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ABSTRACT
We describe a simple relaxation scheme for the efficient nu-

merical resolution of compressible two-phase barotropic flow
with and without cavitation on moving meshes. The algo-
rithm uses a curvilinear-coordinate formulation of the relaxation
model proposed by Saurelet al. (J. Comput. Phys. 228 (2009)
1678-1712) as the basis, and employs a wave-propagation based
relaxed scheme to solve the model system on a mapped grid that
is constructed by a conventional mesh-redistribution procedure
for better solution adaptation. Sample numerical results in both
one and two space dimensions are present that show the feasibil-
ity of the proposed method for practical problems.

NOMENCLATURE
αk Volume fraction for the fluid phasek.
Yk = ρk/ρ Mass fraction for the fluid phasek.
ρk Density for the fluid phasek.
pk Pressure for the fluid phasek.
ck Speed of sound for the fluid phasek.
ρ = ∑2

k=1 αkρk Total density.
p= ∑2

k=1 αkpk Total pressure.
ui Particle velocity in thexi-direction.
U j = ∑Nd

i=1uiJji Contravariant velocity in theξ j -direction.
c Mixture speed of sound.
cf Frozen speed of sound.
µ Relaxation parameter.
Qn

i j Approximate solution of the cell average inCi j at timetn.
∆ξi Mesh size in theξi-direction.

∆t Time step from the current timetn to the nexttn+1.
κi j = J(Ci j ) Jacobian of grid mapping for cellCi j .
Mw Total number of waves.

INTRODUCTION
Cavitation is commonly defined as a phenomenon in a

liquid-flowing system when the pressure of the liquid falls suf-
ficiently low in some region of the flow so that vapor bubbles
are formed. The study of the dynamics of cavitation is an ac-
tive research in many fields of science and engineering. Typi-
cal examples in relation to various features and characteristics of
cavitating flows can be found in [1–3], for example.

To compute cavitating flow numerically, one popular ap-
proach among them is to use a two-phase barotropic model
(cf. [4]) in that, if we ignore the physical effects such as mass
transfer, surface tension, and viscosity, the Eulerian formulation
of the basic conservation laws inNd ≥ 1 space dimension takes
the form

∂
∂t




α1ρ1

α2ρ2

ρui


+

Nd

∑
j=1

∂
∂x j




α1ρ1u j

α2ρ2u j

ρuiu j + p(ρ)δi j


= 0 (1)

for i = 1,2, . . . ,Nd. To close the system, the phasic pressure
pk(ρ) for k = 1,2 is assumed to be a one-to-one function of the
density (this should be true at least locally), and so we may use
the saturation conditionα1+α2 = 1 directly, yielding a nonlinear
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algebraic equation of the form

g(p) =
α1ρ1

ρ1(p)
+

α2ρ2

ρ2(p)
−1= 0 (2)

to be solved for the pressurep, where the quantitiesα1ρ1 and
α2ρ2 are known a priori. With that, it is easy to find the remain-
ing flow variables such asρ1, ρ2, α1, andα2.

In this case, it is known that combining (1) with (2) gives
a hyperbolic model that is viable for a class of homogeneous
two-phase barotropic flow problems with and without cavita-
tion. However, due to the non-monotonic behavior of the mixture
sound speed (denoted byc) versus the volume fraction, 1/ρc2 =
α1/ρ1c2

1+α2/ρ2c2
2, in the two-phase coexistent regions, it poses

a major difficulty to attain a suitable stability condition when the
model is discretized by a diffuse-interface method explicitly.

