ON PRIMITIVE p-ADIC RANKIN-SELBERG L-FUNCTIONS

SHIH-YU CHEN AND MING-LUN HSIEH

ABSTRACT. In this note, we revisit Hida’s construction of p-adic Rankin-Selberg L-functions by incorporating
Jacquet’s approach to automorphic L-functions on GL(2) x GL(2). This allows us to give a construction of
primitive three variable p-adic Rankin-Selberg L-functions associated with a pair of two primitive Hida families
in full generality and prove the functional equation of this p-adic Rankin-Selberg L-function.

1. INTRODUCTION

The theory of p-adic Rankin-Selberg L-functions for Hida families of elliptic modular forms has been devel-
oped extensively by Hida in [Hid85| and [Hid88a] and presents a landmark in the search of p-adic L-functions
for motives. The p-adic L-functions constructed by Hida are in general imprimitive in the sense that they
interpolate the critical values of automorphic Rankin-Selberg L-function with local L-factors at ramified places
removed. The primitive p-adic Rankin-Selberg L-functions were constructed in [Hid09, Theorem 3.3] under
certain local assumptions. The aim of this note is to go through Hida’s construction of p-adic Rankin-Selberg
L-functions with some new ingredients from Jacquet’s representation theoretic approach to automorphic L-
functions on GL(2) x GL(2) in [Jac72]. As a result, we obtain the primitive p-adic Rankin-Selberg L-functions
in great generality and deduce the interpolation formula in the form conjectured by Coates and Perrin-Riou
[CPRR9], [Coal9] (See Remark[L.1[1) for the precise meaning). We hope that brining in representation theory
to Hida’s work mentioned above and the primitive p-adic L-functions can be useful in some applications, for
example, the precise formulation of three variable Iwasawa-Greenberg main conjecture for Rakin-Selberg con-
volutions. In order to give a precise statement of the main formula, we begin with some notation from Hida
theory for elliptic modular forms and technical items such as the modified Euler factors at the archimedean
place and the place p as well as the canonical periods of primitive Hida families. To begin with, let p > 3 be
a prime. Let O be a valuation ring finite flat over Z,,. Let I be a normal domain finite flat over the Iwasawa
algebra A = O[I'] of the topological group I' = 1 + pZ,,.

1.1. Galois representations attached to Hida families. For a primitive cuspidal Hida family F =
3,51 aln, F)g™ € I[q] of tame conductor Nz, we let pr : Gq = Gal(Q/Q) — GLa(FracI) be the associated
big Galois representation such that Tr pz(Froby) = a(¢, F) for primes £ { Nz, where Froby is the geometric
Frobenius at ¢ and let Vr denote the natural realization of pr inside the étale cohomology groups of modular
curves. Thus, Vr is a lattice in (FracI)® with the continuous Galois action via pr, and the Gal(Q,/Qy)-

invariant subspace Fil® Vg := V;” fixed by the inertia group I, at p is free of rank one over I ([Oht00,

Corollary, page 558])). We recall the specialization of Vr at arithmetic points. A point @ € SpecI(Q,) is

called an arithmetic point of weight k and finite part € if Q|p: ' — A* i)@: is given by Q(z) = zFe(x) for

some integer k > 2 and a finite order character ¢ : I' — pr . For an arithmetic point @), denote by kg the
weight of () and eg the finite part of Q. Let %;r be the set of arithmetic points of I. For each arithmetic point
Q € %f' , the specialization Vz, 1= Vr Q1,9 Qp is the geometric p-adic Galois representation associated with
the eigenform Fg constructed by Shimura and Deligne.

1.2. Rankin-Selberg L-functions. Let ., : Gq — Z;j be the p-adic cyclotomic character. Let Qoo/Q

Ecyc

be the cyclotomic Z,-extension and let (€cyc), : Gq — Gal(Qw/Q) =~ 1+ pZ, — A* be the universal
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cyclotomic character. Let

R = IReI[I]
be a finite extension of the three-variable Iwasawa algebra. Let
F=(fg9)

be the pair of two primitive Hida families of tame conductor (N7, N2) and nebentypus (41, ¥2) with coefficients
inI. Let w: (Z/pZ)* — pp—1 be the Teichmiiller character. For each integer 0 < a < p — 1, we consider the
big Galois representation py : Gq — GL4(Frac R) realized on the lattice

V = VB0 VB0 (Eeye) p W eiye-
Let %g; C Spec R(Qp) be the f-dominated weight space of arithmetic points of R given by

X% = {Q = (Q1,Q2,P) € Xf x X{ x Xa | ko, < kp < ko, }.
For each arithmetic point @ = (Q1,Q2, P) € f{fa, the specialization
cyc

Vo=V, @V, ® epw?FPghr—1

is a p-adic geometric Galois representation of pure weight wq = kq, + kg, — 2kp. Next we briefly recall
the complex L-function associated with the specialization V. For each place ¢, denote by Wgq, the Weil-
Deligne group of Q. To the geometric p-adic Galois representation Vg, we can associate the Weil-Deligne

representation WD, (V) of Wq, over Q,, (See [Tat79, (4.2.1)] for £ # p and [Fon94} (4.2.3)] for £ = p). Fixing

an isomorphism ¢, : Qp ~ C once and for all, we define the complex L-function of Vg by the Euler product
L(Vg,s)= [] L«(Vg,s)

of the local L-factors Ly(V g, s) attached to WD¢(Vq)®g , C ([Del79, (1.2.2)], [Tay04} page 85]). According
to the recipe in [Del79, page 329], the Gamma factor I'v, (s) iof Vg is defined by
(1.1) v (s):==Tc(s+kp—1lc(s+kp—kg,) (I'c(s)=2(2m) °I(s)).

On the other hand, denote by m¢, = ®u7s, o (resp. mg, ) the irreducible unitary cuspidal automorphic
representation of GL(A) associated with fg (resp. gg,). In terms of automorphic L-functions, by [Jac72)
Corollary 19.16] we have

2kp — kg, — k
Tvg(s) - L(Va,s) = Lis + ==

where L(s, Tfo, X Tgq, ® epw~FP) is the Rankin-Selberg automorphic L-function on GLa(A) x GLa(A).

—kp
Mo, X Mgy, ®€pw ),

1.3. The modified Euler factors at p and co. Let Gq, be the decomposition group at p. We consider the
following rank two Gq,-invariant subspaces of V:

(1.2) FilT V := Fil° Vi ® Vg @ w* (cye) 5 Ec_ylc

The pair (Fil™ V,f{fz) satisfies the Panchishkin condition in [Gre94l page 217]) in the sense that for each
arithmetic point @ € X%, the Hodge-Tate numbers of F it Vg are all positive, while the Hodge-Tate numbers
of Vg JFil™ Vg are all non—positive Define the modified p-Euler factor by
L,(Fil" Vo,0 1
(1.3) &,(Fil* Vo) == _+”( 2 ),+ - .
- e(WD,(Fil™ Vq)) - Ly((Fil" V@), 1) L,(Vg,0)
Here (7)Y means the dual representation. We note that this modified p-Euler factor is precisely the ratio

between the factor Ez(jp)(VQ) in [Coa89, page 109, (18)] and the local L-factor L,(Vgq,0).
In the conjectural interpolation formula of p-adic L-functions for motives, we also need the modified Fuler
factor £ (VQ) at the archimedean place as observed by Deligne. In our case, this Euler factor is given by

500(VQ) _ (\/jl)l“erQ*QkP.

