RESTRICTION OF EISENSTEIN SERIES AND
STARK-HEEGNER POINTS
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ABSTRACT. In a recent work of Darmon, Pozzi and Vonk, the authors
consider a particular p-adic family of Hilbert-Eisenstein series Ej (1, ¢)
associated with an odd character ¢ of the narrow ideal class group of a
real quadratic field F' and compute the first derivative of a certain one-
variable twisted triple product p-adic L-series attached to Ex(1,¢) and
an elliptic newform f of weight 2 on I'o(p). In this paper, we generalize
their construction to include the cyclotomic variable and thus obtain a
two-variable twisted triple product p-adic L-series. Moreover, when f
is associated with an elliptic curve E over Q, we prove that the first
derivative of this p-adic L-series along the weight direction is a product
of the p-adic logarithm of a Stark-Heegner point of E over F' introduced
by Darmon and the cyclotomic p-adic L-function for E.

1. INTRODUCTION

In the work [DPV2I], to each odd character ¢ of the narrow ideal class
group of a real quadratic field F', the authors associate a one-variable p-adic

family E](Cp )(1, ¢) of Hilbert-Eisenstein series on I'g(p) over a real quadratic
field F' and investigate the connection between the spectral decomposition

of the ordinary projection of the diagonal restriction Gy(¢) of E,(f )(1,¢)
around k£ = 1 and the p-adic logarithms of Gross-Stark units and Stark-
Heegner points. In particular, if p is inert in F and let G(¢)ora denote
the elliptic modular form of weight two obtained by the taking ordinary
projection of the first derivative ﬁGk(@\k:l, then it is proved in [DPV21],
Theorem C(2)] that the coefficient \; of each normalized Hecke eigenform
f of weight two on I'g(p) in the spectral decomposition of G’ (¢)org can be
expressed in terms of the product of special values of the L-function for f

and the p-adic logarithms of Stark-Heegner points or Gross-Stark units over
F introduced in [Dar01] and [DDO06].
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The purpose of this paper is to provide some partial generalizations of this
work to the two-variable setting by introducing the cyclotomic variable. To
begin with, we let F' be a real quadratic field with different 0 over Q. Let
x — T denote the non-trivial automorphism of F and let N : F — Q, N(z) =
27 be the norm map. Let Ar be the discriminant of F/Q. Let C1T(OF) be

the narrow ideal class group of F. Let ¢ : C1T(Op) — QX be an odd narrow
ideal class character, i.e. ¢((6)) = —1 for any § € Op with § = —J. Let
L(s, ¢) be the Hecke L-function attached to ¢. Fix an odd rational prime p
unramified in F. For z € Z,f, let w(z) be the Teichmiiller lift of x (mod p)
and let (z) := zw™(z) € 1 + pZ,. Let 2 :={z € C, | x|, < 1} be the
p-adic closed unit disk and let A(Z") be the ring of rigid analytic functions
on 2. Fix an embedding ¢, : Q < C,, throughout. For each ideal m <t Op
coprime to p, define o4(m) € A(Z" x Z7) by

aom)ks) = 3 o(a) (N(@)' T (N(ma1)) ™ .

a<Op, ajm

Let 27 := {k € Z=% | k = 2(mod 2(p — 1))} be the set of classical points
in 2. Let h = #CIT(OF). Fix a set {ta}ta=1, p of representatives of the

narrow ideal class group C1T(Or) with (ty,pOr) = 1. For each classical
point k € 2, the classical Hilbert-Eisenstein series Ex (1, ¢) on SLy(OF)
2

of parallel weight % is determined by the normalized Fourier coefficients
C(m7 Eﬁ(lv ¢)) = U¢(m)(ka 2)7 C)\(O’ Eﬁ(lv ¢)) = 4_1L(1 - k/2a ¢)
2 2

Let Ir be the set of integral ideals of F'. Assume that n € Ir and p are
coprime. Let M(n) be the space of two-variable p-adic families of Hilbert
modular forms of tame level n, which consists of functions

Ip = o (X x Z), m — c(m, f),
ClI"(Op) = (X x X), a > co(a, f)

such that the specialization f(k,s) = {c(m, f)(k, s)} is the set of normalized
Fourier coefficients of a p-adic Hilbert modular form of parallel weight k
on Iy(pn) for (k,s) in a p-adically dense subset U C Z, x Z, (cf. [Wil88),
p.535-536]). Define E{’ : Ir — A(2 x 27) by the data

c(m, EX) = oy(m) if (m,pOr) = 1,

c(m, E({bp}) = 0 otherwise,

coa, EY) = 0.
By definition, for (k,s) € 27 x 2% with k > 2s, we have

s—2 s—

B (k,9) = (8n) 7 0T B, (L 0),
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where E;p}(l,@ is the p-depletion of Ei(1,¢) and 6 is Serre’s differential
operator 0(3_ g agq®) = 5 Nr/q(B)asq’. Therefore, Eép}(k:, s) is a p-adic
Hilbert modular form of parallel weight k for all (k,s) € Z2, and Eép Ve
M(OF). For each prime ideal g, define Uy: M(n) — M(nq) by c(m, Uqf) :=
c(mq, f). Let N be a positive integer such that p { N and

(Splt) NOp =991, (M) = L.

Define E4, € M(NM) by

By =[]0 - ¢! (N()) 7 U,) - Ejﬁp}
ql9

and the diagonal restriction Gy € A(Z x Z')[q] of E4 by

Gy =) ( > e, E¢))q",

n>0 ﬁeb;l,Tr(B):n

where 011 is the additive semigroup of totally positive elements in 0.
By definition G4 (k, s) is the g-expansion of a p-adic elliptic modular form

on I'g(pN) of weight k obtained from the diagonal restriction of Eé)p}(k, s)

for (k,s) € 29 x 2" with k > 2s. Let % be an appropriate neighborhood
around 2 € 2. Let S°™4(NV) be the space of ordinary A(% )-adic elliptic cusp
forms on I'g(Np), consisting of g-expansion f =" _c(n, f)¢" € A(%)[dq]
whose weight k specialization f; is a p-ordinary cusp form of weight k£ on
To(pN) for k € 2°°'. By Hida theory S°4(N) is a free A(% )-module of finite
rank. It can be shown that the image eG4 under Hida’s ordinary projector e
actually belongs to Sord(N)@)A(%)A(% x Z"), where A(% ) is regarded as a
subring of A(%Z x ") via the pull-back of the first projection % x 2 — % .
We can thus decompose

Go= Y La,g (o o), Lo, € A % ),
f

where f runs over the set of primitive Hida families of tame conductor N. We
shall call Lg, r € A(% x 2 ) the twisted triple product p-adic L-function
attached to the p-adic Hilbert-Eisenstein series Ey and a primitive Hida
family f.

The arithmetic significance of this p-adic L-function stems from its con-
nection with the Stark-Heegner points of elliptic curves. Let F be an elliptic
curve over Q of conductor pN. Assume that p is inert in . In [DarO1], Dar-
mon introduced Stark-Heegner points of elliptic curves over real quadratic
fields. These are local points in E(F),) but conjectured to be rational over
ray class fields of F'. The rationality of Stark-Heegner points has been one of
the major open problems in algebraic number theory. Now let f € A(%)[q]
be a primitive Hida family of tame level N such that the weight two special-
ization f := f, is the elliptic newform associated with E. In the special case
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N =1, [DPV21, Theorem C(2)] implies that that Lg, r(2,1) = 0 and the
first derivative of Lg,, £(k,1) at k = 2 is essentially a product of the p-adic
logarithm logy Py of the twisted Stark-Heegner point Py € E(F),) ® Q(¢)
introduced in [Dar01l, (182)] and the central value L(E, 1) of the Hasse-Weil
L-function of E. As pointed out in [DPV21], Remark 3], this connection has
potential of providing a geometric approach to Stark-Heegner points via the
K-theory of Hilbert modular surfaces. The main result of this paper (The-
orem is to offer the following generalization of [DPV21l Theorem C(2)]
to include the cyclotomic variable and the case N > 1.

Theorem A. Suppose that p is inert in F' and the conductor N satisfies
(Splt)). Then £E¢,f(2,s) =0 and
OLE,. f (E)

ok

s—1

<AF> 2,

2 9y«
my2

cf

(2,54 1) = 51+ 600w logg Py - Ly(E,5)

where

o wy € {£1} is the sign of the Fricke involution at N acting on f,

o L,(E,s) is the Mazur-Tate-Teitelbaum p-adic L-function for E,

®cs € Z>0 is the congruence number for f, mp € QX is the Manin
constant for E and 2*P) = [H,(E(C),Z) : Hi(E(C),Z)T®H,(E(C),Z)].

Our main motivation for this two-variable generalization is that we have
the non-vanishing of the p-adic L-function L,(E,s) thanks to Rohrlich’s
theorem [Roh84], so we can still compute logp P, from the twisted triple
product p-adic L-function even when the central value L(F, 1) vanishes.

Remark 1.1.

e Note that the definition of Stark-Heegner points P, for odd ¢ in
[Dar01] depends on a choice of the purely imaginary period Q5. In
the above theorem, we require (v/—1)71Q to be positive.

e The Eisenstein contribution in the spectral decomposition in Part
(2) of [DPV21l, Theorem C] is connected with the p-adic logarithms
of Gross-Stark units over F', while in our two-variable setting, eG
is a p-adic family of cusp forms, so we do not get any information for
Gross-Stark units.

e Theorem A only applies to real quadratic fields F' possessing a totally
positive fundamental unit due to the existence of odd characters of
the narrow ideal class group of F.

We briefly outline the proof. Let £,(f/F, ¢, k) be the (odd) square-root p-
adic L-function associated with the primitive Hida family f and the character
¢ constructed in [BD09, Definition 3.4| with w., = —1 and let L,(f, k, s) be
the Mazur-Kitagawa two-variable p-adic L-function so that L,(f,2, s) is the
cyclotomic p-adic L-function for f5. The main point of the proof is to prove
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the following factorization formula of Lg, ¢:

(11)  C'(k) L, g(kos+1) = 4(Ap) 75 Ly(F/F.6,k) - Ly(f.k.5),

where C*(k) is a meromorphic function on 2~ holomorphic at all classi-
cal points k € 2°° with C*(2) = 1. By construction, the square root
p-adic L-function £,(f/F, ¢, k) interpolates the toric period integrals B?k.
Thus we get Lg, £(2,5) = L,(f/F, ¢,2) = 0 by a classical theorem of Saito
and Tunnell. Moreover, from the formula [BD09, Corollary 2.6, it is not
difficult to deduce that the first derivative of L,(f/F,¢,k) at k = 2 is

(1 +wnp(M) 1) logy Py, and hence we obtain Theorem A from (L.I).

The factorization formula , proved in Theorem is established
by the inspection of the explicit interpolation formulae on both sides. In
particular, the interpolation formula of Lg, ¢(k,s) (Proposition is the
most technical part of this paper. Roughly speaking, for (k,s) € 2 x 2
with k > 2s, Hida’s p-adic Rankin-Selberg method shows that Lg, r(k, s)
is interpolated by the inner product between the diagonal restriction of a
nearly holomorphic Hilbert-Eisenstein series Ey(k,s) and fj. Therefore, a
result of Keaton and Pitale [KP19, Proposition 2.3] tells us that Lg, r(k, s)
is a product of

(i) the toric period integral B?k of f over F twisted by ¢ (see (4.2))),
(ii) the special value L(f,s) of the L-function for f;
(iii) local zeta integrals Zp(s, By, ) for every place of Q in (4.4)).

It is known that items (i) and (ii) are basically interpolated by L£,(f/K, ¢, k)
and Ly(f,k, s), so our main task is to evaluate explicitly these local zeta in-
tegrals in item (iii). These calculations occupy the main body of Section
4. From the explicit interpolation formulae of these p-adic L-functions,
we can deduce that the ratio C* between L,(f/F,¢,k) - Ly,(f,k,s) and
Lp, f(k,s+ 1) is independent of s, and hence C* is a meromorphic func-
tion in k only. Finally, by a standard argument using Rohrlich’s result on
the non-vanishing of the cyclotomic p-adic L-functions for elliptic modular
forms, we can conclude that C*(k) is holomorphic at all k € 2! and C*(2)
is essentially the congruence number.

This paper is organized as follows. After preparing the basic notation for
modular forms and automorphic forms in Section 2, we give the construction
of Hilbert-Eisenstein series and compute the Fourier coefficients in Section 3.
In Section 4, we compute the inner product between the diagonal restriction
of Hilbert-Eisenstein series and a p-stabilized newform. The main local cal-
culations are carried out in Proposition [4.4] for the split case, Proposition [4.5]
for the non-split, and Proposition 4.6 for the p-adic case. In Section 5, we use
p-adic Rankin-Selberg method to construct the p-adic L-function Lg, ¢ and
obtain the interpolation formula in Proposition by combining the local
calculations in Section 4. In order to make the comparison between p-adic



6 MING-LUN HSIEH AND SHUNSUKE YAMANA

L-functions easier, the interpolation formulae shall be presented in terms of
automorphic L-functions in this paper. In Section 6, we review the theory of
A-adic modular symbols in [Kit94] and the construction of the square root
p-adic L-function L,(f/F, ¢, k). Our treatment for modular symbols is semi-
adelic, which allows simple descriptions of Hecke actions and are amenable to
the calculations from the automorphic side. The connection with Greenberg-
Stevens’ approach [GS93| is explained in . In Proposition we give
the complete interpolation formula for £,(f/F, ¢, k), including the evalua-
tion at finite order characters of p-power conductors. Finally, we deduce the
factorization formula and the derivative formula for Lg, y in Section 7.

Acknowledgements. We thank the referees for careful reading and helpful
suggestions on the improvement of the earlier version of the paper. This
paper was written during the first author’s visit to Osaka City University
and RIMS in January 2020. He is grateful for their hospitality.

2. CLASSICAL MODULAR FORMS AND AUTOMORPHIC FORMS

In this section, we recall basic definitions and standard facts about classical
elliptic modular forms and automorphic forms on GL2(A), following the
notation in [Hsi21l, §2| which we reproduce here for the reader’s convenience.
The main purpose of this section is to set up the notation and introduce some
Hecke operators on the space of automorphic forms which will be frequently
used in the construction of p-adic L-functions.

