O
—UujU3 us 0 uq 0 0 0 0 O
—UyU3 0 us Uo 0 0 0 0 O
K—-ui —ull' —ul ug2-1) r -pI' -I' T O
As= | u3(K — H) —ujuzl’ —upusl’ H — U3l ug(I'+1) —ugpl’ —usl usl’ 0 |-
—pUs 0 0 ) 0 Us 0 0 O
—xUs 0 0 X 0 0 Us 0 O
— YUz 0 0 v 0 0 0 wus O
0 0 0 0 0 0 0 0 us]

With that, the eigenvalues and the corresponding eigenvectors of the matrices are: for m;
Aq,

Aa, =diag(r, 25", ..., a8Y) = diagus — ¢, ug, up 4, Uy, ..., Uy),
1 1 1 0O 0 00 OO
up—¢ Uy uu+c 0 O 0 0O O O
uz Uso Uo 1 0O 00O O O
us us us 0O 1 00 0 O
Ra, = (i, rsP, . r?) = |H—-uic K/T H+uwe wp u3 p 1 —1 0f,
0 0 ¢ 0 0 10 0 0
X 0 X 0O 0 01 O O
" 0 4 0 000 1 O
o 0 O 0 000 0 1

for matrix Ao,

Ap, = diag(r?, A7, ..., 1) = diaguz — ¢, Up, Uz +C, Uy, ..., Up),
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[ 1 1 1 0O 0 00 OGO
uq uiq uq 1 0 00 O O
u,—c¢ U up+c O O O O O O
VS us us 0O 1 00 0 O
Ra, = (2,12, ..., 1) = |H-uxc K/T H+uxc u u3 p 1 -1 0f,
0 0 ¢ 0 0 10 00
X 0 X O 0 01 0 O
" 0 v# 0 000 1 O
o 0 O 0 000 0 1
and for matrixAs,
Ap, =diag(r¥, 15, ..., 1Y) = diaguz — ¢, Uz, Uz + €, Us, ..., U3),
1 1 1 0O 0 00 O O
Uq [VEN Uq 1 0 00 O O
Uo Uz Uo 0 1 00 O O
Uz —C Us us+c O O O O O O
Rag=(r?, r¥ . 1) = |H-usc K/T H+uge g u p 1 —1 0f;
0 0 0 0 01000
X 0 X 0 001 0O
" 0 y 0 000 10
0 0 0 0 000 0 1
Ard =ar =123 andk=12....9

To find approximate solutions of (23) for multicomponents problem, we use a multic
mensional version of the high-resolution wave propagation method described in Sectio
Since the basic idea of the method has been described fully before, and has been in
mented in the software packages CLAWPACK (Conservation LAWs PACKage), we w
not repeat the whole description here, but refer to the references [19, 23, 25, 45] for
details.

6.1. Numerical Results in Two Dimensions

We now show results of some sample two-dimensional multicomponent problems
tained using the high-resolution wave propagation methods with or without local adapt
mesh refinement. To limit the size of this paper, applications of the algorithm to proble
in three dimensions will not be disussed here, but is the subject of an ongoing work.

ExampLE 6.1.1. We begin by considering a simple interface only problem where tl
solution consists of a circular copper plate evolving in air with uniform equilibrium pre:
surepg = 10° Pa and constant particle velociy}, u9) = (10°m/s 10*m/s). In this test,
inside a circle of radius, = 0.16 m and cente(x?, x9) = (1/4m, 1/4m), the material
is copper modeled by the Cochran—Chan equation of state (6) with the parameter va
as given in Table I, while outside the circle, the material is air modeled by thas law
with pg = 1.2 kg/n? andI"y = 0.4. Note that this type of interface problem is very funda-
mental to the development of many multicomponent algorithms in which the aim is to <
whether the equilibrium of solution in the pressure, in particular, can be maintained by
method.
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FIG. 7.

High-resolution results for the evolution of a circular copper plate in air at tirre360us. (a)
Contour plot of the density. (b) Surface plot of the pressure. (c) Cross-sectional plots of density and pressure
line x; = X,. The solid line in the cross-sectional plot is the exact solution, and the dotted points are the numer
results. The dashed line in the density plots is the initial condition atttisad. Here the copper is modeled by
the Cochran—Chan equation of state (6), while the air is modeled by the standasllaw of ideal gas.

