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Abstract
TheSerre–Green–Naghdi (SGN) system is oneof themost useful dispersivemodels for
the description of longwaterwaves having goodmathematical and physical properties.
First, the model is a mathematically justified approximation of the exact water-wave
problem. Second, the SGN equations are the Euler–Lagrange equations derived from
Hamilton’s principle of surface water waves with an approximate Lagrangian func-
tional which appears naturally from the full Lagrangian. Finally, the equations are
Galilean invariant which is necessary for physically relevant mathematical models.
In this work, we derive the Whitham modulation equations for the SGN model and
prove that these equations are strictly hyperbolic for any wave amplitude. This prop-
erty can be interpreted by concluding that the periodic wave solutions of the SGN
equations are modulationally stable. Numerical simulations of the full SGN equations
are also shown, and these results confirm the theoretical stability results found using
the Whitham modulation theory.

Keywords Dispersive shallow water equations · Whitham equations · Hyperbolicity

1 Introduction

One usually uses two methods to obtain the modulation equations for a reversible
dispersive system: theWhitham averaged Lagrangian method [44] or averaging of the
corresponding conservation laws (cf. [5,29]). Both of them give the same system for
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slowly varying wave train characteristics (wave length and amplitude, for example).
If the corresponding system of modulation equations is hyperbolic (elliptic), one says
that the corresponding wave trains are modulationally stable (unstable). The relation
between themodulational instability and, for example, the classical spectral instability
is not completely understood. An important result for a class of Hamiltonian systems
has been obtained in [4]: the hyperbolicity of modulation equations is necessary for
the spectral stability of periodic traveling waves.

The modulational instability (wavetrain instability) is often generically called
‘Benjamin–Feir instability’ even if, formally, this last instability concerns only about
the surface gravity water waves (Benjamin and Feir [2] and Zakharov [45] in the case
of deep-water waves, and Benjamin [3] in the case of finite-depth waves). We refer
interested readers to the article [46] where the history of the modulational instabil-
ity theory is presented. In the case of small amplitudes, the hyperbolicity (ellipticity)
condition can easily be formulated in terms of the non-linear amplitude dependent
dispersion relation (see [44], chapter 15). A recent application of such an approach
can be found in [36] for a ‘conduit’ equation. However, the study of hyperbolicity
of the modulation equations in the case of large-amplitude solutions is a more diffi-
cult problem. For integrable systems, the hyperbolicity of modulation equations and
existence of the Riemann invariants were established, for example, for Korteweg-de
Vries equation (KdV equation) [44], for nonlinear Schrödinger equation (NLS equa-
tion) [39], for sine-Gordon equation [15,26], and for Benjamin–Ono equation [7] (see
also the book [29] for further references). For non-integrable systems, one can cite
[27] where the Whitham equation was studied and modulational instability for short
enough waves was shown, or [35] and [28] where the regions of modulational and
spectral stability for roll waves to the Saint-Venant equations were determined. In
general, a ‘right choice’ of unknowns in which the modulation equations are written
is necessary to have explicit (or almost explicit) expressions of the corresponding
characteristic values. Such a choice is not at all obvious.

The aim of this work is to study the modulational stability of periodic waves to
Serre–Green–Naghdi equations (SGN equations). One-dimensional SGN equations
can be written in the Eulerian coordinates in the form [22,23,42,43]:

ht + (hu)x = 0,

(hu)t + (hu2 + p)x = 0,

(he)t + (hue + pu)x = 0,

(1)

with

p = gh2

2
+ 1

3
h2

D2h

Dt2
, e = u2

2
+ gh

2
+ 1

6

(
Dh

Dt

)2

,
D

Dt
= ∂

∂t
+ u

∂

∂x
. (2)

Here, h is the fluid depth, u is the averaged over the fluid depth velocity, and p is
the integrated over the fluid depth pressure. If L0 is a characteristic wave length, and
H0 is the characteristic water depth; we define the dimensionless small parameter
β = H2

0 /L2
0. The SGN equations are obtained by depth-averaging the Euler system
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and keeping in the resulting set of equations only first-order terms in β without mak-
ing any assumptions on the amplitude of the waves. The third equation in (1) (the
energy equation) is a consequence of the mass and momentum equations (the first two
equations). The fourth conservation law (generalized Bernoulli conservation law) can
also be written here (cf. [17,19]).

Mathematical justification of this model and some related systems can be found in
[8,30,33,37,41]. A variational formulation of the SGNequations is given in [17,32,38].
The linear stability of solitary waves of small amplitude to the SGN equations was
established in [32]. Also, it has been mentioned there that numerically, the solitary
waves are stable for any wave amplitude. Recent years have seen increased activity in
both the study of qualitative properties of the solutions to the SGN system and in the
development of numerical discretization techniques [6,9,14,18,21,31,34].

In [11], the Riemann problem for the SGN equations was examined. Earlier, the
Riemann problemwasmainly studied for integrable systems in [24] for the KdV equa-
tion, and in [10,25] for the NLS equation. Recently, this problem has received much
attention for non-integrable systems of equations mainly because of the dispersive
shocks commonly present in physics [12]. In [11], the wave number, amplitude, aver-
age fluid depth, and average velocity have been chosen as primary variables to study
the dispersive shocks of the SGN equations. This choice is quite natural, because, for
example, the leading edge of the dispersive shock corresponds to the limit of small
wave numbers, while the trailing edge is the limit of small amplitudes. Therefore, the
asymptotic study in the limit of small wave numbers or small amplitudes is important
to predict the solution behaviour.