IThe Hodge-Tate number of Q,(1) is one in our convention.
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This factor is the ratio between the factor £ 7 (V@) and the Gamma factor I'v,,(0) in [Coa89, page 103

(4)]- -

1.4. Hida’s canonical periods. We review Hida’s canonical period of an I-adic primitive cuspidal Hida
family F of tame conductor Nx. Let my be the maximal ideal of I. For a subset X of the support of Nz, we
consider the following

Hypothesis (CR). The residual Galois representation pr := pr (mod my) : Gq — GL2(F,) is absolutely
irreducible and p-distinguished.

We say pr is p-distinguished if the semi-simplication of the restriction of the residual Galois representation
pF (mod my) to the decomposition group at p is a sum of two characters x = & x 7 with x5 # X7 (mod my).
Suppose that F satisfies (CR). The local component of the universal cuspidal ordinary Hecke algebra corre-
sponding to F is known to be Gorenstein by [MWS86, Prop.2, §9] and [Wil95, Corollary 2, page 482], and
with this Gorenstein property, Hida proved in [Hid88b, Theorem 0.1] that the congruence module for F is
isomorphic to I/(nx) for some non-zero element nx € I. Moreover, for any arithmetic point Q € %f, the
specialization nz, = ¢,(Q(nr)) generates the congruence ideal of Fg. We denote by Fg the normalized
newform of weight kg, conductor Ng = Nzp"? with nebentypus xg corresponding to Fg. There is a unique
decomposition xg = X/Q XQ,(p)» Where Xb and xq,(p) are Dirichlet characters modulo Nx and p"< respectively.
Let ag = a(p, Fg). Define the modified Euler factor &,(Fq, Ad) for adjoint motive of F¢g by

Ep(Fq, Ad) = a5

(1.4) (1 - ag’xe@P*e (1 —ag’xqPpFe~?) ifng =0,
X q—1 if nQ = ]-7XQ,(p) =1,
p*emeg(xq, ) xQ. (—1) if ng >0, XQ.(p # 1.

Here g(xq,(p)) is the usual Gauss sum. Fixing a choice of the generator 77 and letting ”‘FEZH%U(NQ) be the
usual Petersson norm of Fg), we define the canonical period Qx, of F at Q by

Ep(Fo,Ad)

FQ

(1.5) Qry = (=2 =1 FS IR, (v - e Cx.

By [Hid16, Corollary 6.24, Theorem 6.28], one can show that for each arithmetic point @, up to a p-adic unit,
the period Q, is equal to the product of the plus/minus canonical period Q(+; ]—'&)Q(— ;]—'5) introduced in
[Hid94l, page 488].

1.5. Statement of the interpolation formula. Now we give the statement of the main formula. Let
(f,9) = (fg,»9¢,) for some arithmetic specilization. Let Yy be the finite set of primes £ such that (i) 7y,
and 7y ¢ are supercuspidal, and (i) 7y, ~ 770 ® 7q,, ~ 7, , ® 0, where 7q,, is the unramified quadratic
character of Q, and o is some unramified character o of Q, . Note that this set Yex. does not depend on the
choice of arithmetic specializations.

Theorem A. Suppose that f satisfies (CR). For the fized generator ns of the congruence ideal of f, there
exists a unique element L’{,’a € R such that for every Q = (Q1,Q2, P) € x;; in the unbalanced range dominated
by f, we have the following interpolation formula

L(Vq,0) .
L5a(@ =Ty (0): =g == (V=) e g, (Filf Vo) [T (1467,
Q1 €Y exc

Remark 1.1.

(1) We call 51{.,& the primitive p-adic Rankin-Selberg L-function for F' with the branch character w®.
The shape of the interpolation formula exactly complies with the form described in [Coa89, Princi-
pal Conjecture| in the sense that it has the correct modified Euler factors at p and oco. Note that
(v/—1)1+Fke2=2kP is the modified Euler factor at the archimedean place. However, due to the multi-
plication by ny a generator of the congruence ideal, the period ¢, we use here may not agree with
the period in [Coa89l Principal Conjecture] up to Q*. The conjectural form of the interpolation of
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p-adic L-functions proposed by Coates and Perrin-Riou is in particular useful in the comparison among
different constructions of a p-adic L-function.

(2) The p-adic L-function D(P,Q, R) constructed by Hida in [Hid88a, Theorem 5.1d] in general inter-
polates critical values of imprimitive Rankin-Selberg L-functions. Therefore, after making a suitable
change of variable for the cyclotomic one, this D(P, @, R) essentially must be the product of ﬁ{:‘,a and
local L-factors at places dividing lem (N7, N2). It would be a routine and very tedious task to verify
this relation, so we do not purse this here.

(3) Asan immediate consequence of the above explicit interpolation formulae combined with the functional
equation of the automorphic L-functions for GLy(A) x GL2(A), we obtain the functional equation of
the primitive p-adic Rankin-Selberg L-functions. For the precise statement, see Corollary [7.2]

Needless to say, the idea of the construction of Eé.’a is entirely due to Hida, which we recall briefly as
follows. Roughly speaking, one begins with a three variable p-adic family of Eisenstein series Ey, 4, o of tame
level N := lem(Ny, Na). Let }' be the primitive Hida family associated with f twisted by ¢;1¢17(p)7 where

1, (p) is the p-primary part of ¢. Viewing Ey, 4, . as a g-expansion with coefficient in R, we define flf’a eER
by
,,?Ff’a i= the first Fourier coefficient of 1y - 13 Try)n, €(gEy, ys,0),

where e is Hida’s ordinary projector, Try/y, is the trace map from the space of ordinary R-adic modular
forms of tame level N to that of tame level N; and 1 ¥ is the idempotent in the universal I-adic cuspidal

Hecke algebra of tame level N;. The standard Rankin-Selberg method shows that the specialization of E{;.’a
at (Q1,Q2, P) is a product of the value in the right hand side of the equation in Theorem A and certain
local fudge factors ¥} at some bad primes ¢ | N. In order to get the primitive p-adic L-function, one has to
choose E, y,,q carefully so that these fudge factors Wj are essentially 1. It seems we do not have a simple
construction of such a nice Eisenstein series in the most general situation. Nonetheless, we can construct such
kind of Eisenstein series easily and show that ¥} = 1 with small effort whenever F' = (f, g) satisfies certain
minimal hypothesis (See the hypothesis (M) in , which practically requires F' have the minimal conductor
among (prime-to-p) Dirichlet twists. We now take a suitable twist F' = (f® X, g®@A~!) so that F’ is minimal.
On the other hand, we have shown the right hand side of Theorem A is invariant under (prime-to-p) Dirichlet
twists (i.e. Qp“="Qsgx) in [Hsi2I, Prop. 7.5], so the desired primitive L-function can be defined by

Ll =28

’
,a

This idea was already employed in [Hsi21].

This paper is organized as follows. In §2| we review some standard facts and the notation in modular
forms and automorphic forms as well as their well-known connection, and in we recall some ingredients in
Hida theory for ordinary A-adic forms, in particular, the congruence ideal associated with a primitive Hida
family. In 4] we give the construction of the three p-adic family of Eisenstein series following the method
of Godement-Jacquet in [Jac72, §19]. In §5| we recall Hida’s p-adic Rankin-Selberg method, following the
exposition in his blue book [Hid93l Chapter 10| but in the language of automorphic representation theory. We
explain the construction of .,Z”I,f’a, and in Proposition we express the interpolation of fFf’a at arithmetic
points as a product of critical Rankin-Selberg L-values and local zeta integrals \I/grd (s) (modified Euler factor
at p) and ¥;(s) (fudge factors). In we evaluate these local zeta integrals explicitly. Finally, in @ we
construct the primitive p-adic L-function and prove the interpolation formula Theorem [7.1]

Acknowledgments. The authors would like to thank the referee and the editorial committee for their helpful
comments on the exposition of the manuscript.