To overcome this numerical difficulty, we are interested in
a relaxation approach proposed by Saurelet al. [5] in that in
addition to (1) a transport equation with a stiff relaxationsource
term is included in the model for the volume fraction, such asα1,
of the form

∂α1

∂t
+

Nd

∑
j=1

u j
∂α1

∂x j
= µ(p1 (ρ1)− p2(ρ2)) . (3)

In contrast with the aforementioned conventional model that
makes use of the saturation condition (2), here the equilibrium
pressurep is obtained by taking the limit of infinite relaxation
µ→ ∞ to the solution of (3), yieldingp= p1(ρ1) = p2(ρ2), and
so an algebraic equation for the relaxed volume fractionα1,

ĝ(α1) = p1

(
α1ρ1

α1

)
− p2

(
α2ρ2

1−α1

)
= 0. (4)

It is important to note that since this relaxation model willbe
solved by a fractional-step method in the zero relaxation limit
µ→ 0, it possesses a nice monotonic behavior of the frozen speed
of sound versus the mass fractions,c2

f =Y1c2
1+Y2c2

2, and so is an
easier one to use as compared to the above conventional model
for numerical approximation.

It is worthwhile to mention that the single-phase barotropic
flow model devised in [6, 7] works well for isentropic cavitat-
ing problems, but is not suitable for general non-cavitating two-
phase problems. This is unlike the fluid-mixture model pro-
posed by the author [8] which works quite well for the two-phase
barotropic scenario, but has experienced numerical difficulties
for problems with cavitation.

Our goal in this work is to employ a state-of-the-art adap-
tive moving-mesh method (cf. [9]) for the efficient numerical

resolution of compressible two-phase barotropic flow with and
without cavitation in general non-rectangular domains. This is
a fundamental step in our further development of the method
to more complicated cavitating flows of practical importance
(cf. [5,10,11]).

MODEL EQUATIONS IN CURVILINEAR COORDINATES
We begin our discussion by introducing a coordinate map-

ping from the physical domain(x1,x2,x3) in three dimensions
Nd = 3 to the computational domain(ξ1,ξ2,ξ3) via the relations

dx1 = a1dξ1+a2dξ2+a3dξ3,

dx2 = b1dξ1+b2dξ2+b3dξ3,

dx3 = c1dξ1+ c2dξ2+ c3dξ3,

(5)

whereai , bi , ci for i = 1,2,3 are the metric terms of the mapping.
Then under this mapping, the relaxation model described above
can be transformed into the new coordinate system as

∂
∂t

(α1ρ1)+
1
J

Nd

∑
j=1

∂
∂ξ j

(α1ρ1U j) = 0,

∂
∂t

(α2ρ2)+
1
J

Nd

∑
j=1

∂
∂ξ j

(α2ρ2U j) = 0,

∂
∂t

(ρui)+
1
J

Nd

∑
j=1

∂
∂ξ j

(ρuiU j + pJji ) = 0, i = 1,2, . . . ,Nd,

∂α1

∂t
+

1
J

Nd

∑
j=1

U j
∂α1

∂ξ j
= µ(p1 (ρ1)− p2(ρ2)) ,

(6)

that is fundamental in our method on adaptive moving meshes.
Here the quantitiesJi j for i, j = 1,2,3 are as a result of the coor-
dinate change that satisfies the following expressions:




J11 J12 J13

J21 J22 J23

J31 J32 J33


=




b2c3−b3c2 a3c2−a2c3 a2b3−a3b2

b3c1−b1c3 a1c3−a3c1 a3b1−a1b3

b1c2−b2c1 a2c1−a1c2 a1b2−a2b1


 ,

(7)
and the quantityJ = det|∂(x1,x2,x3)/∂(ξ1,ξ2,ξ3)| is the Jaco-
bian of the mapping which can be computed by

J =
3

∑
i=1

aiJ1i =
3

∑
i=1

biJ2i =
3

∑
i=1

ciJ3i. (8)

Note that during the initialization step, all the coordinate trans-
formation variables such asai , bi , ci , J1i , J2i , J3i for i = 1,2,3,
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andJ would be determined and remained fixed at all time when
a mapped grid is constructed by a chosen numerical grid genera-
tor (cf. [12,13]).