2.1. Notation. We denote by Z, Q, R, C, A, R, the ring of rational
integers, the field of rational, real, complex numbers, the ring of adeles of Q
and the group of strictly positive real numbers. Let u,(F') denote the group
of nth roots of unity in a field F. For a rational prime ¢ we denote by Zy,
Qy and ordy : Qy — Z the ring of f-adic integers, the field of /-adic numbers
and the additive valuation normalized so that ord,(¢) = 1. Put 7= 11, Z,.
Define the idele w; = (wy,) € A* by wye = and wy, = 1if v # L.

Let F' be a number field. We denote its integer ring by Op. We write
Tp)q and Ng/q for the trace and norm from F' to Q. For each place v of F
we denote by F, the completion of F' with respect to v. Let Ap = A ®q F
be the adele ring of F. Given t € A}, we write t, € F* for its v-component.
We shall regard F, (resp. F;) as a subgroup of Ap (resp. A}) in a natural
way. Let ap, = | |, be the normalized absolute value on F,. If v = q is
finite, then |wq|F, = dq L where @y is a generator of the prime ideal of the
integral ring Oq4 of Fy and ¢4 denotes the cardinality of the residue field of
Oy. Define the complete Dedekind zeta function by (¢(s) =[], ¢r,(s), where
Cr(s) = W_S/QI‘(%), and if v = q is finite, then (r,(s) = (1 — qq_s)_l. When
F = Q, we will write o, = | |, and (,(s) = (q,(s). Let ¢ : A/Q — C* be
the additive character whose archimedean component is ¥ (z) = 2™V~1=
and whose local component at ¢ is denoted by 1, : Q; — C*. We define the
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additive character ¥ = [[, ¥ p, : Ap/F — C* by setting ¢ := Yo Trp/q.
Let S(A) = ®|,S(F}") denote the space of Schwartz functions on A%},

For any set X we denote by Ix the characteristic function of X. If R is a
commutative ring and G = GLy(R), we define homomorphisms t : R* — G
and n: R — G by

t(a) = (g ?) n(z) = <(1) "f)

The identity matrix in G is denoted by 12. Denote by p the right translation
of G on the space of C-valued functions on G, i.e., p(9)f(¢") = f(4'g), and
by 1 : G — C the constant function 1(¢g) = 1. For a function f : G — C
and a character w : R* — C*, let f ® w : G — C denote the function
f ®@w(g) = f(g)w(detg). The subgroup B(R) (resp. N(R)) of GLa(R)
consists of upper triangular (resp. upper triangular unipotent) matrices.

2.2. Characters. If F' is a number field and x : F*\A% — QX is a Hecke
character of A%, we denote by x, : F) — C* the local component of
X at a place v of F. When w is a Hecke character of A*, we denote by
wp:=woNp/q: F*\A} — C* the base change of w.

If v is non-archimedean and A : F° — C* is a character, let ¢(\) be the
exponent of the conductor of A.

2.3. Automorphic forms on GLy(A). Fix a positive integer N. Define
open compact subgroups of GLa(Z) by

o) ={o € 61a@) 9= (5 1) tmod ¥) }.

Uy (N) = {g € Up(N) ‘ g= (3 I) (mod NZ) }

Let w : Q*\A* — C* be a finite order Hecke character of level N. We

extend w to a character of Uy(N) defined by w ((CCL Z)) = Hz|Nw£(de)
for (CCL Z) € Ug(N). For any integer k the space Ag(N, w) of automorphic

forms on GL2(A) of weight k, level N and character w consists of automor-
phic forms ¢ : GLy(A) — C such that

— cosf sinf
e(zrgmgur) =w(2)p(g)e’ ™ uw(ur), “9:<sin9 e>

for 2 € A%, v € GL2(Q), 0 € R and ug € Up(N). Let A (N, w) be the space
of cusp forms in A (N, w).
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Next we introduce important local Hecke operators on automorphic forms.
At the archimedean place, let Vi : Ax(N,w) = Ag+o(N,w) be the normal-
ized weight raising/lowering operator in [JL70, page 165] given by

1 1 0 0 1 .
Define the operator Uy acting on ¢ € Ag(N,w) by

U= > p((? f))%

.TEZ@/@Z[
and the level-raising operator V; : Ax(N,w) — Ag(N/,w) at a finite prime ¢
by
Vip(g) == p(t(z, ).
Note that U;Vpp = lp and that if £ | N, then Uy € Endc A (N, w). For each
prime ¢ 1 N, let Ty € Endc Ak (N, w) be the usual Hecke operator defined by

T, =Uy+ Wg(e)Vg.

Define the GL2(A)-equivariant pairing (, ) : A%, (N,w) ® Ax(N,w 1) = C
by

(p,¢') = / ©(9)¢'(9)d7g,
AX GLy(Q)\ GLa(A)

where d7g is the Tamagawa measure of PGL2(A). Note that (Typ,¢’) =
(. Typ') for (£ N.

2.4. Classical modular forms. We recall a semi-adelic description of clas-
sical modular forms. Let C*°($)) be the space of C-valued smooth func-
tions on the half complex plane $) := {z € C | Im(z) > 0}. The group
GLz(R)T := {g € GL2(R) | detg > 0} acts on $ and the automorphy
factor is given by

az+0b
’Y(Z)ZTJFd, J(v,2) =cz+d
for v = <CCL Z € GLx(R)" and z € §.

Let k£ be any integer. The Maass-Shimura differential operators d; and e
on C*(9) are defined by

5 — 1 0 n k e 1 2 0
F /=i \0z | 2y—1y)’ T ony/o1) oz
(cf. [Hid93| (1a, 1b) page 310]), where y = Im(z) is the imaginary part of z.
Let x be a Dirichlet character of level N. For a non-negative integer m let
N, k[:m] (N, x) denote the space of nearly holomorphic modular forms of weight
k, level N and character x. In other words N, ,£m](N ,X) consists of smooth
slowly increasing functions f : $) x GL2(Q) — C such that
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o f(vz,vgru) = (det) ™I (v, 2)F f(z, gr)x " (u) for any v € GL2(Q)"
and u € Up(N);
o " f(z,91) =0
(cf. [Hid93, page 314]). Let Niu(N, x) = US_y N™ (N, x) (cf. [Hid93, (1a),

page 310]). By definition N,io](N, X) coincides with the space My (N, x)
of classical holomorphic modular forms of weight k, level N and character
x- Denote by Si(N,x) the space of cusp forms in My(N,x). Let 6;" =
Oktom—2 - Oky20k. If f € Ni(N,x), then §*f € Nypiom(N,x) (Hid93,
page 312|). Given a positive integer d, we define

d—1 .
Vaf(z,g¢) = f(dz, g); Uaf(z.g1) = Zf<z’gf (g D >
=0

The classical Hecke operators Ty for primes £{ N are given by
Tof = Uef + xe(¢HF2V, f.

We say that f € Ni(N,x) is a Hecke eigenform if f is an eigenfunction of
all the Hecke operators Ty for £4 N and the operators Uy for ¢ | N.

2.5.  To every nearly holomorphic modular form f € N (N, x) we associate
a unique automorphic form @(f) € Ax(N,x~!) defined by the formula

(2.1) B(£)(9) = f(goc(V=1), 9t) T (goo, V—1) "F(det goo) Idetg\i_1

~

for g = googr € GL2(R) GL2(Q) (cf. [Cas73, §3]). Conversely, we can recover
the form f from &(f) by

k

22 SV Ina) = a0 (5 7) o) laetarly *

We call &(f) the adelic lift of f.

The weight raising/lowering operators are the adelic avatar of the dif-
ferential operators ;" and € on the space of automorphic forms. A direct
computation shows that the map @ from the space of modular forms to the
space of automorphic forms is equivariant for the Hecke action in the sense
that

(2.3) D05 f) = Vit o(f), b(ef) = V-2(f),
and for a finite prime ¢

O(Tpf) = 21T 0(f),  D(Uef) = 2710, 0(f).
In particular, f is holomorphic if and only if V_ &(f) = 0.

2.6. Preliminaries on irreducible representations of GL2(Q,).
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2.6.1. Measures. We shall normalize the Haar measures on F, and F* as
follows. Let dz, be the self-dual Haar measures of F, with respect to v p .

Put d*z, = (g, (1)%22. If F = Q, then das denote the usual Lebesgue

zu(F,
measure on R and ‘da‘g be the Haar measure on Q; with vol(Z,,day) = 1.
The Tamagawa measure of Ap is dz = [ [, do, while the Tamagawa measure
of A% is defined by d*z = c}l [I,dz;, where cp denotes the residue of
Cr(s) at s = 1. Define the compact subgroup K = [[, K, of GL2(A) by
K. = SO(2,R) and K; = GLs(Z;). Let du, be the Haar measure on
K, so that vol(K,,du,) = 1. Let dg, be the Haar measure on PGL3(Qy,)
Gy Ty
0 1

xy € Qp and u, € K,. The Tamagawa measure on PGLg(A) is given by
d7g = (q(2) 7 1, d" g

given by d7g, = ]av|;1 dz,d*a,du, for g, = < u, with a, € QJ,

2.6.2. Representations of GL2(Q,). Denote by oHv the irreducible principal
series representation of GL2(Q,) attached to two characters o, v : Q)X — C*
such that gpv™! # af!. If v = 0o is the archimedean place and k > 1 is an
integer, denote by Dy(k) the discrete series of lowest weight k if £ > 2 or the
limit of discrete series if k& = 1 with central character sgn® (the k-th power
of the sign character sgn(x) = —7— of R*).

|Z]oo

2.6.3. Whittaker models and the normalized Whittaker newforms. Every ir-
reducible admissible infinite dimensional representation 7 of GL2(Q,) admits
a Whittaker model W(7) = W(r, 4,,) with respect to v,. Recall that W(r)
is a subspace of smooth functions W : GL2(Q,) — C such that

o W(n(z)g) =,(x)W(g) for all z € Q,,
e if v = 0o is archimedean, then there exists an integer M such that

W (t(a)) = O(lalX) as |alc — oo.

The group GL2(Q,) (or the Hecke algebra of GL2(Q,)) acts on W(7) via the
right translation p. We introduce the (normalized) local Whittaker newform
Wi in W(n) in the following way: if v = co and m = Dy(k), then W, € W(r)
is defined by

Yy yk/ 2 k V=1k0
20w (=(§ 1) k) =T g s ole
e

for y,z € R* and 2,0 € R. Here one should not confuse the representation
7 in the left hand side of the equation and the real number 7 in the right
hand side. If v is finite, then W is the unique function in W(7)"*" such that
Wr(12) = 1. The explicit formula for W (t(a)) is well-known (See [Sch02,
page 21| or [Sah16l, Section 2.2] for example).
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2.6.4. L-factors and e-factors. Given a € Q,’, we define an additive charac-
ter % on Q, by ¥¢(x) = ¥, (az) for z € Q,. We associate to a character
0: QX — C* the L-factor L(s, p) and the e-factor (s, g, 9%) (cf. [Sch02]
Section 1.1]). The gamma factor

L(l -5, Q_l)
L(s, 0)
is obtained as the proportionality constant of the functional equation

25) o) [ cwewleiata= [ Gl ata

v

v(s, 0,%5) = €(s, 0,%53)

for ¢ € S(Qy), where

B = [ ey (um) dz,
is the Fourier transform with respect to 1,. When a = 1, we write

e(s,0) = &(s,0,%,), v(s,0) = (s, 0,%,)-

When v = ¢ is a finite prime, we denote the exponent of the conductor of o
by ¢(p). Recall that

(2.6) e(s,0,9%) = o(a)lal,'e(0, )t 19".

Let 7 be an irreducible admissible representation of GL2(Q,) with central
character w. Denote by L(s,m) and e(s,7) = (s, m,,) its L-factor and
e-factor relative to 1), defined in [JLT70, Theorem 2.18|. We write 7" for the
contragredient representation of 7. The gamma factor

L(1 - v
7(87 7T) = 5(87 W)(L(S?S;T;T)
is obtained as the proportionality constant of the functional equation
1 (s 5) [ W@l = [ Wik oot ol 4
Q

for every W € W(r).

2.7. p-stabilized newforms. Let 7 be an irreducible cuspidal automorphic
representation of GL2(A). The Whittaker function of ¢ € m with respect to
the additive character ) is given by

Wo(g) = /A () do

for g € GLa(A), where dz is the Haar measure with vol(A/Q,dz) = 1. We
have the Fourier expansion:
= D We(t(8))

peQ*
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(cf. [Bum98, Theorem 3.5.5]). Let f = > a(n,f)¢" € Si(IN,x) be a
normalized Hecke eigenform whose adelic lift @(f) generates m = ®/m, of
GL2(A), having central character x 1. If f is a newform, then the conductor
of is N, the adelic lift @(f) is the normalized new vector in 7 and the Mellin
transform

Lo POy = b5+ g)

is the automorphic L-function of m. Here |y|, = [I, |v,|, and d*y is the
product measure [[, d*y,.

Definition 2.1 (p-stabilized newform). Let p be a prime and fix an iso-
morphism ¢, : C ~ Qp. We say that a normalized Hecke eigenform f =
Yooria(n, f)¢" € Sp(Np,x) is an ordinary p-stabilized newform with re-
spect to ¢, if f is new outside p and the eigenvalue of Uy, i.e. the p-th
Fourier coefficient ¢y(a(p, f)), is a p-adic unit. The prime-to-p part of the
conductor of f is called the tame conductor of f.

The Whittaker function of @(f) is a product of local Whittaker functions
in W(my,,) by the multiplicity one for new and ordinary vectors. To be
precise, we have

Wair)(9) = Wert(gp) [ W (90)
vF#p
for g = (gy) € GL2(A). Here Wy, is the normalized Whittaker newform of
m, and W;r);d is the ordinary Whittaker function characterized by

W2 (t(a) = of(a) |a]? - Iz, (a) for a € QF,

where gy : Q) — C* is the unramified character with or(p) = a(p, f) -
p(=k)/2 (See [Hsi2dl, Corollary 2.3, Remark 2.5]).

3. THE CONSTRUCTION OF HILBERT-EISENSTEIN SERIES

3.1. Eisenstein series. We recall the construction of Eisenstein series de-
scribed in [Jac72, §19]. Let F be a real quadratic field with integer ring Op.
We denote the set of real places of F' by ¥gr = {01,029}, the different of F’
by 0, the discriminant of F' by Ap and the unique non-trivial automorphism
of F' by x — Z. For each finite prime q of F' we write Oy for the integer ring
of Fy.

