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Abstract. In this note, we revisit Hida’s construction of p-adic Rankin-Selberg L-functions by incorporating
Jacquet’s approach to automorphic L-functions on GL(2) × GL(2). This allows us to give a construction of
primitive three variable p-adic Rankin-Selberg L-functions associated with a pair of two primitive Hida families
in full generality and prove the functional equation of this p-adic Rankin-Selberg L-function.

1. Introduction

The theory of p-adic Rankin-Selberg L-functions for Hida families of elliptic modular forms has been devel-
oped extensively by Hida in [Hid85] and [Hid88a] and presents a landmark in the search of p-adic L-functions
for motives. The p-adic L-functions constructed by Hida are in general imprimitive in the sense that they
interpolate the critical values of automorphic Rankin-Selberg L-function with local L-factors at ramified places
removed. The primitive p-adic Rankin-Selberg L-functions were constructed in [Hid09, Theorem 3.3] under
certain local assumptions. The aim of this note is to go through Hida’s construction of p-adic Rankin-Selberg
L-functions with some new ingredients from Jacquet’s representation theoretic approach to automorphic L-
functions on GL(2)×GL(2) in [Jac72]. As a result, we obtain the primitive p-adic Rankin-Selberg L-functions
in great generality and deduce the interpolation formula in the form conjectured by Coates and Perrin-Riou
[CPR89], [Coa89] (See Remark 1.1(1) for the precise meaning). We hope that brining in representation theory
to Hida’s work mentioned above and the primitive p-adic L-functions can be useful in some applications, for
example, the precise formulation of three variable Iwasawa-Greenberg main conjecture for Rakin-Selberg con-
volutions. In order to give a precise statement of the main formula, we begin with some notation from Hida
theory for elliptic modular forms and technical items such as the modified Euler factors at the archimedean
place and the place p as well as the canonical periods of primitive Hida families. To begin with, let p > 3 be
a prime. Let O be a valuation ring finite flat over Zp. Let I be a normal domain finite flat over the Iwasawa
algebra Λ = OJΓK of the topological group Γ = 1 + pZp.

1.1. Galois representations attached to Hida families. For a primitive cuspidal Hida family F =∑
n≥1 a(n,F)qn ∈ IJqK of tame conductor NF , we let ρF : GQ = Gal(Q/Q)→ GL2(Frac I) be the associated

big Galois representation such that Tr ρF (Frob`) = a(`,F) for primes ` - NF , where Frob` is the geometric
Frobenius at ` and let VF denote the natural realization of ρF inside the étale cohomology groups of modular
curves. Thus, VF is a lattice in (Frac I)2 with the continuous Galois action via ρF , and the Gal(Qp/Qp)-
invariant subspace Fil0 VF := V

Ip
F fixed by the inertia group Ip at p is free of rank one over I ([Oht00,

Corollary, page 558])). We recall the specialization of VF at arithmetic points. A point Q ∈ Spec I(Qp) is

called an arithmetic point of weight k and finite part ε if Q|Γ : Γ → Λ×
Q−→Q

×
p is given by Q(x) = xkε(x) for

some integer k ≥ 2 and a finite order character ε : Γ → Q
×
p . For an arithmetic point Q, denote by kQ the

weight of Q and εQ the finite part of Q. Let X+
I be the set of arithmetic points of I. For each arithmetic point

Q ∈ X+
I , the specialization VFQ := VF ⊗I,Q Qp is the geometric p-adic Galois representation associated with

the eigenform FQ constructed by Shimura and Deligne.

1.2. Rankin-Selberg L-functions. Let εcyc : GQ → Z×p be the p-adic cyclotomic character. Let Q∞/Q

be the cyclotomic Zp-extension and let 〈εcyc〉Λ : GQ → Gal(Q∞/Q)
εcyc' 1 + pZp ↪→ Λ× be the universal
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cyclotomic character. Let
R := I⊗̂OIJΓK

be a finite extension of the three-variable Iwasawa algebra. Let

F = (f , g)

be the pair of two primitive Hida families of tame conductor (N1, N2) and nebentypus (ψ1, ψ2) with coefficients
in I. Let ω : (Z/pZ)× → µp−1 be the Teichmüller character. For each integer 0 ≤ a < p− 1, we consider the
big Galois representation ρV : GQ → GL4(FracR) realized on the lattice

V = Vf ⊗̂OVg⊗̂O 〈εcyc〉Λ ω
aε−1

cyc.

Let Xf
R ⊂ SpecR(Qp) be the f -dominated weight space of arithmetic points of R given by

Xf
R :=

{
Q = (Q1, Q2, P ) ∈ X+

I × X+
I × XΛ | kQ2 < kP ≤ kQ1

}
.

For each arithmetic point Q = (Q1, Q2, P ) ∈ Xf
R, the specialization

VQ = VfQ1
⊗ VgQ2

⊗ εPωa−kP εkP−1
cyc

is a p-adic geometric Galois representation of pure weight wQ := kQ1
+ kQ2

− 2kP . Next we briefly recall
the complex L-function associated with the specialization VQ. For each place `, denote by WQ`

the Weil-
Deligne group of Q`. To the geometric p-adic Galois representation VQ, we can associate the Weil-Deligne
representation WD`(VQ) of WQ`

over Qp (See [Tat79, (4.2.1)] for ` 6= p and [Fon94, (4.2.3)] for ` = p). Fixing
an isomorphism ιp : Qp ' C once and for all, we define the complex L-function of VQ by the Euler product

L(VQ, s) =
∏
`<∞

L`(VQ, s)

of the local L-factors L`(VQ, s) attached to WD`(VQ)⊗Qp,ιp
C ([Del79, (1.2.2)], [Tay04, page 85]). According

to the recipe in [Del79, page 329], the Gamma factor ΓVQ
(s) iof VQ is defined by

(1.1) ΓVQ
(s) := ΓC(s+ kP − 1)ΓC(s+ kP − kQ2) (ΓC(s) = 2(2π)−sΓ(s)).

On the other hand, denote by πfQ1
= ⊗vπfQ1

,v (resp. πgQ1
) the irreducible unitary cuspidal automorphic

representation of GL2(A) associated with fQ1
(resp. gQ2

). In terms of automorphic L-functions, by [Jac72,
Corollary 19.16] we have

ΓVQ
(s) · L(VQ, s) = L(s+

2kP − kQ1
− kQ2

2
, πfQ1

× πgQ2
⊗ εPω−kP ),

where L(s, πfQ1
× πgQ2

⊗ εPω−kP ) is the Rankin-Selberg automorphic L-function on GL2(A)×GL2(A).

1.3. The modified Euler factors at p and ∞. Let GQp
be the decomposition group at p. We consider the

following rank two GQp -invariant subspaces of VQ:

(1.2) Fil+ V := Fil0 Vf ⊗ Vg ⊗ ωa 〈εcyc〉Λ ε
−1
cyc.

The pair (Fil+ V,Xf
R) satisfies the Panchishkin condition in [Gre94, page 217]) in the sense that for each

arithmetic point Q ∈ X•R, the Hodge-Tate numbers of Fil+ VQ are all positive, while the Hodge-Tate numbers
of VQ/Fil+ VQ are all non-positive.1 Define the modified p-Euler factor by

(1.3) Ep(Fil+ VQ) :=
Lp(Fil+ VQ, 0)

ε(WDp(Fil+ VQ)) · Lp((Fil+ VQ)∨, 1)
· 1

Lp(VQ, 0)
.

Here (?)∨ means the dual representation. We note that this modified p-Euler factor is precisely the ratio
between the factor L(ρ)

p (VQ) in [Coa89, page 109, (18)] and the local L-factor Lp(VQ, 0).
In the conjectural interpolation formula of p-adic L-functions for motives, we also need the modified Euler

factor E∞(VQ) at the archimedean place as observed by Deligne. In our case, this Euler factor is given by

E∞(VQ) = (
√
−1)1+kQ2

−2kP .

1The Hodge-Tate number of Qp(1) is one in our convention.
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This factor is the ratio between the factor L(
√
−1)

∞ (VQ) and the Gamma factor ΓVQ
(0) in [Coa89, page 103

(4)].

1.4. Hida’s canonical periods. We review Hida’s canonical period of an I-adic primitive cuspidal Hida
family F of tame conductor NF . Let mI be the maximal ideal of I. For a subset Σ of the support of NF , we
consider the following

Hypothesis (CR). The residual Galois representation ρ̄F := ρF (mod mI) : GQ → GL2(F̄p) is absolutely
irreducible and p-distinguished.

We say ρ̄F is p-distinguished if the semi-simplication of the restriction of the residual Galois representation
ρF (mod mI) to the decomposition group at p is a sum of two characters χ+

F ⊕ χ
−
F with χ+

F 6≡ χ−F (mod mI).
Suppose that F satisfies (CR). The local component of the universal cuspidal ordinary Hecke algebra corre-
sponding to F is known to be Gorenstein by [MW86, Prop.2, §9] and [Wil95, Corollary 2, page 482], and
with this Gorenstein property, Hida proved in [Hid88b, Theorem 0.1] that the congruence module for F is
isomorphic to I/(ηF ) for some non-zero element ηF ∈ I. Moreover, for any arithmetic point Q ∈ X+

I , the
specialization ηFQ = ιp(Q(ηF )) generates the congruence ideal of FQ. We denote by F◦Q the normalized
newform of weight kQ, conductor NQ = NFp

nQ with nebentypus χQ corresponding to FQ. There is a unique
decomposition χQ = χ′QχQ,(p), where χ

′
Q and χQ,(p) are Dirichlet characters modulo NF and pnQ respectively.

Let αQ = a(p,FQ). Define the modified Euler factor Ep(FQ,Ad) for adjoint motive of FQ by

(1.4)

Ep(FQ,Ad) = α
−2nQ
Q

×


(1− α−2

Q χQ(p)pkQ−1)(1− α−2
Q χQ(p)pkQ−2) if nQ = 0,

−1 if nQ = 1, χQ,(p) = 1,

p(kQ−2)nQg(χQ,(p))χQ,(p)(−1) if nQ > 0, χQ,(p) 6= 1.

Here g(χQ,(p)) is the usual Gauss sum. Fixing a choice of the generator ηF and letting ‖F◦Q‖2Γ0(NQ) be the
usual Petersson norm of F◦Q, we define the canonical period ΩFQ of F at Q by

(1.5) ΩFQ := (−2
√
−1)kQ+1‖F◦Q‖2Γ0(NQ) ·

Ep(FQ,Ad)

ηFQ
∈ C×.

By [Hid16, Corollary 6.24, Theorem 6.28], one can show that for each arithmetic point Q, up to a p-adic unit,
the period ΩFQ is equal to the product of the plus/minus canonical period Ω(+ ;F◦Q)Ω(− ;F◦Q) introduced in
[Hid94, page 488].

1.5. Statement of the interpolation formula. Now we give the statement of the main formula. Let
(f, g) = (fQ1

, gQ2
) for some arithmetic specilization. Let Σexc be the finite set of primes ` such that (i) πf,`

and πg,` are supercuspidal, and (ii) πf,` ' πf,` ⊗ τQ`2
' π∨g,` ⊗ σ, where τQ`2

is the unramified quadratic
character of Q×` and σ is some unramified character σ of Q×` . Note that this set Σexc does not depend on the
choice of arithmetic specializations.

Theorem A. Suppose that f satisfies (CR). For the fixed generator ηf of the congruence ideal of f , there
exists a unique element Lf

F ,a ∈ R such that for every Q = (Q1, Q2, P ) ∈ Xf
R in the unbalanced range dominated

by f , we have the following interpolation formula

Lf
F ,a(Q) =ΓVQ

(0) ·
L(VQ, 0)

ΩfQ1

· (
√
−1)1+kQ2

−2kP Ep(Fil+f VQ)
∏

`∈Σexc

(1 + `−1).

Remark 1.1.
(1) We call Lf

F ,a the primitive p-adic Rankin-Selberg L-function for F with the branch character ωa.
The shape of the interpolation formula exactly complies with the form described in [Coa89, Princi-
pal Conjecture] in the sense that it has the correct modified Euler factors at p and ∞. Note that
(
√
−1)1+kQ2

−2kP is the modified Euler factor at the archimedean place. However, due to the multi-
plication by ηf a generator of the congruence ideal, the period ΩfQ

we use here may not agree with
the period in [Coa89, Principal Conjecture] up to Q×. The conjectural form of the interpolation of
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p-adic L-functions proposed by Coates and Perrin-Riou is in particular useful in the comparison among
different constructions of a p-adic L-function.

(2) The p-adic L-function D(P,Q,R) constructed by Hida in [Hid88a, Theorem 5.1d] in general inter-
polates critical values of imprimitive Rankin-Selberg L-functions. Therefore, after making a suitable
change of variable for the cyclotomic one, this D(P,Q,R) essentially must be the product of Lf

F ,a and
local L-factors at places dividing lcm(N1, N2). It would be a routine and very tedious task to verify
this relation, so we do not purse this here.

(3) As an immediate consequence of the above explicit interpolation formulae combined with the functional
equation of the automorphic L-functions for GL2(A)×GL2(A), we obtain the functional equation of
the primitive p-adic Rankin-Selberg L-functions. For the precise statement, see Corollary 7.2.