It is easy to see that (5) would be a two-dimensional coor-
dinate mapping from(x1,x2) to (ξ1,ξ2) for any spatial location
x3 in the physical domain, if we have a simplified data set where
the quantitiesa3, b3, c1, andc2 are all zero, andc3 is equal to
one. In this instance, if we setNd = 2 in (6) with the coordi-
nate transformation variables defined as in (7) and (8), we would
have the same relaxation model in a two-dimensional curvilinear
coordinate when a mapping of the form

dx1 = a1dξ1+a2dξ2,

dx2 = b1dξ1+b2dξ2,
(9)

is used in the derivation (cf. [14,15]). Thus, without causing any
confusion, we may simply use the symbolNd as in the Carte-
sian case, to represent the number of spatial dimension in the
curvilinear-coordinate formulation of equations.

For convenience, we write the relaxation model described
above into a more compact expression by

∂q
∂t

+
1
J

Nd

∑
j=1

(
∂

∂ξ j
f j(q)+B j(q)

∂q
∂ξ j

)
= µψ(q), (10)

with q, f j , B j , andψ defined in turn by

q=
(
α1ρ1,α2ρ2,ρu1, . . . ,ρuNd ,α1

)T
,

f j =
(
α1ρ1U j ,α2ρ2U j ,ρu1U j + pJj1, . . . ,ρuNdU j + pJj ,Nd,0

)T
,

B j = diag(0, . . . ,0,U j) ,

ψ = (0, . . . ,0, p1 (ρ1)− p2(ρ2))
T .

Note that in the Cartesian coordinates case where the coordinate
mapping quantitiesa1, b2, c3 are all equal to one, while the re-
maining ones are all zeros, (10) reduces to

∂q
∂t

+
Nd

∑
j=1

(
∂

∂x j
f̆ j (q)+ B̆ j(q)

∂q
∂x j

)
= µψ(q), (11)

with

f̆ j =
(
α1ρ1u j ,α2ρ2u j ,ρu1u j + pδ1 j , . . . ,ρuNdu j + pδ3 j ,0

)T
,

B̆ j = diag(0, . . . ,0,u j) .

Then it is easy to check thatf j andB j are related tŏf j andB̆ j via

f j = ∑Nd
i=1 f̆iJji andB j = ∑Nd

i=1 B̆iJji , respectively.

With these notations, by assuming the proper smoothness
of the solutions, the quasi-linear form of our model (10) canbe
written as

∂q
∂t

+
1
J

Nd

∑
j=1

(A j(q)+B j(q))
∂q
∂ξ j

= µψ(q), (12)

whereA j = ∂ f j/∂q= ∑Nd
i=1 ĂiJji is the Jacobian matrix off j with

Ăi = ∂ f̆i/∂q for i = 1,2, . . . ,Nd. If we assume further that the
thermodynamic description of the materials of interest is lim-
ited by the stability requirement, it is a straightforward matter
to show that any linear combination of the matricesĂi + B̆i for
i =1,2, . . . ,Nd is diagonalizable with real eigenvalues and a com-
plete set of linearly independent right eigenvectors (cf. [16]).
Hence, we may conclude that this relaxation model is hyperbolic.
Regarding discontinuous solutions of the system, such as shock
waves or contact discontinuities, we find the usual form of the
Rankine-Hugoniot jump conditions across the waves (cf. [17]).

NUMERICAL METHODS ON MAPPED GRIDS
To set the groundwork for the later development of an adap-

tive moving mesh method, we describe a finite volume method
in wave-propagation form (cf. [12,18,19]) for the numerical ap-
proximation of our relaxation model (without the source terms)

∂q
∂t

+
1
J

Nd

∑
j=1

(
∂

∂ξ j
f j (q)+B j(q)

∂q
∂ξ j

)
= 0 (13)

on a mapped grid. The method is based on solving one-
dimensional Riemann problems at each cell edge, and the waves
(i.e., discontinuities moving at constant speeds) arising from the
Riemann problem are employed to update the cell averages in the
cells neighboring each edge.