To capture better the case of moderate and large amplitude waves, one can try to
use other variables. Even if a priori, they may be not necessarily physically tractable,
they could be useful to parameterize globally the generic solution to the modulation
equations. In particular, it could help to determine the regions of modulational stability
and instability for waves of arbitrary amplitude.

The structure of the article is as follows. The system of four modulation equations
is derived in Sects. 2, 3, and 4. In Sect. 5, the averaged quantities are expressed as func-
tions of the roots of the third-order polynomial determining the fluid depth behaviour,
and the phase velocity. The non-conservative form of the modulation equations and
their hyperbolicity analysis are given in Sects. 6, 7. Numerical tests showing the wave-
train stability for the full SGN equations are presented in Sect. 8. Technical details are
described in Appendix.

2 Averaged Conservation Laws for the SGNModel

A formal derivation of the modulation equations to the SGN equations (even in a
more general formulation which contained, in particular, equations of bubbly fluids)
can be found in [16,21]. However, the analysis of the hyperbolicity for such a general
formulation was not performed there. Here, we will concentrate on SGN equations
and will use the approach based on the averaging of conservation laws.

Suppose that the unknowns h, u (and also p and e which are functions of these
variables and their derivatives) depend on the rapid travelling coordinate ξ = x − Dt
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and slow variables X = μx , T = μt (see Appendix A for the details). Here, D is the
travelling wave velocity. Let us introduce the following μ–expansion ansatz for h, u,
p, and e:

h(ξ, X , T ) = h0(ξ, X , T ) + μh1(ξ, X , T ) + O(μ2),

u(ξ, X , T ) = u0(ξ, X , T ) + μu1(ξ, X , T ) + O(μ2),

p(ξ, X , T ) = p0(ξ, X , T ) + μp1(ξ, X , T ) + O(μ2),

e(ξ, X , T ) = e0(ξ, X , T ) + μe1(ξ, X , T ) + O(μ2).

Here, all the terms are supposed to be L-periodic with respect to ξ , where L is also a
slowly varying function of X and T . Taking into account the following transformations
of the partial derivatives with respect to time and space:

∂

∂t
= −D

∂

∂ξ
+ μ

∂

∂T
,

∂

∂x
= ∂

∂ξ
+ μ

∂

∂X
; (3)

in zero-order approximation with respect to μ, we obtain:

− Dh0ξ + (h0u0)ξ = 0,

− D(h0u0)ξ + (h0u
2
0 + p0)ξ = 0,

− D(h0e0)ξ + (h0u0e0 + p0u0)ξ = 0.

(4)

After averaging the first order equations over the period L , one gets the following
system:

(h0)T + (h0u0)X = 0,

(h0u0)T + (h0u20 + p0)X = 0,

(h0e0)T + (
h0u0e0 + p0u0

)
X = 0.

(5)

Notice that here we used the fact that the averaging procedure and the derivation with
respect to slow variables commute (cf. [5,29,44]). System (5) will be written in closed
form. For this, explicit periodic solutions to (4) will be presented.

3 Stationary Periodic Solutions

We will now show that the equations of zero -order approximation (4) admit periodic
solutions. We rewrite (4) in the form:

− Dh′ + (hu)′ = 0,

− D(hu)′ + (hu2 + p)′ = 0,

− D(he)′ + (hue + pu)′ = 0.

Here and further, the zero index is omitted and primes stand for
∂

∂ξ
. The first equation

reads:
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−Dh′ + (hu)′ = 0.

The integration gives:
h(u − D) = m = const . (6)

When we write here and further, m = const , for example, we mean that m does not
depend on rapid variable ξ : it is a function of just two variables T and X . The second
equation can be integrated as:

p = i − m2

h
, i = const . (7)

The second-derivative term in (2) can be transformed. Keeping only the zero powers
of μ, we rewrite the second derivative of h as:

D2h

Dt2
= (u − D)

(
(u − D)h′)′ = (u − D)h

h

(
(u − D)h

h
h′

)′
= m

h

(
mh′

h

)

= m2

h

(
h′

h

)′
.

Thus, we have:
D2h

Dt2
= m2

h

(
h′

h

)′
.

Hence, the pressure expression in (2) reads:

p = gh2

2
+ 1

3
m2h

(
h′

h

)′
.

Replacing the pressure expression into (7), one obtains:

m2

h
+ gh2

2
+ 1

3
m2h

(
h′

h

)′
= i .

Multiplying both side of the equation by h
′
/m2h2, we have:

h′

h3
+ gh′

2m2 + 1

3

h′

h

(
h′

h

)′
= ih′

m2h2
,

which can be rewritten in the form:

1

6

[(
h′

h

)2
]′

+ h′

h3
+ gh′

2m2 = ih′

m2h2
.