2. CLASSICAL MODULAR FORMS AND AUTOMORPHIC FORMS

In this section, we recall basic definitions and standard facts about classical elliptic modular forms and
automorphic forms on GLy(A), following the notation in [Hsi21l, §2] which we reproduce here for the reader’s
convenience. The main purpose of this section is to set up the notation and introduce some Hecke operators
on the space of automorphic forms which will be frequently used in the construction of p-adic L-functions.
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2.1. Notation. Let A be the ring of adeles of Q. If v is a place of Q, let Q, be the completion of Q with
respect to v, and for a € A*, let a, € Q) be the v-component of a. Denote | |q, the absolute value of Q,
normalized so that | |q, is the usual absolute value of R if v = oo and ||, = ¢~ ! if v = / is finite. For a
prime ¢, let ord, : Q; — Z be the valuation normalized so that ord,(¢) = 1. We shall regard Q; and Q, as
subgroups of A and A* in a natural way. Let | |o be the absolute value on A* given by |a|a =[], |av]q.-
Let (,(s) be the usual local zeta function of Q,. Namely,

Cols) =20 (2) Cls) = (1= 7)1,

Define the global zeta function {q(s) of Q by (q(s) =[], ¢u(s).

Let g : A/Q — C* be the additive character with the archimedean component ¢gr(z) = e2™V =12 and let
1¥q, : Q¢ — C* be the local component of 1)q at £.

If R is a commutative ring and G = GLy(R), we denote by p the right translation of G on the space of
C-valued functions on G: p(g)f(¢’) = f(¢'g) and by 1 : G — C the constant function 1(g) = 1. For a function
f: G — C and a character x : R* — C*, let f ® x : G — C denote the function f ® x(g) = f(g)x(det(g)).

In the algebraic group GLo, let B be the Borel subgroup consisting of upper triangular matrices and N be
its unipotent radical.

2.2. Hecke characters and Dirichlet characters. If w: Q*\A* — QX is a finite order Hecke character,
we denote by wy : Q; — C* the local component of w at £. For every Dirichlet character x, we denote by
c¢(x) the conductor of x. Let xa be the adelization of x, the unique finite order Hecke character xa = [] x¢ :

o~

QX\AX /R, (14 ¢(x)Z)* — C* of conductor ¢(x) such that for any prime £ 1 ¢(x),

xe(f) = x(0)~"
For every prime ¢, write c¢(x) = ¢¢C” with £{ C’. Then we can decompose x = X(z)X(e) into a product of two
Dirichlet characters x () and x© of conductors £¢ and N’ respectively. We call X(¢) the f-primary component
of x. The f-primary component of a finite order Hecke character can be defined likewise.

Throughout this paper, we often identify Dirichlet characters with their adelization whenever no confusion
arises.

2.3. Classical modular forms. Let C*°($)) be the space of C-valued smooth functions on the upper half
complex plane $). Let k be any integer. Let v = (i Z) € GL$(R) act on z € § by v(z) = fjis, and for

f=f(z) € C>®(9), define

_ E
Flr(z) = f(v(2))(ez + d) " (det ) =.
Recall that the Maass-Shimura differential operators dx and € on C*°($)) are given by

*;(éJrL) and € = — L 290 (y =Im(2))
s omy/—1 0z 2/—1y T o/l ez VYT
(cf. [Hid93l (1a,1b) page 310]). Let N be a positive integer and x : (Z/NZ)* — C* be a Dirichlet character

modulo N. For a non-negative integer m, denote by N, ,Lm] (N, x) the space of nearly holomorphic modular
forms of weight k, level N and character x, consisting of slowly increasing functions f € C°°($)) such that

emtlf =0 and
A 5) =x@r dor (2 7) ero)

c

Ok

(cf. [Hid93, page 314]). Let Nix(N,x) = U2 N™(N, x) (cf. [Hid93, (1a), page 310]). By definition,
N, ,£0] (N, x) = My(N,x) is the space of classical holomorphic modular forms of weight k, level N and character
X- Denote by Si(NN, x) the space of cusp forms in My (N, x). Let 67" = dktom—2 - Opt20k. If f € Np(N,x)
is a nearly holomorphic modular form of weight k, then 6" f € Njyom (N, x) has weight k + 2m ([Hid93| page
312]). For a positive integer d, define

Vaf(:) = d- [(d=); Uaf(z) = = 3 fo



6 SHIH-YU CHEN AND MING-LUN HSIEH

Recall that the classical Hecke operators Ty for primes ¢{ N are given by

Tof = Usf + x(OF 2V, f.
We say f € Np(N,x) is a Hecke eigenform if f is an eigenfunction of the all Hecke operators Ty for £1 N and
the operators Uy for ¢ | N.

2.4. Automorphic forms on GLs(A). For a positive integer N, define open-compact subgroups of GLQ(Z)
by

UO(N):{geGLQ(i) ‘gz (; :) (mod NZ)},
Ui (N) :{geUO(N) ‘gE (; 1‘) (mod NZ)}.

Let w : Q*\A* — C* be a finite order Hecke character of level N. We extend w to a character of Uy(V)
defined by w ((Z Z)) = Ly we(de) for (CCL 2) € Up(N), where w; : Q — C* is the f-component of

w. Denote by A(w) the space of automorphic forms on GLa(A) with central character w. For any integer k,
let Ax(N,w) C A(w) be the space of automorphic forms on GL3(A) of weight k, level N and character w. In
other words, Ay (N,w) consists of automorphic forms ¢ : GL2(A) — C such that

plagrour) =p(g)eY " (uy)

(a € GL2(Q), kg = (

cos) siné
—sinf cosf

) , up € Up(N)).

Let A?(N,w) be the space of cusp forms in Ag(N,w).
Next we introduce important local Hecke operators on automorphic forms. At the archimedean place, let
Vi Ap(N,w) = Ag12(N,w) be the normalized weight raising/lowering operator in [JL70l page 165] given by

(2.1) Vi = (_71870 ((é _01> 1+ (? é) ® ﬁ) € Lie(GL3(R)) ®r C.

Define the operator Uy acting on ¢ € Ax(N,w) by
w T
U= Y (< o 1)) @,
xEZz/[Zg

and the level-raising operator V; : Ag(NV,w) = Ak(N¥¢,w) at a finite prime ¢ by

Vep(g) =p ((w{;l ?)) -

Note that UyVpp = fp and that if £ | N, then U, € EndcAi(N,w). For each prime ¢ 4 N, let T, €
EndcAg(N,w) be the usual Hecke operator defined by

Ty = Uy 4+ we() V.

Let A%(w) be the space of cusp forms in A(w) and let A (N,w) = A°(w) N Ag(N,w). Define the the GLa(A)-
equivariant pairing (, ) : A%, (N, w) ® Ax(N,w™!) — C by

(2.2) (0, ) = / o(9)¢ ()9,
A* GL2(Q)\ GL2(A)

where d7g is the Tamagawa measure of PGLy(A). Note that we have (Typ, ') = (@, Tip’) for the Hecke
operator T, with {1 N.
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2.5. With every nearly holomorphic modular form f € Ny (N, x), we associate a unique automorphic form
®(f) € Ax(N, xx") defined by the formula

(2.3) B(f)(agoot) = (flrgoo) (V1) - xa (1)

for o € GLa(Q), goo € GLF (R) and u € Uy(N) (cf. [Cas73, §3]). Conversely, we can recover the form f from
o(f) by

(2.4 fas v = 2an (5 1))

We call &(f) the adelic lift of f.