Needless to say, the idea of the construction of Lf
F ,a is entirely due to Hida, which we recall briefly as

follows. Roughly speaking, one begins with a three variable p-adic family of Eisenstein series Eψ1,ψ2,a of tame
level N := lcm(N1, N2). Let f̆ be the primitive Hida family associated with f twisted by ψ−1

1 ψ1,(p), where
ψ1,(p) is the p-primary part of ψ. Viewing Eψ1,ψ2,a as a q-expansion with coefficient in R, we define L f

F ,a ∈ R
by

L f
F ,a := the first Fourier coefficient of ηf · 1f̆ TrN/N1

e(gEψ1,ψ2,a),

where e is Hida’s ordinary projector, TrN/N1
is the trace map from the space of ordinary R-adic modular

forms of tame level N to that of tame level N1 and 1f̆ is the idempotent in the universal I-adic cuspidal
Hecke algebra of tame level N1. The standard Rankin-Selberg method shows that the specialization of Lf

F ,a

at (Q1, Q2, P ) is a product of the value in the right hand side of the equation in Theorem A and certain
local fudge factors Ψ∗` at some bad primes ` | N . In order to get the primitive p-adic L-function, one has to
choose Eψ1,ψ2,a carefully so that these fudge factors Ψ∗` are essentially 1. It seems we do not have a simple
construction of such a nice Eisenstein series in the most general situation. Nonetheless, we can construct such
kind of Eisenstein series easily and show that Ψ∗` = 1 with small effort whenever F = (f , g) satisfies certain
minimal hypothesis (See the hypothesis (M) in §6.2), which practically requires F have the minimal conductor
among (prime-to-p) Dirichlet twists. We now take a suitable twist F ′ = (f⊗λ, g⊗λ−1) so that F ′ is minimal.
On the other hand, we have shown the right hand side of Theorem A is invariant under (prime-to-p) Dirichlet
twists (i.e. Ωf“ = ”Ωf⊗λ) in [Hsi21, Prop. 7.5], so the desired primitive L-function can be defined by

Lf
F ,a := L f⊗λ

F ′,a .

This idea was already employed in [Hsi21].
This paper is organized as follows. In §2, we review some standard facts and the notation in modular

forms and automorphic forms as well as their well-known connection, and in §3, we recall some ingredients in
Hida theory for ordinary Λ-adic forms, in particular, the congruence ideal associated with a primitive Hida
family. In §4, we give the construction of the three p-adic family of Eisenstein series following the method
of Godement-Jacquet in [Jac72, §19]. In §5, we recall Hida’s p-adic Rankin-Selberg method, following the
exposition in his blue book [Hid93, Chapter 10] but in the language of automorphic representation theory. We
explain the construction of L f

F ,a, and in Proposition 5.3, we express the interpolation of L f
F ,a at arithmetic

points as a product of critical Rankin-Selberg L-values and local zeta integrals Ψord
p (s) (modified Euler factor

at p) and Ψ∗` (s) (fudge factors). In §6, we evaluate these local zeta integrals explicitly. Finally, in §7, we
construct the primitive p-adic L-function and prove the interpolation formula Theorem 7.1.

Acknowledgments. The authors would like to thank the referee and the editorial committee for their helpful
comments on the exposition of the manuscript.

2. Classical modular forms and automorphic forms

In this section, we recall basic definitions and standard facts about classical elliptic modular forms and
automorphic forms on GL2(A), following the notation in [Hsi21, §2] which we reproduce here for the reader’s
convenience. The main purpose of this section is to set up the notation and introduce some Hecke operators
on the space of automorphic forms which will be frequently used in the construction of p-adic L-functions.
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2.1. Notation. Let A be the ring of adeles of Q. If v is a place of Q, let Qv be the completion of Q with
respect to v, and for a ∈ A×, let av ∈ Q×v be the v-component of a. Denote | |Qv

the absolute value of Qv

normalized so that | |Qv is the usual absolute value of R if v = ∞ and |`|Q`
= `−1 if v = ` is finite. For a

prime `, let ord` : Q` → Z be the valuation normalized so that ord`(`) = 1. We shall regard Q` and Q×` as
subgroups of A and A× in a natural way. Let | |A be the absolute value on A× given by |a|A =

∏
v |av|Qv .

Let ζv(s) be the usual local zeta function of Qv. Namely,

ζ∞(s) = π−s/2Γ
(s

2

)
, ζ`(s) = (1− `−s)−1.

Define the global zeta function ζQ(s) of Q by ζQ(s) =
∏
v ζv(s).

Let ψQ : A/Q→ C× be the additive character with the archimedean component ψR(x) = e2π
√
−1x and let

ψQ`
: Q` → C× be the local component of ψQ at `.

If R is a commutative ring and G = GL2(R), we denote by ρ the right translation of G on the space of
C-valued functions on G: ρ(g)f(g′) = f(g′g) and by 1 : G→ C the constant function 1(g) = 1. For a function
f : G→ C and a character χ : R× → C×, let f ⊗ χ : G→ C denote the function f ⊗ χ(g) = f(g)χ(det(g)).

In the algebraic group GL2, let B be the Borel subgroup consisting of upper triangular matrices and N be
its unipotent radical.

2.2. Hecke characters and Dirichlet characters. If ω : Q×\A× → Q
×

is a finite order Hecke character,
we denote by ω` : Q` → C× the local component of ω at `. For every Dirichlet character χ, we denote by
c(χ) the conductor of χ. Let χA be the adelization of χ, the unique finite order Hecke character χA =

∏
χ` :

Q×\A×/R+(1 + c(χ)Ẑ)× → C× of conductor c(χ) such that for any prime ` - c(χ),

χ`(`) = χ(`)−1.

For every prime `, write c(χ) = `eC ′ with ` - C ′. Then we can decompose χ = χ(`)χ
(`) into a product of two

Dirichlet characters χ(`) and χ(`) of conductors `e and N ′ respectively. We call χ(`) the `-primary component
of χ. The `-primary component of a finite order Hecke character can be defined likewise.

Throughout this paper, we often identify Dirichlet characters with their adelization whenever no confusion
arises.

2.3. Classical modular forms. Let C∞(H) be the space of C-valued smooth functions on the upper half

complex plane H. Let k be any integer. Let γ =

(
a b
c d

)
∈ GL+

2 (R) act on z ∈ H by γ(z) = az+b
cz+d , and for

f = f(z) ∈ C∞(H), define
f |kγ(z) := f(γ(z))(cz + d)−k(det γ)

k
2 .

Recall that the Maass-Shimura differential operators δk and ε on C∞(H) are given by

δk =
1

2π
√
−1

(
∂

∂z
+

k

2
√
−1y

) and ε = − 1

2π
√
−1

y2 ∂

∂z
(y = Im(z))

(cf. [Hid93, (1a, 1b) page 310]). Let N be a positive integer and χ : (Z/NZ)× → C× be a Dirichlet character
modulo N . For a non-negative integer m, denote by N [m]

k (N,χ) the space of nearly holomorphic modular
forms of weight k, level N and character χ, consisting of slowly increasing functions f ∈ C∞(H) such that
εm+1f = 0 and

f |k
(
a b
c d

)
= χ(d)f for

(
a b
c d

)
∈ Γ0(N)

(cf. [Hid93, page 314]). Let Nk(N,χ) =
⋃∞
r=0N

[m]
k (N,χ) (cf. [Hid93, (1a), page 310]). By definition,

N [0]
k (N,χ) =Mk(N,χ) is the space of classical holomorphic modular forms of weight k, level N and character

χ. Denote by Sk(N,χ) the space of cusp forms inMk(N,χ). Let δmk = δk+2m−2 · · · δk+2δk. If f ∈ Nk(N,χ)
is a nearly holomorphic modular form of weight k, then δmk f ∈ Nk+2m(N,χ) has weight k+ 2m ([Hid93, page
312]). For a positive integer d, define

Vdf(z) = d · f(dz); Udf(z) =
1

d

d−1∑
j=0

f(
z + j

d
).
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Recall that the classical Hecke operators T` for primes ` - N are given by

T`f = U`f + χ(`)`k−2V`f.

We say f ∈ Nk(N,χ) is a Hecke eigenform if f is an eigenfunction of the all Hecke operators T` for ` - N and
the operators U` for ` | N .

2.4. Automorphic forms on GL2(A). For a positive integer N , define open-compact subgroups of GL2(Ẑ)
by

U0(N) =

{
g ∈ GL2(Ẑ)

∣∣∣∣ g ≡ (∗ ∗0 ∗

)
(mod N Ẑ)

}
,

U1(N) =

{
g ∈ U0(N)

∣∣∣∣ g ≡ (∗ ∗0 1

)
(mod N Ẑ)

}
.

Let ω : Q×\A× → C× be a finite order Hecke character of level N . We extend ω to a character of U0(N)

defined by ω
((

a b
c d

))
=
∏
`|N ω`(d`) for

(
a b
c d

)
∈ U0(N), where ω` : Q×` → C× is the `-component of

ω. Denote by A(ω) the space of automorphic forms on GL2(A) with central character ω. For any integer k,
let Ak(N,ω) ⊂ A(ω) be the space of automorphic forms on GL2(A) of weight k, level N and character ω. In
other words, Ak(N,ω) consists of automorphic forms ϕ : GL2(A)→ C such that

ϕ(αgκθuf) =ϕ(g)e
√
−1kθω(uf)

(α ∈ GL2(Q), κθ =

(
cos θ sin θ
− sin θ cos θ

)
, uf ∈ U0(N)).

Let A0
k(N,ω) be the space of cusp forms in Ak(N,ω).

Next we introduce important local Hecke operators on automorphic forms. At the archimedean place, let
V± : Ak(N,ω)→ Ak±2(N,ω) be the normalized weight raising/lowering operator in [JL70, page 165] given by

V± =
1

(−8π)

((
1 0
0 −1

)
⊗ 1±

(
0 1
1 0

)
⊗
√
−1

)
∈ Lie(GL2(R))⊗R C.(2.1)

Define the operator U` acting on ϕ ∈ Ak(N,ω) by

U`ϕ =
∑

x∈Z`/`Z`

ρ

((
$` x
0 1

))
ϕ,

and the level-raising operator V` : Ak(N,ω)→ Ak(N`, ω) at a finite prime ` by

V`ϕ(g) := ρ

((
$−1
` 0
0 1

))
ϕ.

Note that U`V`ϕ = `ϕ and that if ` | N , then U` ∈ EndCAk(N,ω). For each prime ` - N , let T` ∈
EndCAk(N,ω) be the usual Hecke operator defined by

T` = U` + ω`(`)V`.

Let A0(ω) be the space of cusp forms in A(ω) and let A0
k(N,ω) = A0(ω)∩Ak(N,ω). Define the the GL2(A)-

equivariant pairing 〈 , 〉 : A0
−k(N,ω)⊗Ak(N,ω−1)→ C by

(2.2) 〈ϕ,ϕ′〉 =

∫
A× GL2(Q)\GL2(A)

ϕ(g)ϕ′(g)dτg,

where dτg is the Tamagawa measure of PGL2(A). Note that we have 〈T`ϕ,ϕ′〉 = 〈ϕ, T`ϕ′〉 for the Hecke
operator T` with ` - N .
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2.5. With every nearly holomorphic modular form f ∈ Nk(N,χ), we associate a unique automorphic form
Φ(f) ∈ Ak(N,χ−1

A ) defined by the formula

Φ(f)(αg∞u) := (f |kg∞)(
√
−1) · χ−1

A (u)(2.3)

for α ∈ GL2(Q), g∞ ∈ GL+
2 (R) and u ∈ U0(N) (cf. [Cas73, §3]). Conversely, we can recover the form f from

Φ(f) by

f(x+
√
−1y) = y−k/2Φ(f)

((
y x
0 1

))
.(2.4)

We call Φ(f) the adelic lift of f .
The weight raising/lowering operators are the adelic avatar of the Maass-Shimura differential operators δmk

and ε on the space of automorphic forms. A direct computation shows that the map Φ from the space of
modular forms to the space of automorphic forms is equivariant for the Hecke action in the sense that

Φ(δmk f) = V m+ Φ(f), Φ(εf) = V−Φ(f),(2.5)

and for a finite prime `

Φ(T`f) = `k/2−1T`Φ(f), Φ(U`f) = `k/2−1U`Φ(f).(2.6)

In particular, f is holomorphic if and only if V−Φ(f) = 0.

2.6. Preliminaries on irreducible representations of GL2(Qv).

2.6.1. Measures. We shall normalize the Haar measures on Qv and Q×v as follows. If v =∞, dx denotes the
usual Lebesgue measure on R and the measure d×x on R× is |x|−1

R dx. If v = ` is a finite prime, denote by dx

the Haar measure on Q` with vol(Z`,dx) = 1 and by d×x the Haar measure on Q×` with vol(Z×` ,d
×x) = 1.

Define the compact subgroup Kv of GL2(Qv) by Kv = SO(2,R) if v = ∞ and Kv = GL2(Zv) if v is finite.
Let duv be the Haar measure on Kv so that vol(Kv,duv) = 1. Let dgv be the Haar measure on PGL2(Qv)

given by dgv = |yv|−1
Qv

dxvd
×yvduv for gv =

(
yv xv
0 1

)
uv with yv ∈ Q×v , xv ∈ Qv and uv ∈ Kv.

2.6.2. Representations. Denote by χ � υ the irreducible principal series representation of GL2(Qv) attached
to two characters χ, υ : Q×v → C× such that χυ−1 6= | |±Qv

. If v =∞ is the archimedean place and k ≥ 1 is an
integer, denote by D0(k) the discrete series of lowest weight k if k ≥ 2 or the limit of discrete series if k = 1
with central character sgnk (the k-the power of the sign function). If v is finite, denote by St the Steinberg
representation and by χSt the special representation St⊗ χ ◦ det.