Integrating the equation once leads to:

1

6

(
h′

h

)2

− 1

2h2
+ gh

2m2 = − i

m2h
+ ε, ε = const .
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Thus, the equation for h is given as:

(
h′)2 = 3 − 6i

m2 h + 6εh2 − 3g

m2 h
3. (8)

Denote the polynomial in the right-hand side as F3(h):

F3(h) = 3 − 6i

m2 h + 6εh2 − 3g

m2 h
3,

or, equivalently:

F3(h) = 3g

m2

(
m2

g
− 2i

g
h + 2εm2

g
h2 − h3

)
= 3g

m2 (h − h0)(h − h1)(h2 − h),

where h0 < h1 < h2 are the roots of F3(h). Using Vieta’s formulas one can write
F3(h) in the following way:

F3(h) = 3

I3
(I3 − I2h + I1h

2 − h3),

where
I1 = h0 + h1 + h2,

I2 = h0h1 + h1h2 + h0h2,

I3 = h0h1h2.

(9)

Identifying the coefficients of F3(h), one obtains:

I1 = 2εm2

g
, I2 = 2i

g
, I3 = m2

g
. (10)

We are searching for the periodic solutions of (8), oscillating between two real positive
roots h1 and h2. Since they are real, the third root h0 is real too. Moreover, the last
formula in (10) implies that h0 is necessarily positive.

The periodic solution that oscillates between h1 and h2 is given by the formula:

h = h1 + (h2 − h1)cn
2(α ξ ; k), α2 = 3

4

(h2 − h0)

h0h1h2
, k2 = h2 − h1

h2 − h0
. (11)

Here, the Jacobi elliptic function cn(u; k) is defined as:

cn(u; k) = cos(ϕ(u, k)),

where ϕ(u, k) is obtained implicitly from the relation:

∫ ϕ

0

dθ√
1 − k2 sin2(θ)

= u.
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The wavelength L can explicitly be given as:

L =
∫ ξ2

ξ1

dξ = 2
∫ h2

h1

dh√
F3(h)

= 2

√
h0h1h2

3

∫ h2

h1

dh√
P3(h)

,

where the interval [ξ1, ξ2] has the length L and

P3(h) = (h − h0)(h − h1)(h2 − h). (12)

The wavelength is thus completely defined by the roots h0, h1, and h2. The averaging
of any arbitrary function of f (h) reads:

f (h) = 1

L

∫ ξ2

ξ1

f (h)dξ = 2

L

∫ h2

h1

f (h)dh√
F3(h)

=
∫ h2

h1

f (h)dh√
P3(h)

/ ∫ h2

h1

dh√
P3(h)

. (13)

4 Averaged Equations

Consider the first-order part of (5) (‘zero’ index is omitted):

(h)T + (hu)X = 0,

(hu)T + (hu2 + p)X = 0,

(he)T + (
hue + pu

)
X = 0.

(14)

In the following, we will express all averaged quantities in (14) in terms of four
unknowns: h0, h1, h2, and D.

The flux in the first equation of (14) is:

hu = h(u − D + D) = m + Dh = m + Dh = hU , U = hu

h
. (15)

We introduced here the depth averaged velocity U . In terms of this velocity the mass
equation can be rewritten in standard form:

(h)T + (hU )X = 0. (16)

Since
hu2 = h(u − D + D)2

= h(u − D)2 + 2h(u − D)D + D2h

=
(
h2(u − D)2

h

)
+ 2h(u − D)D + D2h

= m2h−1 + 2Dm + D2h,
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and
p = i − m2h−1,

the flux in the second equation of (14) is:

hu2 + p = i + 2Dm + D2h = hU 2 + i − m2

h
.

The last two terms represent a combination of the pressure (defined up tomultiplicative
constant which is the fluid density) first integrated over the water depth and then
averaged over the wave period, and the corresponding quadratic velocity correlation.
Together, the two terms form an ‘effective pressure’. One can prove that such an
effective pressure is always positive:

i − m2

h
= g

2

⎛
⎝I2 − 2I3

∫ h2
h1

dh√
P3(h)∫ h2

h1
hdh√
P3(h)

⎞
⎠ > 0.

In the third equation, we need to calculate he, hue, and pu. Let us remark that for the
travelling wave solutions, one has:

(
Dh

Dt

)2

= (
(u − D)h′)2 = m2 h

′2

h2
.

Also, it follows from (8) that

(
h′2
h

)
= − 6i

m2 + 3h−1 + 6εh − 3g

m2 h
2,

and (
h′
h

)2

= 6ε + 3h−2 − 6i

m2 h
−1 − 3g

m2 h.

The averaged energy is:

e = u2

2
+ gh

2
+ 1

6

(
Dh

Dt

)2

= u2

2
+ gh

2
+ 1

6

(
(u − D)h′)2

= 1

2

(
(u − D)2 + 2D(u − D) + D2

) + g

2
h + 1

6

(
h2(u − D)2

h′2
h2

)

= 1

2

(
h2(u − D)2

h2

)
+ D

(
h(u − D)

h

)
+ 1

2
D2 + g

2
h + 1

6
m2

(
h′2
h2

)

= 1

2
m2h−2 + Dmh−1 + 1

2
D2 + g

2
h + m2

6

(
h′
h

)2

.
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Thus, the averaged energy reads:

e = 1

2
D2 + m2ε + m2h−2 + (Dm − i)h−1.

It can be also expressed as a function of U (instead of D) and h0, h1, h2. The volume
average energy is:

he = hu2

2
+ gh2

2
+ h

6

(
Dh

Dt

)2

= 1

2

(
2Dm + m2h−1 + D2h

)
+ gh2

2
+ h

6

(
(u − D)h′)2

= 1

2

(
2Dm + m2h−1 + D2h

)
+ g

2
h2 + 1

6

(
h2(u − D)2h′2

h

)

= 1

2

(
2Dm + m2h−1 + D2h

)
+ g

2
h2 + m2

6

(
h′2
h

)
.

