ERRATUM

Please make the following corrections to your textbook, "Partial Differential Equations and Boundary Value Problems," by Nakhlé Asmar, Prentice Hall, 1st Edition, 2000.

Page number, line number: Current Cha

p. 77 (last line):
$$+M|a_{n+1}|$$

p. 88 (line 6): between
$$x$$
 and Δx

p. 103 (line 12):
$$\int_0^L g(x) \sin kx \, dx$$

p. 157 (line 18 from bottom):
$$u_t \le 0$$
 and $u_{xx} > 0$ and

p. 159 (line 4):
$$+2(t+1)x + x(1-x)$$

p. 232 (line 3):
$$+n(n+1)\Theta$$
 0 < θ < π

p. 520 (lines 13,14) Another equivalent form of the solution is

$$y = c_1 \cosh \lambda_1 x + c_2 \sinh \lambda_2 x.$$

Change to

$$+M|a_{n+1}|$$

between
$$x$$
 and $x + \Delta x$

$$\int_0^L g(x) \sin \frac{k}{c} x \, dx$$

$$u_t \ge 0$$
 and $u_{xx} < 0$ and

$$+2(t+1) + x(1-x)$$

$$+n(n+1)\Theta = 0 \quad 0 < \theta < \pi$$

To each eigenvalue $\lambda_{n,j}$ corresponds 2n+1 eigenfunctions

Equivalently, write

$$\lambda_1 = \frac{-b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \alpha + \beta$$

and
$$\lambda_2 = \alpha - \beta$$
, then

$$y = e^{\alpha x} (c_1 \cosh \beta x + c_2 \sinh \beta x).$$