Let (p1,v) be a pair of unitary Hecke characters of Aj. For each place v
we write B(fu, vy, s) for the space of smooth functions f, : GLy(F,) — C

s+%
fo(9)

which satisfy
a b a
(5 9)-wimsol2;

for a,d € F* and b € F,. Recall that S(F?) denotes the space of Schwartz
functions on F2. We associate to ®,, € S(F?2) the Godement section f,, v, ®,,s €
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B(Mva Vy, 5) by
va»”v,‘bvvs(gv)

erl _ s
= jy(det gy) [det gv’Fv : /FX D, ((0,t0)9v) (1o 1)(tv) ‘tvﬁ%Jrl d*t,.

v

Let ® = ®,P, € S(A%). Define a function f,, ¢ s : GL2(Ar) — C by
fu,u,@,s (g) = Hv fuv,uv,q)u,s (gv)' The series

EA(g, fu,u,@,s) = Z fu,u,cb,s(’)’g)

YEB(F)\ GL2(F)

converges absolutely for Re(s) > 0 and has meromorphic continuation to
s € C. It admits the Fourier expansion

(3'1) EA(g, fu,u,@,s) = fu,u,<1>7s(g) + fu,p@,—s(g) + Z W(t(ﬁ)% f/L7V,(I),S)7
BeEFX

where ® := ®U</I\>v is the symplectic Fourier transform defined by
@U(x,y) = // @y (2, u)Y R, (2y — ux) dzdu.
7

We tentatively write f, s = fu,,,®,,s- Lhere exists an open compact sub-
group U of F, such that for any open compact subgroup U’ containing U

/ Fos(T0(20) g0, (—20) dary = / Fos(Tin(20)g0) 5 (—20) ds,
u u’

where J; = (? _01) We define the regularized integral by
st
W(gv»fuu,vv,%ﬁ) = - fv,S(Jln(xv)gv)’va(_xv) dz,

= [ hetn(e)g) e, (<2,) o,
u

Then W(g, fu,u,@,s) = HU W(gva fv,s) for g = (gv) S GLQ(AF)-

3.2. The Eisenstein series Ej(u,v). Let N and C be positive integers
such that NAp and C are coprime. We assume that

(Spl) every prime factor of NC splits in F.
Then there are ideals 9t and ¢ of Op such that
(3.2) NOp=9M, N,N) =1 COp =c¢c, (c,0)=1.

Fix a positive integer k. Assume that vy, s, = sgn® for i = 1,2. We recall a
construction of a certain classical Eisenstein series Ej(u, v) of parallel weight
k., level I'1 (NC') and central character uv, following [Jac72]. We impose the
following hypotheses for (u,v):

Hypothesis 3.1.
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e 4 is unramified outside p,
e the prime-to-p part of the conductor of v has a decomposition ¢¢’
with ¢ C ¢.

Definition 3.2. Let k£ > 2 be an integer. The quintuple
D = (u,v,k,MN,¢)

is called an Eisenstein datum of weight k. The Fourier transform of ¢ €

S(F,) is defined by

1) = /F o0, ()

where the Haar measure dy is so chosen that g/b\(:v) = ¢(—x). When q is a
finite prime, we associate to a character x : Fy* — C a function ¢ € S(Fy)
by ¢y (x) = L,x(z)x(z). We associate to D the Bruhat-Schwartz function

q

op = (X) p,, € S(AT)

defined as follows:

o Opy(x,y) =27 (z + v=1y)re —m@ YY) if v € T,
Bpu(@,y) = ¢, (%), (y) if v | p,

Op (2, y) _]I‘ﬂc(')u( 0)bu, () if 0 | 9,

Op (2, y) = o, (€)¢,1(y) if v | T,

1
Pp(z,y) =Ih-10,(@)h-10,(y) - |AF|s if v{pe.

These particular choices of Bruhat-Schwartz functions are inspired by [CH20),
Definition 4.1] used in the construction of primitive p-adic Rankin-Selberg
L-functions. We define the associated Godement section by fp s = fuv.ep.s
and f'D,s,v - fuv,yv,q)pyv,&

Remark 3.3. If v € ¥R, then fp, is the unique function in B(p,, vy, s)
such that

FDsanlrig) = e/~ 97k (yT)hr=(+50p ( n k?)

(see the proof of Lemma . If v = q is a finite place, then for any integer
M, let U (M) be the open-compact subgroup of GL2(Oy) given by

_ Oq Oq
ul(M) = GLQ(Oq) N <M0q 1 +M(’)q> ,

and fp.sq € B(lg, Vg, 5) is invariant by U (p" NC') under the right translation
for some sufficiently large r.
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Definition 3.4. Define the classical Eisenstein series Efct(,u, v): H R = C
by

Bt e+ D=y tEa( (3 1) s (v €R% y e R2).

_ 1 k-1
s—i—Q

Then EZ,E(,LL, v) is a Hilbert modular form of parallel weight k, level p" NC
and character y~'v~!. By definition

BB (1.)/9)(9) = Ba(9.9). o0y
for g € GL2(A), where @ is the adelic lift defined in (2.2).
Proposition 3.5. For every non-negative integer t, we have
B(SLE (1, v)) = Ea(fDis)lsmsizts
where Dy = (pu, v, k + 2t, M, ¢) is an Eisenstein datum of weight k + 2t.

Proof. Recall the differential operator V. defined in §2.3] Proposition
follows from (2.3) in view of the relation Vfp oo = fp, 500 (see [JLT0)
Lemma 5.6 (iii)]). O

3.3. Fourier coefficients of Eisenstein series.
Lemma 3.6. For a € R*, we have
ko
W(t(a%fb,s,oo)\sz% :W(t(a)>fD,s,oo)|S:% =a?e ™ IR, (a).

Proof. By definition, W (t(a), fp.sc) equals

Q—k,u,as—ké(a)/ / tk(a + \/j1x>ke—7rt2(:c2+a2) Sgn(t)k ]t|25+1 ono(_x) A tda
R JRX
—petE(a) - (-2v-1) 7 F(s + k"gl%—(s#)
k1 k—1
R

By Cauchy’s integral formula we find that

. . e—27r\/—711‘
W(t(a),fp,s,oo)|s:k2;1 —pa2(a) - (=2mv/—1)7% - T(k) /Rwdx
=pu(a) - a2e 2™ . Ig_ (a),
and that

k T —+/—1la k*1672ﬂ'\/jlm
W (t(a), fp.s00) |1 =ua1‘2(a)(—2ﬁ)—’“7r—1/R( \/:+)ﬁa

dx

=u(a) - ase~2ma. Ir, (a).
Since p is a quadratic character, the lemma follows. O

Let qq = |owg| ™! = #(OF/q) denote the cardinality of the residue field.
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Lemma 3.7. Let v =q be a prime ideal of Op. Let a € FJ*. Pul

Xag = M;1Vq7 %= Xa(@q),  gq = |wg| Tt = 4(Or/a), m = ordy(a).
Then W (t(a), fp,s,q) equals

1m-i—ordq(D) ‘
(91 pMNe) pa(@)lal™z > (yqlt),
=0
. m—ordgq (M) . m—ordgq (M) .
@ @it ey et Y ).
j=0 Jj==1
(alc) pa(@)|al**3 (=25, xq) "' - To, (a),
_ ol
(a7 tiq(a)]al** 210, (a),
(a=plp) Iy (a).

Proof. Fix a local uniformizer @y € Oy of the prime ideal q. Note that if
P=0, Py € S(F‘f), then
(3.3)

fw((? _01> (3 Qf) >—Mq<a>!a\s+5 /F _ @a(ta)®a(tx) (ugrg (@) d*e
and hence
W(t(a), fp,sq) = #q(a)|<1’8+% / 5 (I)l(m)‘/ﬁz(—t_l)(#qvcrl)(t)WQS d”t.

If g pAe, then @p g =hh-1p, ® -1, and hence

L - —2s
W (t(a), fD,s.q) :,uq(a)|as+2/FX Ly-10, (™ a)lo, (—t)xq(t)[t] > d*¢
q
m-+ordq(?)

l . .
=nq(@)lal’™z Y xq(@))ag.
=0

If g | D¢, then g is unramified by assumption. It is easy to verify that
R Lo, (2) — g5 'Ig-10, (2) if q | M,
qbVq (Cl?) =

5(1,u‘]*l)ljl](:lc*1)qu_c(uq)oqX () ifq]ec.

One can readily prove the case q | 91. If ¢ is divisible by q, then

pa(e) ol B (). foa) = [ Teo, ()= ngry DO 0

q

_ c(v —2sc(v,
= 5(1,1/q l)uq(—l),uq(wq( Cl))qq ( q)ch;C(”q>oq(a)'
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Note that COy = wq‘c(”“)oq for q | ¢ by our assumption on the conductor of
v and that

— c(v —2sc(v — —
e(1, 1 Yrg(—Dpig (w5 ) gy 2 = vy (= De(1 + 25, x5 1) = (25, xq) "
by (2.6)). If q | ¢, then W (t(a), fp s q) equals

pa@lal™ [ To(at)o, (7 g YO 47 = )l o, o).

q

Finally, if v = p|p, then we find that W (t(a), fpsp) equals
1 - — s
mo(@lal*H [ 6,02 (@t)0,0 07y DO 4t = o (o)
p

by a similar calculation. O

For each non-zero element 3 € F'* we define the polynomials Pg 4 and
Qg i Zgy[X, X7 by

ordg(80) .
> g X if g pAe,
_ ) =
gy AT Yoy e
'ZO qq” X7 — 'Zl dq X7 ifq | M,
J= J=—

Qx,q(X) = E(Oan)_l : (QqX_l)c(Xq)-
Let 8 € F. We write 5 > 0 if 0;(5) > 0 for i = 1, 2.

Corollary 3.8. We have the following Fourier expansion around the infinity
cusp:
Bi(mv)mm)= > o5(uuk) et inaime@),
0<ped—1, (p,f)=1

where
o (v k) =y (B) [ [ Poatra - a8) I Qu-rva(@),
afep al(e,8)
o5 (k) =Npyq(B)F 1 ' (B) [ [ Poa(ra- e ™) [ Qu-rval ™)
gfep al(c,8)

Proof. Note that if ® = ¢1 @ ¢y € S(F2), then ®(z,y) = do(—x)d1(y).
Since ®p(0,y) = 0 and Pp,(0,y) = ¢V;1(O)¢H;1(y) = 0 for a prime p
lying above the distinguished prime p, we see that

(3.5) Ip.5p(9) = 1y 1y 8p,,—s(9) = 0 for g € B(Fp).

This in particular implies that

y oo\ \_ _ y o)\ _
o5 1)) Famn((6 1) )=
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In view of (3.1)) and Lemma we find that
+ k
o5 (v, k) = N(B)2 [T W(t(8), fpsa)ly—srs.

q<oo
The assertion follows from Lemma |3.7| by noting that ,uq_ll/q (wq) = w~1(q)
if g is the prime induced by v. O

4. RESTRICTION OF EISENSTEIN SERIES

In this section, we study a certain global zeta integral of Zp(s, ¢) intro-
duced in This zeta integral naturally appears in the spectral decompo-
sition of the restriction of the Eisenstein series Eff (4, v), and the main result
(Theorem, which will be used in the explicit interpolation formula of our
twisted triple product p-adic L-functions, shows that this integral is essen-
tially a product of the toric period integral in and an automorphic
L-function for GLs.

4.1. Optimal embeddings. Let F' be a real quadratic field whose discrim-
inant is denoted by Ap. Define # € F' by 6 = D/_Q/E, where D' = Ap or
% according to whether A is odd or even. Then Op = Z + Z0, and if ¢
is ramified in F', then 6 is a local uniformizer of O,. Denote by = — T the

unique non-trivial automorphism of Gal(F/Q). Put

§:=0—0=+/Ap.
We choose an embedding o1 : F < R such that o1(6) > 0. Define an
algebraic group T over Q by T(R) = (F ® R)* for any commutative field
R of characteristic zero. We view T as a maximal torus of GLg via the

embedding ¥: F' — M3(Q) defined by
U(0) = (TF/Q(H) _NF/Q(9)> )

1 0

- (_11 _99> 51— <f f) ~  GLy().

It is important to note that for ¢t € F

(4.1) o = (5 4)-

Let N and C be positive integers such that

Put

e (' and NAp are coprime;
e Every prime factor of NC' is split in F.

Fix decompositions NOp = 9 and COF = cc once and for all. Fix a prime
ideal p of O lying above p.

Definition 4.1. We define special elements ¢, <@ and ¢(€P") in GL2(A) as
follows:
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e At the archimedean place, put

Soo = <U21(9) 011(0)> € GL2(R).

e For each rational prime ¢ we fix a prime ideal q of O above ¢ and
define ¢, € GL2(Qq) by

0 6\ ._ . o .
Sqg = (1 1) 5 1e GLQ(Fq) = GLQ(Qq) if ¢ = qq is split,

Sq =1 otherwise.

e Put
Cc -1

4= (0 ') ecraay

pro—1 . e

0 € GLo(F,) if p=ypp is split in F
i = 0

. € GL2(Qp) if pis inert in F.
4

Finally, we define

¢ = H§v7 (@) = §H§,§C); (O 1= (@),
v q/C
Let Oc = Z + COp be the order of F' of conductor C'. It is not difficult
to verify immediately that the inclusion map ¥ : F' < M(Q) is an optimal
embedding of O¢ into the Eichler order Ry := Ma(Q) N ¢(O)My(Z)(¢() 1
of level N. In other words,

U HRy)NF = 0Oc.

4.2. A result of Keaton and Pitale. Let 7 ~ ®/m, be an irreducible
cuspidal automorphic representation of GLa(A) generated by a cusp form
®(f) € AY.(N,w). Let u and v be unitary Hecke characters of A% such
that p has p-power conductor and such that the restriction of uv to A* is
w. Define the Hecke character x : F*\Aj — C* by

x(@) = p(e)(3).
Given ¢ € 7, we define the global zeta integral by

Zp(s,p) = / Ea(g, fp.s)¢(g)w(det g)~+d7g,
AX GL2(Q)\ GL2(A)

where fp s is the section defined in Definition associated with the datum
D = (u,v, k,M, c). This integral converges absolutely for all s away from the
poles of Ea(g, fp,s) and defines a meromorphic function in s.