Thus:

he = Dm − i + m2h−1 +
(
1

2
D2 + m2ε

)
h,

and

hue = h(u − D + D)e = me + Dhe = me + Dhe

= 3

2
D2m − i D + m3ε + m3h−2 + (2Dm2 − mi)h−1 +

(
1

2
D3 + m2Dε

)
h.

Also, one has:

pu = iu − m2uh−1

= i
h

h
(u − D + D) − m2 h

h2
(u − D + D)

= i

h
h(u − D) + i D − m2

h2
h(u − D) − m2Dh−1

= i D − m3h−2 − (Dm2 − mi)h−1.
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Now we are able to write the modulation equations because all quantities we need are
given explicitly:

hu = hD + m,

hu2 + p = hD2 + 2mD + i,

he = 1

2
hD2 + mD − i + m2εh + m2h−1,

hue + pu = 1

2
hD3 + m2εhD + 3

2
mD2 + m3ε + m2h−1D.

(17)

The last step would be to replace the integration constants m, i , and ε by their expres-
sions in terms of invariants Ii , i = 1, 2, 3, using (10):

m2 = gI3 (m = sgn(m)
√
gI3),

i = 1

2
gI2,

ε = 1

2

I1
I3

.

(18)

The negative (positive) sign ofm corresponds to the right (left) facing periodic waves.
We introduce the synthesis of both notations in order to obtain the simplest form of the
equations. Basically, we will describe everything in terms of m, i , and I1. Using (18),
one can eliminate the dependence on ε in (17):

hu = hD + m,

hu2 + p = hD2 + 2mD + i,

he = 1

2
hD2 + mD − i + 1

2
gI1h + m2h−1,

hue + pu = 1

2
hD3 + 1

2
gI1hD + 3

2
mD2 + 1

2
gI1m + m2h−1D.

(19)

Complemented by equation (1/L)t + (D/L)x = 0 (conservation of waves, see
Appendix A), equations (5) will finally be written as:

LT − LDX + DLX = 0,

hT + (
m + hD

)
X = 0,

(
m + hD

)
T +

(
hD2 + 1

2
gI2 + 2mD

)
X

= 0,

(
1

2
hD2 + 1

2
gI1h − 1

2
gI2 + gI3h−1 + mD

)
T

+
(
1

2
hD3 + 1

2
gI1hD + gI3h−1D + 3

2
mD2 + 1

2
mgI1

)
X

= 0.

(20)
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The depth averaged velocity U = uh/h is linked to the phase speed D by (15):

D = U − m

h
.

If one uses U instead of D, Eq. (20) complemented by Eq. (30) for the wavelength
(see Appendix A) will be written as:

(1/L)T + (
U/L − m/(Lh)

)
X = 0,

hT + (
hU

)
X = 0,

(
hU

)
T +

(
hU 2 + P

)
X

= 0, P = 1

2
gI2 − m2/h,(

1

2
hU 2 + hE

)
T

+
(
1

2
hU 3 +U

(P + hE) − m3h−1/h + m3/h
2
)
X

= 0,

hE = m2h−1 − 1

2
m2/h + 1

2
gh

(
I1 − I2/h

)
.

(21)

Let us remark that (21) are Galilean invariant, i.e., the equations will not change after
the change of variables:

X → X + VT , U → U + V , V = const .

The other variables do not change. The Galilean invariance implies, in particular, that
the corresponding characteristic polynomial is also Galilean invariant. This fact will
be used later. It appears that the quasilinear form of (20) in variables D, h0, h1, and h2
is simpler than that in variables U , h0, h1, and h2. We now rewrite (20) in quasilinear
form.

5 Expressions for theMain Averaged Variables

The expressions of h, h−1, and L in terms of h0, h1, and h2 are (for proof, see
Appendix B):

h = h0 + (h2 − h0)
E(k)

K (k)
, h−1 = 	(n, k)

h2K (k)
, L = 4

√
h0h1h2

3

K (k)√
h2 − h0

.
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Then, one can write the following differentials :

dh = 
0dh0 + 
1dh1 + 
2dh2,

dh−1 = �0dh0 + �1dh1 + �2dh2,

dL = �0dh0 + �1dh1 + �2dh2,

d I1 = dh0 + dh1 + dh2,

d I2 = (h1 + h2)dh0 + (h0 + h2)dh1 + (h0 + h1)dh2,

d I3 = h1h2dh0 + h0h2dh1 + h0h1dh2,

dm = m

2

(
dh0
h0

+ dh1
h1

+ dh2
h2

)
.

