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ABSTRACT

We describe a simple relaxation scheme for the efficient nu-

merical resolution of compressible two-phase barotropawfl
with and without cavitation on moving meshes.
rithm uses a curvilinear-coordinate formulation of theaxehtion
model proposed by Sauret al.(J. Comput. Phys. 228 (2009)
1678-1712) as the basis, and employs a wave-propagaticedbas

relaxed scheme to solve the model system on a mapped grid thaﬁ

is constructed by a conventional mesh-redistribution pthae

for better solution adaptation. Sample numerical resuitboth
one and two space dimensions are present that show the ifeasib
ity of the proposed method for practical problems.

NOMENCLATURE

ok Volume fraction for the fluid phade

Yk =pk/p Mass fraction for the fluid phade

px Density for the fluid phask.

px Pressure for the fluid phage

ck Speed of sound for the fluid phake

p=7S2Z ,axpx Total density.

p=7Y& ,axpx Total pressure.

u; Particle velocity in theg-direction.

Uj= Zi'\El uilJji Contravariant velocity in th&;-direction.
¢ Mixture speed of sound.

ci Frozen speed of sound.

M Relaxation parameter.

i Approximate solution of the cell averageQ) at timety.

i
A& Mesh size in th€j-direction.

At

The algo-

Time step from the current tintg to the nexty, 1.
Kij =J(Gj) Jacobian of grid mapping for cel;.
My, Total number of waves.

INTRODUCTION

Cavitation is commonly defined as a phenomenon in &
iquid-flowing system when the pressure of the liquid fallé-s
ficiently low in some region of the flow so that vapor bubbles
are formed. The study of the dynamics of cavitation is an ac
tive research in many fields of science and engineering. - Typi
cal examples in relation to various features and charatitsiof
cavitating flows can be found in [1-3], for example.

To compute cavitating flow numerically, one popular ap-
proach among them is to use a two-phase barotropic modk
(cf. [4]) in that, if we ignore the physical effects such asssa
transfer, surface tension, and viscosity, the Euleriamtdation
of the basic conservation laws My > 1 space dimension takes
the form

9 [ 91P1 No g a1P1U;j
E a2p2 | + Z Fv O2P2U; =0 (1)
pU =1 puiu + p(p)dj

fori =1,2,...,Ng. To close the system, the phasic pressure
pk(p) for k= 1,2 is assumed to be a one-to-one function of the
density (this should be true at least locally), and so we ns&y u
the saturation conditiom; + a2 = 1 directly, yielding a nonlinear
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algebraic equation of the form resolution of compressible two-phase barotropic flow witkd a
without cavitation in general non-rectangular domainsisTi&
a a a fundamental step in our further development of the metho
1P1 2P2 1-0 2 . L . .
) —Li= (2) to more complicated cavitating flows of practical importanc
(cf. [5,10, 11)).

to be solved for the pressug where the quantitiea;p; and

azp2 are known a priori. With that, it is easy to find the remain-  popEL EQUATIONS IN CURVILINEAR COORDINATES
ing flow variables such gs;, p2, a1, andaz. _ _ We begin our discussion by introducing a coordinate map:
In this case, it is known that combining (1) with (2) gives ping from the physical domaifx, 2, xs) in three dimensions

a hyperbolic model that is viable for a class of homogeneous N, — 3 to the computational domaids, &2, 3) via the relations
two-phase barotropic flow problems with and without cavita-

tion. However, due to the non-monotonic behavior of the orixt

sound speed (denoted byversus the volume fraction,/pc® = dx = a1d&; + axdéz + agdes,
01/p1C3 + 02/P2C3, in the two-phase coexistent regions, it poses dxp = bd&; + bpd&s + bsdEs, (5)
a major difficulty to attain a suitable stability conditiofen the dxg = C10&1 + CodE, + cadEs,
model is discretized by a diffuse-interface method exgici
To overcome this numerical difficulty, we are interested in ) ) ]
a relaxation approach proposed by Sawehl. [5] in that in wherea;, bj, ¢ fori = 1,2,3 are the metric terms of the mapping.
addition to (1) a transport equation with a stiff relaxatgmurce Then under this mapping, the relaxation model describesteabo
term is included in the model for the volume fraction, suchgs can be transformed into the new coordinate system as
of the form
9 N9
_ = . U)=0
day Ny daq at (01p1) + J ;azj (01p1 J) )
==+ > Uj=— =H(p1(P1) — P2(P2))- €)
3t (02p2) + 3 ;a—zj (GZPZUJ) =0,
In contrast with the aforementioned conventional modet tha Ny (6)
makes use of the saturation condition (2), here the equifior 9 (pui) +} Z i (PuiUj+pJi) =0, i=1,2,...,Ng,
pressurep is obtained by taking the limit of infinite relaxation ot J = 0%
[ — oo to the solution of (3), yieldingp = p1(p1) = p2(p2), and P 1N g
so an algebraic equation for the relaxed volume fraatign % + 3 z Uj % =u(p1(p1) — p2(p2)),
j=1
o O1pP1 O2p2
§(oa) = p < a1 > — P2 (1_ 0(1) =" 4) that is fundamental in our method on adaptive moving meshes
Here the quantitieg; fori, j = 1,2,3 are as a result of the coor-