We define the Tamagawa measures d*z of A} and d*a of A* as in §2.6.1]
and define the Tamagawa measure dt of T(A) as the quotient measure of



20 MING-LUN HSIEH AND SHUNSUKE YAMANA

d*z and d*a. Let dg denote the quotient measure of d"g and dt. Given
p € m, we define the toric period integral by

(4.2 Bo)= [ e(wngntar
AXFX\A%
Theorem 4.2 (Keaton and Pitale). Let ¢ € m. Then
Zo(s.0) = | fo.0(19) B () dg.
T(A)\GL2(A)

Proof. This is nothing but Proposition 2.3 of [KP19]. O

4.3. Global setting. Now we let f = > °°  a(n, f)q" € Sor(Np",w™t) be
a p-stabilized newform and ¢ = &(f) € A, (N,w) be the automorphic form
associated with f in (2.1). For each prime factor ¢ of C' we choose a root
aq(f) of the Hecke polynomial X2 — a(q, )X +w ™ 1(q)g** . Let f be the
unique form in Sor (NCp", w™1)[f] such that a(1, f) = 1 and Uqf = aq(f)f.
Let ¢ = @( f ) be the adelic lift of f. We impose the following assumptions:

1
e w has a square root w?;

e 1 and w are unramified outside p;
1 1

e COp is the conductor of ywp? (w3 = w3 o N).
Note that these assumptions imply that the COp is the prime-to-p part of
the conductor of v. Define the matrices J» and t, for each integer n in
GL2(A) by

(4.3) oo = (‘01 ?) € GLy(R), t,

(_(;n p&”) € GLy(Qy).

4.4. Local zeta integrals. For each place v of Q we set fps.,(gy) =
[Tvjw fosv(9v) for g = (9v)vjp € [lyjy GL2(Fv). Assume that ¢ has the
factorizable Whittaker function W, (g) = [[, Wu(gv) for g = (g») € GL2(A).
We associate to each Whittaker function W,, € W(m,,,,) a Bessel function
By, : GL2(Q,) — C by

B, (g0) = / Wl 10 (1) g0)xo (1)~ dty
QI\FS

unless v = p is inert in F. Here d¢, is the quotient measure of d*x, and
d*a, (see §2.6.1). This integral is absolutely convergent (see the proof of

Proposition . If v = p is inert in F, then we will explicitly choose a
Whittaker function W € W(ﬂ';/,’(ﬂ;l) in the proof of Proposition SO
that p(t)VIN/ = Xp(t)_lw. Recall the standard GL2(Qp)-invariant pairing
() W(mp, 1) x W(m) b, ") — C defined by

(W1, Wa) = o Wi(t(ap))Wa(t(ay)) d*ap.
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Define the Bessel function By, : GL2(Q,) — C by Bw, (g9) := (p(g)W), w).
The integral

(4'4) ZD(S7 BWv) = / fD,s,v (ngv)wv (det gv)ilBWv (gv) dgv
T(Qv)\GLQ(Qv)

makes sense by (4.1)), where dg, is the quotient measure of d"g, and dt,.

4.5. Convergence. In this and next subsections we fix a place v of Q and
suppress the subscript v from the notation. Thus

FZF@QU) Tl):d)v) |’:|‘v7 m = My, V = Uy,
T = Ty, ¢D:®V|U¢D,V€S(F2)7""

Lemma 4.3. The integral defining Zp(s, By ) is absolutely convergent for
Res > 0.

Proof. Put T, =T(Q). For W € W(x) we have

Zp(s, By = / Fposg(ng)w(det 9) " By (g) dg
T\ GL2(Qq)

= / fD,5.9(ng)w(det )~ / W (s, 'tg)x(t)~" dtdh
Tg\ GL2(Qq) Q\T,

-/ | oaantayetdettg)) Wi, o) g
T4\ GL2(Qq) Y Qg \Ty
by definition. We combine the iterated integral to obtain

Zp(s,Bw) = / ID,s.q(ng)w(det g) " W (s, tg)d7g.
PGL2(Qq)

First assume that v = ¢ = qq is split in F. Since 15, = 6! and 7jg, =

0 1
-1
) <1 0), we get

ZotsBw) = [ oasfaettens) nea( (1 o) o)W
an = [ Tt (5O ) )Wy

where W5(g) := W (g, fp,s5)- This is nothing but the local Rankin-Selberg
integral for GLy X GL2, which is absolutely convergent for Re s > 0.

Next assume that v = ¢ remains prime in F. It suffices to show that the
integral

@ [ /Q P eg (@)t @) da - W (t(a))d*a

w(a)lal
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converges absolutely in view of the Iwasawa decomposition. Since n =

51 <_11 _06>, the inner integral is

) \51|
pOT )= >|ar

/q/FX e |t|2s+1<1><(0,t) <_11 —99> (g ;f) >¢(1‘)dxtdx.

Put £ := pv~ a25+1. Let ® = ®&; ® ®3. We may assume that | (z)| < 1
and ®y(zc) = ( ) for z € F and ¢ € OF. Since the integral

// t)®1(—at)@2(t(0 — x)) |dxtdx<// 1) Do t0—a:)\dxt(‘t]‘g

converges for Re s > 0, the double integral (4.6)) is absolutely convergent for
Res > 0. O

4.6. Local calculations. We compute the local zeta integrals Zp(s, Bw,)
occurring in the factorization of the global integral Zp(s, p(Jootn)@f). Put
vy = V|qx. Recall the normalized Whittaker newform Wr € W(m, v) (see
§2.6.3). For each prime factor v = ¢ of C, if we write 7 = g, B v, with

04(q) = aq(f)q = , then
Wi i= W — vy(g) |gl? m(t(q ™)) Wi

Then W, is characterized uniquely by the conditions: VvVﬂ(lg) = 1 and

v 1 v
U, W, = 04(q) |g|”2 Wy. In the case v = p, we denote by W™ an ordinary
vector of eigenvalue a(p, f)p'~*. By our assumptions,

L) an(li v4+ are unramified outside p;

° Xw;§ is only ramified at primes dividing C'.

Proposition 4.4. Let v # p be a place of Q which is split in F'. We have
e [fv = o0 is the archimedean place, then B, 7. _yw, (Sso) # 0, and
Zp(8, Bp(goo)W) = A=4V=1) " 15, (=1)Tc(25 + k) - By(g.yw, (Soo)-
e [fv=gq and NC are coprime, then

1
Zp(s,Bw,) = L<28 + 5,7r & V;1>BW,r (Sq)-

e Ifv=gqis a prime factor of N, then Bw, (sq) # 0 and
¢(2) INClq,

ZD(S’BWW) = Cq(l)

1
: L<2s + 30 ® V+1>BW,r (Sq)-
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e When v = q is a prime factor of C, then By, (gng ) #0 and

(q(2) [NClq, 1 e(0,xz1)
Zp(s, Bw,) = ng(l)QL<23 +5me +1>Q1(1q) : BWW(gqgéC))'

Proof. We first treat the archimedean case. Let W = p(Jo)Wr,. By
definition, By (sson(z)) equals

/ () Too) oy (@) g, (@) ~H d%a

(s ) (1) / 2145V gk g4
0

=ty Vo, ) (=1)(2m) 75 (1 + 2v/=1) 7T (k)

by (2.4]), where we have shifted the contour of integration. By the Iwa-
sawa decomposition GL2(R) = B(R)K+ and Remark the local integral
Zp(s, Byy) equals

[ s @nsoe( (] §)ne))Butean(o)) ds

_ I(s+ &L 2
(Qmﬁ)) 4 k(_l)k (ﬂ2s+k-2|—1)

_ x—+/—1 F dzx
o _ 22y ~(s41/2)
[ 0+ ( sz) e

r'(k) _ _
= 22m) " FRID(2s + k) - 4(—4)F g, (—1).
Gry—1)F (2m) (25 + k) - 4(=4) " po,(—1)
Let v = ¢ = qq be a finite split prime. Then
1 _ 1 _
(47) wa«q):L(Q,w@qu):L( @ gy )

If ¢ and Nc are coprime, then
1 1
Zp(s, By,) :L(2s+ > 7rq®u_1uq1>L< T ® g Y, ‘1>

by (4.5). The unramified case follows from (4.7]).
Suppose that v = ¢ divides NC. Then pq, pg are unramified, the conduc-

tors of vy and v are CZ,, and
_ s+2 )

Wy(t(a)) = pg(a) a2 Iz, (a) ifq|C,

WH& if g1C.

Here Wiy, is the spherical vector for Il = pza® B rvga™®. Put

Uo(NCZ,) = {(Z :) € GLy(Z,) | c € chq}.
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We claim that fp 4 is supported in B(Qq)Uyg(NCZy). Indeed, if fp sq4(9) #

0 for g = <Z Z) € GL2(Qq), then ®p4((0,t)g) # 0 for some t € Q.

According to the recipe in Definition we find that (tc,td) € NCZ,®Z;,
and hence cd™! € NCZ,. Since fpsq(12) = 1, we see that

Z'D(S, BW,r)

—[GL(Z,) : Up(NCZ,)] /Q (™) (@)l E Wa(t(a) Wa(t(a))d*a

q

_G@2)INC| 1 1\, (1 11
= &0 L 25+2,7T®V+ L 2,7T®/Lq vy |-

The case of a prime factor g of NV follows from (4.7)).
Finally, we assume that C is divisible by q. We have

Byp, (s5) = /Q W <t<a> ((5 ‘f) >Xq1<a>dxa

q

1 1
— (O]} 04(C) /Q al? x5 ey(@(a)d*a

q

in view of Wy(t(a)) = o4(a) |a|%]lzq(a), where ®(a) = 9 (—a)lg-17,(a).
The integral above equals

1 - 1~ _
H(3ate) [ e ot
q

~ vol(C'Zg, da)
e(3 X?QQ)
G (1)
e oo en Il
7:Xg Qq z’:‘(O,xa )gq(C)|C\2
by the local functional equation ({2.5) for GL;. In the final stage we utilized
2:5). O

Proposition 4.5. If v = ¢ remains a prime in F' and does not divide pNC),
then

vol(1+ CZy,d"a)

_s— 1L 1
Zp(s, Bw,) = p(8) 5], 2 L<25 + 507 ® V+1>BWW(12).

Proof. By assumption 7 and y are both unramified. Thus W, = W79 is the
normalized spherical Whittaker function, and so by the Iwasawa decompo-
sition GL2(Qq) = B(Qq) GL2(Z,), we have

Znls Buo) = [ Gla) W (t(@) d*a
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where

1
Gla) = S /Q Jpaam@H@)) b

1 —
Recall that ®p 4 = |6} Is-10,e5-10, and n = 51 (_11 90>. Put ¢° =

lo,e0, and & == pv~ a25+1. The computation in the proof of Lemma
shows that

u(8) 133G 'a'F / 3 €6 a0 )l b

If F/Qq is unramified, then BWo(lg) =1 and

) = Lol S~ (agme(em / p@ydo =, (@),
I/(a) m—0 g q™Zy !

v(a)

It follows that
Zn(s. ) = [

Next we consider the case where ¢ is ramified in F'. Then 6 is a uniformizer.
We see that

Byo(12) = WO(1a) - |Ap|2 + WO(T(0))x ' (0) |Ap|?

|a|28

< v(a) z,(@)W°(t(a)) d*a = L<25 + %,77 ® V+1).

from the decomposition F* = QX O LI QxOy# and vol(OF, dt,) = \AF\%.
Writing 7 = p B v, a = o(q) and = v(q), we get
-3 1 _ 1
6] 22 Bwo(12) = 1+ x(0) ' (a+B) g2 = 14 (w)(07") g]2 (e + B)

by the Iwasawa decomposition of ¥(6). On the other hand, u(d)|d|3 G(a)
equals

lal 2m &0/, 02m p2m g _
()/qZ{ge )80 (ab®™, 0% (6 — x))

+§(92m71)q) ( 92m 1 92m 1 }’l,b
=v(a)~" |al** (Iz,(a) + £(0)Iz, (a) + £(0") |l -quq(a))-
Since

mi W0<<q€7 2) >¢I‘2msu(q)‘m = |qy|2;+); (a+ 5 —apr(a) ),

we conclude that

Zp(s, Byo) = (67 1) 0] 5° L<23 + %, T® VJ:1>

X {1+€00) + €07 lal - |al** "2 v(@) (o + B— aBu(a) " 1a**2) }.
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Since (,LLI/)|Q; = w, the second factor equals

L+ () (0) g + () (071 a2 (a+ 8 — (v w)(q) [a)**+?)

1 _1
=1+ (u)(07) la|? (o + B) = Byo(12) [8] 7 ,
which finishes the proof of the ramified case. O
Proposition 4.6. In the p-adic case, if 1 = o H v with o unramified and
v(=1) =1, then for n >0, we have Byyor (gl(,n)) # 0 and

Byyoa(sy") &(2)

7(25 + %, QV_T_l) CFp(l).
Proof. We first assume that p = pp is split. Then F' = Q, ® Q, and
¢, = ¢, ® ¢, where &, = ¢u51 ® ¢,-1 with v =p or p. From (14.5))

Z(s, By wes) = [ ID.02(9) g\ Werd(gt,) d".
Pl W N(Qp)\ PGLy(Q,) w(detg) " FA\0 —1

(@ o)™ |2

Zp (8, Byt,ywera) =

Put u(z) — <_01 -1

). Using the integration formula

e L
/PGLz(Qp) Mg dg = <p(1)/p/§/ph( (y)t(a)/in(z))|a[~" dyd*ad

for an integrable function h on PGL2(Qp), we see that Zp(s, B, ywera)
equals

Zg / x /Q (@™ 1p) (@) |al" % fpp (Jim(@)) Wt (a)u(a))

ord apn 0 1 0 X
() (L %)

Since fpsp(Jin(z)) = gqu(:n) by 1} if n > 0, then Z'D(S,Bp(tn)wgrd)

p
equals c (C” (2)

Gl e

L] @@ jal 2, @)Wt aua) W (sap™)) deda.