Here 
i , � i , and �i (i = 0, 1, 2) read (for proof, see Appendix C):


0 = 1

2
− h2 − h0

2(h1 − h0)

E2(k)

K 2(k)
,


1 = h2 − h0
2(h2 − h1)

− h2 − h0
h2 − h1

E(k)

K (k)
+ (h2 − h0)2

2(h2 − h1)(h1 − h0)

E2(k)

K 2(k)
,


2 = − h1 − h0
2(h2 − h1)

+ h2 − h0
h2 − h1

E(k)

K (k)
− h2 − h0

2(h2 − h1)

E2(k)

K 2(k)
,

�0 = 1

2h0(h1 − h0)

E(k)

K (k)
− 1

2h0h2

	(n, k)

K (k)
− 1

2h2(h1 − h0)

	(n, k)E(k)

K 2(k)
,

�1 = 1

2h1(h2 − h1)
− h2 − h0

2h1(h2 − h1)(h1 − h0)

E(k)

K (k)
− 1

2h1(h2 − h1)

	(n, k)

K (k)

+ h2 − h0
2h2(h2 − h1)(h1 − h0)

	(n, k)E(k)

K 2(k)
,

�2 = − 1

2h2(h2 − h1)
+ 1

2h2(h2 − h1)

E(k)

K (k)
+ h1

2h22(h2 − h1)

	(n, k)

K (k)

− 1

2h2(h2 − h1)

	(n, k)E(k)

K 2(k)
,

�0 = 2√
3

( √
h0h1h2

(h1 − h0)
√
h2 − h0

E(k) + h1h2√
h2 − h0

√
h0h1h2

K (k)

)
,

�1 = 2√
3

(
−

√
h2 − h0

√
h0h1h2

(h2 − h1)(h1 − h0)
E(k) + h0h22

(h2 − h1)
√
h2 − h0

√
h0h1h2

K (k)

)
,

�2 = 2√
3

( √
h0h1h2

(h2 − h1)
√
h2 − h0

E(k) − h0h21
(h2 − h1)

√
h2 − h0

√
h0h1h2

K (k)

)
.

The formulas for 
k , �k and �k , k = 0, 1, 2 were verified by hand calculations and
withWolframMathematica.Onemust pay attention to the fact that the complete elliptic
integralswhichwe use depend on ellipticmodulus k, whileWolframMathematica uses



Hyperbolicity of the Modulation Equations...

the definition from Abramovitz and Stegun [1] where the complete elliptic integrals
depend on parameter m = k2 (do not confound the notations m with m coming from
the mass conservation equation).

6 Nonconservative Modulation Equations

The modulation equations (20) can be written in the following developed form:

�0h0T + �1h1T + �2h2T − LDX + D�0h0X + D�1h1X + D�2h2X = 0,


0h0T + 
1h1T + 
2h2T + hDX +
(
D
0 + m

2h0

)
h0X

+
(
D
1 + m

2h1

)
h1X +

(
D
2 + m

2h2

)
h2X = 0,

hDT +
(
D
0 + m

2h0

)
h0T +

(
D
1 + m

2h1

)
h1T +

(
D
2 + m

2h2

)
h2T

+ (
2hD + 2m

)
DX +

(
D2
0 + 1

2
g(h1 + h2) + m

h0
D

)
h0X

+
(
D2
1 + 1

2
g(h0 + h2) + m

h1
D

)
h1X +

(
D2
2 + 1

2
g(h0 + h1) + m

h2
D

)
h2X = 0,

(
hD + m

)
DT

+
(
1

2

(
D2 + gI1

)

0 + m2�0 + 1

2
g(h − h1 − h2) + gh1h2h−1 + m

2h0
D

)
h0T

+
(
1

2

(
D2 + gI1

)

1 + m2�1 + 1

2
g(h − h0 − h2) + gh0h2h−1 + m

2h1
D

)
h1T

+
(
1

2

(
D2 + gI1

)

2 + m2�2 + 1

2
g(h − h0 − h1) + gh0h1h−1 + m

2h2
D

)
h2T

+
(
3

2
hD2 + 1

2
gI1h + m2h−1 + 3mD

)
DX

+
(
1

2
(D2 + gI1)D
0 + m2D�0 + 1

2
ghD + gh1h2h−1D

+3

4

m

h0
D2 + 1

4
g
mI1
h0

+ 1

2
gm

)
h0X

+
(
1

2
(D2 + gI1)D
1 + m2D�1 + 1

2
ghD + gh0h2h−1D

+3

4

m

h1
D2 + 1

4
g
mI1
h1

+ 1

2
gm

)
h1X

+
(
1

2
(D2 + gI1)D
2 + m2D�2 + 1

2
ghD + gh0h1h−1D

+3

4

m

h2
D2 + 1

4
g
mI1
h2

+ 1

2
gm

)
h2X = 0.

(22)



S. Tkachenko et al.

Or, in matrix form:
AUT + BUX = 0,

where

U =

⎡
⎢⎢⎣
D
h0
h1
h2

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

0 a12 a13 a14
0 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣
b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

⎤
⎥⎥⎦ .

The coefficients of A are given by:

a11 = 0, a12 = �0, a13 = �1, a14 = �2,

a21 = 0, a22 = 
0, a23 = 
1, a24 = 
2,

a31 = h, a32 = D
0 + m

2h0
, a33 = D
1 + m

2h1
, a34 = D
2 + m

2h2
,

a41 = hD + m,

a42 = 1

2

(
D2 + gI1

)

0 + m2�0 + 1

2
g(h − h1 − h2)

+ gh1h2h−1 + m

2h0
D,

a43 = 1

2

(
D2 + gI1

)

1 + m2�1 + 1

2
g(h − h0 − h2)

+ gh0h2h−1 + m

2h1
D,

a44 = 1

2

(
D2 + gI1

)

2 + m2�2 + 1

2
g(h − h0 − h1)

+ gh0h1h−1 + m

2h2
D.