. . . . ) dinate change that satisfies the following expressions:
It is important to note that since this relaxation model Vol

solved by a fractional-step method in the zero relaxationitli
H— 0, it possesses a nice monotonic behavior of the frozen speed ~ [J11 J12 J13 b2C3 — b3tz asCz — axCs axbs — aghe
of sound versus the mass fractiocs= Y1¢2 + Y,c2, and so is an Jo1 J22 J23 | = | b3cy—baC3 @103 —ascy agby —aibs |
easier one to use as compared to the above conventional model \J31 J32 J33 b1C2 — b2y @pC1 — a1Cz Ayl —aghy
for numerical approximation.

It is worthwhile to mention that the single-phase barotcopi ~ and the quantityl = det|o(x1,x2,X3)/0(€1,&2,&3)| is the Jaco-
flow model devised in [6, 7] works well for isentropic cavitat ~ bian of the mapping which can be computed by
ing problems, but is not suitable for general non-cavitatimo-
phase problems. This is unlike the fluid-mixture model pro- 3 3 3
posed by the author [8] which works quite well for the two-gia J= Zanli = ZlbiJzi = ZlCiJSi- (8)
barotropic scenario, but has experienced numerical dififsu i= i= i=
for problems with cavitation.

Our goal in this work is to employ a state-of-the-art adap- Note that during the initialization step, all the coordmétans-
tive moving-mesh method (cf. [9]) for the efficient numetica formation variables such &, by, ¢, Jii, Joi, Jsi fori =1,2,3,
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andJ would be determined and remained fixed at all time when
a mapped grid is constructed by a chosen numerical grid gener
tor (cf. [12,13]).

It is easy to see that (5) would be a two-dimensional coor-
dinate mapping frontxs, x2) to (§1,&2) for any spatial location
x3 in the physical domain, if we have a simplified data set where
the quantitiesas, bs, c1, andc; are all zero, and;s is equal to
one. In this instance, if we s&fy = 2 in (6) with the coordi-
nate transformation variables defined as in (7) and (8), wdadvo
have the same relaxation model in a two-dimensional coeal
coordinate when a mapping of the form

dx; = a1dé1 + axdéo,

dxe = byd&s + bpd€ >, ®)
is used in the derivation (cf. [14, 15]). Thus, without caugsany
confusion, we may simply use the symbdj as in the Carte-
sian case, to represent the number of spatial dimensiorein th
curvilinear-coordinate formulation of equations.
For convenience, we write the relaxation model described
above into a more compact expression by

Z<551

with ¢, fj, Bj, andy defined in turn by

A +B(A) 5 ) —m@. (1)

.
0= (a1p1,02P2,PUL, ..., PUn,, 01)

fj = (a1p1Uj, a2p2Uj, puaUj + pJja, ...
= diag(0,...,0,U;),

LIJ: (07 '707 pl(pl)_

,pungUj + DJj,NwO)T,

P2(p2))" .

Note that in the Cartesian coordinates case where the cdedi
mapping quantitiesy, by, cz are all equal to one, while the re-
maining ones are all zeros, (10) reduces to

Bj(a) (11)

;2) Hp(a),

aq N/ o .
a +le(ax,- filw+B
with

fj = (a1p1Uj, 022U}, PULU] + PByj, .. ., PUN,Uj + p53j70)T,

B = diag(0,...,0,u;).

Thenitis easy to check thaf andB; are related td; andB; via
fi =y fJ; andB; = 59, BiJ;i, respectively.