The weight raising/lowering operators are the adelic avatar of the Maass-Shimura differential operators ;"
and € on the space of automorphic forms. A direct computation shows that the map @ from the space of
modular forms to the space of automorphic forms is equivariant for the Hecke action in the sense that

(2.5) Doy f) =VIO(f), O(ef) =V_d(f),
and for a finite prime ¢
(2.6) D(Tyf) = (21T 0(f),  S(Uef) = 72710, 0(f).

In particular, f is holomorphic if and only if V_®(f) = 0.
2.6. Preliminaries on irreducible representations of GL3(Q,).

2.6.1. Measures. We shall normalize the Haar measures on Q, and Q) as follows. If v = 0o, dz denotes the
usual Lebesgue measure on R and the measure d*z on R* is |x|ﬁ1dx. If v = £ is a finite prime, denote by dx
the Haar measure on Q with vol(Z,,dz) = 1 and by d*z the Haar measure on Q, with vol(Z;,d*z) = 1.
Define the compact subgroup K, of GL2(Q,) by K, = SO(2,R) if v = co0 and K,, = GLy(Z,) if v is finite.
Let du, be the Haar measure on K, so that vol(K,,du,) = 1. Let dg, be the Haar measure on PGLy(Qy,)

given by dg, = |yv|(31 dx,d*y,du, for g, = (y(;, xf’) u, with y, € QX, z, € Q, and u, € K,.

2.6.2. Representations. Denote by x B v the irreducible principal series representation of GL2(Q,) attached
to two characters x, v : QX — C* such that yv=! # | %U If v = oo is the archimedean place and k£ > 1 is an
integer, denote by Dg(k) the discrete series of lowest weight k if & > 2 or the limit of discrete series if k = 1
with central character sgn® (the k-the power of the sign function). If v is finite, denote by St the Steinberg
representation and by xSt the special representation St ® x o det.

2.6.3. L-functions and e-factors. For a character x : QX — C*, let L(s, x) be the complex L-function and
e(s,x) == €(s, X, ¥q,) be the e-factor (cf. [Sch02, Section 1.1]). Define the ~-factor

L(]' B vail)
L(s,x)

If v is a finite prime, denote by c(x) the exponent of the conductor of ¥,

If 7 is an irreducible admissible generic representation of GL3(Q,), denote by L(s, ) the L-function and by
e(s,m) 1= e(s,m,¢q,) the e-factor defined in [JL70, Theorem 2.18]. Let 7" be the contragredient representation
of 7. Define the gamma factor

(2.7) v(s,x) = e(s,x) -

L(1—s,m)

’7(877.[-) = E(S,’TF) ’ L(S 71')

If v is a finite prime, we let ¢(7) be the exponent of the conductor of 7.
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2.6.4. Whittaker models and the normalized Whittaker newforms. Every admissible irreducible infinite dimen-
sional representation m of GL2(Q,) admits a realization of the Whttaker model W(w) = W(w, ¥ q, )associated
with the additive character ¢q,. Recall that W() is a subspace of smooth functions W : GL2(Q,) — C such
that

W <((1) T) g) = 1q, (x)W(g) for all z € Q,,

e if v = 0o is the archimedean place, there exists an integer M such that

1% ((g ?)) — O(|al¥) as alr — oo,

The group GL2(Q,) (or the Hecke algebra of GL2(Q,)) acts on W(r) via the right translation p. We introduce
the (normalized) local Whittaker newform Wy, in W(w) in the following cases. If v = co and m = Dy (k), then
the local Whittaker newform W, € W(r) is defined by

W (Z (g glc) ( o Smg)) =Ig, (y) - y"/2e72™ - sgn(z)* g (z)eV ~H

(2.8) —sinf cosd

(y,z € R*, 2,0 € R).
Here Ir, (a) denotes the characteristic function of the set of positive real numbers. If v = £ is a finite prime,

then the (normalized) local Whittaker newform W, is the unique function in W(m)**¥ such that W, (1) = 1.
The explicit formula for W ( (8 ?)) is well-known (See [Sch02], page 21] or [Sahl6l Section 2.2] for example).

2.7. p-stabilized newforms. Let 7 be a cuspidal automorphic representation of GL2(A) and let A(w) be
the m-isotypic part in the space of automorphic forms on GLy(A). For ¢ € A(w), the Whittaker function of
¢ (with respect to the additive character ¢¥q : A/Q — C*) is given by

(29 W= [ o((y 1)9)vatar e L),

where dz is the Haar measure with vol(A/Q,dz) = 1. We have the Fourier expansion:

elg)= > m((fj (1)> g)

aceQX

(cf. [Bum98| Theorem 3.5.5]). Let f(q) = >, a(n, f)¢" € Sx(N, x) be a normalized Hecke eigenform. Denote
by 7y = @7y, the cuspidal automorphic representation of GL2(A) generated by the adelic lift @(f) of f.
Then 7 is irreducible and unitary with the central character x~!. If f is newform, then the conductor of 7y
is N, the adelic lift @(f) is the normalized new vector in A(7ms) and the Mellin transform

2 o= [ o ((f 1)) wx ey =)

is the automorphic L-function of m¢. Here d*y is the product measure [[, d*y,.

Definition 2.1 (p-stabilized newform). Let p be a prime and fix an isomorphism ¢, : C ~ Qp. We say that a
normalized Hecke eigenform f =} a(n, f)¢" € Sk(Np, x) is a (ordinary) p-stabilized newform (with respoect
to tp) if f is a new outside p and the eigenvalue of Uy, i.e. the p-th Fourier coefficient ¢, (a(p, f)), is a p-adic
unit. The prime-to-p part of the conductor of f is called the tame conductor of f.

By the multiplicity one for new and ordinary vectors, the Whittaker function of @(f) is a product of local
Whittaker functions in W(ns,,). To be precise,

W@(f) (g) = W;);dp (gv) H Wﬂ'f,v (gv) (g = (gv) € GL2(A))
v#p

Here W7, , is the normalized local Whittaker newform of 7y, and W,‘?;dp is the ordinary Whittaker function
characterized by

or a 0 1
(2.10) wet (6 3) = askié, @) (0 forac Q.
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where oy : Q — C* is the unramified character with as(p) = a(p, f) -p(1=k)/2 (See [Hsi2ll Corollary 2.3,
Remark 2.5]).

3. A-ADIC MODULAR FORMS AND HIDA FAMILIES

3.1. Ordinary A-adic modular forms. Let p > 2 be a prime and let O be the ring of integers of a finite
extension of Q. Let I be a normal domain finite flat over A = O[1 + pZ,]. A point @ € SpecI(Qp), a ring
homomorphism @ : I — Qp, is said to be locally algebraic if Q[14,z, is a locally algebraic character in the
sense that Q(z) = zF2eqg(z) with kg an integer and eg(2) € ppe. We shall call kg the weight of @ and eg
the finite part of Q. Let X1 be the set of locally algebraic points @ € SpecI(Qp). A point @ € Xy is called
arithmetic if the weight kg > 2 and let fo be the set of arithmetic points. Let pg = Ker@ be the prime ideal
of I corresponding to @ and O(Q) be the image of I under Q.

Fix an isomorphism ¢, : C, ~ C once and for all. Denote by w : (Z/pZ)* — p,—1 the p-adic Teichmiiller
character. Let N be a positive integer prime to p and let x : (Z/NpZ)* — O* be a Dirichlet character modulo
Np with value in O. Denote by S(N, x,I) the space of I-adic cusp forms of tame level N and (even) branch
character y, consisting of formal power series f(¢) = >, a(n, f)¢™ € I[g] with the following property: there
exists an integer ay such that for arithemtic points ) € %fr with kg > ay, the specialization fQ(q) is the
g-expansion of a cusp form fi, € S, (Np®, xw *eeq). We call the character y is the branch character of f.