2.6.3. L-functions and ε-factors. For a character χ : Q×v → C×, let L(s, χ) be the complex L-function and
ε(s, χ) := ε(s, χ, ψQv

) be the ε-factor (cf. [Sch02, Section 1.1]). Define the γ-factor

γ(s, χ) := ε(s, χ) · L(1− s, χ−1)

L(s, χ)
.(2.7)

If v is a finite prime, denote by c(χ) the exponent of the conductor of χ,
If π is an irreducible admissible generic representation of GL2(Qv), denote by L(s, π) the L-function and by

ε(s, π) := ε(s, π, ψQv
) the ε-factor defined in [JL70, Theorem 2.18]. Let π∨ be the contragredient representation

of π. Define the gamma factor

γ(s, π) = ε(s, π) · L(1− s, π∨)

L(s, π)
.

If v is a finite prime, we let c(π) be the exponent of the conductor of π.
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2.6.4. Whittaker models and the normalized Whittaker newforms. Every admissible irreducible infinite dimen-
sional representation π of GL2(Qv) admits a realization of the Whttaker model W(π) =W(π, ψQv

)associated
with the additive character ψQv . Recall that W(π) is a subspace of smooth functions W : GL2(Qv)→ C such
that

• W
((

1 x
0 1

)
g

)
= ψQv

(x)W (g) for all x ∈ Qv,

• if v =∞ is the archimedean place, there exists an integer M such that

W

((
a 0
0 1

))
= O(|a|MR ) as |a|R →∞.

The group GL2(Qv) (or the Hecke algebra of GL2(Qv)) acts onW(π) via the right translation ρ. We introduce
the (normalized) local Whittaker newform Wπ in W(π) in the following cases. If v =∞ and π = D0(k), then
the local Whittaker newform Wπ ∈ W(π) is defined by

(2.8)
Wπ

(
z

(
y x
0 1

)(
cos θ sin θ
− sin θ cos θ

))
=IR+

(y) · yk/2e−2πy · sgn(z)kψR(x)e
√
−1kθ

(y, z ∈ R×, x, θ ∈ R).

Here IR+(a) denotes the characteristic function of the set of positive real numbers. If v = ` is a finite prime,
then the (normalized) local Whittaker newform Wπ is the unique function in W(π)new such that Wπ(1) = 1.

The explicit formula forWπ(

(
a 0
0 1

)
) is well-known (See [Sch02, page 21] or [Sah16, Section 2.2] for example).

2.7. p-stabilized newforms. Let π be a cuspidal automorphic representation of GL2(A) and let A(π) be
the π-isotypic part in the space of automorphic forms on GL2(A). For ϕ ∈ A(π), the Whittaker function of
ϕ (with respect to the additive character ψQ : A/Q→ C×) is given by

Wϕ(g) =

∫
A/Q

ϕ

((
1 x
0 1

)
g

)
ψQ(−x)dx (g ∈ GL2(A)),(2.9)

where dx is the Haar measure with vol(A/Q,dx) = 1. We have the Fourier expansion:

ϕ(g) =
∑
α∈Q×

Wϕ

((
α 0
0 1

)
g

)
(cf. [Bum98, Theorem 3.5.5]). Let f(q) =

∑
n a(n, f)qn ∈ Sk(N,χ) be a normalized Hecke eigenform. Denote

by πf = ⊗′vπf,v the cuspidal automorphic representation of GL2(A) generated by the adelic lift Φ(f) of f .
Then πf is irreducible and unitary with the central character χ−1. If f is newform, then the conductor of πf
is N , the adelic lift Φ(f) is the normalized new vector in A(πf ) and the Mellin transform

Z(s,Φ(f)) =

∫
A×/Q×

Φ(f)

((
y 0
0 1

))
|y|s−1/2

A d×y = L(s, πf )

is the automorphic L-function of πf . Here d×y is the product measure
∏
v d×yv.

Definition 2.1 (p-stabilized newform). Let p be a prime and fix an isomorphism ιp : C ' Qp. We say that a
normalized Hecke eigenform f =

∑
n a(n, f)qn ∈ Sk(Np, χ) is a (ordinary) p-stabilized newform (with respoect

to ιp) if f is a new outside p and the eigenvalue of Up, i.e. the p-th Fourier coefficient ιp(a(p, f)), is a p-adic
unit. The prime-to-p part of the conductor of f is called the tame conductor of f .

By the multiplicity one for new and ordinary vectors, the Whittaker function of Φ(f) is a product of local
Whittaker functions in W(πf,v). To be precise,

WΦ(f)(g) = W ord
πf,p

(gv)
∏
v 6=p

Wπf,v (gv) (g = (gv) ∈ GL2(A)).

Here Wπf,v is the normalized local Whittaker newform of πf,v and W ord
πf,p

is the ordinary Whittaker function
characterized by

(2.10) W ord
πf,p

(

(
a 0
0 1

)
) = αf |·|

1
2

Qp
(a) · IZp(a) for a ∈ Q×p ,
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where αf : Q×p → C× is the unramified character with αf (p) = a(p, f) · p(1−k)/2 (See [Hsi21, Corollary 2.3,
Remark 2.5]).

3. Λ-adic modular forms and Hida families

3.1. Ordinary Λ-adic modular forms. Let p > 2 be a prime and let O be the ring of integers of a finite
extension of Qp. Let I be a normal domain finite flat over Λ = OJ1 + pZpK. A point Q ∈ SpecI(Qp), a ring
homomorphism Q : I → Qp, is said to be locally algebraic if Q|1+pZp is a locally algebraic character in the
sense that Q(z) = zkQεQ(z) with kQ an integer and εQ(z) ∈ µp∞ . We shall call kQ the weight of Q and εQ
the finite part of Q. Let XI be the set of locally algebraic points Q ∈ SpecI(Qp). A point Q ∈ XI is called
arithmetic if the weight kQ ≥ 2 and let X+

I be the set of arithmetic points. Let ℘Q = KerQ be the prime ideal
of I corresponding to Q and O(Q) be the image of I under Q.

Fix an isomorphism ιp : Cp ' C once and for all. Denote by ω : (Z/pZ)× → µp−1 the p-adic Teichmüller
character. Let N be a positive integer prime to p and let χ : (Z/NpZ)× → O× be a Dirichlet character modulo
Np with value in O. Denote by S(N,χ, I) the space of I-adic cusp forms of tame level N and (even) branch
character χ, consisting of formal power series f (q) =

∑
n≥1 a(n, f )qn ∈ IJqK with the following property: there

exists an integer af such that for arithemtic points Q ∈ X+
I with kQ ≥ af , the specialization fQ(q) is the

q-expansion of a cusp form fQ ∈ SkQ(Npe, χω−kQεQ). We call the character χ is the branch character of f .
The space S(N,χ, I) is equipped with the action of the usual Hecke operators T` for ` - Np as in [Wil88,

page 537] and the operators U` for ` | pN given by U`(
∑
n a(n, f )qn) =

∑
n a(n`, f )qn. Recall that Hida’s

ordinary projector e is defined by
e := lim

n→∞
Un!
p .

This ordinary projector e has a well-defined action on the space of classical modular forms preserving the
cuspidal part as well as on the space S(N,χ, I) of I-adic cusp forms (cf. [Wil88, page 537 and Proposition
1.2.1]). The space eS(N,χ, I) is called the space of ordinary I-adic forms defined over I. A key result in Hida’s
theory of ordinary I-adic cusp forms is that if f ∈ eS(N,χ, I), then for every arithmetic points Q ∈ XI, we
have fQ ∈ eSkQ(Npe, χω−kQεQ). We say f ∈ eS(N,χ, I) is a primitive Hida family if for every arithmetic
points Q ∈ XI, fQ is a p-stabilized cuspidal newform of tame conductor N . Let Xcls

I be the set of classical
points (for f ) given by the subset of Q ∈ XI such that kQ ≥ 1 and fQ is the q-expansion of a classical modular
form. Note that Xcls

I contains the set of arithmetic points X+
I but may be strictly larger than X+

I as we allow
the possibility of the points of weight one.

3.2. Galois representation attached to Hida families. Let 〈·〉 : Z×p → 1 + pZp be character defined by
〈x〉 = xω−1(x) and write z 7→ [z]Λ for the inclusion of group-like elements 1 + pZp → OJ1 + pZpK× = Λ×.
For z ∈ Z×p , denote by 〈z〉I ∈ I× the image of [〈z〉]Λ in I under the structure morphism Λ → I. By
definition, Q(〈z〉I) = Q|1+pZp(〈z〉) for Q ∈ XI. Let εcyc : GQ → Z×p be the p-adic cyclotomic character and
let 〈εcyc〉I : GQ → I× be the character 〈εcyc〉I(σ) = 〈εcyc(σ)〉I. For each Dirichlet chatacter χ, we define
χI : GQ → I× by χI := σχ〈εcyc〉−2〈εcyc〉I, where σχ is the Galois character which sends the geometric
Frobenious element Frob` at ` to χ(`)−1.

If f ∈ eS(N,χ, I) is primitive Hida family of tame conductor N , we let ρf : GQ → GL2(FracI) be the
I-adic Galois representation attached to f which is unramified outside pN and characterized by

Tr(ρf (Frob`)) = a(`,f); det ρf (Frob`) = χ(`)〈`〉I`−1 (` - pN).

Note that det ρf = χ−1
I · ε−1

cyc. The description of the restriction of ρf to the local decomposition group GQ`

is well-understood. For ` = p, according to [Wil88, Theorem 2.2.1], we have

ρf |GQp
∼
(
αp ∗
0 α−1

p χ−1
I ε−1

cyc

)
,

where αp : GQp → I× is the unramified character with αp(Frobp) = a(p,f).2

2Our representation ρf is the dual of ρF considered in [Wil88].
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3.3. Hecke algebras and congruence numbers. If N is a positive and χ is a Dirichlet character modulo
N , we let Tk(N,χ) be the O-subalgebra in EndCeSk(N,χ) generated over O by the Hecke operators T` for
` - Np and the operators U` for ` | Np. Suppose that N is prime to p. Let ∆ = (Z/NpZ)× and ∆̂ be the
group of Dirichlet characters modulo Np. Enlarging O if necessary, we assume that every χ ∈ ∆̂ takes value
in O×. We are going to consider the Hecke algebra T(N, I) acting on the space of ordinary Λ-adic cusp forms
of tame level Γ1(N) defined by

S(N, I)ord :=
⊕
χ∈∆̂

eS(N,χ, I).

In addition to the action of Hecke operators, denote by σd the usual diamond operator for d ∈ ∆ acting
on S(N, I)ord by σd(f)χ∈∆̂ := (χ(d)f)χ∈∆̂. Then the ordinary I-adic cuspidal Hecke algebra T(N, I) is
defined to be the I-subalgebra of EndIS(N, I)ord generated over I by T` for ` | Np, U` for ` | Np and the
diamond operators σd for d ∈ ∆. Let Q ∈ Xari

I be an arithmetic point. Every t ∈ T(N, I) commutes with
the specialization: (t · f)Q = t · fQ. For χ ∈ ∆̂Np, let ℘Q,χ be the ideal of T(N, I) generated by ℘Q and
{σd − χ(d)}d∈∆. A classical result [Hid88c, Theorem 3.4] in Hida theory asserts that

T(N, I)/℘Q,χ ' TkQ(Npe, χω−kQεQ)⊗O O(Q).

Let f ∈ eS(N,χ, I) be a primitive Hida family of tame level N and character χ and let λf : T(N, I) → I
be the corresponding homomorphism defined by λf (T`) = a(`,f) for ` - Np, λf (U`) = a(`,f) for ` | Np and
λf (σd) = χ(d) for d ∈ ∆. Let mf be the maximal of T(N, I) containing Kerλf and let Tmf

be the localization
of T(N, I) at mf . It is the local ring of T(N, I) through which λf factors. Recall that the congruence ideal
C(f) of the morphism λf : Tmf

→ I is defined by

C(f) := λf (AnnTmf
(Kerλf )) ⊂ I.

The Hecke algebra Tmf
is a local finite flat Λ-alegba and there is an algebra direct sum decomposition

λ : Tmf
⊗I Frac I ' Frac I⊕B, t 7→ λ(t) = (λf (t), λB(t)),(3.1)

where B is a finite dimensional (Frac I)-algebra ([Hid88c, Corollary 3.7]). By definition we have

C(f) = λf (Tmf
∩ λ−1(Frac I⊕ {0})).

Now we impose the following

Hypothesis (CR). The residual Galois representation ρf of ρf is absolutely irreducible and p-distiniguished.

Under the above hypothesis, Tmf
is Gorenstein by [Wil95, Corollay 2, page 482], and with this Gorenstein

property of Tmf
, Hida in [Hid88b] proved that the congruence ideal C(f) is generated by a non-zero element

ηf ∈ I, called the congruence number for f . Let 1∗f be the unique element in Tmf
∩ λ−1(Frac I ⊕ {0}) such

that λf (1∗f ) = ηf . Then 1f := η−1
f 1∗f is the idempotent in Tmf

⊗I Frac I corresponding to the direct summand
Frac I of (3.1) and 1f does not depend on the choice of a generator of C(f). Moreover, for each arithmetic
point Q, it is also shown by Hida that the specialization ηf (Q) ∈ O(Q) is the congruence number for fQ and

1f := η−1
f 1∗f (mod ℘χ,Q) ∈ Tord

kQ (Npr, χω−kQεQ)⊗O FracO(Q)

is the idempotent with λf (1f ) = 1.