With these notations, by assuming the proper smoothnes
of the solutions, the quasi-linear form of our model (10) ben
written as

aq 1N
q+
ot

Jq

3 @)+ Bi(0) 5 =

= py(a), (12)

whereA; = 0f; /dq = ¥, AiJj is the Jacobian matrix df with

A =afi/oq fori=1,2...,Ng. If we assume further that the
thermodynamic description of the materials of interestins |
ited by the stability requirement, it is a straightforwarctter
to show that any linear combination of the matriof:es% B; for
i=12,...,Ngyis diagonalizable with real eigenvalues and a com-
plete set of linearly independent right eigenvectors (t6]].
Hence, we may conclude that this relaxation model is hyp&rbo
Regarding discontinuous solutions of the system, suchacksh
waves or contact discontinuities, we find the usual form ef th
Rankine-Hugoniot jump conditions across the waves (cf})[17

NUMERICAL METHODS ON MAPPED GRIDS

To set the groundwork for the later development of an adap
tive moving mesh method, we describe a finite volume metho
in wave-propagation form (cf. [12, 18, 19]) for the numeltiap-
proximation of our relaxation model (without the sourcertey

aq 1Nd(a

+
3,

0q
% h@ @) -0 @3

on a mapped grid. The method is based on solving one
dimensional Riemann problems at each cell edge, and theswav
(i.e., discontinuities moving at constant speeds) arising froen t
Riemann problem are employed to update the cell averaghsin t
cells neighboring each edge.

To review the basic idea of the method, we consider the two
dimensionaNy = 2 quadrilateral grid case as illustrated in Fig. 1,
for example. In a finite volume method, the approximate value
of the cell average of the soluti@nover the(i, j)th grid cell at a
timet, can be written as

1
Qi ~ 7/ q(X1,X2,th) dxadxe

KIJA&AEz/ q(€1,€2,tn) d€1d2,

whereG; and aj denote the regions occupied by the grid cell
(i,]) in the physical and computational domains, respectively
andM (Gj) = KijA&1AE> is the measure (area) of;.
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logical domain

physical domain

mapping  j41 AZ,
. — A&y
ﬁ 1 sl
X2 = X2(¢1,¢2 j i3 &'
ij
&1
i—1 i

Figure 1. A SAMPLE QUADRILATERAL GRID IN OUR TWO-
DIMENSIONAL NUMEIRCAL METHOD.

In this setup, a fully discrete version of the first-order wav

propagation method for the equations (13) is a Godunov-type (2) Solve Riemann problem in theq

scheme on a quadrilateral grid that takes the form

1 At
A=A aE (A78Q 3 ;+478Q, )
! (14)
1 At -
K_ijA_E?_( AQ ;3 +A;8Q,).1)
HereﬂfAQii%,j, ﬂiAQi+%,j’ ﬂlZJrAQi,ji%, and A4, AQ, iy are

the right-, left-, up-, and down-moving fluctuations, rerslpeely,
that are entering into the grid cell. To determine these dlaict

tions, we need to solve the one-dimensional Riemann prablem (3) Define scaled speedslm

normal to the cell edges.

Computing Fluctuations
Considering the quctuationﬂliAQ 1

edge(i — 3 1}) between cellgi — 1, ) and( j), for example.
This amounts to solve a Cauchy problem in &aedirection that
consists of

arising from the

109
+Bl(q)36_51 =0,

aq+ 10f1(q)
ot ' J 0g,

as for the equations and the piecewise constant data

QI 1j if El<(
Ij if El>(

1)i,

3
El)i, )

(El,Ez,tn) {

Nl Nl

as for the initial condition at a timig. A

Letﬁ 1= (bz,—'\ ) andf 1= (éz,bz) be the
unit normal and tangentlal vectors to the cell ecage j)in
the physical grid, where; = a,/S andb; = bi /S are the scaled
version of the metric elemengsandb; in (9) with § = /a2 + b?
fori =1,2. Then to computeqliAQii%yj, as in [12, 18], we
perform the following steps:

(1) Transform the dat@I 1 andQ{jj into the new datfiVQL =

Ki’*z,jQiflaj andQg = vaz,jQEj' Hereﬂ{.k%’j is a rotation
matrix defined by

10 0 0

01 0 0 0
R‘vf%,j —_ 10 0(?2%7%’] —EAZ)if%,j 0f.