To review the basic idea of the method, we consider the two-
dimensionalNd = 2 quadrilateral grid case as illustrated in Fig. 1,
for example. In a finite volume method, the approximate value
of the cell average of the solutionq over the(i, j)th grid cell at a
time tn can be written as

Qn
i j ≈

1
M (Ci j )

∫
Ci j

q(x1,x2, tn) dx1dx2

=
1

κi j ∆ξ1∆ξ2

∫
Ĉi j

q(ξ1,ξ2, tn) dξ1dξ2,

whereCi j and Ĉi j denote the regions occupied by the grid cell
(i, j) in the physical and computational domains, respectively,
andM (Ci j ) = κi j ∆ξ1∆ξ2 is the measure (area) ofCi j .
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i−1

i−1

i

i j
j

j +1j +1

Ci j
Ĉi j

ξ1

ξ2

mapping
∆ξ1

∆ξ2

logical domain
physical domain

←−
x1 = x1(ξ1,ξ2)
x2 = x2(ξ1,ξ2)

x1

x2

~ni− 1
2 , j

Figure 1. A SAMPLE QUADRILATERAL GRID IN OUR TWO-

DIMENSIONAL NUMEIRCAL METHOD.

In this setup, a fully discrete version of the first-order wave
propagation method for the equations (13) is a Godunov-type
scheme on a quadrilateral grid that takes the form

Qn+1
i j = Qn

i j−
1

κi j

∆t
∆ξ1

(
A+

1 ∆Qi− 1
2 , j

+A−1 ∆Qi+ 1
2 , j

)
−

1
κi j

∆t
∆ξ2

(
A+

2 ∆Qi, j− 1
2
+A−2 ∆Qi, j+ 1

2

)
.

(14)

HereA+
1 ∆Qi− 1

2 , j
, A−1 ∆Qi+ 1

2 , j
, A+

2 ∆Qi, j− 1
2
, andA−2 ∆Qi, j+ 1

2
are

the right-, left-, up-, and down-moving fluctuations, respectively,
that are entering into the grid cell. To determine these fluctua-
tions, we need to solve the one-dimensional Riemann problems
normal to the cell edges.

Computing Fluctuations
Considering the fluctuationsA±1 ∆Qi− 1

2 , j
arising from the

edge(i − 1
2, j) between cells(i − 1, j) and (i, j), for example.

This amounts to solve a Cauchy problem in theξ1-direction that
consists of

∂q
∂t

+
1
J

∂ f1(q)
∂ξ1

+B1(q)
1
J

∂q
∂ξ1

= 0,

as for the equations and the piecewise constant data

q(ξ1,ξ2, tn) =

{
Qn

i−1, j if ξ1 < (ξ1)i− 1
2

Qn
i j if ξ1 > (ξ1)i− 1

2
,

as for the initial condition at a timetn.
Let~ni− 1

2 , j
= (b̂2,−â2)i− 1

2 , j
and~ti− 1

2 , j
= (â2, b̂2)i− 1

2 , j
be the

unit normal and tangential vectors to the cell edge(i − 1
2, j) in

the physical grid, where ˆai = ai/Si andb̂i = bi/Si are the scaled

version of the metric elementsai andbi in (9) with Si =
√

a2
i +b2

i

for i = 1,2. Then to computeA±1 ∆Qi− 1
2 , j

, as in [12, 18], we
perform the following steps:

(1) Transform the dataQn
i−1, j andQn

i, j into the new dataQ̆L =

Ri− 1
2 , j

Qn
i−1, j andQ̆R = Ri− 1

2 , j
Qn

i, j . HereRi− 1
2 , j

is a rotation
matrix defined by

Ri− 1
2 , j

=




1 0 0 0 0
0 1 0 0 0
0 0 (b̂2)i− 1

2 , j
−(â2)i− 1

2 , j
0

0 0 (â2)i− 1
2 , j

(b̂2)i− 1
2 , j

0

0 0 0 0 1



.