The coefficients of B are given by:

b11 = −L, b12 = D�0, b13 = D�1, b14 = D�2,

b21 = h, b22 = D
0 + m

2h0
, b23 = D
1 + m

2h1
, b24 = D
2 + m

2h2
,

b31 = 2hD + 2m,

b32 = D2
0 + 1

2
g(h1 + h2) + m

h0
D,

b33 = D2
1 + 1

2
g(h0 + h2) + m

h1
D,

b34 = D2
2 + 1

2
g(h0 + h1) + m

h2
D,

b41 = 3

2
hD2 + 1

2
gI1h + m2h−1 + 3mD,
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b42 = 1

2
(D2 + gI1)D
0 + m2D�0 + 1

2
ghD + gh1h2h−1D + 3

4

m

h0
D2

+1

4
g
mI1
h0

+ 1

2
gm,

b43 = 1

2
(D2 + gI1)D
1 + m2D�1 + 1

2
ghD

+gh0h2h−1D + 3

4

m

h1
D2 + 1

4
g
mI1
h1

+ 1

2
gm,

b44 = 1

2
(D2 + gI1)D
2 + m2D�2 + 1

2
ghD + gh0h1h−1D

+3

4

m

h2
D2 + 1

4
g
mI1
h2

+ 1

2
gm.

The eigenvalues are the roots of the fourth-order polynomial:

det (B − λA) = 0. (23)

To simplify the computations, let us recall that the introduction of the depth averaged
velocity U = uh/h allows us to rewrite the mass conservation equation in standard
form (16) and to establish the Galilean invariance of the modulation equations. There-
fore, to check the hyperbolicity for any U is equivalent to check the hyperbolicity for
U = 0. Since:

U = m

h
+ D,

we will put into the coefficients of the matrices A and B the value of D corresponding
to U = 0:

D = −m

h
.

Let us also remark that for the hyperbolicity study, one can always take h0 = 1 in the
coefficients of the polynomial (23) (if h0 = α > 0, all the eigenvalues will only be
multiplied by

√
α). The corresponding symmetry relations are the consequences of the

fact that the periodic solution is determined in terms of the third degree polynomial.

7 Hyperbolicity Region

Since the roots of polynomial (12) satisfy the inequality : 1 = h0 < h1 < h2, one
can parameterize h1 and h2 as : h1 = s, h2 = s + τ , where s > 1 and τ > 0. Such
a parameterization allows us to use a standard ‘Cartesian’ frame for the computation
of the eigenvalues of (23). The eigenvalues thus are given explicitly as functions of s
and τ . We used Wolfram Mathematica for such a computation. The numerical results
show that the eigenvalues are all real in a large region � = {(s, τ )|1 < s < 100, 0 <

τ < 100}. First, for each pair (s, τ ) from �, we computed the numerical values of
matrices A and B. Then, the corresponding eigenvalues were computed as the roots
of the fourth-order polynomial (23). Moreover, one can find that the resultant of the
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Fig. 1 The resultant R of the polynomial (23) and its derivative does not change sign in the region 1 < s <

100 and 0 < τ < 100 where all roots are real. The resultant is plotted here in a smaller region of s and τ .
Thus, the polynomial (23) has no multiple real roots. It means that the system of modulation equations is
strictly hyperbolic

Fig. 2 The region s > 1, τ > 0 is divided by a smooth curve into two sub-regions, ‘grey’ and ‘white’.
If m < 0, in the grey sub-region, one has three positive and one negative eigenvalues, while in the white
sub-region, one has two positive and two negative eigenvalues. If m > 0, the signs of the roots will only
change, since we have taken vanishing U
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Fig. 3 The case of right facing waves is considered (m < 0). The behavior of the eigenvalues is shown as

functions of the parameter md = h2 − h1
h2 − h0

= τ

τ + s − 1
along straight lines. On the left figure, positive

eigenvalues λ1 > λ2 > λ3 > 0 are shown along the line s = 1.2−τ , τ ∈ (0, 0.2)which belongs entirely to
the ‘grey’ region. Two of them become multiple (shown by black dots) only at the boundary of the domain:
in the limit of small amplitude (linear waves limit) or infinite length (solitary waves limit). On the right
figure, the behavior of all eigenvalues is shown along the line s = 12− τ , τ ∈ (0, 11). This line crosses the
boundary between the ‘white’ and ‘grey’ regions at the point s ≈ 3.6697 and τ ≈ 8.3303 corresponding
to md ≈ 0.757 (shown by ‘cross’) where the lowest positive eigenvalue changes the sign from positive to
negative when md increases

corresponding polynomial (23) and its derivative (denoted further as R) does not
change sign (see Fig. 1). Thus, the polynomial (23) has no multiple real roots.

Since all the roots are real and different, the system of modulation equations for the
SGN equations is thus strictly hyperbolic. The fact that periodic waves of all lengths
aremodulationally stable corroborates the results of [32] where the spectral stability of
solitary waves (the limit s → 1) has been proven for small amplitudes and numerically
confirmed for large amplitudes. The whole hyperbolicity region s > 1, τ > 0 is
divided by a smooth curve corresponding to λ = 0 into two sub-regions, ‘grey’ and
‘white’ (see Fig. 2). If m < 0, in the grey sub-region, one has three positive and one
negative eigenvalues, while in the white sub-region, one has two positive and two
negative eigenvalues. If m > 0, the signs of the roots will only change, since we have
taken U vanishing. Figure 3 shows the behavior of eigenvalues for m < 0. The roots
becomemultiple only at the boundary of the domain corresponding to the linear waves
and solitary waves.