00( Z)i—%j (bZ)if%,j 0

00 0

direction for

oq 0 » 0q

+—f1(0) + Ba(a) >— o

o =0 (15)

with f; andB; defined by (11) and the Riemann dada
andQgr. When an approximate Riemann solver is used for
the numerical resolution, this would result in propagating
discontinuities that are moving with speeki]sm and the

jumps ‘Wlmj across each of them fan = 1,2,...,MW,
2\

see [8,16] for an example.

(Sz)ifl J)\Il

jumps back to the CarteS|an coordmates W{;‘J =

.'Rr/ ‘Wlm form=1,2,.

4) Determme the left- and rlght moving fluctuations as

Iy and rotate

My
+ o 1m 1m
x4y = 5 () W,

1

As usual, the notations for the quantities are set b\ * =
max(A,0) andA~ = min(A,0).

In a similar manner, we may determine the up- and down:
moving fluctuations at the edde j — %) in the form

A 0Q 5

Mw +
_ Z )\Zm Wz’m

=N -3 hi-3
that is as the result of solving

0q, 19%(a)
o0 J 0%

10
+Bz(CI)ja—qu =

0

with the initial dataQi”’jfl andQy;.
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High-Resolution Correction

To achieve high resolution.é., second-order accurate on
smooth solutions, and sharp and monotone profiles on discont
uous solutions), the speeds and the limited version of thpgu
are used to construct the piecewise linear correction tase-
fore (cf. [18]), and are added to (14) in flux difference fors a

1 At /~ ~
n+1 n+1_ -/t 1 _ql _
1 At "'2 "'2
aﬁgcm%‘frﬁ-

Here at the edgé — 3, j) the correction flux takes the form

At
( Ki_1.A& A

Izj

)\lm
|21

m

a0olm
LWL
) 1=3,]

NH—‘

i—3,]

1 M
i— ‘jzﬁng

WhereKii%‘j = (Ki—1,j +Kij)/2. The quantity@lam is a lim-

ited value of 2™ obtained by comparingy*™ with the cor-
responding’}™ from the neighboring Riemann problem to the
left (if AL™ > 0) or to the right (iA’™ < 0) form=1,2,..., M.
The correction fluﬁizj% at the edgéi, j — %) can be defined in

a similar manner.

In addition to that, a transverse propagation of wave is also

included in the method as a part of the high-resolution cioe
terms, see [18] for the details. With the transverse waveao
gation, the method is typically stable as long as the time Ate
satisfies a variant of the CFL (Courant-Friedrichs-Lewy)die
tion of the form

1, 2,
ALm LAz

1=3,] ivJI*j
— | <1
Kip,jA&1 " Ki j,A&2

(16)

i,j;m

whereip =i |f)\ >Oand|71|f )\lm < 0; jp is defined

analogously.

RELAXATION SOLVER ON MOVING MESHES

One simple way to extend the above mapped grid method to

a moving grid version is to take an interpolation-based aagin

(1) (Mesh redistribution step) Solve an elliptic-type mesh
redistribution equation for the new location of the mesh ver
tices, and then interpolate the numerical solution on the re
sulting grid conservatively. This step should be done in ar
iterative manner until convergence.

(2) (Zero relaxation step) Solve the homogeneous part of th
relaxation model (10) on a new grid obtained in step 1.

(3) (Pressure relaxation step) Solve the model system waith o
the source terms in the infinite relaxation limit, yieldirgpt
relaxed volume fraction and so the equilibrium pressure.

Since the numerical method for step 2 of the algorithm ha:s
been described before, we now focus our discussion on steps
and 3 below.

Mesh Redistribution Scheme

In the interpolation-based moving mesh method considere
here, it is a common approach to redistribute the mesh esrtic
x fori=1,2,...,Ng based on the solution of the elliptic-type
equation of the form

N9 0X
& (%) an
> i, (P
with prescribed boundary conditions on the domain. Note

that (17) are the Euler-Lagrange equations associatechwiii-
ational problem for equidistribution adaptive meshes [@f]).
HereD is called a monitor function that is chosen to measure the
degree of regularity of the underlying solution. In this gt is
taken as

(1-B)|0al +BlICqll1
(1-B)l0all+BlCqll1’

D(q) =

wherep € [0,1] is a free parameter, see [22] for more details.