Here we have performed the computations by using (6) to model the numerical mixi
between the copper and air. Results obtained using the high-resolution method with
MINMOD limiter, the Courant number = 0.9, and a 100« 100 uniform grid in a unit
square domain, are displayed in Fig. 7, where the 2D contours of the density, 3D sur
plot of the pressure, and the cross-section plot of the density and pressureateng
are presented at tinte= 360us. From the displayed profiles, it is easy to observe goo
agreement of the numerical solutions as compared with the exact results. Notice that
computed pressure remains in the correct equilibrium gtgt@go be more accurate, the
difference of these two is only on the order of machine epsilon), without any unexpec
oscillations near the numerically diffused copper—air interface. Moreover, the copper pl
retains its circular shape and appears to be very well located.

ExXAMPLE 6.1.2. We are next concerned with a test problem of Miller and Puckett [3:
in which a shock wave in molybdenum is interacting with a region of encapsulated MOF
liquid. Similar to the initial condition used in Example 5.5xat= 0.3 m, there is a planarly
rightward-moving Mach 1.163 shock wave in molybdenum traveling from left to right that
about to collide with a rectangular region400.7] x [0, 0.5] m? which contains a MORB
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FIG. 8. High-resolution results for a shock wave in molybdenum interacting with an encapsulated MOF
liquid. Schlieren-type images for the density and pressure are shown at two different #nfy.s and 10Qes
using a 200x 200 grid. The dashed lines appearing in the pressure plot indicate the approximate location of
molybdenum—-MORSB interface. Both the molybdenum and MORB are modeled by the shock wave equatio
state (8).

liquid inside. As before, we use the shock wave equation of state (8) to model the MO
and molybdenum with the material parameters given in Table I.

Figures 8 and 9 show high-resolution results of a sample run using a uniform 20(
200 grid on a unit square domain. From Fig. 8, a reasonable resolution of the solu
structure i.e., the diffraction of a shock wave by a MORB liquid) is obtained by using th
algorithm where schlieren-type images of the density and pressure are presented a
different timest = 50us and 10Qus; see [31] for a similar test of the problem. The cros:¢
section of the results for the same run along kae= 0.4 m is drawn in Fig. 9, giving
some quantitative information about the density and pressure at the selected times.
that in that figure we have also included results obtained using the same method but w
finer 400x 400 grid, observing good agreement of these two solutions, and free of spuri
oscillations in the pressure near the molybdenum-MORB interface.

ExAMPLE 6.1.3. We now consider a generalization the two-component impact proble
discussed in Example 5.3 to three components and two dimensions. Here we take the i
condition where in regiorx; > 0.6 m, we have a leftward going copper plate traveling
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FIG. 9. The cross-sectional plots of the results for the run shown in Fig. 8 along the,lired.4 m, where
the solid lines are results obtained using the same method but with a finer 400 grid. The dashed line in each
subplot is the initial condition at time= 0.

vertically in a shock tube with spead = 1500 m/s from right to left, while in region
X3 < 0.6 m, we have a stationary, horizontal, interfaceat 0.5 m that separates a solid
inert explosive on the top and a liquid water on the bottom. As in Example 5.3, we assu
that all three fluid components are in the usual atmospheric condition initially throughout
domain. We use the Cochran—Chan equation of state (6) to model the copper and explo
and the Jones-Wilkins—Lee equation of state (5) to model the water. Note that, as bef
to deal with the numerical mixing between the copper, explosive, and water, we emp
the equation of state of the form (22) for numerical approximation; see Table | again
numerical values to each of the material parameters.

For this problem, we carry out the same runs as done in the previous two examples,
show the numerical results in Figs. 10 and 11. Clearly, because of the impact of the coj
plate to the water and explosive, transmitted and reflected shock waves are a result of
action. Note that since the acoustic impedance of explosive is greater than the one fol
water, we find a larger shock speed in explosive than the one in water. Moreover, becau:
the head-on collision betwen the leading edge of the copper plate and the water-explo
interface, generation of a reflected circular wave is observed. It is interesting to ment
that this circular wave pattern has already been seen in Fig. 8 where there is a shock \
interacting with a corner of the MORB liquid. The cross-sectional plots of the solutior
shown in Fig. 11 give another example of the good agreement of the results as the me
refined.