8 Numerical Results

To study the modulational stability of periodic waves to SGN model numerically, we
use the following set of parameters: h0 = 1 m, h1 = 1.5 m, h2 = 2 m (i.e. s = 1.5 m
and τ = 0.5 m), and g = 10 m/s2, as an example, for the solution of the water
height described by (11) over a single wave length L which corresponds to 7.4163 m
approximately. To setup the problem, a wave train is formed initially that consists
of N aforementioned single stationary wave solutions (see Sect. 3) in a domain of
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Fig. 4 The initial conditions for the modulational test of periodic solutions of SGNmodel; water height h is
shown on the left, and the phase portrait graphed in the (h, hḣ) plane is shown on the right. Three different
perturbation amplitudes, i.e., a = 10−3 (first row), a = 10−2 (second row), and a = 10−1 (third row), are
considered here with N = 50

size L1 = N × L , where the travelling wave speed of this wave train is taken be
D = −m/h ≈ 3.1688 m/s (this allows us to take vanishing the averaged over period
the mass weighted velocityU = hu/h). With that, we then introduce perturbations to
the height of the wave train h(x) as:
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Fig. 5 Numerical results for a modulational stability test of periodic waves shown for four time instants :
t = 200, 400, 800, 1200 s. The graphs are displayed in the same manner as in Fig. 4

h̃(x) := h(x)

(
1 + a cos

(
2πx

L1

))
, (24a)

and define the perturbed velocity of the wave by

ũ(x) := m

h̃(x)
+ D, (24b)
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Fig. 5 continued

where a is a small parameter. For this problem, periodic boundary conditions are
assumed and used on the left and right of the interval [0, L1].

In the numerical simulations of the SGNmodel performed below, we take N = 50,
and perturbation amplitudes a = 10− j for j = 1, 2, 3 in the runs. We show the
initial condition of the test in Fig. 4, and the computed solutions at four different times
t = 200, 400, 800, 1200 s in Fig. 5, where both the water height and the phase portrait
in the (h, hḣ)-plane are present. The choice of hḣ variable is natural, because for the
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Fig. 5 continued

travelling wave solutions hḣ = m
dh

dξ
, so up to a multiplicative constant, (h, hḣ)-plane

is nothing than the classical phase space
(
h, dh

dξ

)
. The periodic wave remains stable

when the smaller values a = 10−2 and 10−3 are used. To see the limit of linear stability,
we have also taken a large-amplitude perturbation (a = 10−1). The periodic wave train
becomes unstable: we are too far from the classical ‘small perturbation analysis’. The
numerical results are obtained using a hyperbolic–elliptic splitting method proposed
by the authors [21] with 400 meshes for each wave length.
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Fig. 5 continued

9 Conclusions and Perspectives

We have derived Whitham equations to the SGNmodel and show that they are strictly
hyperbolic for arbitrary wave amplitudes, i.e., the corresponding periodic wave trains
aremodulationally stable. This corroborates the results [32]where the linear stability of
solitary waves (which can be considered as the limit of periodic waves of large length)
has been proven. The existence of the Riemann invariants and study of characteristic
fields (are they genuinely degenerate or genuinely nonlinear in the sense of Lax)
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is a hopeless problem due to quite complex expressions of coefficients of Whitham
equations. Numerical solutions of Riemann problem for modulation equations can
probably clarify this structure.
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A Multiscale Decomposition

The classicalWhithammethod [44] consists in decomposing the scales in the following
way (for simplicity, we consider just the velocity variable u):

u(x, t) = u
(
θ(x, t), μx, μt

)
, θ(x, t) = �(μx, μt)

μ
. (25)

Here, θ is a fast phase variable, � is a slow phase variable, and μ is a small parameter.
The solution is supposed to be 2π -periodic with respect to θ . The definitions of the
local wave frequency ω and the local wave number κ:

∂θ

∂t
= −ω,

∂θ

∂x
= κ, (26)

automatically imply the evolution equation for κ:

κt + ωx = 0. (27)

Written in slow variables X = μx , T = μt , Eq. (26) is equivalent to:

∂�

∂T
= −ω,

∂�

∂X
= κ,

and (27) reads as:
κT + ωX = 0. (28)

One can also define the travelling wave coordinate ξ = x−Dt , and the phase velocity
D = ω/κ . The solution is decomposed as:

u(x, t) = u(x − Dt, μx, μt) = u
(θ(x, t)

κ
, μx, μt

)
= u

(
�(X , T )

μκ
, X , T

)
. (29)

The wavelength L is defined as:

L = 2π

κ
.
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Thus, since θ ∈ [0, 2π ], then ξ = �
μκ

∈ [
0, 2π

κ

] = [0, L]. Therefore, u is an L-
periodic function with respect to the travelling coordinate ξ :

u(ξ + L, X , T ) = u(ξ, X , T ).

Finally, (28) reads:
(1/L)T + (D/L)X = 0. (30)

The approach employing the travelling coordinate is equivalent to the one using the
phase variable. The consistency equation can always be written in any of the two forms
presented above: (28) or (30).