Since the function a aygl(x)Wg(t(a)u(:v)) has a bounded support uni-

formly with respect to z, if n > 0, then the integral is equal to o(p*") [p"|
times

/ ) / (@ p)(a) lal® 6,1 (2) Wi (t(a)u(x)) (@)l 20z, (a) dzd*a
= / ) /Q (v 1p) (@) lal® &1 (&) Wy(t(a)u(x)) dad*a.
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Put Hﬁ = pya® B vga™®. We use the local functional equation for GLg

(see §2.6.4)) to see that the last integral equals the ratio of
/ / ) lal ™ 3,1 (2)Wy(t(a) ;@) pgrp(a™) A ad

divided by
’Y<5 T o v ®Hp>: 7(23 T oy )7(2,QXP )
Since

w = 00 = gy, ST u(e) = n(—an)t(—a), Wy(tla)) = Tz (a)
by Lemma this integral equals

~

/X(Q_ll/p)(aﬂa]s Wp(t(—a))/ ¢,-1(x)p(—ax)dzd*a
Q

P
P P

:/ x o(a)™" |a|”* Iz (a)Ws(t(—a))d*a = 1.

P

On the other hand, we see by (2.5]) that
| _
et (e )
QX

p

- /Q olap™)ap" 24 (~a)lz, (ap")xp(a) " d¥a
D
1/2 vol(p™"Zy, da)
(3,0
(1
n) |pn|1/2 1p( )_1 )
7(57 QXE )
Now we consider the case where p is inert in F' and 7 is a principal series.
Using the decomposition GLy(Q,) = V(F™) - B(Q,), we have

=o(p") [p"| vol(1 + p"Z,,d*a)

=o(p

ZD S B o(tn )Word)
/ _ Ip.sp(nt(a)n(z))w(a) ™ Byga(t(a)n(@)tn) |a d* adz.

We proceed to compute

fp.sp(nt(a)n(2))
~we e (L ) (5 Y))
(6ol ? [ @ (—ta,t(0 - aa) a0 e %

(6 Yw(a) a5 / Do p(—t,a 10 — ) (u ) (8) 1250 A1,
FX
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Since ®pp = ¢,-1 @ ¢, 1, we find that

Fp,p (@) (z)) = p(~1)0(ad ™) a7 Bpi (a718 - ).

In particular, the function z gg,,q (a'0 — x) has a bounded support with
respect to a. Hence for n >, 0

(S)ZD(S B o(t )Word)
/ / a) la| ™ ¢,-1 (a0 — )w(a) " Byera (t(a)tn) d* ada

_ / vla) ™ [af* Pa(a)w(a) By (t(a )t 4,

Qp

where @5(a) € S(Qy) is defined by

Do(a) := by1(z + af) da.
Qp

Observe that if $2(a) # 0, then
(@) By (6(a™1)in) = w(p") " Byyena (T 6(ap™))
1 —
= w(p™) " o(ap®™) [ap® |2 Z(W),
where

2(7) = [ o) 1, g™ W) 1) 0%t = [ ot) o W e(0)1)

P P

for n > 3 0. Thus we find that pu(—1)v(0)Zp(s, By, ywen) is equal to

@A | 207) [ 07 )@l by da.
Q

P

The last integral equals
o245 euﬁ)_l e @ el Bafa) 2
by , where
Baa) = [ [ Gyr(a+ yB)iplay) dady
Qp /Qp
— [ G @5 ds = 6y s(-ad ),
We conclude that ’
~1
Zo(5, By pwet) = (25 50021 @ AN (1) - 207,
On the other hand, for n > 0,
Byyora () = o(p™) [p"[2 Z(W).
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The following lemma will complete our proof. U

Lemma 4.7. Z(W) # 0.

1 1

Proof. Let & :== x~tvp. If € is unramified, then so is 5’Q§ =wv? = p v,

which implies that both 7 and y are unramified, so that W is the spherical
Whittaker function, and

ZW) =L(1,7" ) #0.
_1
Suppose that § is a ramified character. Since yw,? is assumed to be unram-
ified, we find that c({]Q;) =c(o ) =c(w) > 0. Let f € v ' H o ! be the
unique section such that

f( (8 2) ‘””)‘ v(a) " o(d)™! ’%

for a,d € Q;, b € Qp and t € F*. Then we can choose W(g) = Wi(g, f),
and W(t(a)Jl) equals

LG 2) s = tiat [CF((G9) Jet-anan

Since (;1 _01> ) <N(:m98 1)1 D W(zh - 1),

st -1
g(Ll/L't,b(—ax) dz.
Q |26 — 1|

a0

we find that

W (t(a)J1) = o(a)"|al2

Put ®y(z) = S -~z (x). We have seen that
20—

for N > B, where
xf —1
I; :/ ‘ «71/)21#(—(13:) dz.
piZy |zh — 1|7

Note that I; = 0 unless j = ord,(a) + ¢(w). Recall an additive character *
defined by ¥%(x) = ¥ (ax). Then

Iordp(a)—i—c(w) =¢(0)e <—;, Qv_l, ’l,b_a> - g(Q)(gU_l)(_aﬂa’_lg(—;, Qv_1>
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by 1) Since pv~! is ramified, we see that Z (W) is equal to

/" <$B<a»+a<amgv5<—ana|ls<—;,@vl)ﬂwﬂldep«w)\a|an

P
=®p(0)¢p(1) # 0.
O
4.7. The explicit pull-back formula. Now we are ready to give the ex-

plicit formula of Zp(s, p(Jsotn)@y). The notation is as in Let 7 be
the quadratic Dirichlet character associated to the extension F/Q.

Theorem 4.8. Let A be a Hecke character of A* of p-power conductor and
¢ be a finite order Hecke character of Ay with ¢p|ax = 1 and conductor

1
COp. Put x = wpo and

1
D= (WiAr, ¢ ALk, M),
Forn >0, we have

Z t 1 1 -
(8, p(Tooln)Py) — 1in} <25+ 2’7r®y;1> <25+ 7QPV+1p>

By 5)

— n nia Cp(2) L(LT )fooframfc
< )0 "o, o 1 B BLa() : T (NO))

where foo, fram and fo are local fudge factors given by

foo 1= 4<_4\/j)_k( coPoy ) (—1 )7

fram 1= H Wq |AF|Q )
qdAFr
1 (0,07
= 2(Cc1 2% ) .
fc qHCwq ( ) Cq(l)

Proof. There exists a nonzero constant ¢ such that B3(g) = c¢[], Bw, (gv)
for ¢ € m with W,(g) = [[, Wu(gv) by the uniqueness and the existence of
the Waldspurger models. Put

0 = P(jootn)Qbfv W* = P(jOO) oo W; = P(tn)ng-
The Whittaker function of ¢* is given by
W (9) = Wi (9s0) - W;(gp) ) H Wﬂ'q (gq) H W, (9e)-
qc UpC
It follows that

By gy 8 = eBwg (s00) - Burgna () - 1] By, (asi) T ] Wi ().
qlC UpC
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On the other hand, Theorem [4.2] gives

L(l, 7
Zo(sp(Tti)ior) = 2T (s, By ) - Z(s, Bug) [] Zo(s. Bu,).
¢a(2)
qF#p
1
Theorem now follows from Propositions and with 1 = Wi AR,
1
V= qb_lA;l and x = wpo. O

5. THE CONSTRUCTION OF p-ADIC TWISTED TRIPLE PRODUCT
L-FUNCTIONS

5.1. Notation. Define the p-adic cyclotomic character by

Ecye : QF\A™ — Z;, Ecyc(a) = |a\Aa(;1ap.
Let w: Q*\A* — p,—1(Cp) be the Teichmiiller character. Fix embeddings
leo : Q = C and lp : Q — C, once and for all. The set of embeddings
Yr = {o1,02} from F to R is identified with Gal(F/Q) via tso.

Let O = Oy, for some finite extension L of Q, containing ¢,(F). Let
A = O[1+ pZ,] and write [-] : 1 + pZ, — A* for the inclusion of group-like
elements. Let u =1+ p. For a variable X, let () : Z; — Z,[X]* be the
character defined by

log,, a
(5.1) (a) y == (14 X)'sp,
Write N = Ng/q : ' — Q for the norm map. If a is a fractional ideal of F’
coprime to p, put (a)y = (N(a))y. If Iis a finite extension of A, a point
Q € SpecI(C,) is called a locally algebraic point of weight k and finite part

e if the map Q|a : 1 + pZ, l> A9 Q; is given by Q(x) = 2¥¢(z) for

some integer £ > 1 and a finite order character € : 1 + pZ, — fip~ (Qp). For
a locally algebraic point () we denote by kg the weight of ) and € the finite
part of Q. Let X] be the set of locally algebraic points @ in SpecI(C,) with
kg > 1. A locally algebraic point @) € %;r is called arithmetic if kg > 2. For
every arithmetic point @ € X7, we shall view the finite part eq as a Hecke
character of A* via eg(a) := LOOszl(eQ(ECyC(a)w_l(a))). If A and B are two
complete @-modules, we write A®B for AQpB for simplicity.

5.2. Preliminaries on Hida theory for modular forms. Let I be a
normal domain finite flat over A. Let N be a positive integer prime to p
and let x : (Z/NpZ)* — O* be a Dirichlet character modulo Np. De-
note by M(N, x,I) the space of I-adic modular forms of tame level N
and (even) branch character y, consisting of formal power series f(q) =
Y ons1aln, £)¢" € Ifg] with the following property: there exists an in-
teger af such that for every point @ € X{ with kg = 0(mod 2) and
kg > ag, the specialization fq(q) = 3,51 Q(a(n, f))¢" is the g-expansion
of a cusp form fo € My, (Np",xw2_erQ) for some r > 0. We call fg
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the specialization of f at (). For a positive integer d prime to p, define
Vg : M(N,x,I) = M(Nd, x,I) by Va(3>,a(n, f)¢") = dY, a(n, f)g™.
Let S(N, x,I) € M(N,x,I) be the space of I-adic cusp forms, consisting of
elements f € M(N, x,I) such that f is a cusp form for a Zariski dense
subset @ € %f

The space M(N, x,I) is equipped with the action of the usual Hecke op-
erators Ty for £4 Np as in [Wil88| page 537| and the operators Uy for £ | pN
given by Uy(>_, a(n, f)g") = >, a(nl, f)¢". Recall that Hida’s ordinary
projector e defined by

. |
e := lim U™.
n—oo p

is a convergent operator on the space of classical modular forms preserv-
ing the cuspidal part as well as on the spaces M(N, x,I) and S(V,x,I)
(cf. [Wil88| page 537 and Proposition 1.2.1]). The space eS(N, x,I) con-
sists of ordinary I-adic forms defined over I. A key result in Hida’s the-
ory of ordinary I-adic cusp forms says that if f € eS(N,x,I), then f, €
eSkQ(Npe,XwQ_erQ) for every arithmetic point @ € X{. We call f €
eS(N,x, 1) a primitive Hida family if f) is a p-stabilized newform of tame
conductor N for every arithmetic point @) € .’f;r

For a divisor M | N, let T(N,M) C EndeS(N, x,I) be the I-algebra
generated by Hecke operators {7} ginp and {Uq} garp- A classical result in
Hida theory for modular forms asserts that T(V,I) is free of finite rank over
I. Let f € eS(N,x,I) be a primitive Hida family. Then f induces the I-
algebra homomorphism Ag : T(N,I) — I with A¢(7;) = a(q, f) for ¢t Np
and Af(Uy) = a(q, f) for ¢ | Np. We denote by my the maximal ideal of
T(N,I) containing Ker Ay and by Ty, the localization of T(N,I) at my. It
is the local ring of T(N,I) through which A factors. It is well-known that
there is an algebra direct sum decomposition

Af: Tw, @1 FracI ~ FracI® 2,  t> Ap(t) = (Ap(t), Aa(t)),
where 2 is a finite dimensional (FracI)-algebra ([Hid88c, Corollary 3.7]).
Remark 5.1. Recall that the congruence ideal C(f) of f is defined by

C(f) = )\f(AnnTmf (Ker )\_f)) clL

By definition, C(f)-1¢ C T(N,I) and C(f) is the annihilator of the congru-
ence module of A\ (see [Hid88b, Definition 6.1]). For each arithmetic point
Qe f{f , let pg = ker . By the control theorem for the Hecke algebras and
the congruence modules (c¢f. [Hid88bl (0.4b), (5.8a)]), we find that Q(C(f))
is the congruence ideal for Az, : T(N,I)/pg — I/pq. In particular, this
implies Q(C(f)) # 0 and hence 15 belongs to the localization T(NV,I),, at
9q- This fact will be used to deduce the finiteness of our p-adic L-function
in Definition [5.5| at arithmetic points.
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5.3. A two-variable p-adic family of Hilbert-Eisenstein series. We
shall make the identification

ARA =0[X,T], X=(u-1)®1,T=1 ([u] - 1).
Let (x1, x2) be a pair of finite order Hecke characters of A of level pOp and
pCOp. We assume that (x1, x2) satisfies Hypothesis and x1x2 is totally
even. A Hecke character y of A} will be viewed as an ideal class character
by

x(a) := x(ag) !
for any prime ideal q away from the conductor of x. Define the AQA-adic
g-expansion by
B e ABA[R
E(leXZ)(Xa T) = Z AB(XlaXQ)q € A®A[[q + ]]a
ped(p.(8)=1
where Ag(x1,X2) € A®A is defined by
Az(x1.x2) = ((B)x (BN 7" X1 () ][ Poalxaxa (@) (%" (@)7)

qtep

< IT Qutal@! @h)
ql(c,8

where Pg 4 and wac;l q are polynomials defined in (3.4). If R is an Op-
algebra, the theta operator 6, € End(R[[qajrl]]) for 0 € Gal(F/Q) is defined
by
0,0 asd”) =D o(B)asq”.
B

B
For Q € Xy, let £ be the finite order Hecke character of A7 given by

g = eQw_kQ oN.

Proposition 5.2. For every (Q, P) € %}t X %X with kg < kp, we have the
interpolation

gre~Fr S kQ(Xl%lfp, x26p")  if 2kp > K,
9kQ_1EkQ,2kP+2(X1§§1£P7 X285t if 2kp < ko,

where § = 05,05, is the theta operator 6(3_ 5 agq®) = 25 N(B)agq”.