4. A three variable p-adic family of Eisenstein series

4.1. Eisenstein series. We recall the construction of Eisenstein series described in [Jac72, §19]. Let (µ1, µ2)
be a pair of Dirichlet characters. We shall identify (µ1, µ2) with their adelizations as described in §2.2. Let
B(µ1, µ2, s) denote the space consisting of smooth and SO(2,R)-finite functions f : GL2(A)→ C such that

f(

(
a b
0 d

)
) = µ1(a)µ2(d)

∣∣∣a
d

∣∣∣s+ 1
2

A
f(g).

For each place v and a positive integer n, denote by S(Qn
v ) the space of Bruhat-Schwartz functions on

Qn
v . For every Bruhat-Schwartz function Φ = ⊗vΦv ∈ S(A2) = ⊗′vS(Q2

v), define the Godement section
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fµ1,µ2,Φ,s = ⊗vfµ1,v,µ2,v,Φv,s : GL2(A)→ C given by

(4.1) fµ1,v,µ2,v,Φv,s(gv) :=µ1,v|·|s+
1
2 (det gv)

∫
Q×v

Φv((0, tv)gv)µ1,vµ
−1
2,v|·|

2s+1
Qv

(tv)d
×tv.

Then fµ1,µ2,Φ,s belongs to B(µ1, µ2, s). The Eisenstein seres associated to the section fµ1,µ2,Φ,s is defined by
the formal series

EA(g, fµ1,µ2,Φ,s) :=
∑

γ∈B\GL2(Q)

fµ1,µ2,Φ,s(γg), (g ∈ GL2(A), s ∈ C).

The above series converges absolutely for Re(s)� 0 and has meromorphic continuation to s ∈ C. Define the
Whittaker function of fµ1,µ2,Φ,s by

W (g, fµ1,µ2,Φ,s) =
∏
v

W (gv, fµ1,v,µ2,v,Φv,s), (g = (gv) ∈ GL2(A)),

where

W (gv, fµ1,v,µ2,v,Φv,s) =

∫
Qv

fµ1,v,µ2,v,Φv,s(

(
0 −1
1 0

)(
1 xv
0 1

)
gv)ψQv (−xv)dxv.

The Eisenstein series EA(g, fµ1,µ2,Φ,s) admits the Fourier expansion

(4.2) EA(g, fµ1,µ2,Φ,s) =fµ1,µ2,Φ,s(g) + fµ2,µ1,Φ̂,−s(g) +
∑
α∈Q×

W (

(
α 0
0 1

)
g, fµ1,µ2,Φ,s),

where Φ̂ := ⊗Φ̂v is the symplectic Fourier transform defined by

Φ̂v(x, y) =

∫
Qv

∫
Qv

Φ(s, t)ψQv
(sy − tx)dsdt.

4.2. The Eisenstein series E±k (µ1, µ2, C). If v is place of Q and φ ∈ S(Qv), the usual Fourier transform
φ̂ ∈ S(Qv) is defined by

φ̂(x) :=

∫
Qv

φ(y)ψQv (yx)dy.

Note that if Φ = φ1 ⊗ φ2 ∈ S(Q2
v), then Φ̂(x, y) = φ̂2(−x)φ̂1(y). If v = ` is a finite place and µ : Q×` → C× is

a character, we define φµ ∈ S(Q`) by
φµ(x) := IZ×` (x)µ(x).

It is easy to verify that
φ̂µ(x) = χ−1(x)I$−c(µ)Z×`

(x) · ε(1, µ−1).

Now we fix a pair (C1, C2) of two positive integers such that gcd(C1, C2) = 1 and p - C1C2. Let C = C1C2

and let k be a positive integer such that µ1µ
−1
2 (−1) = (−1)k. We recall a construction of certain classical

Eisenstein series E±k (µ1, µ2) of weight k, level Γ1(p∞C1C2) and nebentypes µ−1
1 µ−1

2 by using suitable Godement
sections as above. In the remainder of this section, we assume the following conditions:

• µ1 is unramified outside p,
• c(µ2) | p∞C2.

Definition 4.1. To the positive integer k and the Eisenstein datum

D := (µ1, µ2, C1, C2),

we associate the Bruhat-Schwartz function Φ
[k]
D = Φ

[k]
∞ ⊗` ΦD,` ∈ S(A2) defined as follows:

• Φ
[k]
∞ (x, y) = 2−k(x+

√
−1y)ke−π(x2+y2),

• ΦD,p(x, y) = φµ−1
1,p
⊗ φ̂µ−1

2,p
,

• ΦD,`(x, y) = IC1Z`(x)IZ`(y) if ` - pC2,
• ΦD,`(x, y) = IC2Z`(x)φµ2,`

(y) if ` | C2.
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Define the local Godement sections

f
[k]
D,s,∞ := f

µ1,∞,µ2,∞,Φ
[k]
∞ ,s

; fD,s,` := fµ1,`,µ2,`,ΦD,`,s

and define the Godement section attached to k and D = (µ1, µ2, C1, C2) by

f
[k]
D,s = f

[k]
D,s,∞

⊗
`<∞

fD,s,`.

Remark 4.2. For each place v, denote by Bv(µ1, µ2, s) the space of smooth functions f : GL2(Qv)→ C such
that

f(

(
a b
0 d

)
g) = µ1,v(a)µ2,v(d)

∣∣∣a
d

∣∣∣s+ 1
2

Qv

f(g).

Then f [k]
D,s,∞ is the unique function in B∞(µ1, µ2, s) such that

f
[k]
D,s,∞(

(
cos θ sin θ
− sin θ cos θ

)
) = e

√
−1kθ · 2−k(

√
−1)kπ−(s+ k+1

2 )Γ

(
s+

k + 1

2

)
.

For a finite prime `, fD,s,` ∈ B`(µ1, µ2, s) is invariant by U1(C) under the right translation, where U1(C) is
the open-compact subgroupof GL2(Z`) given by

U1(C) = GL2(Z`) ∩
(

Z` Z`
CZ` 1 + CZ`

)
.

Definition 4.3. Define the classical Eisenstein series E±k (µ1, µ2) : H→ C by

E+
k (µ1, µ2)(x+

√
−1y) :=y−

k
2EA(

(
y x
0 1

)
, f

[k]
D,s)| k−1

2
,

E−k (µ1, µ2)(x+
√
−1y) :=y−

k
2EA(

(
y x
0 1

)
, f

[k]
D,s)| 1−k

2
.

Remark 4.2 implies that E±k (µ1, µ2) ∈Mk(C, µ−1
1 µ−1

2 ), and by definition

Φ(E+
k (µ1, µ2)) = E(g, f

[k]
D,s)| k−1

2
; Φ(E−k (µ1, µ2)) = E(g, f

[k]
D,s)| 1−k

2
,

where Φ is the adelic lift map in (2.4).

Proposition 4.4. For every non-negative integer t, we have

Φ(δtkE
±
k (µ1, µ2)) = EA(g, f

[k+2t]
D,s )|s=± k−1

2
∈ Ak(C, µ1µ2).

Proof. For the differential operator V + in (2.1), we have the relation V +f
[k]
D,s,∞ = f

[k+2]
D,s,∞ (see [JL70,

Lemma 5.6 (iii)]), and hence the assertion follows from (2.5). �

4.3. Fourier coefficients of Eisenstein series.

Lemma 4.5. For a ∈ R×, we have

W (f
[k]
D,s,∞,

(
a 0
0 1

)
)|s= k−1

2
=W (f

[k]
D,s,∞,

(
a 0
0 1

)
)|s= 1−k

2
= a

k
2 e−2πa · IR+(a).

Proof. By definition, W (f
[k]
D,s,∞,

(
a 0
0 1

)
) equals

2−kµ1|·|s+
1
2 (a)

∫
R

∫
R×

tk(a+
√
−1x)ke−πt

2(x2+a2) sgn(t)k |t|2s+1
ψ∞(−x)d×tdx

=µ1|·|s+
1
2 (a) · (−2

√
−1)−k · Γ(s+

k + 1

2
)π−(s+ k+1

2 )

∫
R

(x+
√
−1a)−(s+ k+1

2 )(x−
√
−1a)−(s− k−1

2 )ψ∞(−x)dx.

By an elementary calculation, we find that

W (f
[k]
D,s,∞,

(
a 0
0 1

)
)|s= k−1

2
=µ1|·|

k
2 (a) · (−2π

√
−1)−k · Γ(k)

∫
R

e−2π
√
−1x

(x+
√
−1a)k

dx

=µ1(a) · a k2 e−2πa · IR+(a),
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and that

W (f
[k]
D,s,∞,

(
a 0
0 1

)
)|s= 1−k

2
=µ1|·|1−

k
2 (a)(−2

√
−1)kπ−1

∫
R

(x−
√
−1a)k−1e−2π

√
−1x

x+
√
−1a

dx

=µ1(a) · a k2 e−2πa · IR+
(a).

Since µ1(a) = sgn(a)±, the lemma follows. �

Lemma 4.6. Let ` be a finite prime. Let χ = µ−1
1,`µ2,`. Let a ∈ Q×` and m = ord`(a). Then we have the

following:

• If ` - pC2, then

W (fD,s,`,

(
a 0
0 1

)
) = µ1|·|s+

1
2 (a)

m−ord`(C1)∑
j=0

χ|·|−2s
(`j).

• If c(µ2,`) = 0 and q | C2, then

W (fD,s,`,

(
a 0
0 1

)
)

=µ1|·|s+
1
2 (a) · IC2`−1Z`(a)

−χ|·|2s+1
(`) + (1− |`|)

m−ord`(C2)∑
j=0

χ|·|−2s
(`j)

 .

• If c(µ2,`) > 0, then ` | C2 and

W (fD,s,`,

(
a 0
0 1

)
) = µ1|·|s+

1
2 (a) · χ(−1)ε(2s+ 1, χ) · IC`−c(χ)Z`(a).

• If ` = p, then

W (fD,s,p,

(
a 0
0 1

)
) = IZ×p (a).

Proof. Write µ1 = µ1,` and µ2 = µ2,` for simplicity. Note that if Φ = Φ1 ⊗ Φ2 ∈ S(Q`)⊗ S(Q`), then

W (fµ1,µ2,Φ`,s,

(
a 0
0 1

)
) = µ1|·|s+

1
2 (a)

∫
Q×`

Φ1(ta)Φ̂2(−t−1)µ1µ
−1
2 |·|

2s
(t)d×t.

If ` - pC2, ΦD,` = IC1Z` ⊗ IZ` , and hence

W (fD,s,`,

(
a 0
0 1

)
) =µ1|·|s+

1
2 (a)

∫
Q×`

IC1Z`(t
−1a)IZ`(−t)µ

−1
1 µ2|·|−2s

(t)d×t

=µ1|·|s+
1
2 (a)

m−ordp(C1)∑
j=0

µ−1
1 µ2|·|−2s

(`j).

Consider the case ` | C2. Recall that µ1 is unramified at ` 6= p by our assumption. Let c = c(χ) = c(µ2).
Recall that

φ̂µ2
(x) =


φ̂µ2(x) = IZ` − |`| I`−1Z` if c = 0,

ε(1, µ−1
2 )µ2(x−1)I`−cZ×` (x) if c > 0.
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If c = 0, then W (fD,s,`,

(
a 0
0 1

)
) equals

=µ1|·|s+
1
2 (a)

m−ord`(C2)∑
j=0

µ−1
1 µ2|·|−2s

(`j)− |`|
m−ord`(C2)∑

j=−1

µ−1
1 µ2|·|−2s

(`j)


=µ1|·|s+

1
2 (a) · IC2`−1Z`(a)

×

−µ1µ
−1
2 |·|

2s+1
(`) + (1− |`|)

m−ord`(C2)∑
j=0

µ−1
1 µ2|·|−2s

(`j)

 .

If c > 0, then W (fD,s,`,

(
a 0
0 1

)
) equals

µ1|·|s+
1
2 (a)

∫
Q×`

ICZ`(at)φ̂µ2
(−t−1)µ1µ

−1
2 |·|

2s
(t)d×t

=µ1|·|s+
1
2 (a)ε(1, µ−1

2 )µ2(−1)µ1|·|2s(`c)IC`−cZ`(a).

Finally, at the p-adic place, a similar calculation shows that

W (fD,s,p,

(
a 0
0 1

)
) =µ1|·|s+

1
2 (a)

∫
Q×p

φµ−1
1

(at)φµ−1
2

(t−1)µ1µ
−1
2 |·|

2s
(t)d×t

=IZ×p (a).

The assertion follows immediately from the above expressions of W (fD,s,`,

(
a 0
0 1

)
). �

For each positive integer n, we define the polynomials Pn,` ∈ Z(p)[X,X
−1] by

Pn,`(X) =

ord`(nC
−1
1 )∑

j=0

`−jXj if ` - pC2,

Pn,`(X) =

ord`(nC
−1
2 )∑

j=0

`−jXj −
ord`(nC

−1
2 )∑

j=−1

`−j−1Xj if ` | C2,

Pn,p(X) =1.

For a Dirichlet character χ, we set

Gχ,`(X) = ε(0, χ`)χ`(−1) ·Xord`(C)−c(χ`).