Consider the two-dimensional caslg = 2 as an example,
we may discretize (17) using a standard 5-point stencilefinit
difference formula

4Dk,

k k
< J)z +D!; z,m)

ALE%(D'JZ' 1= (D,

1/« K K
AE2 (Di jflzi,jfl_ (Di
T3 |

Dk
AE% l +

k k
g 24Dk, 420) =0,

proposed by Tang and Tang [20]. In the current case with the whereZX represents thkth iterate of the computed mesh vertices

relaxation model (10), in each time step, our method camsist
the following steps:

for x; andxz. The resulting linear system can be solved by a
Gauss-Seidel type iteration, see Fig. 2 for an illustration
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Figure 2. A SAMPLE NEW MESH (GRAPHED AS SOLID LINES) AF-
TER MESH REDISTRIBUTION OF INITIAL MESH (DASHED LINES).
THE NUMERICAL SOLUTIONS IN SHADED REGION OF THE NEW
MESH, FOR EXAMPLE, SHOULD BE UPDATED CONSERVATIVELY.

We note that after each mesh redistribution itekathe nu-
merical solutions on this mesh should be interpolated aoase
tively, i.e.,

S M (k) Qktt = 5 o (k) ok

Vs Vs

This can be done quite easily by using either a finite-volunee o
geometric approach (cf. [9]).

It should be mentioned also that rather than using the above
iterative procedure for mesh redistribution, for some mmapl
tions such as problems with free-surface or moving boundary
may be more efficient to use a non-iterative Lagrangian amtro
(cf. [23]) instead over a prescribed time stpthis can be done
at the least before the time when grid tangling occurs (ef])[2

Pressure Relaxation

Finally, in step 3, using the solution obtained in step 2 as th
initial condition, we solve the model system with the soueren
of the form

9 _

which, in the infinite relaxation limit, leads to

. (agpp)™tt (azp2)™t
§(alY) = py <7u”+1 —p2 ot | =0
1 1

for the relaxed volume fractioa ™ which can be solved by a

standard iterative root-finding solver such as the secattiade

NUMERICAL RESULTS

We now present numerical results obtained using our mov
ing mesh method for two-phase barotropic flow problems with
and without cavitation. For simplicity, we assume that tba-c
stitutive law for each of the fluid phases satisfies the Taiagiqn
of state of the form

W
Px(P) = (Pok+ Bk) <£) — By, (18)

where pox and pok are the pressure and density at a reference
state,yk is the ratio of specific heats, ar# is a pressure-like
constant fork = 1,2. The set of parameters we take through-
out the tests are, for phase 1 (the liquid phaég)B, po, Po), =
(7,3000 bar10® kg/n?, 1 ba), and for phase 2 (the gas phase),
(V. B, o, Po), = (1.4,0,1 kg/n?, 1 bay).

One-Dimensional Water-Vapor Cavitation

Our first example is a water-vapor cavitation problem in that
inside a shock tube of one-meter length with closed endsuftk fl
is a homogeneous air-water mixture at the standard atmadsphe
condition (p1, P2, a1) = (10° kg/m®, 1 kg/m?,1—¢€) , with € =
10-2. Initially, inside the tube, there is a jump on the velocity
atx; = 1/2 m with speeds; = —100 m/s on the left and; =
100 m/s on the right of the tube. In addition to that, since & i
closed tube, there are jumps also on the velocity at the rmib.e

With this condition, as times go on, two rarefaction waves
are formed, causing the decrease of the pressure and tha-forn
tion of the cavitation zone inside the tube. In the meantiimere
are inward-moving shock waves propagating from the bound
aries, yielding the collapse of the region of cavitation ttuéhe
shock-cavitation interaction. Figure 3 shows contourfiefvol-
ume fraction and pressure in tRet plane up to time Bms, see
Fig. 4 for the meshes over time. We observe reasonable resol
tion of the results as compared to the ones shown in [6].

Two-Dimensional Underwater Explosion

Our second example concerns with a model two-phase ur
derwater explosion problem (cf. [25]). In this test, we take
a rectangular domaifxy, ;) € [—2,2] x [~1.5,1]m?, and em-
ploy the initial condition that consists of a stationary iaon-
tal free surface at the&, = 0 axis and a circular gas bubble
in water with the cente(x?,x3) = (0,—0.3)m and of the ra-
diusrg = 0.12m. Here above the free surface, the fluid is the
gas phase at the standard atmospheric condipenpz, a1) =
(1 kg/n?,10° kg/m®,1—¢€). with € = 10°6. Below the free
surface, in region inside the gas bubble the fluid is modele
as a perfect gas also with the state varialiles p2, 1) =
(719686 kg/n?, 10° kg/n?, 1 — €) , and in region outside the gas
bubble the fluid is water with the state variabl@s, p2, 01) =

Copyright © 2011 by ASME
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X1 X1

Figure 3. MOVING MESH RESULTS FOR A ONE-DIMENSIONAL CAV-
ITATION PROBLEM. CONTOUR PLOTS OF THE VOLUME FRACTION
AND PRESSURE ARE SHOWN IN THE X3-t PLANE UP TO 0.8ms.

x10™

i

0

time

1

Figure 4. MOVING MESHES FOR THE RESULTS SHOWN IN FIG. 3.