The space S(N, x,I) is equipped with the action of the usual Hecke operators Ty for £ 4 Np as in [Wil88|,
page 537| and the operators Uy for £ | pN given by Uy(3°, a(n, f)g™) = >, a(nl, f)¢™. Recall that Hida’s

ordinary projector e is defined by

. |
e:= lim UZ‘.
n— o0

This ordinary projector e has a well-defined action on the space of classical modular forms preserving the
cuspidal part as well as on the space S(N, x,I) of I-adic cusp forms (cf. [Wil88l page 537 and Proposition
1.2.1]). The space eS(N, x,I) is called the space of ordinary I-adic forms defined over I. A key result in Hida’s
theory of ordinary I-adic cusp forms is that if f € eS(N, x,I), then for every arithmetic points @ € X1, we
have f, € eSk, (Np¢, xw*2eq). We say f € eS(N,x,1) is a primitive Hida family if for every arithmetic
points () € Xy, fg is a p-stabilized cuspidal newform of tame conductor N. Let X§!s be the set of classical
points (for f) given by the subset of Q € Xy such that kg > 1 and f, is the g-expansion of a classical modular
form. Note that X§!® contains the set of arithmetic points .’{f but may be strictly larger than i’;r as we allow
the possibility of the points of weight one.

3.2. Galois representation attached to Hida families. Let (-) : Z; — 1+ pZ, be character defined by
(z) = zw™!(z) and write z — [z]a for the inclusion of group-like elements 1 + pZ, — O[1 + pZ,]* = A*.
For z € Z), denote by (z)1 € I* the image of [(2)]o in I under the structure morphism A — I. By
definition, Q((2)1) = Ql11pz,((2)) for Q € X1. Let ecyc : Gq — Z, be the p-adic cyclotomic character and
let (ecyc)1 : Gq — I* be the character (ecyc)1(0) = (€cyc(0))1. For each Dirichlet chatacter y, we define
x1 : Gq — I* by x1 := 0y (€cyc) ?(€cye)1, Where o is the Galois character which sends the geometric
Frobenious element Frob, at ¢ to x(¢)~.

If f e eS(V,x,I) is primitive Hida family of tame conductor N, we let py : Gq — GLo(FraclI) be the
I-adic Galois representation attached to f which is unramified outside pN and characterized by

Tr(pys(Frob,)) = a(¢, f); det pg(Froby) = x(£)(0)1¢~'  (£{pN).

Note that det py = x1 L. sc_ylc. The description of the restriction of py to the local decomposition group Gq,

is well-understood. For ¢ = p, according to [Wil88, Theorem 2.2.1], we have

P | ~ Qayp *
N e =

where o, : Gq, — I is the unramified character with a,(Frob,) = a(p, f)E|

20ur representation pg is the dual of pg considered in [Wil88].
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3.3. Hecke algebras and congruence numbers. If NV is a positive and y is a Dirichlet character modulo
N, we let Tx(N, x) be the O-subalgebra in EndceSi (N, x) generated over O by the Hecke operators Ty for
¢t Np and the operators Uy for £ | Np. Suppose that N is prime to p. Let A = (Z/NpZ)* and A be the
group of Dirichlet characters modulo Np. Enlarging O if necessary, we assume that every x € A takes value
in O*. We are going to consider the Hecke algebra T'(V,I) acting on the space of ordinary A-adic cusp forms
of tame level I'1 (V) defined by

S(N, 1) := P eS(N, x. ).
Xeﬁ
In addition to the action of Hecke operators, denote by o4 the usual diamond operator for d € A acting
on S(N,I)°™ by 0d(f)ea = (X(d)f),ca- Then the ordinary I-adic cuspidal Hecke algebra T(N,I) is
defined to be the I-subalgebra of EndyS(N,I)°™ generated over I by Ty for £ | Np, U, for £ | Np and the
diamond operators o4 for d € A. Let Q € X} be an arithmetic point. Every ¢t € T(N,I) commutes with
the specialization: (t- f)g =t- fgo. For x € ﬁNp, let pg be the ideal of T(N,I) generated by pg and

{04 — x(d)}4en- A classical result [Hid88c, Theorem 3.4] in Hida theory asserts that
T(N.D)/pqx = Tho (Np*, xw ™ eq) ®0 O(Q).

Let f € eS(N, x,I) be a primitive Hida family of tame level N and character x and let Ay : T(N,I) = 1
be the corresponding homomorphism defined by A¢(T) = a(¢, f) for £ Np, As(Uy) = a(¢, f) for £ | Np and
Af(oq) = x(d) for d € A. Let my be the maximal of T(V,I) containing Ker Ay and let Ty, be the localization
of T(N,I) at myg. It is the local ring of T(NV,I) through which Ay factors. Recall that the congruence ideal
C(f) of the morphism Ay : Ty, — I is defined by

Cc(f) = )\f(AnnTmf (KerAg)) C L.
The Hecke algebra Ty, is a local finite flat A-alegba and there is an algebra direct sum decomposition
(3.1) ATy, ®pFracl ~ FracI© %, t— A(t) = (A\f(1), A2(t)),
where 2 is a finite dimensional (FracI)-algebra ([Hid88c, Corollary 3.7]). By definition we have
C(f) = Ag(Twm, N A" (FracI® {0})).
Now we impose the following
Hypothesis (CR). The residual Galois representation ps of py is absolutely irreducible and p-distiniguished.

Under the above hypothesis, Ty, is Gorenstein by [Wil95, Corollay 2, page 482, and with this Gorenstein
property of Ty, Hida in [Hid88b] proved that the congruence ideal C(f) is generated by a non-zero element
ny € I, called the congruence number for f. Let 1% be the unique element in Ty, N A~1(FracI & {0}) such
that Ag(1%) = ng. Then 1p := 77;11’} is the idempotent in Ty, , @1 FracI corresponding to the direct summand
FracI of and 17 does not depend on the choice of a generator of C(f). Moreover, for each arithmetic
point @, it is also shown by Hida that the specialization 75(Q) € O(Q) is the congruence number for f, and

1= n;ll}(mod ©v.Q) € ngi(Npr,Xw*erQ) ®o Frac O(Q)

is the idempotent with A¢(15) = 1.

4. A THREE VARIABLE P-ADIC FAMILY OF EISENSTEIN SERIES

4.1. Eisenstein series. We recall the construction of Eisenstein series described in [Jac72l §19]. Let (u1, u2)
be a pair of Dirichlet characters. We shall identify (u1, u2) with their adelizations as described in Let
B(u1, po, s) denote the space consisting of smooth and SO(2, R)-finite functions f: GLs(A) — C such that

15 o) = m@m@ |3

For each place v and a positive integer n, denote by S(Q”) the space of Bruhat-Schwartz functions on
Q". For every Bruhat-Schwartz function ® = ®,9, € S(A?) = ®/,S5(Q?), define the Godement section

1
s+3

f(9)-

A
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fuipz, @5 = v fus oz, @,,s : GL2(A) — C given by

(41) ful,vv/’m,v’q)vvs(gv) ::Ml)v|'|s+§(detgv)/ q)v((o’t )gv)lu’l 1):u211)| |2S+1( ’U)dxt’u
QX

v

Then f,, ., ®,s belongs to B(u1, e, s). The Eisenstein seres associated to the section f,, ., @, is defined by
the formal series

EA(gvfﬂla#%q)’S) = Z f#17#27¢,8(79)7 (g € GL?(A)’S € C)
vEB\ GL2(Q)

The above series converges absolutely for Re(s) > 0 and has meromorphic continuation to s € C. Define the
Whittaker function of f,,, ., @, by

W(gaful,u27<l>,s) :HW(gvaful,v,uz,u,@ms)a (g = (gv) € GL2(A>)a
where

0 -1\ /1 =z
W(g’u,ful,v,,u.zm,q)v,s) :L fu1,v,;t271,,<1>v,s(<1 0 ) (0 1U> gv)va(_-T'u)dxv.