ExampPLE 6.1.4. Finally, we are interested in an impact problem that involves the i
teraction of an underwater aluminum plate to a copper plate. As for the initial conditic
on the left half of the unit square domain, the material is copper, while on the right half
the domain, the materials are water on the top and aluminum on the bottom separated
horizontal interface at, = 0.4 m. Here both the copper and water are at rest initially, bu
there is a leftward-moving speeg = 1500 m/s for aluminum that is on the point of hitting
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FIG. 10. High-resolution results for a three-component impact problem with a moving copper plate ant
stationary interface separating a solid explosive and water. Schlieren-type images for the density and pressu
shown at two different times = 50s and 10Qus using a 200« 200 grid. The dashed lines appearing in the
pressure plot is the approximate location of the copper—explosive—water interface. We model the copper and
explosive by the Cochran—Chan equation of state (6), and the water by the Jones—Wilkins—Lee equation of sta
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FIG.11. The cross-sectional plots of the results for the run shown in Fig. 10 along the liad.4 m, where
the solid lines are results obtained using the same method but with a finer400grid. The dashed line in each
subplot is the initial condition at time= 0.
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Density Pressure

time = 50us copper

time = 100us

time = 150us

FIG. 12. Local adaptive mesh refinement results for a three-component impact problem with an underw:
moving aluminum and a copper. Schlieren-type images for the density and pressure are shown at three diff
timest = 50us, 100us, and 15Qcs. Two levels of grid refinement is used with the mesh siges 1/100 m on
Level 1 andh, = h;/4 on Level 2 in both the;- andx,-directions. The dashed lines appearing in the pressure
plot is the approximate location of the aluminum—copper—water interface. We model the aluminum, copper,
water by the shock wave equation of state (8).

the copper plate. In addition, we assume that all the materials are in an uncompressed
and are modeled by the shock wave equation of state (8) with material quantities givel
Table I.

In this test, we perform the computation using an adaptive-mesh version of the h
resolution scheme; see [3] for more information on how to implement the algorithm f
general hyperbolic systems. Note that, in fact, we have modified the software pack
AMRCLAW of Berger and LeVeque by replacing only the basic integration scheme
our multicomponent algorithm described here, while keeping most of the other routir
unchanged. Numerical results with two levels of grid refinement (on Level 1, the mesh s
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ish; = 1/100 m in both the - andx,-directions, and on Level 2, the mesh is refined by ¢
factor 4) are shown in Fig. 12, where we plot the density and pressure at three different til
t =50us, 100us, and 15Qts. From the figure, clearly, because of the impacting of th
aluminum to copper, we observe the transmitted and reflected shock waves to the coppe
aluminum, respectively. Moreover, on the corner of the copper-water and aluminum-w:
interfaces, there are a circular shock wave propagating to the water, and a mushroom s
of the interface appearing which separated the copper, aluminum, and water. It shoul
mentioned that this type of the interface structure is often seen in many geophysical im|
problems (cf. [32, 30]). As far as the global picture of the solution is concerned, we he
also observed a similar behavior of the solution as the mesh is refined. Itis interesting tc
that there is a smooth transition of the solutions across the coarse and fine grid interfe
this means that the basic procedure described in [3] for conservation and wave propag:
at grid interface works quite well in this case.

7. CONCLUSIONS

A simple fluid-mixture type algorithm is developed for the numerical resolution c
compressible multicomponent problems with real materials modeled by the general M
Griuneisen equation of state. The algorithm uses an Eulerian formulation of the equations
are formed by combining a set of effective equations for the material-dependent functi
and the Euler’s equations of gas dynamics. We use the high-resolution wave propag:s
method designed originally for single component flow to solve the proposed model syst
yielding an easy extension of the method from single-component to multicomponent pr
lems. Numerical results shown in the paper demonstrate the feasibility of the algorithm v
the approximate Riemann solver of Roe to a reasonable class of multicomponent probl
in both one and two dimensions. In the future, we plan to further extend the algoritt
to simulate shock waves in solids with elastic to plastic transition (cf. [34, 52, 55]), a
also to simulate shock to detonation transition (cf. [57]). Important physical effects suct
cavitation and spallation will be looked into for investigation as well.
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