E(x1,x2)(Q, P) =

Proof. Let p = lec_zlfp and v = XQEIZI. Put k = 2kp — kg. For an integer
n prime to p, we have

As(x1,x2)(Q, P) =N(B)k e~ r 1= ((8)) [ [ Pa.a (i (a)ak)

qtep

X T Qs O i ™ (@)ag).-
a/(c.9)
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1is unramified outside p, one verifies that

Q 1y O X2k TH(@)X) = Q1 g(X).
By Corollary [3.8] we find that
N(B)re=*r - af (u,v,k) ifk >0,
N(B) kPt o (u,v,2 = k) if k <0.

Since XIIXQ,LW_

As(x1,x2)(Q, P) = {

The proposition follows immediately. O

5.4. The construction of the twisted triple p-adic L-function. For
any Op-algebra R, define the diagonal restriction map by

resp/q - R[[qDJ_rl]] — R[q], Z aﬁqﬁ — Z ( Z ag)q”.

pevt n>0 pevt
Trp/q(B)=n

For an even integer a and a finite order Hecke character
(5.2)  ¢: FX\A?;/@é — O such that ¢,(—1) = (—1)% for o € ¥R,
we define the two-variable g-expansion E([;I] (X,T) e A@A[[qall]] by

a—j

BY(X,T) = Bw;® ,wpe)(1+X)/2 —1,(1+T)/> 1),
We define Gg:] (X,T) € A®A[q] as the diagonal restriction
G([Z](X, T) :=resp/q (EE;] (X,T)).
We regard A as a subring of AQA via z — z ® 1. Let

X ={Qex{ | kg =0(mod 2)} C X7.
Lemma 5.3. The g-expansion GEZ] belongs to M(NC,w™2 A)@,(ASA).
Proof. Let Z = (1+T)(1+ X)~! —1 and write

G(X,2) =Gy (X, (1+ X)(1+2) - 1).

If ¢ € pp=(C) is a p-power root of unity, let oc : Aj — C* be the Hecke

character a¢(a) = (N(a))y |[x=c—1. By Proposition , for any point @ €
}:;r+, we have

G(Q.C— 1) =E] ,(1qcvec)ls € Mig(CN, w2Eg),

a—j a

where pg ¢ = wp® a¢ and vg ¢ = wF2aC_1§é%. This shows that
G(X,(—1) e M(NC,w' ™2 A) ®0 O[(]
for every ¢ € pp=(Cp). We see that
G € M(NC, w72, M)@0[Z] = M(NC, w2, A)&(ABA)
by [Hid93l Lemma 1 in page 328|. O
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In view of the above lemma, we can apply the ordinary projector e ® 1 to
GE;} and obtain an A-adic ordinary modular form eG([Z] = (e® 1)G([;] with
coefficients in AQA.

Lemma 5.4. We have eGEZ} € eS(N, w2, A)B(ARA).

Proof. Notation is as the above Lemma For (Q,() € %iH X fipee (C)
as above, let 1 = pg¢ and v = vg¢. Then G(Q,( — 1) is the diagonal

restriction of the holomorphic Eisenstein series E:Q /2(/’[/7 v). The adelic lift

of E;'Qﬂ(u, v) is given by Fa(g, f'D7S)|5_kQ/271 with D = (u, v, kg/2,M,¢).
—fell
By (3.1), the constant term function of Ea(g, fp,s) is given by fu,aop.s +

fu,r/,ip,s” and by (3.5) its values at g € GL2(Ap) all vanish whenever g, is
upper triangular. The lemma now follows from [HY20, Lemma 6.7]. ([

Definition 5.5. Let f € eS(N,w’~2,1) be a primitive Hida family. The
p-adic twisted triple product L-series £ B is defined by
)

)

L := the first Fourier coefficient of 1f(eG£;}) € (I®A) ®1 Fracl.

By Remark L f(Q, P) is finite at every arithmetic point @) € %f’ and
¢ b

P € Spec A(C)).

Remark 5.6. If we replace the Eisenstein series EL?] by a Hida family of

Hilbert cusp forms over F', then the above construction yields the twisted
triple product p-adic L-functions constructed in [I[sh17] and [BCF20].

5.5. The interpolation formula. The weight space of critical points is
defined by

XM= {(Q,P) € X{ x X} | kg > kp, kg = kp = 0(mod 2)}.
The purpose of this subsection is to give the precise formula of £ glal f(Q, P).
d) b

We begin with some notation. For an arithmetic point @, denote by fOQ
the normalized newform of weight kg and conductor Ng = Np"@ corre-
sponding to fq. Let HfZQH%O(NQ) be the usual Petersson norm of f¢, and

let &, (fg,Ad) € C* be the modified p-Euler factor for the adjoint motive
associated with f defined in [Hsi21) (3.10)]. Define the modified period

Per(fo) = (=2V=1)"" | £l 7y (ng) - Ep(f @ Ad) € C*.
Let of,p Q, — C* be the unique unramified character with

1*kQ

(5.3) 0t (P) = a(p, fo)p 2

Definition 5.7 (The test vector). Let eS(NC,w’~2 T)[f] be the subspace of
eS(NC,w’~2 1) consisting of ordinary I-adic forms h such that th = A¢(t)h
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for all ¢ € T(NC,N). For each prime factor ¢ of C, let {aq(f),B4(f)} be
the roots of the ¢-th Hecke polynomial

Hy(z, f) =2 —alg, flz +q 'w(9) () x -
We fix a choice of roots {a,(f )}q\C' Enlarging the coeflicient ring O if

1

necessary, we can assume og(f) € I. Let ]vc be the unique Hida family in
eS(NC,w =2 T)[f] such that a(1, f) = 1 and U, f = a,(f)f for ¢ | C.

The following interpolation formula asserts that £ essentially inter-

7-f

B

polates the values of the toric period integral B}(Q( ¢(CP")) defined in ([.2) at
Q

the special element ¢(°?") in Definition .

NI

_ 1 ~
Proposition 5.8. Let (X, T) := (ArC)* (Ar); € (A®A)*. For every

(Q, P) € X" we have

(=2)(~COVTD FLOL ) e (o
I, &) Brol )

L} (kp — "?QL T, ® W kPep)
vkp—1 Q
< 2 Per! (fQ)
kg +1 Gp(1) - §(Q, P)ey

-1
" ”(’“P — T e kP) s
Cr (2 (0™) 1",

L ¢ (Q,P) =

1 ko—2

) .
where xg == ¢ - eQQw 2o NF/Q and c1 1s the constant

01:4(—)2wp AF HE (J5q EZ)
ale
Here ~(s, ) is the gamma factor of the character yu = Qmewa kp Pepy.

Proof.  We first note that since the specialization f at @) is a p-stabilized
newform of tame conductor IV, by the multiplicity one for new and ordinary
vectors, we have

(5.4) Lo T (e(GE(@, P)) = Ly ,(Q. P) - Fo

We put
1 ko—7 1 —
1 QI L a—kp
— 2 — — 2 s
=€piw 2 and A = epw™ 2

D=

w

Put k1 = ]%Q and kg = I%P. By Proposition we have

1
OB (WEAR, AR'®) if 2ko > ki,

ENQ.P) = :
02 B oo (WEAR, AR O) if 2k < Ky,
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Applying the argument in the proof of [Hid88al, Lemma 6.5(iv)], it is not
difficult to see that for a Hilbert modular form h over F' of weight (k1, k2)
and non-negative integers a, b,

e Hol (6%, 0, 0% u)ls) ) = € ((602,60,1)]5) .

where (521’01 5,’;2?02 is the Maass-Shimura differential operator and Hol is the

holomorphic projection as in [Hid93, (8a), page 314]. It follows that

(5.5) eGYN(Q, P) = e(ELN(Q. P)|5) = eHol(ET|),
where

ki—k 1 _ .
(5.6) B = 52é2_21E;§€2_k1(w},)\F,l)\F1¢) if 2ky > ki,

ST B o o (WEAR AR G) i 2k < Ky
where 03" = 6}, 61" . Let f:= fg € Sko (NP, eqw’™F@) and let

br= ¢('fQ) € A%Q (NpT7w), w = Eélkai‘j.

Let n be a sufficiently large positive integer. Let J and t,, € GL2(A) be the
matrices introduced in (4.3)). Let [—, —]: AQQ (Np™,w) X Ak (Np",w) — C
be the pairing defined by

(91, 02]:= (p(Tootn)p1 @ W, a),

where (, ) is the pairing defined in . Pairing with the form ¢;® on the
adelic lifts on both sides of (|5.4)), we obtain that

EEE;I]J(Q,P)' [er,or)= [ef: 15, Trenne @(Hol(ET|g))],

where 17, € (T(N,I)/pq) ® C C End Sk, (Np™,w™1) is the specialization
of 14 at Q. Since the Hecke operators {75} ¢INp and U, the holomorphic
projection Hol and the trace map Tron/n are self-adjoint operators with
respect to the pairing [—, —] (¢f. the proof of [Hsi2l, Proposition 3.7]), we
thus obtain

Lo Q. P) - [ 05]= [Uo(CN) : Uo(N)] - [5, 2(E"[9)]
On the other hand, according to and Proposition we have
O(E'|5) = Ealg, o)l ,_2ma-m-1, g € GLa(A),
where D is the Eisenstein datum

1 k
D= (W}Z«")\Fa (b_l)‘;‘la 7Q7 ¢ m)
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Therefore we see that

E[f](Q P) [prv‘pf]
=[Lo(CN) : To(N)] - (p(Tectn)ps, Ea(— fD,s)®W71>‘S:2k2—2k1—1
=[Fo(CN) : To(N)] - Z(s, p(Tootn) os)|_2k2-ti 1.

By [Hsi21, Lemma 3.6|, we have

(o7, 0f]= (p(Tootn)ps @w™t, 0f)

_ (a(2)7! o /v —ko—1 ot _wzjla?(pn) P"lq, S (2)
= BLa@): Loy 2T Pe) oM
Then we have the interpolation formula
E[a 7f-(Q P) ZD(Sap(jootn)yjf”s:k})*k?/?*l
. $Q(2)[SLa(Z) : To(CN)|(—2v—D)re* (1)
Perf(fq) wp 03 (") [P q, G (2)

for any sufficiently large positive n. From the above equation and the formula
of Zp(s, p(Jsetn)@y) in Theorem with the fudge factors given by

foo = A(—v/=T) TR/ (-1) T

fram = 0 A (AR)AL T 5 = <AF>*% (@) (Ap) (P)-wpT (Ap) 02,
w; ( a¢q) — _% .w_% 5( »@bq) . kTQ
fC = Wp (C)l;c[ Cq(l) <C>X (Q) p (C) ]Ci!: Cq(l) C y

we get the desired interpolation formula by noting that

_ @, Py~ Yo o Ty—ke—1( /TT\—kp
fooframe—quCq(l) ( ﬁ06) ( 2\/71) @ (ﬁ) :

6. p-ADIC L-FUNCTIONS ATTACHED TO MODULAR FORMS AND REAL
QUADRATIC FIELDS

In [BDO09], the authors construct square root p-adic L-functions associated
with Hida families and real quadratic fields, interpolating the toric period
integrals of elliptic cusp forms over real quadratic fields. The purpose of this
section is to give a mild improvement of this construction and more general
interpolation formulae.
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6.1. Preliminaries on modular symbols. We review the theory of clas-
sical modular symbols in the semi-adelic language. Let P := P'(Q) and
Dy = Div’P x GLy(Q). For each r € P we denote by {r} its image
in the divisor group of P. Let v € GLy(Q) and u € GLy(Q) act on
D = ({r} —{s}.g:) € Do by

yDu=({y-r} ={v-s},v9ru).

For a ring R, let L,(R) be the space of two-variable homogeneous polyno-
mials of degree n with coefficients in R. For P = P(X,Y) € L,(R) and
g € GLa(R), define

P) <Z 2) (X,Y) = P(aX +bY,cX +dY).

Let L} (R) = Hompg(Ly,(R), R). Moreover, if R is a Z,-algebra, let GLy(Z)
acts on Ly (R) by (pn(w)§)(P) = &(Pluy). For an integer N and a Hecke
character x modulo N valued in R, we denote by MSy(N, x, R) the space
of p-adic modular symbols of weight k, level N and character y, consisting
of maps £ : ®g — L;_,(R) such that

E(vDu) = x 1 (u) - pr-2(u, )E(D)

for v € GL3(Q) and u € U;(N). This space is known to be a finitely
generated R-module equipped with the Hecke action. The Hecke operators
T, for ¢t Np act on MSj(N, x, R) by the formula

_ 10 q b

(6.1) qu(D)_g<D <0 q>>+ > §<D <0 1>>
b€Zq/qZq
Define the operator Uy, for ¢ | N and g # p by the formula
q b
(6.2) UgD)y= > §<D (0 1>> for q | N
b€Zq/qZq

and the operator U, by

_ p a p a

a€Zy/pZy

The ordinary projector e := lim Ug! is a convergent operator on MSk (N, x, R).

n—o0

Choosing any element v € GL2(Q) with dety < 0, we define an involution
[c] on & € MSk(N, x, A) by

[cl¢(D) :=&(y- D).
This definition does not depend on the choice of such v. We define

rom () ¢ om (1)
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6.2. Modular symbols associated with modular forms. To each clas-
sical cusp form f = f(z,gf) € Sk(N,x), we associate a classical modular
symbol n¢ : D9 — L;_,(C) defined by

nr({r} —{s},g9:)(P) := / f(z,9t)P(z,1)dz.
It is easy to see that for « € GL] (Q) and u € Up(N),

n(aDu) = pr_s()np(D)x " (u).

The involution [c] acts on the classical modular symbol 7 by [c]ns(D) =
pi—2(7)nf(yD), where v € GL2(Q) is any element with dety < 0. By
definition,

[c]ng (D) = —ny, (D),

where f,(z,9¢) = f(—z, <_01 (1)> gf>. On the other hand, the associated

p-adic modular symbol £y € MS,(N, x, Cp) is defined by

(6.3) Er(D)(P) = t(ns(D)(Plg, 1)) for D = (d, gr) € Do.