The Eisenstein series Ea (g, fu, us,0,5) admits the Fourier expansion

a 0
(4.2) EA(gv f/»u,ltz,q’-,s) :fuhltz,‘b,s(g) + fﬂz,uh‘ifs(g) + Z W((o 1) 9 flt17#2,<1>78)7

acQX

where ® := @@U is the symplectic Fourier transform defined by
EI\DU(x, y) = / / O (s, t)Yq, (sy — tr)dsdt.

4.2. The Eisenstein series Ej (i1, 2, C). If v is place of Q and ¢ € S(Q,), the usual Fourier transform
¢ € S(Qy) is defined by

/ o(y)vq, (yr)dy

Note that if ® = ¢; ® ¢ € S(Q?), then <I>(x y) = ( )qSl( ). If v = ¢ is a finite place and p : Q; — C* is
a character, we define ¢, € §(Q¢) by

0(x) 1= Ly (2)(a).
It is easy to verify that
Gu(@) = XN (@) oz (x) €L, p7h).

Now we fix a pair (Cy,Cs) of two positive integers such that gecd(Cy,C2) =1 and pt C1Cs. Let C = C1Cy
and let k be a positive integer such that puiuy'(—1) = (—1)%. We recall a construction of certain classical
Eisenstein series Efct (11, po) of weight k, level 'y (p°°C; Cy) and nebentypes ;5 ! by using suitable Godement
sections as above. In the remainder of this section, we assume the following conditions:

e 1, is unramified outside p,
o c(p2) | p>Ch.
Definition 4.1. To the positive integer k£ and the Eisenstein datum

D = (/1417 M2, Cla CQ)a
we associate the Bruhat-Schwartz function (ID[{;] = ol @, ®p € S(A?) defined as follows:
o« ol(,y) = 27" (@ + y=Ty)re @),
o Op,(2,y) = ¢ . ®¢ 5L

b (I)Dl(x7y) = I[CIZI/( )HZI/( ) 1f€fp02,
L] (I)p7g(.1‘,y) = Hszz( )(blm,e( ) if £ | Cs.
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Define the local Godement sections

(K] ._ . —
D,s,00 " fm o2, 00,0 s IDs0 = fﬂl,éaﬂQ,Za‘bD,hS

and define the Godement section attached to k and D = (uq, o, C1,Cs) by
k k
[D,]s = [D,]s,oo ® fD737€'

{< 00

Remark 4.2. For each place v, denote by B, (1, 2, s) the space of smooth functions f : GL2(Q,) — C such
that
s+%

f(9).

Qu

f((g 2) 9) = tp(@)pz,0(d) ‘%

Then fgc}sm is the unique function in Boo (1, ft2, $) such that

g]s oo(< cosd Sing)) — VIR0 .2—k(\/_71>k7r—(s+%)1—‘ (S n k;—2&—1) -

—sinf cosf

For a finite prime ¢, fps¢ € Be(ui, 12, s) is invariant by U; (C) under the right translation, where U, (C) is
the open-compact subgroupof GLo(Z¢) given by

_ Z, Z,
Ul(C) = GLQ(Z@) n (ng 14 CZ@) .

Definition 4.3. Define the classical Eisenstein series E,:Ct(ul, u2) : H — C by

_k x k
B o)+ V) = 5§ ) B

_ _k X
By (p, p2)(z + V—1y) =y 5EA(<€ 1>7 g,]s)|ﬂ~

2

Remark implies that EkjE (1, p2) € Mg (C, uflugl), and by definition

P(EF (. 12) = B(g, fn)lers DB (1, p2)) = Eg, fh)| e,

where @ is the adelic lift map in (2.4).

Proposition 4.4. For every non-negative integer t, we have

B(OL B (11, 112)) = Balg, 52 mimr € AK(Cpmpa).

PRrOOF. For the differential operator V' in (2.1, we have the relation VT fgi]&oo = gti (see [JLTO,
Lemma 5.6 (iii)]), and hence the assertion follows from ([2.5)). O

4.3. Fourier coefficients of Eisenstein series.

Lemma 4.5. For a € R*, we have

a 0 a 0 k _org
Wt (5 Pz WL (5 ) Pl =afe ™ I )

PROOF. By definition, W ( 1[;]5’00, (g (1))) equals

2~* |72 (a) / / t*(a+ vV—1z)ke ™ @07 gon (1)F |2 oo (—)d* tda
R JRX

1 k+1 k+1 kt1 k-1
= |- 2 (a) - (—2v=1)7F - T(s + %)ﬂf(”%)/ (x + \/—1(1)7(”%)@ —V=1a)"7 T o (—z)d.
R

By an elementary calculation, we find that

W( 'Z[;C,]s,oo’ (8 (1)))|s—kzl :/U’l|‘%(a) . (_2’/7'\/—71)7}% . F(kj) A

E _ ma
=pi(a) - aze? -Ir, (a),

6727r\/jlw
———dx
(z 4+ +v—1a)k
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and that

) —1_—27y/—1x
w (a0 ko o =g 1 [ (@ =V la) e
w( v,s,oo’(o 1))|s—12’“ =l @) 2y =1 [R PERYS PR

=p1(a) - a%e 27 Ir, (a).

Since u1(a) = sgn(a)®, the lemma follows. O

Lemma 4.6. Let { be a finite prime. Let x = ,ul_%uzg. Let a € Q) and m = ord(a). Then we have the
following:

o If L1 pCy, then

m—ordg(Ct)

0 s+1 —28 /94
Wipor () =i > AT
j=
o Ifc(uze) =0 and q | Ca, then
a 0
W(fD,S,@) (O 1>)
m—ordg(C2)

=72 (@) Teyirz, (@) | X PP @O+ A=) DD KT
§=0

o Ifc(uge) >0, then £ | Cy and

a 0 sl
Witpees (i 9))=ml™E @) X(-Del2s + 10 Ter-riz o)
o If{=p, then

Wt (1)) =T (0

PROOF.  Write p1 = p1¢ and pg = pa ¢ for simplicity. Note that if ® = &1 @ &3 € S(Qr) ® S(Qg), then

a 0 s+1 = _ — s
W (£ .00, (O 1)) = || +2(a)/QX Dy (ta)Py(—t 1)u1u21|'|2 (t)d*t.

12

If £+ pCs, ®p ¢ =lc,z, ®1z,, and hence

a O s+ 1 _ _ —2s
Wigoaes (5 1)) =l . Tem e o o (0%
L
X m—ord,(Ch)
5 — —2s i
=ml-["2 (@) D el ).
=0

Consider the case £ | Cy. Recall that p; is unramified at ¢ # p by our assumption. Let ¢ = ¢(x) = c(u2).
Recall that

- by (2) =Tz, — || Ip-17, if c=0,
¢M2 (Z‘) =
e(1, ,u;l)uz(:r’l)ﬂz,czzx () ife>0.
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a

If ¢ =0, then W(fp s, (0 (1)>) equals

m—ordg(Ca2) m—ordg(C2)
s+1 — —25/97 — —25/5
=m|-[*"2(a) DR a2 M I CCD R 1 S Ty T2 K R (4]
=0 j=—1

s-l-l
=] 2 (a) - Ieye-12,(a)
m—orde(Ca2)
1y 2541 - —2s /)
S 2 B (O S O 1) B N a1 Y R (20

=0

If ¢ > 0, then W(fp s, (8 (1)>) equals

-7 () /Qx Toz, (at) G, (—t ™ papg |- (6)dt

'3

= |5+% (@e(1, py ) p2(=1)p - |2S(ZC)Hcrcz4 (a).