(1 kg/n?, 10° kg/mP,€) , Here we takee = 10-5. The boundary
conditions considered here are solid wall on the left, rigimd
bottom sides, and non-reflecting on the top side of the domain

Note that due to the pressure difference between the fluids
atr =ro, breaking of this underwater bubble would results in an

outward-going shock wave in water, an inward-going rarnaac
wave in gas, and a material interface lying in between thadse
rates the gas and water. Soon after this shock wave is difitac
through the nearby flat air-water interface, it is known ie Hit-
erature (cf. [25]) that the topology of the underwater behdill
undergo a change from the original circular-shape to anlikeal
shape. As time evolves, this gas bubble would continuegisin
upward, causing the subsequent deformation of the hoakont
air-water interface.

Density Pressure

t=0.24ms

air

water

t =0.4ms

&

(€

Figure 5. MOVING MESH RESULTS FOR A MODEL UNDERWATER
EXPLOSION PROBLEM. DENSITY AND PRESSURE CONTOURS ARE
SHOWN AT FOUR DIFFERENT TIMES t = 0.2, 0.4, 0.8, and 1.2ms
OBTAINED USING A 200x 125GRID.

0.4ms

=0.2ms

0

-0.5

0 1

Contour plots of the density and pressure at four different Figure 6. MOVING MESHES FOR THE RESULTS SHOWN IN FIG. 5.

timest = 0.2, 0.4, 0.8, and 12ms are presented in Fig. 5, where
we have performed the computation using with a 2A@5 grid.

From the density plot, we observe clearly the basic featfire o Two-Dimensional Supersonic Flow Over Bluntbody

the solution structure as mentioned above, and from thespres
plot, we see the smooth variation of the solution near therint
face, without introducing any spurious oscillations. fetingly,
these barotropic flow results are qualitatively similartie hon-
barotropic results as shown earlier in [24], for example=in 6,

Our final example is a steady-state calculation of a super
sonic flow over a bluntbody. Initially, the fluid is a homoge-
neous air-water mixture at the standard atmospheric dondit
(p1, P2, 1) = (10° kg/m?, 1 kg/nP, 1 —€) , with € = 102 in the
whole domain. Supersonic air-water mixture is flowing irtte t

we present the mesh system for the run shown in Fig. 5; the dy- domain with speed; = 600m/s from the left to right. Numerical

namical movement of the grids is clearly seen.

results using a fixed 69 48 body-fitted grid is used in the com-

Copyright © 2011 by ASME



Volume fraction

Pressure

Figure 7. STEADY-STATE RESULTS FOR A TWO-DIMENSIONAL SU-
PERSONIC FLOW OVER A BLUNTBODY. PSEUDO COLORS OF THE
VOLUME FRACTION AND PRESSURE ARE SHOWN.

putation. A cavitation zone near the top and bottom edgeef th
bluntbody is clearly seen. Note that there is a smooth tiiansi

in the pressure across the cavitation boundary without puagi-s
ous oscillations. Results obtained using a moving meshorers
of the code will be reported elsewhere in that a suitable daon
redistribution scheme needs to be devised for the mesh &dapa
tion near a general non-rectangular boundary, see [260274 f
possible approach.

SUMMARY

We have presented a simple interpolation-based adaptive
moving mesh method for the efficient numerical computation o
compressible two-phase barotropic flow with and without-cav
itation. The algorithm uses a curvilinear-coordinate folan
tion of the relaxation model as the basis, and employs a wave-
propagation based relaxed scheme to solve the model system o
a mapped grid that is constructed by a conventional mesktredi
bution procedure based on equidistribution principle. Mtinal
results for water-vapor cavitation in one dimension, undeer
explosion in two dimensions, and steady state two-dimeasio
supersonic flow over bluntbody are present. Ongoing wor&s ar
to extend this approach further to problems with phaseitians
for general non-barotropic multiphase flow.
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