In the above equation, we have identified χ with its adelization as in §2.2 and χ` is the `-component of χ.

Corollary 4.7. We have the following Fourier expansion

E±k (µ1, µ2)(q) =
∑

n>0, p-n

a±n (µ1, µ2, k) · qn (q = e2πiτ ),

where

a+
n (µ1, µ2, k) =µ−1

1 (n)
∏

`-c(µ2)

Pn,`(µ1µ
−1
2 (`) · `k)

∏
`|c(µ2),`|n

Gµ1µ
−1
2 ,`(`

k);

a−n (µ1, µ2, k) =nk−1 · µ−1
1 (n)

∏
`-c(µ2)

Pn,`(µ1µ
−1
2 (`)`2−k))

∏
`|c(µ2), `|n

Gµ1µ
−1
2 ,`(`

2−k).

Proof. Note that at the distinguished prime p, ΦD,p(0, y) = 0 and Φ̂D,p(0, y) = φµ−1
2

(0)φ̂µ−1
1

(y) = 0, so we
see that fµ1,p,µ2,p,ΦD,p,s(1) = fµ2,p,µ1,p,Φ̂D,p,−s(1) = 0. This in particular implies that

fµ1,µ2,ΦD,s(

(
y x
0 1

)
) = fµ2,p,µ1,p,Φ̂D,p,−s(

(
y x
0 1

)
) = 0.
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In view of (4.2) and Lemma 4.5, we find that

a±n (µ1, µ2, k) = n
k
2

∏
`<∞

W (fD,s,`,

(
n 0
0 1

)
)|s=± k−1

2
.

The assertion follows from Lemma 4.6 by noting that µ−1
1,`µ2,`(`) = µ1µ

−1
2 (`). �

4.4. A three variable p-adic family of Eisenstein series. Let (χ1, χ2) be a pair of Dirichlet characters
modulo p and pC2 respectively. Define the OJT1, T2, T3K-adic q-expansion by

E(χ1, χ2)(q) :=
∑

n>0,p-n

An(χ1, χ2)qn ∈ OJT1, T2, T3KJqK,

where An(χ1, χ2) ∈ OJT1, T2, T3K is given by

An(χ1, χ2) = 〈n〉T1
〈n〉−1

T3
χ1(n)

∏
`-c(χ2)

Pn,`(χ−1
1 χ−1

2 (`) 〈`〉−1
T1
〈`〉−1

T2
〈`〉2T3

)

×
∏

`|c(χ2),`|n

Gχ−1
1 χ−1

2 ,`(〈`〉
−1
T1
〈`〉−1

T2
〈`〉2T3

).

Proposition 4.8. For every (Q1, Q2, P ) ∈ XΛ × XΛ × XΛ with

0 < kQ2
< kP ≤ kQ1

,

we have the interpolation

E(χ1, χ2)(Q1, Q2, P )

=



θkQ1
−kPE+

2kP−kQ1
−kQ2

(χ−1
1 ε−1

Q1
εPω

kQ1
−kP , χ2εQ2ε

−1
P ω

kP−kQ2 )

if 2kP > kQ1
+ kQ2

,

θkP−kQ2
−1E−kQ1

+kQ2
−2kP+2(χ−1

1 ε−1
Q1
εPω

kQ1
−kP , χ2εQ2

ε−1
P ω

kP−kQ2 )

if 2kP ≤ kQ1 + kQ2 .

Here θ is the theta operator θ(
∑
n anq

n) =
∑
n nanq

n.

Proof. Let µ1 = χ−1
1 ε−1

Q1
εPω

kQ1
−kP and µ2 = χ2εQ2ε

−1
P ω

kP−kQ2 . Put k = 2kP −kQ1−kQ2 . For an integer
n prime to p, we have

An(χ1, χ2)(Q1, Q2, P ) =nkQ1
−kP µ−1

1 (n)
∏

`-c(χ2)

Pn,`(µ1µ
−1
2 (`)`k)

×
∏

`|c(χ2),`|n

Gn,χ−1
1 χ−1

2 ,`(χ1χ2µ1µ
−1
2 (`)`k).

Since χ1χ2µ1µ
−1
2 is a Dirichlet character modulo a power of p, one verifies that

Gχ−1
1 χ−1

2 ,`(χ1χ2µ1µ
−1
2 (`)X) = Gµ1µ

−1
2 ,`(X).

By Corollary 4.7, we find that

An(χ1, χ2)(Q1, Q2, P ) =

{
nkQ1

−kP · a+
n (µ1, µ2,k) if k > 0,

n1−k+kP−kQ2
−1 · a−n (µ1, µ2, 2− k) if k ≤ 0.

The proposition follows immediately. �
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5. The construction of p-adic Rankin-Selberg L-functions

5.1. The construction of the p-adic L-function. Let O = OF for some finite extension F of Qp. For
i = 1, 2, let Ii be a normal domain finite flat over Λ and let ψi : (Z/pNiZ)× → O× be Dirichlet characters
with ψi(−1) = 1. We let

F := (f , g) ∈ eS(N1, ψ1, I1)× eS(N2, ψ2, I2)

be a pair of primitive Hida families of tame conductors (N1, N2) and branch characters (ψ1, ψ2). In this
section, we recall Hida’s construction of the Rankin-Selberg p-adic L-function for F . Fixing a topological
generator γ0 of 1 + pZp once and for all, we put T = γ0 − 1 ∈ Λ and let

R = I1⊗̂OI2JT3K

be a finite extension over the three variable Iwasawa algebra

Λ⊗̂OΛ⊗̂OΛ = OJT1, T2, T3K,
(T1 = T ⊗ 1⊗ 1, T2 = 1⊗ T ⊗ 1, T = 1⊗ 1⊗ T ).

Let N = lcm(N1, N2). Decompose the finite set supp(N) = Σ(i) t Σ(ii) t Σ(iii), where

(5.1)

Σ(i) := the set of primes ` | N such that

πfQ1
,` and πgQ2

,` are principal series, ord`(N1) = ord`(N2) > 0, c`(ψ1ψ2) = 0,

Σ(ii) ={
` prime | πfQ1

,`, πgQ2
,`: discrete series and L(s, πfQ1

,` × πgQ2
,`) 6= 1

}
,

Σ(iii) =
{
` prime factor of N | ` 6∈ Σ(i) t Σ(ii)

}
.

Define the auxiliary integers C1 and C2 in the definition of an Eisenstein datum by

(5.2)

C1 :=
∏
`∈Σ(i)

`max{ord`(N1),ord`(N2))}
∏

`∈Σ(ii)

`d
ord`(N1)

2 e;

C2 :=
∏

`∈Σ(iii)

`max{ord`(N1),ord`(N2))}.

If ` ∈ Σ(i) t Σ(ii), then c`(ψ1ψ2) = 0 in view of [GJ78, Propositions (1.2) and (1.4)]). We have

• C1C2 | N ,
• ψ2 is a Dirichlet character modulo pC2.

For any integer a ∈ Z/(p− 1)Z, we define the power series Ha

Ha := g ·E(ψ1,(p)ω
−a, ψ−1

2 ψ−1
1 ψ1,(p)ω

a),

where ψ1,(p) is the p-primary component of ψ1 in §2.2. By the arguments in [Hid93, page 226-227] and [Hid93,
Lemma 1 in page 328], we can deduce that the power series Ha indeed belongs to S(N,ψ−1

1 ψ2
1,(p), I1)⊗̂I1R

( cf. [Hsi21, Lemma 3.4]). Therefore, one can apply the ordinary projector e to Ha and obtain eHa an
ordinary Λ-adic modular form with coefficients in R. Let f̆ ∈ eS(N1, ψ

−1
1 ψ2

1,(p), I1) be the primitive Hida
family corresponding to the twist f |[ψ−1

1 ψ1,(p)] :=
∑
n>0 a(n,f)ψ−1

1 ψ1,(p)(n)qn.

Definition 5.1. Fixing a generator ηf of the congruence ideal of f , the p-adic Rankin-Selberg L-function
L f

F ,a is defined by

L f
F ,a := the first Fourier coefficient of ηf · 1f̆TrN/N1

(eHa)) ∈ R,

where TrN/N1
: eS(N,ψ−1

1 ψ2
1,(p), I1) → eS(N1, ψ

−1
1 ψ2

1,(p), I1) is the trace map (cf. [Hid88a, page 14]). Note
that ηf · 1f̆ is an integral Hecke operator since f and f̆ share the same congruence ideal (cf. [Hsi21, (3.2)]).
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5.2. The interpolation formula and Rankin-Selberg integral. Define the weight space for the pair
(f , g) in the f -dominated range by

(5.3) Xf
R :=

{
(Q1, Q2, P ) ∈ X+

I1
× Xcls

I2 × XΛ | kQ2 < kP ≤ kQ1

}
.

Let (Q1, Q2, P ) ∈ Xf
R. We relate the value L f

F (Q1, Q2, P ) to a global Rankin-Selberg integral. Let

(k1, k2, k3) = (kQ1
, kQ2

, kP )

and let r be an integer greater than max{1, cp(εQ1), cp(εQ2)}. Recall that the specializations

(f, g) := (fQ1
, gQ2

) ∈ Sk1
(N1p

r, χf )× Sk2
(N2p

r, χg)

are p-stabilized cuspidal newforms with characters (χf , χg) modulo Npr given by

χf = ψ1εQ1ω
−k1 , χg = ψ2εQ2ω

−k2 .

Let ϕf = Φ(f) and ϕg = Φ(g) be the associated automorphic cusp forms as in (2.3). Then

(ϕ1, ϕ2) ∈ A0
k1

(N1p
r, ω1)×A0

k2
(N2p

r, ω2)

and the central characters ω1, ω2 are the adelizations

ω1 = (χ−1
f )A, ω2 = (χ−1

g )A

of χ−1
f and χ−1

g . Put
ω = ω1ω2.

Let ω1,(p) be the p-primary component of ω1 (so ω1,(p) is the adelization of χ−1
f,(p)). Define the matrices J∞

and tn ∈ GL2(A) for each integer n by

J∞ =

(
−1 0
0 1

)
∈ GL2(R), tn =

(
0 p−n

−pn 0

)
∈ GL2(Qp) ↪→ GL2(A).(5.4)

Proposition 5.2. Let D be the Eisenstein datum

(5.5) D = (εPω
a−kP ω1,(p), ε

−1
P ω

−a+kPω−1ω1,(p), C1, C2).

Then we have

L f
F ,a(Q1, Q2, P ) =

〈
ρ(J∞tn)ϕf , ϕg · EA(−, f [k1−k2]

D,s− 1
2

)⊗ ω−1
f,(p)

〉
|
s=

2k3−k2−k1
2

× ζQ(2)[SL2(Z) : Γ0(N)](−2
√
−1)k1+1

Ωf
· ζp(1)

ω−1
1,pα

2
f |·|Qp

(pn)ζp(2)
·

for any sufficiently large positive n, where 〈 , 〉 : A0
−k1

(N,ω1ω
−2
1,(p)) × Ak1(N,ω−1

1 ω2
1,(p)) → C is the pairing

defined in (2.2) and αf is the unramified character of Q×p in (2.10).

Proof. Let E := E(ω−aψ1,(p), ψ
−1
1 ψ−1

2 ωaψ1,(p)). Since f̆Q1
is a p-stabilized newform, by the multiplicity

one for new and ordinary vectors, we have

(5.6) ηf · 1f̆Q1

TrN/N1
(e(g ·E(Q1, Q2, P ))) = L f

F ,a(Q1, Q2, P ) · f̆Q1
.

Put χ = εPω
a−k3 . By Proposition 4.8, we have

E(Q1, Q2, P ) =


θk1−k3E+

2k3−k1−k2
(χω1,(p), χ

−1ω−1ω1,(p))

if 2k3 > k1 + k2,

θk3−k2−1E−k1+k2−2k3+2(χω1,(p), χ
−1ω−1ω1,(p))

if 2k3 ≤ k1 + k2.

We put

E† :=

{
δk1−k3

2k3−k1−k2
E+

2k3−k1−k2
(χω1,(p), χ

−1ω−1ω1,(p)) if 2k3 > k1 + k2,

δk3−k2−1
k1+k2−2k3+2E

−
k1+k2−2k3+2(χω1,(p), χ

−1ω−1ω1,(p)) if 2k3 ≤ k1 + k2,
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where δmk is the Maass-Shimura differential operator. The argument in [Hid93, equation (2), page 330] shows
that

e(g ·E(Q1, Q2, P )) = eHol(g · E†),(5.7)

where Hol is the holomorphic projection as in [Hid93, (8a), page 314]. Put

ϕ̆f = Φ(f̆Q1
) ∈ A0

k1
(N1p

r, ω−1
1 ω2

1,(p)).

Pairing with the form ρ(J∞tn)ϕf ⊗ ω−1
1,(p) on the adelic lifts on both sides of (5.6), we obtain that

(5.8)
〈ρ(J∞tn)ϕf ⊗ ω−1

1,(p), ϕ̆f 〉 ·L
f
F ,a(Q1, Q2, P )

= 〈ρ(J∞tn)ϕf ⊗ ω−1
1,(p), 1

∗
f̆Q1

TrN/N1
eΦ(Hol(g · E†))〉.