Finally, at the p-adic place, a similar calculation shows that

a 0 s+ 1 _ — 2s
Witoapr (5 ) =m0 [ 60n(ant ol P
:HZ; (a)
The assertion follows immediately from the above expressions of W (fp s.¢, <g (1)> ). O

For each positive integer n, we define the polynomials P, ¢ € Z;,)[X, X ~1] by

ord,(nCy )

Poo(X)= > CIXTifLfpCy,

§=0
ordg(anl) ordz(anl)
Poo(X)= > XTI - N TIXT L] Gy,
§=0 j=—1

P p(X) =L
For a Dirichlet character y, we set
Gy t(X) = (0, xe)xe(—1) - X (@ melxe),
In the above equation, we have identified x with its adelization as in and xy is the ¢-component of x.
Corollary 4.7. We have the following Fourier expansion

E]:ct(:u’la,uZ)(q) = Z a;t,(‘uh’u%k) .q" ((]:627”;7)7
n>0, pin

where

a (s iy k) =pr () T PreGupa (0 -) T Gy o();
é‘ft(ug) e‘c(/LQLK‘n

a, (1, p2, k) =nft. M;1<n) H Pn,f(ﬂlugl(g)gz_k)> H gmu;l,é(eg_k)-
He(p2) Lle(pz), £ln

PROOF. Note that at the distinguished prime p, ®p ,(0,y) = 0 and @D,p(o, y) = G (0)5#;1 (y) =0, so we
see that fu, , s ,@0,,s(1) = [, P _,(1) = 0. This in particular implies that

y T y
fl‘lvﬂ2sq>73’5((0 1)) = fﬂZ,[an,p;:ﬁ’D,z”—S((O 1)) = 0.
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In view of (4.2 and Lemma we find that

k 0
arjz:(:ula,u%k) = ’n‘g H W(f’D,SJ) (8 1>)|s_:|:k;1'

£< o0

The assertion follows from Lemma [4.6| by noting that [1,17}/1,27[(8) = iy M (0). O

4.4. A three variable p-adic family of Eisenstein series. Let (1, x2) be a pair of Dirichlet characters
modulo p and pCs respectively. Define the O[Ty, Ty, T5]-adic g-expansion by

E(x1,x2)(@) = Y Aulx1,x2)q" € O[Ty, Ty, Ts][dl,
n>0,pin
where A, (x1,x2) € O[T, T2, T5] is given by

An(x1,x2) = (), (Mg x1(n) [ PacOa'xa (0 (07 (07 (0F,)
Ye(xz2)

x I Gy (07 (07, (07,)-

£e(x2),n
Proposition 4.8. For every (Q1,Q2, P) € XA X Xp X XA with
0 < kg, <kp <kgq,,
we have the interpolation

E(X17X2)(Q17Q27P)

ko, —kp Bt -
0% " Eop kg, —kay (X1

if 2kp > kg, + ko,,

11, kg, —k —1, kp—k
€0, EPW AT Xo€q,€p WP T2

kp—kgy—1F— —1.-1_ ko, —k -1, kp—k
Qkpr Qa2 EkQ1+kQ2—2k)P+2(X1 tewa Q1 P’XZEQQEP wrP Q2)
if 2kp < kg, + kq,.

Here 0 is the theta operator 0(>", anq"™) =, nanq".

1
1

PROOF. Let i, = x;leg)
n prime to p, we have

epwher—kP gnd Lo = XgeQzeglka_k%. Put k = 2kp — kg, —kq,. For an integer

An(Xla XQ)(Qla Q27 P) :nleikplu‘l_l(n) H Pn,@(ﬂlluﬂ_l(g)gk)
Ye(x2)

x H gmxl‘lxgl,z(XleMlM;l(f)fk)_
Lle(x2).ln

Since x1Xx2/41 45 ! is a Dirichlet character modulo a power of p, one verifies that
gxflxgl,e(X1X2ﬂ'1U2_1(€)X) = gmﬂgl,e(x)-

By Corollary [4.7 we find that

nkei=kr a1y, po, k) if k >0,

‘A ) ) 7P =
n(X1:X2)(Q1, Q2, P) {nl—k+kp—kQ2—1 cay (g, pe,2 — k) if k <0.

The proposition follows immediately. O
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5. THE CONSTRUCTION OF p-ADIC RANKIN-SELBERG L-FUNCTIONS

5.1. The construction of the p-adic L-function. Let O = Op for some finite extension F' of Q,. For
i = 1,2, let I; be a normal domain finite flat over A and let ¢; : (Z/pN;Z)* — O be Dirichlet characters
with ¢;(—=1) = 1. We let

= (f,g) € eS(N1,9¢1,11) x eS(Na, 1h2, 1)

be a pair of primitive Hida families of tame conductors (Ny, N3) and branch characters (¢1,12). In this
section, we recall Hida’s construction of the Rankin-Selberg p-adic L-function for F'. Fixing a topological
generator vy of 1 + pZ, once and for all, we put "=y — 1 € A and let

R = 1Li®01:[T5]
be a finite extension over the three variable Iwasawa algebra
ABoABoA = O[Ty, Tz, T,
(M =T®1®1,Th=19T®1,T=1211T).
Let N = lecm(Ny, N2). Decompose the finite set supp(NV) = X5y U X5y U Egi5), where
Y) := the set of primes £ | N such that
T, b and Tge, 0 AT€ principal series, ordy(Ny) = ord,(N2) > 0, co(¢192) = 0,
(5.1) Xy =
{f prime | 7z, ¢, Tg, ¢ discrete series and L(s, mg, ¢ X g, 1) # 1} ,
i) = {€ prime factor of N | £ ¢ X LI E(ii)} )

Define the auxiliary integers C; and Cs in the definition of an Eisenstein datum by

H Emax{ord[(Nl),ordg (N2))} H ode(Nl).l

e LED (5
(5.2) O] (i)
Cy = H gmax{ords(N1),orde(N2))}
ESNEH

If £ € X5y U X, then cg(1192) = 0 in view of [GJ78, Propositions (1.2) and (1.4)]). We have

e C1Cy| N,
e 1) is a Dirichlet character modulo pCs.

For any integer a € Z/(p — 1)Z, we define the power series H,,

Ha =g- E(Q/Jl,(p)w_aaw;lwflwly(mwa)’

where 1)1 () is the p-primary component of 9, in By the arguments in [Hid93, page 226-227] and [Hid93,
Lemma 1 in page 328|, we can deduce that the power series H, indeed belongs to S(N,¢; ! f(p), 1)®,R
( ¢f. [Hsi2l, Lemma 3.4]). Therefore, one can apply the ordlnary prOJector e to H, and obtain eH, an
ordinary A-adic modular form with coefficients in R. Let f € eS(Ny, it P2 (p),Il) be the primitive Hida

family corresponding to the twist f\[z/;l V1)) = D s aln, g 1’(/J1’ ) (n)g"

Definition 5.1. Fixing a generator 7y of the congruence ideal of f, the p-adic Rankin-Selberg L-function
Z{, is defined by

,,?Ff,a := the first Fourier coefficient of 7y - 14 Trnyn, (eH,)) € R,

where Try/y, : eS(N, ¢1_1wi(p),11) — eS(Nl,wl_lwi(p),Il) is the trace map (cf. [Hid88al page 14]). Note
that 7y - 17 is an integral Hecke operator since f and f share the same congruence ideal (¢f. [Hsi2dl (3.2)]).
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5.2. The interpolation formula and Rankin-Selberg integral. Define the weight space for the pair
(f,g) in the f-dominated range by