If f is a Up-eigenform with eigenvalue o € Z,;, then {; is also an eigenvector
of U, with eigenvalue a. Following the discussion in [Kit94, p.95|, for each
D € ®g we define the p-adic measure pf(D)(x) on Z, by the rule

T
/ pp(D)(z) = a "¢y (D <p0 i‘) )(Y’H) for n € Z2°.
a+p"Zy
Lemma 6.1. For any P € Ly_o(Z,),

o, et =7 (0 (5 1) ) (71 (1) )

Proof. This is [Kit94, Lemma 4.6]. We paraphrase the computation there
in our semi-adelic formulation. Note that £y has bounded denominators in
the sense that p4 - §f € MSk(N,X,Zp) for some A > 0. Let 0 < j <k —2
be an integer. For every m > A 4+ n, we have

oo 1) (e 9)
pm Tl m n m n
5 ool ) )
c=0

=am St (0 (7 ) ot mea 71,
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Therefore, we find that

/ 21 (D) ()
a+p"Zy

m—n—1

p m a3
= Z a ™" (a+p"c)&s (D (pO ¢ +1p C> >(Yk2)
m—o00 c=0
_n p" a jyvk—2-j| (P" @
e (o (1)) (er=|(5 1))
This shows the lemma. O

6.3. Hida theory for modular symbols. We review the I-adic symbols
developed in [Kit94] in the semi-adelic formulation. Let I be a normal and
finite domain over A = O[X] with X = [u] — 1 and let N be a positive

integer coprime to p. Put
b
up = <8 1>,aez;, bezp}.

For each non-negative integer n, let p(”) be the principal ideal of I generated
by (u=2(14+X)—1)?" —1. Define the A-adic Hecke character ax : Q*\A* —
A* by

UL (Np™) = {u € U1(N)

ax(z) = <€cy0(z)>x <€cyC(Z)>72 )
logy ecyc(2)

where (gcye(2)) y = (1 +X) "% s defined in (5.1)).
Definition 6.2. Define the space of I-adic modular symbols of tame level
N by

MS(N,T) := lim lim MSy(Np™, aux, 1/p™).

In other words, MS(N,I) consists of functions = : ®y — I such that
e =(yDu) = Z(D) for v € GL5 (Q) and u € Uy (Np™);
e =(Dz) = ax(z71) - E(D) for z € Q%;
e = is continuous in the sense that for any n, there exists r, for which
the function = : g — I/p(™ factors through Do /U; (Np™).

The space MS(N,I) is an I-module equipped with the action of Hecke
operators {Tq}qu and {Uq}q| v as in (6.1) and (6.2), while the U,-operator

is defined by
- - P a
U,ED)= > :(D (0 1) >

a€Zy/pZy

For (d,pN) = 1 we define the level-raising operator
Vi: MS(N,I) - MS(Nd,I)



42 MING-LUN HSIEH AND SHUNSUKE YAMANA

by

(6.4) ViE(D) =d L - E(D (d(_)l g) )

The ordinary projector e = ILm UZ! exists in Endy MS(N,I). The space
n oo

eMS(N,I) consists of the ordinary I-adic modular symbols. We remark
that e MS(N, 1) is nothing but MS°4(I) = Homy (UM 4(0O), 1) defined
in [Kit94, §5.5]. The involution [c] on MS(N,I) is defined by [c]=(D) :=
E(yD) for any v € GL2(Q) with dety < 0. Put

eMS(N,I)F := (1 £ [c])eMS(N,T).
The following is proved in [Kit94, Proposition 5.7].
Theorem 6.3. The space e MS(N, 1) is free of finite rank over 1.

We recall the I-adic measure associated with ordinary I-adic modular
symbols. Let C(Zy,I) be the space of continuous I-valued functions on Z,
and D(Z,,I) :== Homi(C(Z,,I),I) be the space of I-adic measures on Z,. To
each ordinary I-adic modular symbol E € e MS(N, I), we associate a unique
linear map D +— p=(D)(z) in Hom(®Dg, D(Zy,I)) such that

(6.5) /Z Pla)p=(D)(z) == n}i_r)noop:z_%lp(a)Ulij<D (p;” ?))EI

P

for D € ©g and P € C(Z,,I). It is straightforward to verify that the
right hand side is a p-adically convergent Riemann sum valued in I. For

P eC(Zy,1) and u € Up(p) with u, = <Z Z), define
Plu() = P (0 ax(ea +d)
B cx+d) '

Lemma 6.4. Let P € C(Zy,I).
(1) For m € Z=9,

/pmzp P(z)p=(D)(x) = /z P(p") iy mz <D (P(;” (1)> >(x)'

P

(2) For u € Uy(pN), we have
Playuz(Du)(z) = [ Plu(z)u=(D) ().
Zp Zp
Proof. The verification of part (1) is straightforward by (6.5). To see Part

(2), it suffices to show the equation for u, of the form <i (1)) and (8 Z) :
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Let u, = <i ?) with ¢ € pZ,. By definition, the left hand side equals
. 1 0\ /p™ a
o (5 9)

L < e p™ a(l+ac)™ VY [((1+4+ac)™! 0
_W}gnoo — P(a)U, “<D<O 1 cp™ l+ac) )

Making change of variable a = z(1 — c¢z)~!, we find that the last Riemann
sum equals

p"—1

S8 > Pl(l—c) U, "= <D <ng i) )ax(l —cz)™

2=0

:/p
ZP

The case for u, = (

<_16 ?) (@)uz(D)().

g Z) is similar. We omit the details. O

For an arithmetic point @ in %fr , we denote by pg the kernel of the
specialization @ : I — C,. Put O(Q) = I/pg and rqo = max {1,cy(eQ)}-
Here ¢y (e@) is the exponent of the p-conductor of eg. For any O(Q)-algebra
A, we put

MSFYA) = eMSy, (Np'?, w* F2eq, A).

The following theorem is an integral version of the control theorem for I-
adic modular symbols proved in [GS93| Theorem 5.13|. The result must be
well-known to experts, but since we could not locate an exact statement in
the literature, we provide some details for the sake of completeness.

Theorem 6.5 (Control Theorem). For each arithmetic point Q, there is a
Hecke-equivariant specialization isomorphism

spg 1 eMS(NV,1)/pq ~ MSF(O(Q)).
E(mod pq) = spg(E) == Eq,
where Z¢ s the p-adic modular symbol of weight kg defined by

EQ<D><P>=@< / P<x,1>uE<D><x>), P(X,Y) € Ly, 2(0(Q)).

We call Zq the specialization of = at Q.

Proof. First we note that Z¢ is a p-adic modular symbol of weight kg and
character wZ*erQ by Lemma It is straightforward to verify that the
map spg is Hecke-equivariant, so Z¢ belongs to MSgd((’)(Q)). We proceed
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to show spg is an isomorphism. Let n = kg — 2, O = O(Q) and xq =
ax (mod pq) = efy.w "eg. We have

eMS(N,I)/pg = @@GMSQ(NPT, XQs O/pt).

For any Z,-module R, define ¢, : L} (R) = R, ,(¢) = ¢(Y™). By [Kit94,
Corollary 5.2], ¢, induces a Hecke-equivariant isomorphism
in: eMSp, (Np", equw ™", 0/p") ~ eMS2(Np, xq,0/p")

for » > t. Note that 1,(Eg(D)) = Zg(D)(Y™) = Q(E(D)). We deduce that
spg is indeed given by the isomorphism

eMS(N,1)/pq = limlim e MS>(Np", xq, O/p")
t T

1
& @@eMSkQ(NpT,EQw_”,O/pt) = eMSy, (Np"?, equw™", 0),
t T

where the last equality is the base change property [Hid88b, Lemma 1.8 and
Corollary 2.2] for ordinary p-adic modular symbols. (]

6.4. The distribution-valued modular symbols of Greenberg and
Stevens. Let L{, be the set of primitive elements in Z, X Z,, i.e. elements
in Z, x Z, which are not divisible by p. We recall the connection of A-
adic modular symbols and modular symbols with valued in the space D(L;)
of p-adic measures on Lj, described in [GS93| §5]. For each k € C, with
k|, < 1, let Q) € SpecA(C,) be the unique point with Qx([u]) = u”
and let % be the set of homogeneous functions of degree k on Lj, i.e.
continuous functions h : Ly — Z, such that h(az,ay) = (a)* h(z,y) for all
a € Z,'. Then to each Z € eMS(N, A), we can associate a modular symbol
,ug's € Homyy, (v (Do, D(Lg)) characterized by the property that we have

/prz; h(z,y)ps® (D) (z,y) = Qx (/Zp h(z, 1),@(1))(96));

/z; . h(x,y)pg®(D)(z, y) = Qk( . h(1, —py)uup15<D (_Op é) )(y)>

for any k € Z, and h € .Fj_5. By a similar computation in Lemma one
verifies that the map uSS is Up(IV)-invariant, namely for any u € Up(N)

(6.6) hu™ (@, y)pe>(D)(z,y) = | h(z,y)peS(Du)(z,y).
Lo Lo

6.5. The Mazur-Kitagawa two variable p-adic L-functions. Let f €
eS(N,1,I) be a primitive Hida family of tame conductor N and let Ag :
T(N,I) — I be the corresponding homomorphism. For any integer C' prime
to N, let e MS(NC,I)*[f] be the space of I-adic ordinary modular symbols
= € eMS(NC,I)* such that t-= = A\¢(¢)Z for all t € T(NC, N). The space
eMS(N,1)*[f] ®1 FracI has rank one over FracI as f is primitive of tame
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conductor N. For an arithmetic point @, the space MS%rd(O(Q))i[fQ} is
free of rank one over O(Q). On the other hand, Shimura in [Shi77| proved
that 0 % é}tg c MS’érd(CP)i[fQ]' Therefore, having fixed a basis B}EQ of

./\/ng?rd(O(Q)), we can define the period Q?Q € C; associated with the
p-stabilized newform fg by

+ _ Ot at
ng_QfQﬁfQ'

Definition 6.6 (p-adic error terms). Let = € e MS(N,I)[f]. We define the
plus/minus error terms Er® (Eg) € C,, by the equation

=+ _ Er*(g) et
QT T of for
fa

To E € eMS(N,I)[f] and a finite order Hecke character x with x(—1) =
(—1)%, Kitagawa in [Kit94, Theorem 1.1] associates the two-variable p-adic
L-function L,(E, x) € IQA satisfying the interpolation property: for every
pair of arithmetic points (Q, P) € 3‘:;' X XX with kg > kp,

LY (kp — %,chg ® xw krep)

(=1
QfQ

Lp(E(il)l,X)(Q,P) :(_,\/jl)kpfl .

kg +1
2

? —

-1
(6.7) Xy <kP - 10fgp @ Xp""kaEP,p> Er(~Y (Eq),

The L-functions associated with modular forms are related to the automor-
phic L-functions in the following way:

kg +1 _
L<k‘p— QQ ,7TfQ®X>:2(27T)1 kPF(k’p—l)'L(k‘p—l,fQ(@X).

6.6. The square root p-adic L-function associated with a Hida fam-
ily and a real quadratic field. We review the construction of the square
roots of p-adic L-functions attached to Hida families and real quadratic fields
in [BD09]. Let Fy be the group of totally positive elements in F' and let
CIH(O¢) := F\F*/ @é denote the narrow ring class group of conductor C.
For t € F*, write [t] = Fyﬁ@é for the class represented by t. Let ec be a
generator of the unit group F; N @é Let Py(X,Y) = (X —0Y)(X —0Y)
and § =0 — 0 = /Ap. Define Ux: Z; — A* by

1
Ix(z) = (2)% (@)
So ¥% = ax| zx Let ¢ be a finite order Hecke character of A% as in (5.2)).

Equivalently, ¢|z, is an even/odd character of C1"(O¢), depending on the
sign of ¢eo(8) = (—1)% or the parity of %
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Definition 6.7. Let Z € e MS(NC,I)*[f]. For D € ®g, we define L=z(D) €
I as follows: if p is split in F', put

Lz(D)= [ Ix(@)u=(D)(z) €T,

Z;

if p is inert in F', put

L=(D) = g Ix (Py(z,1))p=(D)(z)

rap [ 19X<P@<1,—px>>ua(D (_Op })))@c).

'3

Fixing any base point r € P, we define the (square root) p-adic L-function

‘CEi/F®¢ S | fOl" f/F by

Lotiposi= 3. O0x(Eere(NW®)) - Lz=({r} = {W(eo)r}, w(t)s{).
[tleC1t (Oc)

Note that the above definition does not depend on the choice of r and does
not depend on the representatives [t] in C1T(O¢).

6.7. The interpolation formulae. For an elliptic modular form f € S,(Np",w™1)
and a finite order Hecke character x of Ay with x[ax = w, writing ¢y =

&(f) for the adelic lift of f, recall that in (4.2) we have introduced the toric
period integral given by

B0 =By = [ e

Let f € eS(NC,1,I)[f] be the test vector in Definition . Then f can be
expressed as

flo)=TJa - B(HVy) - £,

qlC

where 3,(f) is the fixed choice of roots of the Hecke polynomial H,(x, f) of
f at q. Let = € e MS(N,I)[f] and define

2= [ = B(F)Vy) - E € eMS(NC, T[],
q|C

where Vj is the level-raising operator defined in (6.4). The next result shows
that L= /F&6 interpolates p-adically the toric period associated with f for

Qexyt.
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1 ko—2

Proposition 6.8. For Q € .’{iH we set xQ = ¢ - egfw S o Np/q. Let
+ = ¢oo(8) = (—1)2. We have

; XQ ((Cp™)
u 2o Fram) BT L
[’Ei/F®¢<Q) - quc Cq(l) Q?Q E (‘—'Q)
G0

Cr (e}, g,

for any sufficiently large n > max {c,(xq), 1}, where ¢(°P") € GLg(A) is
the special element defined in Deﬁnitz’on and af, = a(p, fQ) is the Up,-
eigenvalue of fq.