Let H = g · E†. Note that H is a nearly holomorphic modular form of weight k1 and its adelic Φ(H) ∈
Ak1

(Npr, ω−1
1 ω2

1,(p)) has a decomposition

Φ(H) = Hol(Φ(H)) + V+ϕ
′
1 + V 2

+ϕ
′
2 + · · ·+ V n+ϕ

′
n,

where Hol(Φ(H)) and {ϕj}j=1,··· ,n are holomorphic automorphic forms. It follows that Hol(Φ(H)) = Φ(Hol(H)).
Let 1∗f ∈ Tord(N1p

r, µf ) be the specializations of 1∗f at Q1. As a consequence of strong multiplicity one the-
orem for modular forms, the idempotent 1f = η−1

f 1∗f ∈ Tord(N1p
r, µf ) ⊗O FracO(Q1) is generated by the

Hecke operators T` for ` - Np, and this implies that hat 1f is the left adjoint operator of 1f̆Q1

for the pairing

〈− ⊗ ω−1
1,(p),−〉. Hence, the right hand side of (5.8) equals

ηf 〈TrN/N1

(
1f · ρ(J∞tn)ϕf ⊗ ω−1

1,(p)

)
,Hol(Φ(H))〉

=ηf [U0(N1) : U0(N)] · 〈ρ(J∞tn)ϕf ⊗ ω−1
1,(p), eHol(Φ(H))〉.

(5.9)

On the other hand, it is straightforward to verify that for all sufficiently large n

〈ρ(tn)Upϕ,ϕ
′〉 =〈ϕ,Upϕ

′〉,
〈ρ(J∞)ϕ, V+ϕ

′〉 =− 〈ρ(J∞)V−ϕ,ϕ
′〉

(cf. [Hid85, (5.4)]). It follows that the pairing on the right hand side of (5.9) equals

〈ρ(J∞tn)ϕf ⊗ ω−1
1,(p), eHol(Φ(H))〉

= 〈ρ(J∞tn)ϕf ⊗ ω−1
1,(p),Φ(H)〉 = 〈ρ(J∞tn)ϕf ⊗ ω−1

1,(p),Φ(H)〉.

On the other hand, by Proposition 4.4,

Φ(H) = ϕg · Φ(E†) = ϕg · EA(g, f
[k1−k2]

D,s− 1
2

)|
s=

2k3−k1−k2
2

.

We obtain

〈ρ(J∞tn)ϕf ⊗ ω−1
1,(p), ϕ̆f 〉 ·L

f
F ,a(Q1, Q2, P )

=ηf [Γ0(N1) : Γ0(N)] · 〈ρ(J∞tn)ϕf , ϕg · EA(g, f
[k1−k2]

D,s− 1
2

)⊗ ω−1
1,(p)〉|s= 2k3−k1−k2

2
.

By the formula for 〈ρ(J∞tn)ϕf ⊗ ω−1
1,(p), ϕ̆f 〉 in [Hsi21, Lemma 3.6] and the definition of Ωf = ΩfQ1

in (1.5),
we have

〈ρ(J∞tn)ϕf ⊗ ω−1
1,(p), ϕ̆f 〉

=
ζQ(2)−1

[SL2(Z) : Γ0(N1)]
· ηf · (−2

√
−1)−k1−1Ωf ·

ω−1
1,pα

2
f |·|Qp

(pn)ζp(2)

ζp(1)
.

Putting the above equations together, we get the proposition. �
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5.3. Rankin-Selberg L-functions for GL2×GL2. In this subsection, we review briefly Jacquet’s approach
to Rankin-Selberg L-functions. Let (π1,A(π1)) and (π2,A(π2)) be irreducible cuspidal automorphic represen-
tations of GL2(A) and let χ be a Hecke character of Q×\A×. Put ω = ω1ω2. For ϕ1 ∈ A(π1) and ϕ2 ∈ A(π2),
let Wϕ1

and Wϕ2
be the Whittaker functions of ϕ1 and ϕ2 defined in (2.9) respectively. Assume that Wϕ1

and Wϕ2
are decomposable, i.e.

Wϕ1 =
∏
v

Wϕ1,v, Wϕ2 =
∏
v

Wϕ2,v

with Wϕi,v ∈ W(πi,v) for i = 1, 2. Let Φ = ⊗Φv ∈ S(A2). For each place v of Q, define the local zeta integral
Ψ(Wϕ1,v,Wϕ2,v, fχv,χvω−1

v ,Φv,s
) (cf. [Jac72, (14.5)]) by

(5.10)

Ψ(Wϕ1,v,Wϕ2,v, fχv,χ−1
v ω−1

v ,Φv,s
)

:=

∫
N(Qv)\PGL2(Qv)

Wϕ1,v(gv)Wϕ2,v(

(
−1 0
0 1

)
gv)fχv,χ−1ω−1

v ,Φv,s
(gv)dgv,

where dgv is the quotient measure of the Haar measure of PGL2(Qv) by the additive Haar measure of Qv

defined in §2.6.1. It is well-known that the local zeta integrals converge absolutely for Re(s) � 0 and has
meromorphic continuation to s ∈ C. A standard unfolding argument shows that〈

ϕ1, ϕ2 · EA(−, fχ,χ−1ω−1,Φ,s− 1
2
)
〉

=
1

ζQ(2)

∏
v

Ψ(Wϕ1,v,Wϕ2,v, fχv,χ−1
v ω−1

v ,Φv,s− 1
2
)(5.11)

as meromorphic functions in s ∈ C.
For each place v of Q, let L(s, π1,v × π2,v ⊗ χv) be the local L-factor of π1,v × π2,v twisted by χv. The

Rankin-Selberg L-function of π1 × π2 twisted by χ is defined by

L(s, π1 × π2 ⊗ χ) :=
∏
v

L(s, π1,v × π2,v ⊗ χv).

Note that if π1, π2, and χ are unitary, then L(s, π1⊗π2⊗χ) is an entire function if and only if π1 and π∨2 ⊗χ−2

are not isomorphic up to unramified twist (cf. [JS81, Proposition 3.3]). Let S be a finite set of places of Q
containing the archimedean place such that for all v /∈ S,

• π1,v and π2,v are spherical, and χv is unramified,
• Wϕ1,v = Wπ1,v, Wϕ2,v = Wπ2,v are the normalized local Whittaker newforms, and Φv = IZv⊕Zv .

By [Jac72, Proposition 15.9], for all v /∈ S we have

Ψ(Wϕ1,v,Wϕ2,v, fχv,χ−1
v ω−1

v ,Φv,s− 1
2
) = L(s, π1,v × π2,v ⊗ χv).

It follows that (5.11) can be rephrased in the following form

(5.12)

〈
ϕ1, ϕ2 · EA(−, fχ,χ−1ω−1,Φ,s− 1

2
)
〉

=
L(s, π1 × π2 ⊗ χ)

ζQ(2)

∏
v∈S

Ψ(Wϕ1,v,Wϕ2,v, fχv,χ−1
v ω−1

v ,Φv,s− 1
2
)

L(s, π1,v × π2,v ⊗ χv)
.

5.4. The interpolation formula and Rankin-Selberg L-values. Now we return to the setting in §5.2
and keep the notation there. Let π1 and π2 be the cuspidal automorphic representation generated by the
automorphic forms ϕf and ϕg associated with p-stabilized newforms f = fQ1

and g = gQ2
respectively. From

the discussion in §2.7, we know the Whittaker functions of ϕf and ϕg can be factorized into a product of local
Whittaker newforms and p-ordinary Whittaker functions

Wϕf = W ord
π1,p

∏
v 6=p

Wπ1,v, Wϕg = W ord
π2,p

∏
v 6=p

Wπ2,v.

Let χ = εPω
a−k3 and D be the Eisenstein datum (χω1,(p), χ

−1ω−1ω1,(p), C1, C2). Define the local Godement
section

(5.13) f?D,s,∞ := f
χ∞,χ

−1
∞ ω−1

∞ ,Φ
[k1−k2]
∞ ,s

; f?D,s,` := fχ,χ−1
` ω−1

` ,ΦD,`,s
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with the Bruhat-Schwartz function Φ
[k1−k2]
∞ and ΦD,p in Definition 4.1. By definition,

f?D,s :=
∏
v

f?D,s,v = f
χ,χ−1ω−1,Φ

[k1−k2]

D ,s
= f

[k1−k2]
D,s ⊗ ω−1

1,(p) ∈ B(χ, χ−1ω−1, s)

is the Godement section attached to Φ
[k1−k2]
D .

Proposition 5.3. For every sufficiently large positive integer n, we have

L f
F ,a(Q1, Q2, P ) =L(

2k3 − k1 − k2

2
, π1 × π2 ⊗ χ) · (−1)a+1ψ2,(p)(−1) · (

√
−1)−2k3+k2+1

ΩfQ1

×Ψord
p (s) ·

∏
`|N

Ψ∗` (s)
∣∣∣
s=

2k3−k1−k2
2

,

where Ψord
p (s) and Ψ∗` (s) are normalized local zeta integrals given by

Ψord
p (s) =

Ψ(ρ(tn)W ord
π1,p

,W ord
π2,p

, f?D,s− 1
2 ,p

)

L(s, π1,p ⊗ π2,p ⊗ χp)
· ω2,p(−1) · ζp(1)

ω−1
1,pα

2
f |·|Qp

(pn)ζp(2)
,

Ψ∗` (s) =
ζQ`

(1)

ζQ`
(2) |N |Q`

·
Ψ(Wπ1,`

,Wπ2,`
, f?D,s− 1

2 ,`
)

L(s, π1,` ⊗ π2,` ⊗ χ`)
.

Proof. By (5.11), we find that

〈ρ(J∞tn)ϕf , ϕg · EA(−, f [k1−k2]

D,s− 1
2

)⊗ ω−1
f,(p)〉

=〈ρ(J∞tn)ϕf , ϕg · EA(−, f?D,s− 1
2
)〉

=ζQ(2)−1Ψ(ρ(J∞)Wπ1,∞,Wπ2,∞, f
?
D,s− 1

2 ,∞
) ·Ψ(ρ(tn)W ord

π1,p,W
ord
π2,p, f

?
D,s− 1

2 ,p
)
∏
` 6=p

Ψ(Wπ1,`,Wπ2,`, f
?
D,s− 1

2 ,`
).

We must calculate the archimedean local zeta integral. Note that π1,∞ and π2,∞ are discrete series of weight
k1 and k2, and the corresponding Whittaker newforms Wπ1,∞ and Wπ2,∞ are given in (2.8). Let k′ = k1 − k2.
Recall that f?D,s,∞ is the Godement section attached to Φ

[k′]
∞ . We obtain

Ψ(ρ(J∞)Wπ1,∞,Wπ2,∞, f
?
D,s− 1

2 ,∞
)

=

∫
R×

∫
SO2(R)

Wπ1,∞(

(
y 0
0 1

)
u

(
−1 0
0 1

)
)Wπ2,∞(

(
−y 0
0 1

)
u)χ∞|·|s−1

R (y)f?D,s− 1
2 ,∞

(u)dud×y

=χ∞(−1)2−k
′
(
√
−1)k

′
π−s−k

′/2Γ

(
s+

k′

2

)∫
R×

Wπ1,∞(

(
y 0
0 1

)
)Wπ2,∞(

(
y 0
0 1

)
) |y|s−1

R d×y

=(−1)a+k32−k
′
(
√
−1)k

′
π−s−k

′/2Γ

(
s+

k′

2

)∫
R+

ys+
k1+k2

2 −1e−4πyd×y

=(−1)a(
√
−1)2k3+k1−k22−k1−1ΓC

(
s+

k1 − k2

2

)
ΓC

(
s+

k1 + k2

2
− 1

)
=(−1)a(

√
−1)2k3+k1−k22−k1−1 · L(s, π1,∞ × π2,∞ ⊗ χ∞).

Combining Proposition 5.2, (5.12) and the fact that ω2,p(−1) = ψ2,(p)(−1)(−1)k2 and [SL2(N) : Γ0(N)] =∏
`|N

ζQ` (1)

ζQ` (2)|N |Q`
, we get the proposition. �

6. The calculation of local zeta integrals

In this section, we calculate the normalized local zeta integrals Ψord
p (s) and Ψ∗` (s) in Proposition 5.3. The

notation is as in §5.2. We will continue to use the local Haar measures normalized in §2.6.1.
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6.1. The p-adic place.

Lemma 6.1. For all sufficiently large n, we have

Ψ(ρ(tn)W ord
π1,p

,W ord
π2,p

, f?D,s− 1
2 ,p

) =
ζp(2)

ζp(1)
·
α2
fω
−1
1,p|·|Qp

(pn)ω2,p(−1)

γ(s, π2,p ⊗ αfχp)
.

In particular, Ψord
p (s) = E1

p (s, f, g ⊗ χ), where E1
p (s, f, g ⊗ χ) is the modified p-Euler factor given by

(6.1) E1
p (s, f, g ⊗ χ) =

L(s, π2,p ⊗ αfχp)
ε(s, π2,p ⊗ αfχp)L(1− s, π∨2,p ⊗ α

−1
f χ−1

p )
· 1

L(s, π1,p × π2,p ⊗ χp)
.

Proof. To simply the notation, we omit the subscript p in the proof. For example, we write π1, ω1, f
?
D,s, |·|

for π1,p, ω1,p, f
?
D,s,p, |·|Qp

. According to Definition 4.1, f?D,s = fχ,χ−1ω−1,ΦD,s be the Godement section associ-
ated with

ΦD,p = φχ−1ω−1
1,(p)
⊗ φ̂χωω−1

1,(p)
.