(2) Solve Riemann problem in the “x1” direction for

∂q
∂t

+
∂

∂x1
f̆1(q)+ B̆1(q)

∂q
∂x1

= 0 (15)

with f̆1 and B̆1 defined by (11) and the Riemann dataQ̆L

andQ̆R. When an approximate Riemann solver is used for
the numerical resolution, this would result in propagating
discontinuities that are moving with speedsλ̆1,m

i− 1
2 , j

and the

jumps W̆ 1,m
i− 1

2 , j
across each of them form = 1,2, . . . ,Mw,

see [8,16] for an example.
(3) Define scaled speedsλ1,m

i− 1
2 , j

= (S2)i− 1
2 , j

λ̆1,m
i− 1

2 , j
and rotate

jumps back to the Cartesian coordinates byW 1,m
i− 1

2 , j
=

R T
i− 1

2 , j
W̆

1,m
i− 1

2 , j
for m= 1,2, . . . ,Mw.

(4) Determine the left- and right-moving fluctuations as

A±1 ∆Qi− 1
2 , j

=
Mw

∑
m=1

(
λ1,m

i− 1
2 , j

)±
W

1,m
i− 1

2 , j
.

As usual, the notations for the quantitiesλ± are set byλ+ =
max(λ,0) andλ− = min(λ,0).

In a similar manner, we may determine the up- and down-
moving fluctuations at the edge(i, j− 1

2) in the form

A±2 ∆Qi, j− 1
2
=

Mw

∑
m=1

(
λ2,m

i, j− 1
2

)±
W

2,m
i, j− 1

2

that is as the result of solving

∂q
∂t

+
1
J

∂ f2(q)
∂ξ2

+B2(q)
1
J

∂q
∂ξ2

= 0

with the initial dataQn
i, j−1 andQn

i, j .
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High-Resolution Correction
To achieve high resolution (i.e., second-order accurate on

smooth solutions, and sharp and monotone profiles on discontin-
uous solutions), the speeds and the limited version of the jumps
are used to construct the piecewise linear correction termsas be-
fore (cf. [18]), and are added to (14) in flux difference form as

Qn+1
i j := Qn+1

i j −
1

κi j

∆t
∆ξ1

(
F̃ 1

i+ 1
2 , j
− F̃ 1

i− 1
2 , j

)
−

1
κi j

∆t
∆ξ2

(
F̃ 2

i, j+ 1
2
− F̃ 2

i, j− 1
2

)
.

Here at the edge(i− 1
2, j) the correction flux takes the form

F̃ 1
i− 1

2 , j
=

1
2

Mw

∑
m=1

∣∣∣∣λ
1,m
i− 1

2 , j

∣∣∣∣

(
1−

∆t
κi− 1

2 , j
∆ξ1

∣∣∣∣λ
1,m
i− 1

2 , j

∣∣∣∣

)
W̃

1,m
i− 1

2 , j
,

whereκi− 1
2 , j

= (κi−1, j + κi, j)/2. The quantityW̃ 1,m is a lim-

ited value ofW 1,m obtained by comparingW 1,m with the cor-
respondingW 1,m from the neighboring Riemann problem to the
left (if λ1,m> 0) or to the right (ifλ1,m< 0) for m= 1,2, . . . ,Mw.
The correction flux̃F 2

i, j− 1
2

at the edge(i, j− 1
2) can be defined in

a similar manner.
In addition to that, a transverse propagation of wave is also

included in the method as a part of the high-resolution correction
terms, see [18] for the details. With the transverse wave propa-
gation, the method is typically stable as long as the time step ∆t
satisfies a variant of the CFL (Courant-Friedrichs-Lewy) condi-
tion of the form

ν = ∆t max
i, j ,m




∣∣∣∣λ
1,m
i− 1

2 , j

∣∣∣∣
κip, j∆ξ1

,

∣∣∣∣λ
2,m
i, j− 1

2

∣∣∣∣
κi, jp∆ξ2


≤ 1, (16)

whereip = i if λ1,m
i− 1

2 , j
> 0 andi−1 if λ1,m

i− 1
2 , j

< 0; jp is defined

analogously.