B Computation of Elliptic Integrals

Let:
h2 > h1 > h0, P3(h) = (h − h0)(h − h1)(h2 − h). (31)

Then, one has:

1

2

∫ h2

h1

h dh√
P3(h)

= √
h2 − h0E(k) + h0 K (k)√

h2 − h0
,

1

2

∫ h2

h1

dh√
P3(h)

= K (k)√
h2 − h0

,

1

2

∫ h2

h1

h−1dh√
P3(h)

= 	(n, k)

h2
√
h2 − h0

.

Here, K (k), E(k), and 	(n, k) are the complete elliptic integrals of the first, second,
and third type, respectively:

K (k) =
∫ π

2

0

dθ√
1 − k2 sin2 θ

,

E(k) =
∫ π

2

0

√
1 − k2 sin2 θdθ,

	(n, k) =
∫ π

2

0

dθ

(1 − n sin2 θ)
√
1 − k2 sin2 θ

.

The characteristic n and elliptic modulus k are defined as:

n = h2 − h1
h2

, k2 = h2 − h1
h2 − h0

.
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The definition of averaging (13) implies then:

h = h0 + (h2 − h0)
E(k)

K (k)
,

h−1 = 	(n, k)

h2K (k)
,

L = 4
√
I3√
3

K (k)√
h2 − h0

.

The derivatives of the complete elliptic integrals read as follows:

d

dk
K (k) = 1

k(1 − k2)
E(k) − 1

k
K (k),

d

dk
E(k) = 1

k
E(k) − 1

k
K (k),

∂

∂n
	(n, k) = − 1

2(1 − n)(k2 − n)
E(k) − 1

2n(1 − n)
K (k) + (k2 − n2)

2n(k2 − n)(1 − n)
	(n, k),

∂

∂k
	(n, k) = k

(k2 − n)(1 − k2)
E(k) − k

k2 − n
	(n, k).

Or, in terms of hi :

(
d

dk
K (k)

)∣∣∣∣
k=

√
h2−h1
h2−h0

= h2 − h0
h1 − h0

√
h2 − h0
h2 − h1

E(k) −
√
h2 − h0
h2 − h1

K (k),

(
d

dk
E(k)

)∣∣∣∣
k=

√
h2−h1
h2−h0

=
√
h2 − h0
h2 − h1

E(k) −
√
h2 − h0
h2 − h1

K (k),

(
∂

∂n
	(n, k)

)∣∣∣∣
k=

√
h2−h1
h2−h0

, n= h2−h1
h2

= − h22(h2 − h0)

2h0h1(h2 − h1)
E(k) − h22

2h1(h2 − h1)
K (k)+

h2(h0h2 + h1h2 − h0h1)

2h0h1(h2 − h1)
	(n, k),

(
∂

∂k
	(n, k)

)∣∣∣∣
k=

√
h2−h1
h2−h0

, n= h2−h1
h2

= h2(h2 − h0)

h0(h1 − h0)

√
h2 − h0
h2 − h1

E(k) − h2
h0

√
h2 − h0
h2 − h1

	(n, k).
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C Differentials of h, h−1 and L

The differentials of n and k are given by:

dn = − 1

h2
dh1 + h1

h22
dh2,

dk = 1

2(h2 − h0)

√
h2 − h1
h2 − h0

dh0 − 1

2
√

(h2 − h1)(h2 − h0)
dh1

+ h1 − h0
2(h2 − h0)

√
(h2 − h1)(h2 − h0)

dh2.

Then, the differentials of h and h−1 are:

dh =
(
1

2
− h2 − h0

2(h1 − h0)

E2(k)

K 2(k)

)
dh0

+
(

h2 − h0
2(h2 − h1)

− h2 − h0
h2 − h1

E(k)

K (k)
+ (h2 − h0)2

2(h2 − h1)(h1 − h0)

E2(k)

K 2(k)

)
dh1

+
(

− h1 − h0
2(h2 − h1)

+ h2 − h0
h2 − h1

E(k)

K (k)
− h2 − h0

2(h2 − h1)

E2(k)

K 2(k)

)
dh2,

dh−1 =
(

1

2h0(h1 − h0)

E(k)

K (k)
− 1

2h0h2

	(n, k)

K (k)
− 1

2h2(h1 − h0)

	(n, k)E(k)

K 2(k)

)
dh0

+
(

1

2h1(h2 − h1)
−

h2 − h0
2h1(h2 − h1)(h1 − h0)

E(k)

K (k)
− 1

2h1(h2 − h1)

	(n, k)

K (k)

+ h2 − h0
2h2(h2 − h1)(h1 − h0)

	(n, k)E(k)

K 2(k)

)
dh1+

(
− 1

2h2(h2 − h1)
+ 1

2h2(h2 − h1)

E(k)

K (k)

+ h1
2h22(h2 − h1)

	(n, k)

K (k)
− 1

2h2(h2 − h1)

	(n, k)E(k)

K 2(k)

)
dh2.

The differential of L is:

dL = 2√
3

( √
h0h1h2

(h1 − h0)
√
h2 − h0

E(k) + h1h2√
h2 − h0

√
h0h1h2

K (k)

)
dh0+

2√
3

(
−

√
h2 − h0

√
h0h1h2

(h2 − h1)(h1 − h0)
E(k) + h0h

2
2

(h2 − h1)
√
h2 − h0

√
h0h1h2

K (k)

)
dh1+

2√
3

( √
h0h1h2

(h2 − h1)
√
h2 − h0

E(k) − h0h
2
1

(h2 − h1)
√
h2 − h0

√
h0h1h2

K (k)

)
dh2.
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