A direct computation shows that

f?D,s(

(
0 −1
1 x

)
) = φ̂χωω−1

1,(p)
(x).

Let W ord
i = W ord

πi for i = 1, 2. By (2.10), we have

W1(

(
y 0
0 1

)
) = αf |·|

1
2 (y)IZp(y); W2(

(
y 0
0 1

)
) = αg|·|

1
2 (y)IZp(y).

Using the integration formula∫
N\PGL2(Qp)

F (g)dg =
ζp(2)

ζp(1)

∫
Q×p

∫
Qp

F (

(
y 0
0 1

)(
0 −1
1 x

)
)dxd×y

for F ∈ L1(N\PGL2(Qp)), we obtain

Ψ(ρ(tn)W ord
1 ,W ord

2 , f?D,s− 1
2
)

=
ζp(2)

ζp(1)

∫
Q×p

∫
Qp

W ord
1 (

(
y 0
0 1

)(
0 −1
1 x

)
tn)W ord

2 (

(
−y 0
0 1

)(
0 −1
1 x

)
)χ|·|s(y)f?D,s− 1

2
(

(
0 −1
1 x

)
) |y|−1

dxd×y

=
ζp(2)

ζp(1)

∫
Qp

∫
Q×p

W ord
1 (

(
ypn 0
0 p−n

)(
1 0

−p2nx 1

)
)W ord

2 (

(
−y 0
0 1

)(
0 −1
1 x

)
)χ|·|s−1

(y)φ̂χωω−1
1,(p)

(x)d×ydx

=
ζp(2)αf |·|

1
2 (p2n)ω−1

1 (pn)

ζp(1)

∫
Qp

∫
Q×p

W ord
2 (

(
−y 0
0 1

)(
0 −1
1 x

)
)χαf |·|s−

1
2 (y)φ̂χωω−1

1,(p)
(x)d×ydx

for sufficiently large n. By the local functional equation for GL(2) [Bum98, Theorem 4.7.5], the above integral
equals

ζp(2)α2
fω
−1
1 |·|(pn)

ζp(1)
· χ(−1)

γ(s, π2 ⊗ αfχ)

∫
Qp

∫
Q×p

W ord
2 (

(
y 0
0 1

)(
1 x
0 1

)
)ω−1

2 χ−1α−1
f |·|

1
2−s(y)φ̂χωω−1

1,(p)
(x)d×ydx

=
ζp(2)α2

fω
−1
1 |·|(pn)

ζp(1)
· χ(−1)

γ(s, π2 ⊗ αfχ)

×
∫
Qp

∫
Q×p

ψ(yx)µ2ω
−1
2 χ−1α−1

f |·|
1−s

(y)φ̂χωω−1
1,(p)

(x)d×ydx

=
ζp(2)α2

fω
−1
1 |·|(pn)

ζp(1)
· χ(−1)

γ(s, π2 ⊗ αfχ)

∫
Q×p

α−1
f αgω

−1
2 χ−1|·|1−s(y)φχωω−1

1,(p)
(−y)d×y.

Since αf , αg and ω1ω
−1
1,(p) are unramified, we find that

Ψ(ρ(tn)W ord
1 ,W ord

2 , f?D,s− 1
2
) =

ζp(2)α2
fω
−1
1 |·|(pn)

ζp(1)
· ω2(−1)

γ(s, π2 ⊗ αfχ)
.

This completes the proof. �
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6.2. The `-adic case with ` | N . In this subsection, we compute the local zeta integral Ψ∗` (s) under certain
minimal Hypothesis (M) below. Recall that an irreducible admissible representation π of GL2(Q`) is called
minimal if the exponent of the conductor c(π) of π is minimal among the twists π ⊗ χ for all characters χ of
Q×` . In this subsection, we assume the following minimal hypothesis for (f, g)

Hypothesis (M). For every ` | N , there exists a rearrangement {π1, π2} = {πf,`, πg,`} such that
• π1 is minimal,
• Either π1 is discrete series or π1 and π2 are both principal series.
• If π1 and π2 are both principal series with L(s, π1 × π2) 6= 1, then π2 is also minimal.

Remark 6.2. Note that if the above hypothesis holds for (f, g), then it holds for the specialization of (f , g) at
any classical point by the rigidity of automorphic types for Hida families described in [FO12, Lemma 2.14] (See
also [Hsi21, Remark 3.1]). Moreover, one can always find a Dirichlet character λ such that (πf ⊗ λ, πg ⊗ λ−1)
satisfies Hypothesis (M).

Let ` be a prime factor of N . So ` belongs to Σ(i) tΣ(ii) tΣ(iii) as described in (5.1). Note that in this case
χ is unramified at `, and Ψ∗` (s) is symmetric for (πf,`, πg,`). Let (π1, π2) as above. For i = 1, 2, let ci = c(πi)
be the exponent of the conductor of πi. Set c = max{c1, c2} = ord`(N) > 0. We write

a(t) =

(
t 0
0 1

)
, u(x) =

(
1 x
0 1

)
, w =

(
0 1
−1 0

)
(t ∈ Q×` , x ∈ Q`).

For a non-negative integer n, let

U0(`n) = GL2(Z`) ∩
(

Z` Z`
`nZ` Z`

)
.

In what follows, we assume Hypothesis (M) throughout this subsection. We often omit the subscript ` as
before. We first treat the case ` ∈ Σ(i).

Lemma 6.3. If ` ∈ Σ(i), then we have

Ψ
(
Wπ1 ,Wπ2 , f

?
D,s− 1

2

)
=
ζQ`

(2) |N |Q`

ζQ`
(1)

· L(s, π1 × π2 ⊗ χ),

and hence Ψ∗` (s) = 1.

Proof. Write W1 and W2 for Wπ1
and Wπ2

respectively. Recall that f?D,s = f1,ω−1,ΦD,s is the Godement
section attached to the Bruhat-Schwartz function ΦD = I`cZ` ⊗ IZ` . Since χ is unramified, we may assume
χ = 1. For k ∈ GL2(Q`), put

I(u) =

∫
Q×`

W1(a(t)u)W2(a(−t)u) |t|s−1
d×t.

Then I and f?D,s are indeed functions on N(Q`)\GL2(Q`)/U0(`c), so we have

(6.2) Ψ(W1,W2, f
?
D,s− 1

2
) = vol(U0(`c),du)

∑
u∈GL2(Z`)/U(`c)

I(u)f?D,s− 1
2
(u).

To evaluate the above sum, we give an explicit formula for the function f?D,s− 1
2

and I. First of all, it is easy
to verify that f?D,s− 1

2

(1) = L(2s, ω),

f?D,s− 1
2
(w) =f?D,s− 1

2
(w

(
1 0
x 1

)
) = L(2s, ω)ω|·|2s(`c),

f?D,s− 1
2
(

(
1 0
`n 1

)
) =L(2s, ω) · ω|·|2s(`c−n)

and that

I (w) = I
((

1 0
1 1

))
= I

(
w

(
1 0
x 1

))
;

I
((

1 0
`n 1

))
= I

((
1 0
`nt 1

))
,
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for x ∈ Q`, t ∈ Z×` , and n ∈ Z. In view of the definition of Σ(i) in (5.1) and Hypothesis (M), we must have
that π1 = µ1 � ν1 and π2 = µ2 � ν2 are principal series such that

c = c(ν1) = c(ν2) > 0; µ1, µ2 and ω1ω2 are unramified.

For i = 1, 2 we have

Wi(a(t)) = µi|·|
1
2 (t)IZ`(t),

Wi (a(t)w) = µ−1
i |·|

1
2 (`c) · ε

(
1

2
, πi

)
νi|·|1/2(t)I`−cZ`(t).

Combined with the equation ε(1/2, π1)ε(1/2, π2) = ν1ν2(`c)ν2(−1), we obtain

I(1) = (1− µ1µ2(`) |`|s)−1,

I (w) = µ1µ2(`)−c |`|c−cs (1− ν1ν2(`) |`|s)−1.

Moreover, for 0 < n < c, from the explicit formula for Whittaker newforms in Proposition 6.4 (ii) below, we
deduce by a straightforward computation that

I
((

1 0
`n 1

))
= ζ`(1)µ1µ2(`)n−c|`n−c|s−1.

With the above formulae, using a complete coset representatives for GL2(Z`)/U0(`c) given by{(
1 0
x 1

)
, w

(
1 0
y 1

) ∣∣∣∣ x ∈ Z`/`
cZ`, y ∈ `Z`/`cZ`

}
.

and the relation ω = µ1µ2ν1ν2, we find that the sum in (6.2) equals

f?D,s− 1
2
(1)I(1) +

c−1∑
n=0

(`− 1)`c−n−1f?D,s− 1
2
(

(
1 0
`n 1

)
)I
((

1 0
`n 1

))
+ `c−1f?D,s− 1

2
(w)I(w)

=L(2s, ω)

(
L(s, µ1µ2) +

c−1∑
n=1

ν1ν2(`n) |`|sn + ν1ν2(`c) |`|sc L(s, ν1ν2)

)
=L(s, µ1µ2)L(s, ν1ν2) = L(s, π1 × π2).

Hence we obtain

Ψ(W1,W2, f
?
D,s− 1

2
) = vol(U0(`c),du)L(s, π1 × π2)

= [GL2(Z`) : U0(`n)]−1 · L(s, π1 × π2).

The lemma follows. �

Proposition 6.4. Let Ẑ×` be the set of continuous characters of Z×` . For ξ ∈ Ẑ×` , we extend ξ to a character
of Q×` so that ξ(`) = 1. Let π = µ � ν with c(µ) = 0 and c(ν) = c > 0. Let Wπ ∈ W(π, ψ) be the Whittaker

newform. For n ≥ 0, let W (n)
π = ρ

((
1 0
`n 1

))
Wπ.

(i) For n = 0, W (0)
π (a(t)) is supported in q−cZ`. For t ∈ Z×` and −c ≤ m < −1, we have

W (0)
π (a(`mt)) = |`|c/2 ζ`(1)µ(`)−cε

(
1

2
, π

)
×

∑
ξ∈Ẑ×` ,c(νξ−1)=−m

ε

(
1

2
, νξ−1

)−1

ξ(−t),
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and

W (0)
π (a(`−1t)) = |`|c/2 ζ`(1)µ(`)−cε

(
1

2
, π

) ∑
ξ∈Ẑ×` ,c(ξ)=c
c(νξ−1)=1

ε

(
1

2
, νξ−1

)−1

ξ(−t)

− |`|c/2+1/2
ζ`(1)µ(`)−cε

(
1

2
, π

)
ν(−q−1t).

For t 6= 0 ∈ Z`, we have

W (0)
π (a(t)) = |`|c/2 µ(`)−cν(−1)ε

(
1

2
, π

)
ν|·|1/2(t).

(ii) For 0 < n < c, we have

W (n)
π (a(t)) = I`n−cZ×` (t) · ζ`(1) |`|c/2−n/2 µ(`)n−cε

(
1

2
, π

)
×

∑
ξ∈Ẑ×` ,0≤c(ξ)≤c−n

ε

(
1

2
, νξ−1

)−1

ξ(−t).

(iii) For n ≥ c, W (n)
π = Wπ.

Proof. Let n ≥ 0 and m ∈ Z. For ξ ∈ Ẑ×` , put

A(n)
m (ξ) =

∫
Z×`

W (n)
π (a(`mt))ξ−1(t).

For t ∈ Z×` , we have

W (n)
π (a(`mt)) =

∑
ξ∈Ẑ×`

A(n)
m (ξ) · ξ(t).

Recall the local functional equation for GL(2)∫
Q×`

W (n)
π (a(t))ξ−1(t) |t|s−1/2

d×t =
L(s, π ⊗ ξ−1)

L(1− s, π∨ ⊗ ξ)ε(s, π ⊗ ξ−1)

∫
Q×`

W (n)
π (a(t)w) ξω−1

π (t) |t|1/2−s d×t.

Let ωπ = µν be the central character of π. Note that (cf. [Sch02, §2.4])

Wπ∨(a(t)) =µ−1|·|1/2(t)IZ`(t),

ρ (w)Wπ(a(t)) =ε

(
1

2
, π

)
ωπ(t)Wπ∨(a(`ct)).

Therefore, the local functional equation for GL(2) implies that∑
m∈Z

A(n)
m (ξ) · |`|(s−1/2)m

=
L(s, π ⊗ ξ−1)

L(1− s, π∨ ⊗ ξ)ε(s, π ⊗ ξ−1)
· ε
(

1

2
, π

)
· ξ(−1) · |`|(s−1/2)c

×
∫
Q×`

ψ(`n−ct)ξµ−1(t) |t|1−s IZ`(t)d×t.

A direct calculation shows that∫
Q×`

ψ(`n−ct)ξµ−1(t) |t|1−s IZ`(t)d×t

=



|`|c(ξ)/2 ζ`(1)µ(`)n−c
∣∣∣qc−n−c(ξ)∣∣∣1−s ε(1

2
, µξ−1

)
if 0 < c(ξ) ≤ c− n,

ζ`(1)µ(`)n−c |qc−n|1−s (1− µ(`)q−s)(1− µ−1(`)qs−1)−1

if ξ = 1 and c− n ≥ 1,
(1− µ−1(`)qs−1)−1 if ξ = 1 and c = n,
0 if c(ξ) > c,
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and for 0 ≤ c(ξ) ≤ c
L(s, π ⊗ ξ−1)

L(1− s, π∨ ⊗ ξ)ε(s, π ⊗ ξ−1)

=



|`|(c(ξ)+c(νξ
−1))(1/2−s)

ε

(
1

2
, µξ−1

)−1

ε

(
1

2
, νξ−1

)−1

if 0 < c(χ) ≤ c and c(νξ−1) 6= 0,

(1− ν−1(`)`s−1)(1− ν(`)`−s)−1 |`c|1/2−s ε
(

1

2
, µξ−1

)
if c(ξ) = c and c(νξ−1) = 0,

(1− µ−1(`)`s−1)(1− µ(`)`−s)−1 |`c|1/2−s ε
(

1

2
, ν

)
if ξ = 1.