RELAXATION SOLVER ON MOVING MESHES
One simple way to extend the above mapped grid method to

a moving grid version is to take an interpolation-based approach
proposed by Tang and Tang [20]. In the current case with the
relaxation model (10), in each time step, our method consists of
the following steps:

(1) (Mesh redistribution step) Solve an elliptic-type mesh-
redistribution equation for the new location of the mesh ver-
tices, and then interpolate the numerical solution on the re-
sulting grid conservatively. This step should be done in an
iterative manner until convergence.

(2) (Zero relaxation step) Solve the homogeneous part of the
relaxation model (10) on a new grid obtained in step 1.

(3) (Pressure relaxation step) Solve the model system with only
the source terms in the infinite relaxation limit, yielding the
relaxed volume fraction and so the equilibrium pressure.

Since the numerical method for step 2 of the algorithm has
been described before, we now focus our discussion on steps 1
and 3 below.

Mesh Redistribution Scheme
In the interpolation-based moving mesh method considered

here, it is a common approach to redistribute the mesh vertices
xi for i = 1,2, . . . ,Nd based on the solution of the elliptic-type
equation of the form

Nd

∑
j=1

∂
∂ξ j

(
D(q)

∂xi

∂ξ j

)
= 0 (17)

with prescribed boundary conditions on the domain. Note
that (17) are the Euler-Lagrange equations associated witha vari-
ational problem for equidistribution adaptive meshes (cf.[21]).
HereD is called a monitor function that is chosen to measure the
degree of regularity of the underlying solution. In this work, it is
taken as

D(q) =
(1−β)|∇q|+β‖∇q‖1

(1−β)‖∇q‖∞+β‖∇q‖1
,

whereβ ∈ [0,1] is a free parameter, see [22] for more details.
Consider the two-dimensional caseNd = 2 as an example,

we may discretize (17) using a standard 5-point stencil finite-
difference formula

1

∆ξ2
1

(
Dk

i− 1
2 , j

Zk
i−1, j −

(
Dk

i− 1
2 , j

+Dk
i+ 1

2 , j

)
Zk

i j +Dk
i+ 1

2 , j
Zk

i+1, j

)
+

1

∆ξ2
2

(
Dk

i, j− 1
2
Zk

i, j−1−
(

Dk
i, j− 1

2
+Dk

i, j+ 1
2

)
Zk

i j +Dk
i, j+ 1

2
Zk

i, j+1

)
= 0,

whereZk represents thekth iterate of the computed mesh vertices
for x1 andx2. The resulting linear system can be solved by a
Gauss-Seidel type iteration, see Fig. 2 for an illustration.
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Figure 2. A SAMPLE NEW MESH (GRAPHED AS SOLID LINES) AF-

TER MESH REDISTRIBUTION OF INITIAL MESH (DASHED LINES).

THE NUMERICAL SOLUTIONS IN SHADED REGION OF THE NEW

MESH, FOR EXAMPLE, SHOULD BE UPDATED CONSERVATIVELY.

We note that after each mesh redistribution iteratek, the nu-
merical solutions on this mesh should be interpolated conserva-
tively, i.e.,

∑
∀s

M
(
Ck+1

s

)
Qk+1

s = ∑
∀s

M
(
Ck

s

)
Qk

s.

This can be done quite easily by using either a finite-volume or a
geometric approach (cf. [9]).

It should be mentioned also that rather than using the above
iterative procedure for mesh redistribution, for some applica-
tions such as problems with free-surface or moving boundary, it
may be more efficient to use a non-iterative Lagrangian approach
(cf. [23]) instead over a prescribed time step∆t; this can be done
at the least before the time when grid tangling occurs (cf. [24]).