Proof. For simplicity, we write f = }'Q and ¢ = &(f) and put

1 kg-2
-1 kg

k=kg, wézeQ w2

D=

The first step is to work on the right hand side of the
assertion, expressing the toric period integral B}(Q (g(Cpn)) as a finite sum of

the values of the classical modular symbol njf in Let m(y) = (g y(—)1>

Then xg = gi)w; .

for y € R*. Fort € ﬁx, define the partial period by

Ly (o) :—/ z S pleem(y) ¥ (tu)t " ) xou)d*y.
Ry /et [U]Eéé/éépn

Then we see that the toric period B}(Q (<(€P")) equals
Q

n Cr, (1)
U(t (Cp™) Hdt = vol(OX p s ’
/AXFX\A; (U (t)s' P ) xq(t)dt =vol( c)pncp(l) [t]eCEIJF(:OC)XQ( )L ()

where VOl(@é) is the volume of the image of @é in QX\F* with respect to
the quotient measure dt/d* ¢ explicitly given by

vol(OZ) ™ = V/ApL(1, ) #(Z/CZ)* = L(1,7r)0C [[(1—q7Y).
q|C

By a direct computation, if z = ¢oom(y) - v—1 = ¢ - y?v/—1, then

J(soom(y), V—1)"% = Py(z,1) - (—V/—1Ap) 7,
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and dz = (20v/—1) - J(soom(y), v/—1)"2d*y. It follows that
k-2

Lig(e) = (2V=1) " (—V=1Ar) 5" 3"3 [CP"N(1)| 7
Y(ec)r
></ S xo() - £(5 () Py (5,1) T e

[U]E@\é/é\cpn

=0-INOI2 Y xens({r} — {Bec)r}, U(tu)t P (P, ),
[u]€DZ /0% n

where r can be chosen to be any point in P and

= 2V-1) N (-Cov-1)T |29|2
Forteﬁx,weset

= ({r} — {¥(ec)r}, ¥(1)s(”) € Dy
Putting
i (1)
pnCp(1)7

by = 0L, mr)TCT [ (1)
qlC
we have

XQ [ (Cpn
B}Z(G( P)) =ty E XQ ()L (»)
[t]eClT (O¢)

0t Y xe®NOL Y xewns(Dust)(Py? ).

[fleCIt (Oc) [uI€0Z /0% n

On the other hand, if we replace the base point r by ¥(d)r, noting that
N(4) < 0, we obtain that

k—2
B ) =ty Y xot) NG|

[t]eClt(O¢)

k=2 n b2
x Y xe)(=1) T [e]np(Dr - M) (Py? ),
[u]edy /ocpn

where [c] is the involution on classical modular symbols. Since xg(df) =
bt

(—1)%%0(5) = (=1) 2 ~!, we conclude that

k=2
By =0t > xq(t) IN(H)]

[t]eCIT (Oc)

z k=2
<Y xeny T (D) (Py?).
(W€D /O n

(6.8)
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The second step is to work on the left hand side of the assertion

b2 k=2
Lewp(@Q) = Y xQ)IN@)[42 N(ty) 7 - Zea(Dy)(Q).
[tleFX\Fx /O
Put Og = %. In view of , we need to verify the following interpo-
fao

lation formula
n 2-k
['éi (D)(Q) :UQOzfQN(tp) 2

1 k=2
x> w E(N@)nf (Dusy?) (Py® ),
(W€D /O n

(6.9)

0 1
For d | C, it is straightforward to verify that VdEg = Ugq - f‘j}de, and

hence éé = Uqg - fjjf It follows that for D = ({r} — {s},¢t) € Do and
P(X,Y) € Li,—2(Zp), we have

o[, P D))
w5 D) D) e
=Uq -z 11y (D (pg C{) >(P|9p1) by (63).

noo_
where g;,(,n) = <p 1) if p is split, and gl(,") = <_2)n (1)) if p is inert.

Now we verify in the case where p is split in F'. By Definition
Ly (Dy)(Q) equals

S wtee(f e Fus0ow) @) =w @)

a€(Zp/p"Zp)*

Oq -3 + Pt —a L S |
=50 Y wtean (o () )em'Figtes )
Q ac(z,/p"2p)*

1
by (6.10]). Then follows from the equations wy (—1) = (—1) 2z , and

(XY 0 (t51) = (X)) (’3’ 2) <11 _09> — N(5Y) - Pu(X,Y).
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In the inert case, Lz, (D¢)(Q) equals

Nt e (zw Nta- o (0 (7 ‘f))(P;f)
prlo1

w3 w00, ) () 5) )J)).

a=0

We thus obtain from the observations below
P a ny g 0 1 n
(5 Do =va-0 (0, §) oo,
0 1\ /p" ! a o (0 1 "
(_p 0) ( 0 1) Ur(p") = ¥(1 + pab) (_pn 0) Ui(p")-

This verifies in both cases and finishes the proof. O

7. DERIVATIVE OF THE TWISTED TRIPLE PRODUCT p-ADIC L-FUNCTION
AND STARK-HEEGNER POINTS

7.1. Factorization of L [a In this section, we show that the p-adic L-

7f
in Deﬁmtlon 5.5/ can be essentially factorized into a product

- /Fg¢ for f over F' and the Mazur-
Kitagawa p-adic L-function L,(E",w®). We will use an auxiliary p-adic
Rankin-Selberg L-function in the proof, so we first recall that for a primitive

Hida family g € J[¢] with some normal domain J finite over A, there exists
an element

function £ EEZ]v f

of the square root p-adic L-function Lz

LI(f®g) € ARIBA) @1 Fracl

such that for each point (Q1,Q2, P) € %f X %_‘f X f{j{ with kg, < kp < kg,
we have the interpolation formula:

LI(f©9)(Q1,Q2,P)
k k
LY (kp — w’ﬂfq)l X g, ® wkP)

1:)61'T (le )

kg, + k -
X7<]€P—Q12 QQ?QfQ17P®7TgQ27P> )

gy =)
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where o¢ R Q, — C* is the unramified character defined by (5.3) and

~(s, 0fo,» ® 7rgQ2,p) is the gamma factor in §2.6.4. We call L{(f ® g) the
primitive Hida’s three-variable Rankin-Selberg p-adic L-function associated
with f and g. Imprimitive three-variable p-adic L-functions (with some
Euler factors removed) were first constructed by Hida in [Hid88al, Theorem
I], and the primitive ones with the above form of the interpolation formula
were proved in [CH20, Theorem 7.1] following the method in [Hid88a]. We
first prove a preliminary result:

Proposition 7.1. Let f € eS(N,1,1) be a primitive Hida family. For every
E € eMS(N,I)[f] there is an element C= € FracI which is holomorphic at
every arithmetic point QQ € .’{f with the value

B PerT(fQ)

=
QfQQfQ

C=(Q) -Er(Eq)Er~ (Eq).

Proof. Choose a Dirichlet character y with x(—1) = —1 and an imaginary
quadratic field K where p is split. Let xx := x o Ng/q be a finite order
Hecke character of A%. Let g denote a primitive Hida family such that the

weight one specialization gg is a p-stabilized theta series 6&’2 associated
with xx. Define the two-variable p-adic L-function Ly(f,x ® xx) by

Ly(f 1 ® xx) = (1© Qo @ 1)(LL(f ® g))€ I®A.
Let %5\2) be the set of arithmetic points of weight 2. For P € %5\2), define

LP(E_a X)LP(E+7 XTK/Q)
Lp(f )k © XK)
From the interpolation formulae (6.7)) and (7.1]), we see that

Cap = (1 & P)< >E FraC(I Ko O(P))

for all Q € %fL with kg > 2. Hence Cz p is independent of the choice of
P and can be denoted as Cz. Thanks to Rohrlich’s theorem [Roh84], for

any arithmetic point ) € ff;r and P € %53), one can find an odd Dirichlet
character x such that L,(f,x ® xx)(Q, P) # 0, which implies that Cz is
holomorphic at Q. O

Remark 7.2. If the residual Galois representation associated with f is ab-
solutely irreducible and p-distinguished, then the Gorensteiness of the local
component of the Hecke algebra T'(N, I) corresponding to f is known thanks
to the work of Wiles et al. ([Wil95, Corollary 2, page 482]). It follows that
the I-module e MS(N,I)*[f] is free of rank one by [Kit94, Lemma 5.11].
Choose a basis = in each space. It is determined up to multiple of I*.
Put = = 2 + Z~. Then p-adic error terms Er™(Zq) are p-adic units for all
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Qe %;r by [Kit94, Proposition 5.12|, and Cz is a generator of the congruence
ideal C'(f) by a result of Hida [Hid88b, Theorem 0.1].

Now we are ready to prove the factorization.

Theorem 7.3. Let a be an even integer, ¢ : C1T(Oc) — O* an odd char-
acter of the exact conductor C, f € eS(N,1,I) a primitive Hida family of
tame conductor N, and E € e MS(N,I)[f]. Then we have

C= - LEEf],f =Lz reg Ly(E", w?) - feu,

where f € (A®A)* and the constant ¢, € Z(Xp) are defined in Proposition
with j = 2.
Proof. Propositions , (5.3) and (6.7) immediately show that

QfQ fQ f(Q, P)er
Per!(fo)Ert (Eg)Er (Zg)’

L 1(QP) =Lom oy (QULy(E" w")(@. P)

which combined with Proposition completes our proof. O
7.2. The derivative of EE[Q] £ We shall keep the notation in Let
¢ b

E be an elliptic curve over Q of conductor pN. There exists a primitive
Hida family f € I[q] whose specialization f, at some weight two point
Q € %;r is the elliptic newform f associated with FE by the modularity
theorem [Wil95]. Here I is the local component of T(N,I) corresponding
to Ag. Let 27 = {k € C, | |k[, < 1}. We write j : 2~ < SpecA(Cp)
for the map k — (Qg : [2] — zF). Let po be the kernel of Q2. Then we
have I C I,, = A, since f has rational coefficients. This implies that there
exists a neighborhood % around 2 € 2 such that j :  — SpecI(C,).
Define an analytic function on % x £ by

‘CE([;]J(kvs) = ‘CE([;]hf(QkaQs% (kv 5) EU X L.

Theorem 7.4. Suppose that p is inert in F and ¢ : C1T(Op) — O* is an
2,

odd narrow tdeal class character, i.e. C =1. Then L a]f( s) =0 and
oL 2 9a(E
, 1 9(E) o
CE o s 1) = L4 900 ) logp Py Ly(E,5) TEE . (AT
ok 2 cy
where

wyn € {£1} be the sign of the Fricke involution at N acting on f,

P, € E(F,) ® Q(¢) is the Stark-Heegner point in [Dar01l (182)],

L,(E,s) is the Mazur-Tate-Titelbaum p-adic L-function for E,

cr € Z>Y is the congruence number for f, mp € QX is the Manin
constant for E and 2F) = [H,(E(C),Z) : Hy(E(C),Z)T®&H,(E(C),Z)].
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Proof. For each Z € e MS(N, A) @ A(% )[f] we put
ﬁp(E/F,(]ﬁ, k) :ﬁgf/F®¢(Qk), keY.

Shrinking % if necessary, we may assume that the function £,(E/F, ¢, k) is
analytic on 7. Since 7y is special at the inert prime p, it is well-known that
the local root number of the base change BCp(7¢) ® ¢ is —1, and hence the
toric period ij must vanish by the dichotomy theorem of Saito and Tunnell
(See [Sai93] and [Tun83]). Proposition [6.8|shows that £,(Z/F, ¢,2) = 0, and

so by Theorem we have £ Bl f(2 s) = 0 for all even a, and get
0Ly Lr dﬁ
C=2) ai’i L(2,54+1) = TLE/F6,2) (T, wh) 2,5+ 1) (2 5+ ey

by Theorem
Now we fix the normalization of Z. The A,-module

eMS(N, D*[f] @11, = (eMS(N,A)* @ Ag,)[f]

is free of rank one. Let =* be the basis normalized so that the weight two

specialization Z HQ = Ef with the periods QF = (27v/—1)~ 1Qi, where Qi

are the plus/minus perlods for E such that Q7 5 and (\/7 )~1Q7% are real
and positive. By the inspection on the interpolation ( , we see easily
that the associated Mazur-Kitagawa p-adic L-function L ("+ w?)(2,s+1)
is the cyclotomic p-adic L-function 2L,(E, s) for the elliptic curve E. This
extra 2 comes from the factor 2 in the definition of the archimedean I'-factor
Fc(s) = 2(27r) *T'(s). On the other hand, it is clear that f(2,s + 1)¢; =

<AF>T with a = j = 2, and by the formulae in [Hid81l, p.255|, we have
117y ) = epmp?2 > Er 2 (V=1) 71405
We thus obtain

Coipy ~ Prl) OO Wy sy
=00 (—4n2) 0, mi2e®)

Putting these together, we get the stated formula from the following lemma.

O

Lemma 7.5. Assumptions being as in Theorem [T}, if = is normalized as
above, then we have

U (2/F.6.2) = L1+ o(om)wn) ogs Py

Proof. We will compute the derivative of £,(Z/F,¢,k) at k = 2 for the
normalized = above. Let uS5(z,y) be the p-adic measure on L{, attached to
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=~ introduced in By definition, we have the expression

Ly(E/F, ¢, k) = Z o(t) (ecyC(N(t)))%

[tleClt (Oc)
x / (@ —by)w—By) T @ ({r} — (2(e)r), U)oz,

Here €; is the totally posmve fundamental unit in O and ¢ is the finite part

of ¢ € GLQ(Q) defined in Choosmg a branch of the p-adic logarithm
log : F) — F},, we obtain

72 Yrgpen=g Y sl + ),

[tleCI* (OF)
where for 7 € C, with 7 € Q,,

Jr[t] ::/L log(z — Ty)ug® ({r} = {¥(er)r}, U(t)st) (,y)-

0

Let J = <_01 T<19)> € GLy(Q) < GLQ(Q). Write J, and J®) for its

image in GLy(Q,) and GLQ(Q(p)) respectively and let 7y = (—(}\7 (1)) €

GLQ(Q(p)) be the Fricke involution at N. Since J2 = 1 and sp = 1, one
verifies that

cJp =T TP = TU(om)st - 7w
for an appropriate choice of a finite idele oy € F* such that (am@ FNF) =N
We have J(0) = 0 and fL, p=-(D)(z,y) = 0 as fo is new at p. It follows
from the Up(NN)-invariance . ) that

il = [ togy e — 6983 () — (Wen)r} W) w.)

(7.3) _ // log(z — 0y)uSS ([e]({r} — {¥(er r}, U(tom)smn)) (2, y)

= (—1) . (—1) cWN - Jg[td&nel].
With the fixed choice of periods QF, it is straightforward to deduce from
[BDQ9, Corollary 2.6] that the p-adic logarithm of the Stark-Heegner point
Py is given by
logp Py= Y ¢(t)Jolt].

[t]eCI™(OF)
We thus obtain the formula for %( =/F, ¢,2) from (7.2) and ([7.3). O

Remark 7.6. The same argument applies to more general ring class char-
acters with split conductor (i.e. C' # 1 is a product of primes split in F),
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but the formulae are more complicated due to the non-canonical choice of
the test vector Z in the construction of L<_ IPee"
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