We conclude that for c(ξ) > c,
A(n)
m (ξ) = 0.

For 0 < c(ξ) ≤ c− n and c(νξ−1) > 0, A(n)
m (ξ) equals

=

 |`|c/2−n/2 ζ`(1)µ(`)−c+nε

(
1

2
, π

)
ε

(
1

2
, νξ−1

)−1

ξ(−1) if m = n− c,

0 if m 6= n− c.

For c(ξ) = c and c(νξ−1) = 0, A(n)
m (ξ) equals

= |`|c/2 ζ`(1)µ(`)−cε

(
1

2
, π

) − |`|
1/2

ν−1(`) if m = −1 and n = 0,

ζ`(1)−1|q|m/2ν(`)m if m ≥ 0 and n = 0,
0 if m < −1 or n 6= 0.

For χ = 1 and c− n ≥ 1,

A(n)
m (ξ) =

{
|`|c/2−n/2 ζ`(1)µ(`)n−c if m = n− c,
0 if m 6= n− c.

For χ = 1 and c = n,

A(n)
m (ξ) =

{
|`|m/2 µ(`)m if m ≥ 0,
0 if m < 0.

This completes the proof. �

Now we suppose that ` ∈ Σ(ii), so ord`(C1) = d c2e by (5.2). In addition, π1 is minimal and π1, π2 are discrete
series with L(s, π1 × π2) 6= 1. This in particular implies that π2 = π∨1 ⊗ ξ for some unramified character ξ
of Q×` by [GJ78, Propositions (1.2) and (1.4)], and hence c = c1 = c2. Let τQq2

be the unramified quadratic
character associated to the unramified quadratic extension of Q`. A discrete serires representation π is said
to be of type 1 if π ' π ⊗ τQq2

, and of type 2 if π 6' π ⊗ τQq2
. Note that a special representation is always of

type 2.

Lemma 6.5. If ` ∈ Σ(ii), then we have

Ψ
(
Wπ1 ,Wπ2 , f

?
D,s− 1

2

)
=`c−d

c
2 e ·

ζQ`
(2) |N |Q`

ζQ`
(1)

L(s, π1 × π2 ⊗ χ)

{
1 + |`| if π1 is of type 1,

1 if π1 is of type 2.

Proof. We may assume χ = 1 as in the previous case. Let f0 be the spherical section in B(1, ω−1, s− 1
2 )

normalized so that f0(1) = 1. Let r = d c2e = ordp(C1). Then f?D,s is the Godement section associated with
I`rZ` ⊗ IZ` according to Definition 4.1. It is easy to verify that

f?D,s− 1
2

= |`r|s L(2s, ω) · ρ(a(`−r))f0.

It is computed in [Hsi21, Proposition 6.9] that Ψ(Wπ1
,Wπ2

, ρ (a(`−r)) f◦) equals

|`|r(1−s)

1 + |`|
· L(s, π1 × π2)

L(2s, ω)

{
1 + |`| if π1 is of type 1,

1 if π1 is of type 2.
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The lemma follows. �

Finally, we consider the last case ` ∈ Σ(iii).

Lemma 6.6. If ` ∈ Σ(iii), then

Ψ(Wπ1 ,Wπ2 , f
?
D,s− 1

2
) =

ζQ`
(2) |N |Q`

ζQ`
(1)

· L(s, π1 × π2 ⊗ χ),

and hence Ψ∗` (s) = 1.

Proof. We may assume χ = 1 and write Wi = Wπi , i = 1, 2 as before. Since ` ∈ Σ(iii), by definition ` | C2,
and f?D,s− 1

2

is the Godement section associated with I`cZ` ⊗ φω−1 according to Definition 4.1. It is easy to see
that

f?D,s(k) = ω(d)IU0(`c)(k) for k =

(
y b
c d

)
∈ GL2(Z`).

Therefore, we obtain

Ψ(W1,W2, f
?
D,s− 1

2
) =

∫
GL2(Z`)

∫
Q×`

f?D,s− 1
2
(k)W1(a(t)u)W2(a(−t)u) |t|s−1

d×tdu

= [GL2(Z`) : U0(`c)]−1

∫
Q×`

W1 (a(t))W2 (a(−t)) |t|s−1
d×t.

Hence the lemma follows immediately if we can prove the following equality

(6.3)
∫
Q×`

W1 (a(t))W2 (a(−t)) |t|s−1
d×t = L(s, π1 × π2).

To show (6.3), we first consider the case π1 is spherical. Then π2 is not spherical, and hence (6.3) can be
verified easily. Now suppose that π1 is special µ1|·|−

1
2 St or ramified principal series µ1 � ν1 with ν1 ramified.

By the minimality of π1, µ1 is unramified and W1(a(t)) = µ1|·|
1
2 (a)IZ`(a). We thus conclude that the left

hand side of (6.3) equals L(s, π2 ⊗ µ1). It remains to see

(6.4) L(s, π2 ⊗ µ1) = L(s, π1 × π2).

If π2 is supercuspidal, (6.4) is clear. If π2 = µ2|·|−
1
2 St is special, then (6.4) fails only when π1 is special

and µ1µ2 is unramified, which contradicts to the fact that ` 6∈ Σ(ii). If π2 = µ2 � ν2 is principal series, then
the failure of (6.4) implies that L(s, π2 ⊗ ν1) 6= 1, and then π2 is minimal by Hypothesis (M) and µ1µ2ν1ν2

is unramified. This implies ` ∈ Σ(i), a contradiction. We thus shows (6.4), and hence (6.3) if π1 is not
supercuspidal. Finally, suppose that π1 is supercuspidal. In this case, W1(t(a)) = IZ×` (a), and we must have
L(s, π1 × π2) = 1 as ` ∈ Σ(iii). Thus the left hand side equals∫

Z×`

W2(t(a))d×t = 1 = L(s, π1 × π2).

This completes the proof. �

7. The interpolation formulae

We prove the main result in this paper with the setting and the notation in the introduction and §5.1.
Recall that the finite set Σexc in the introduction is

Σexc =
{
` ∈ Σ(ii) | πf,` ' πf,` ⊗ τQ`2

}
.

We continue to suppose that f satisfies the Hypothesis (CR) and fix a generator ηf of the congruence ideal
of f used in the definition of Hida’s canonical periods ΩfQ for Q ∈ X+

I1
. We have the following

Theorem 7.1. For each a ∈ Z/(p− 1)Z, there exists a unique element Lf
F ,a ∈ R = I1⊗̂OI2JT K such that for

every Q = (Q1, Q2, P ) ∈ Xf
R, we have

Lf
F ,a(Q1, Q2, P ) = ΓVQ

(0) ·
L(VQ, 0)

(
√
−1)2kP−kQ2

−1ΩfQ1

· Efp (Fil+ VQ)(−1)a+1ψ2,(p)(−1)
∏

`∈Σexc

(1 + `−1),
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where Efp (Fil+ VQ) is the modified p-Euler factor defined in (1.3).

Proof. For every Dirichlet character λ unramified at p, let f ⊗ λ be the primitive Hida family associated
with f |[λ]. Then it is proved in [Hsi21, Proposition 7.5] that there exists a generator η0

f⊗λ of the congruence
ideal of f ⊗λ such that for every arithmetic point Q, we have Ω(f⊗λ)Q = ΩfQ . Therefore, we can deduce that
up to a units in I, the right hand side of the equation in the theorem is invariant under prime-to-p twists.

According to the discussion in Remark 6.2, we can choose a Dirichlet character λ of conductor c(λ) such
that c(λ)2 | N and for every arithmetic points (Q1, Q2), the pair (fQ1

⊗λ, gQ2
⊗λ−1) satisfies the Hypothesis

(M). Therefore, we may replace F by the twist (f ⊗ λ, g ⊗ λ−1) with such λ and then define

Lf
F ,a := L f

F ,a ·
∏

`∈Σ(ii)

∣∣NC−1
1

∣∣
Q`
∈ R.

We put

(π1, π2, χ) = (πfQ1
, πgQ2

, εPω
a−kP ); s0 =

2kP − kQ1
− kQ2

2
.

Then from Proposition 5.3 combined with the local calculation Lemma 6.1, Lemma 6.3, Lemma 6.5 and
Lemma 6.6, we deduce that Lf

F ,a(Q) equals

L(s0, π1 × π2 ⊗ χ)

Ωf
· E1
p (s0, π1 × π2 ⊗ χ) · (−1)a+1(

√
−1)−2k3+k2+1

∏
`∈Σexc

(1 + `−1).

Finally, a simple computation of local Langlands parameters associated with π1 and π2 shows that

L(s, π1 × π2 ⊗ χ) = ΓVQ
(s+

kQ1 + kQ2

2
) · L(VQ, s+

kQ1 + kQ2

2
),

where ΓV†Q
(s) = L(s+ 1− kQ1

+kQ2

2 , π1,∞ × π2,∞ ⊗ χ∞) is the Γ-factor of VQ in (1.1) and that

E1
p (s0, π1 × π2 ⊗ χ) = Efp (Fil+ VQ)

in view of the definitions (1.3) and (6.1). Now the theorem follows. �

We proceed to establish the functional equation of the primitive p-adic L-functions. We first introduce the
R-adic root number for Rankin-Selberg convolution. To begin with, it follows from [Hsi21, Lemma 6.11] that
there exists ε(p∞)(f ⊗ g ⊗ ωa) ∈ (I1⊗̂OI2)× such that

ε(p∞)(f ⊗ g ⊗ ωa)(Q1, Q2) =
∏
`-p

ε(1− kQ1 + kQ2

2
, πfQ1

,` × πgQ2
,` ⊗ ωa).

Let Nfg be the tame conductor of πfQ1
× πgQ2

for any arithmetic specialization (Q1, Q2).3 Then define the
R-adic root number ε(p∞)(V) ∈ (I1⊗̂I2JΓK)× by

ε(p∞)(V) := Nfg 〈Nfg〉−1
T · ε

(p∞)(f ⊗ g ⊗ ωa).

which satisfies the following interpolation property

(7.1) ε(p∞)(V)(Q1, Q2, P ) =
∏
` 6=p∞

ε(kP −
kQ1

+ kQ2

2
, πfQ1

,` × πgQ2
,` ⊗ εP,`ωa−kP` ).

Corollary 7.2. Suppose that ψ1,(p)ψ2,(p) = ωa0 . Let

f̆ = f ⊗ ψ(p)

1 ; ğ = g ⊗ ψ(p)

2

and let F̆ = (f̆ , ğ). Then we have

Lf̆

F̆ ,1+a0−a
(εcyc(γ0)(1 + T )−1(1 + T1)(1 + T2)) =ψ1,(p)(−1)(−1) · ε(p∞)(V) · Lf

F ,a(T ).

3This is independent of any choice of arithmetic specializations by the rigidity of automorphic types in Hida families.
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Proof. It suffices to show the equation of both sides are equal after specialized at all arithmetic points
Q = (Q1, Q2, P ) ∈ Xf

R. Let Q̆ = (Q1, Q2, P̆ ) ∈ Xf̆
R be the arithmetic point defined by

kP̆ = −kP + kQ2 + kP + 1, εP̆ = ε−1
P εQ1εQ2 .

Let χ̆ = ω1+a0−aεP̆ω
kP̆ = χ−1ω−1

1,(p)ω
−1
2,(p). Then left hand side specialized at Q equals

Lf̆

F̆ ,1+a0−a
(Q̆) =

L(1− s0, π
∨
1 × π∨2 ⊗ χ−1)

(
√
−1)2k1+k2−2k3+1Ωf

· E1
p (1− s0, f̆ , ğ ⊗ χ̆) · (−1)2+a0−a

∏
`∈Σexc

(1 + `−1).

We have the relation

ε(s0, π2,p ⊗ αfχp) · Ep(s0, f, g ⊗ χ) = ε(1− s0, π
∨
2,p ⊗ αfω−1

1,pχ
−1
p ) · Ep(1− s, f̆ , ğ ⊗ χ̆)

and
ε(s0, π1,∞ × π2,∞ ⊗ χ∞) = (

√
−1)2kQ1

−2 = (−1)k1−1.

as π1,∞ and π2,∞ are discrete series of weight kQ1 and kQ2 . Therefore, by the functional equation

L(1− s, π∨1 × π∨2 ⊗ χ−1) = ε(s, π1 × π2 ⊗ χ)L(s, π1 × π2 ⊗ χ)

and by (7.2), one verifies easily that

(−1)k2+a0−1ω2,p(−1)Lf̆

F̆ ,1+a0−a
(Q̆) =

∏
v 6=p∞

ε(s0, π1,v × π2,v ⊗ χv) · Lf
F ,a(Q).

Keep in mind that ω2,p(−1) = ψ2,(p)(−1)(−1)kQ2 , and we get the corollary. �
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