Pressure Relaxation
Finally, in step 3, using the solution obtained in step 2 as the

initial condition, we solve the model system with the sourceterm
of the form

∂q
∂t

= µψ(q),

which, in the infinite relaxation limit, leads to

ĝ
(
αn+1

1

)
= p1

(
(α1ρ1)

n+1

αn+1
1

)
− p2

(
(α2ρ2)

n+1

1−αn+1
1

)
= 0

for the relaxed volume fractionαn+1
1 which can be solved by a

standard iterative root-finding solver such as the secant method.

NUMERICAL RESULTS
We now present numerical results obtained using our mov-

ing mesh method for two-phase barotropic flow problems with
and without cavitation. For simplicity, we assume that the con-
stitutive law for each of the fluid phases satisfies the Tait equation
of state of the form

pk(ρ) = (p0k+Bk)

(
ρ

ρ0k

)γk

−Bk, (18)

where p0k and ρ0k are the pressure and density at a reference
state,γk is the ratio of specific heats, andBk is a pressure-like
constant fork = 1,2. The set of parameters we take through-
out the tests are, for phase 1 (the liquid phase),(γ,B ,ρ0, p0)1 =(
7,3000 bar,103 kg/m3,1 bar

)
, and for phase 2 (the gas phase),

(γ,B ,ρ0, p0)2 =
(
1.4,0,1 kg/m3,1 bar

)
.

One-Dimensional Water-Vapor Cavitation
Our first example is a water-vapor cavitation problem in that

inside a shock tube of one-meter length with closed ends the fluid
is a homogeneous air-water mixture at the standard atmospheric
condition(ρ1, ρ2, α1) =

(
103 kg/m3,1 kg/m3,1− ε

)
, with ε =

10−2. Initially, inside the tube, there is a jump on the velocity
at x1 = 1/2 m with speedu1 = −100 m/s on the left andu1 =
100 m/s on the right of the tube. In addition to that, since it is a
closed tube, there are jumps also on the velocity at the both ends.

With this condition, as times go on, two rarefaction waves
are formed, causing the decrease of the pressure and the forma-
tion of the cavitation zone inside the tube. In the meantime,there
are inward-moving shock waves propagating from the bound-
aries, yielding the collapse of the region of cavitation dueto the
shock-cavitation interaction. Figure 3 shows contours of the vol-
ume fraction and pressure in thex1-t plane up to time 0.8ms, see
Fig. 4 for the meshes over time. We observe reasonable resolu-
tion of the results as compared to the ones shown in [6].

Two-Dimensional Underwater Explosion
Our second example concerns with a model two-phase un-

derwater explosion problem (cf. [25]). In this test, we take
a rectangular domain(x1,x2) ∈ [−2,2]× [−1.5,1]m2, and em-
ploy the initial condition that consists of a stationary horizon-
tal free surface at thex2 = 0 axis and a circular gas bubble
in water with the center(x0

1,x
0
2) = (0,−0.3)m and of the ra-

dius r0 = 0.12m. Here above the free surface, the fluid is the
gas phase at the standard atmospheric condition(ρ1, ρ2, α1) =(
1 kg/m3,103 kg/m3,1− ε

)
. with ε = 10−6. Below the free

surface, in region inside the gas bubble the fluid is modeled
as a perfect gas also with the state variables(ρ1, ρ2, α1) =(
719.686 kg/m3,103 kg/m3,1− ε

)
, and in region outside the gas

bubble the fluid is water with the state variables(ρ1, ρ2, α1) =

6 Copyright c© 2011 by ASME



0.2 0.4 0.6 0.8
0

2

4

6

8x 10
−4

x1

tim
e

Volume fraction

cavitation

0.2 0.4 0.6 0.8
0

2

4

6

8x 10
−4

x1

tim
e

Pressure

Figure 3. MOVING MESH RESULTS FOR A ONE-DIMENSIONAL CAV-

ITATION PROBLEM. CONTOUR PLOTS OF THE VOLUME FRACTION

AND PRESSURE ARE SHOWN IN THE x1-t PLANE UP TO 0.8ms.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
x 10

−4

x1

tim
e

Figure 4. MOVING MESHES FOR THE RESULTS SHOWN IN FIG. 3.

(
1 kg/m3,103 kg/m3,ε

)
, Here we takeε = 10−6. The boundary

conditions considered here are solid wall on the left, right, and
bottom sides, and non-reflecting on the top side of the domain.

Note that due to the pressure difference between the fluids
at r = r0, breaking of this underwater bubble would results in an
outward-going shock wave in water, an inward-going rarefaction
wave in gas, and a material interface lying in between that sepa-
rates the gas and water. Soon after this shock wave is diffracted
through the nearby flat air-water interface, it is known in the lit-
erature (cf. [25]) that the topology of the underwater bubble will
undergo a change from the original circular-shape to an oval-like
shape. As time evolves, this gas bubble would continue rising
upward, causing the subsequent deformation of the horizontal
air-water interface.

Contour plots of the density and pressure at four different
timest = 0.2, 0.4, 0.8, and 1.2ms are presented in Fig. 5, where
we have performed the computation using with a 200×125 grid.
From the density plot, we observe clearly the basic feature of
the solution structure as mentioned above, and from the pressure
plot, we see the smooth variation of the solution near the inter-
face, without introducing any spurious oscillations. Interestingly,
these barotropic flow results are qualitatively similar to the non-
barotropic results as shown earlier in [24], for example. InFig. 6,
we present the mesh system for the run shown in Fig. 5; the dy-
namical movement of the grids is clearly seen.

t=0.24ms

Density Pressure

air

water

t = 0.4ms

t = 0.8ms

t = 1.2ms

Figure 5. MOVING MESH RESULTS FOR A MODEL UNDERWATER

EXPLOSION PROBLEM. DENSITY AND PRESSURE CONTOURS ARE

SHOWN AT FOUR DIFFERENT TIMES t = 0.2, 0.4, 0.8, and 1.2ms

OBTAINED USING A 200×125GRID.
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Figure 6. MOVING MESHES FOR THE RESULTS SHOWN IN FIG. 5.

Two-Dimensional Supersonic Flow Over Bluntbody
Our final example is a steady-state calculation of a super-

sonic flow over a bluntbody. Initially, the fluid is a homoge-
neous air-water mixture at the standard atmospheric condition
(ρ1, ρ2, α1) =

(
103 kg/m3,1 kg/m3,1− ε

)
, with ε= 10−2 in the

whole domain. Supersonic air-water mixture is flowing into the
domain with speedu1 = 600m/s from the left to right. Numerical
results using a fixed 60×48 body-fitted grid is used in the com-
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putation. A cavitation zone near the top and bottom edge of the
bluntbody is clearly seen. Note that there is a smooth transition
in the pressure across the cavitation boundary without any spuri-
ous oscillations. Results obtained using a moving mesh version
of the code will be reported elsewhere in that a suitable boundary
redistribution scheme needs to be devised for the mesh adapata-
tion near a general non-rectangular boundary, see [26, 27] for a
possible approach.

SUMMARY
We have presented a simple interpolation-based adaptive

moving mesh method for the efficient numerical computation of
compressible two-phase barotropic flow with and without cav-
itation. The algorithm uses a curvilinear-coordinate formula-
tion of the relaxation model as the basis, and employs a wave-
propagation based relaxed scheme to solve the model system on
a mapped grid that is constructed by a conventional mesh redistri-
bution procedure based on equidistribution principle. Numerical
results for water-vapor cavitation in one dimension, underwater
explosion in two dimensions, and steady state two-dimensional
supersonic flow over bluntbody are present. Ongoing works are
to extend this approach further to problems with phase transitions
for general non-barotropic multiphase flow.
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