(5.3) xf = {(Q1,Q2,P) € X{, x X{5 x Xp | kg, < kp < kg, } -
Let (Q1,Q2, P) € x{z We relate the value fFf(Ql, @2, P) to a global Rankin-Selberg integral. Let
(kv, ko, k3) = (kg , kg, kp)
and let r be an integer greater than max{1,c,(eqg,), cp(€g,)}. Recall that the specializations
(f,9) = (£, 90,) € Sk, (N1D", Xr) X Sky(N2p", Xg)
are p-stabilized cuspidal newforms with characters (X, x,) modulo Np" given by
Xr = treqw ™™, xg = Paeg,w ™.
Let 7 = &(f) and ¢, = ®(g) be the associated automorphic cusp forms as in (2.3). Then
(p1,92) € AL (N1p", wi) x Ap, (Nap”, w2)
and the central characters wy,ws are the adelizations
wi = (X7 aswe = (x; )a

of Xfl and Xgl. Put

W = wiws.
Let wy,(p) be the p-primary component of wy (so wy () is the adelization of X;%p))- Define the matrices J
and t, € GL2(A) for each integer n by

-1 0 0 -
(5.4) Too = ( 0 1) € GLy(R), t,= (—p" pO ) € GL2(Q,p) — GL2(A).
Proposition 5.2. Let D be the Eisenstein datum
(5.5) D= (Epwaikpwlj(p), e},lw*‘l*k”w*lwl’(p), C1,C9).

Then we have
24..(Q1,Q2,P) = (p(Tocta)os . 5+ Bal= 5" T @ M Conscian
. $@(2)SLs(Z) : To(N)](=2v=D"*1 ()
Qs ] o, (7)o @)
for any sufficiently large positive n, where (, ) : A%, (N, wlw;(zp)) X Ap, (N, wflwi(p)) — C is the pairing
defined in and ay is the unramified character of Q5 in .

PrROOF. Let E := E(w_“wl,(p),w;lwglwawl’(p)). Since }'Ql is a p-stabilized newform, by the multiplicity
one for new and ordinary vectors, we have

(5~6) ng- 1}Q1TYN/N1 (6(9 : E(Q17Q27P))) = 31{:,(1(@17Qz7p) : }Ql-

Put y = epw?*3. By Proposition we have

ekl_kSE;;CS*klsz (XWL(P)’X_lw_lwlx(P))

if 2ks > ky + ko,

05 2 B ok 42 (X901, () X0 N1 )
if 2k3 < ky + ko.

E(leQQaP) -

We put

1

fo {551163%%2%6””2 (xwr, s X~ wr ) if 2k3 > k1 + ks,
T k3—ko—1 — — — .
O 4k —2ks+2 Bk ko 28342 (X1, () X 'w wi,p)) if 2ks < k1 + ko,
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where 6} is the Maass-Shimura differential operator. The argument in [Hid93), equation (2), page 330] shows
that

(5.7) e(g- E(Q1,Q2, P)) = eHol(g - EY),
where Hol is the holomorphic projection as in [Hid93| (8a), page 314]. Put
B =D(fq,) €AY, (N1p", wi'wi )-

Pairing with the form p(Jwotyn)@r ® wl_(lp) on the adelic lifts on both sides of (5.6]), we obtain that

(p(Toctn)pr @ Wi Ly, 1) - LE 4 (Q1,Q2, P)

(5.8) 1 s
= (p(Tootn)s © Wi () 1}Q1’IYN/N16(15(H01(g -EM)).

Let H = g- ET. Note that H is a nearly holomorphic modular form of weight k; and its adelic ¢(H) €
Ay, (Np", wi ' w? (p)) has a decomposition
$(H) = Hol(S(H)) + Vi + VEph + -+ Vi,

where Hol(@(H)) and {¢; };=1.... ., are holomorphic automorphic forms. It follows that Hol(#(H)) = &(Hol(H)).
Let 1% € Trd(N1p”, 1) be the specializations of 1% at Q1. As a consequence of strong multiplicity one the-

orem for modular forms, the idempotent 1; = anll} € To"YN1p", py) ®o FracO(Q1) is generated by the
Hecke operators Ty for £ { Np, and this implies that hat 14 is the left adjoint operator of 1 Fo for the pairing
1

(—® wi(lp), —). Hence, the right hand side of 1) equals

o) 0 (T, (L - p(Tootliog @y ) Hol(@(H)))
=5 U6(NL) < Up(N)] - oot © by HOUB())).

On the other hand, it is straightforward to verify that for all sufficiently large n
(p(tn)Upp, ¢) =(p, Upe'),
(P(Js0) s Vi) = = (p(Toc)V=tp,¢')
(cf. [Hid85l (5.4)]). It follows that the pairing on the right hand side of (5.9) equals
(P(Tootn)py @ i L eHol(B(H)))
= (p(Txtn)ps @ w;(lpy P(H)) = (p(Tctn) s @ Wi(lpy P(H)).
On the other hand, by Proposition [4.4]

B(H) = ¢ B(E") = ¢, - Balg, fo' ¥)] omais i

We obtain
<p(\700t71)g0f ® wi(lpy ¢f> . gf‘v"f:a(le Q27 P)
=1 [To(N1) : To(N)] - (p(Toctn) o5, 04 - Ealg, ') @y )] omsba b

1
I )

By the formula for (p(Jxtn)ps ® w;(lp), @) in [Hsi2l, Lemma 3.6] and the definition of Q; = Qg,, in (L3),
we have

(p(Tsotn)ps @ wi(lpy or)

- C (2)71 —k1—1
B [SL2(§) :To(N1)] np e (=2v/ 1) 7R,

—1
w103l g, (0™)G6(2)
G(1)
Putting the above equations together, we get the proposition. O
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5.3. Rankin-Selberg L-functions for GLs x GLs. In this subsection, we review briefly Jacquet’s approach
to Rankin-Selberg L-functions. Let (71, A(71)) and (72, A(m2)) be irreducible cuspidal automorphic represen-
tations of GL2(A) and let x be a Hecke character of Q*\A*. Put w = wyws. For ¢ € A(m) and ¢y € A(ma),
let W,,, and W, be the Whittaker functions of ¢1 and ¢, defined in respectively. Assume that W,

and W, are decomposable, i.e.
We, = H Werw, W, = H Wesw
v v

with W, ., € W(m; ) for i = 1,2. Let ® = @@, € S(A?). For each place v of Q, define the local zeta integral
\I](thl,v7W<p2,vanv oD, o) (cf. [Jac72, (14.5)]) by

Y(Wor 0 Weaos fy, it 0,5)

-1 0
(10 - / me(gv)ww’v(( 0 1) 90) o x—10it 80,5 (90) 0,
N(Qv)\PGLQ(Qu)
where dg, is the quotient measure of the Haar measure of PGL3(Q,) by the additive Haar measure of Q,
defined in §2.6.1] It is well-known that the local zeta integrals converge absolutely for Re(s) > 0 and has
meromorphic continuation to s € C. A standard unfolding argument shows that

(511) <%017<)02 'EA(_afx,X—lw—l,‘i’,s—— > H\IJ ©1,V) LP27U7fXU,X;1w;1,<I>U,s—l)

2
as meromorphic functions in s € C.

For each place v of Q, let L(s, 71, X T2,y ® Xv) be the local L-factor of my, X ma, twisted by x,. The
Rankin-Selberg L-function of m; X mo twisted by x is defined by

L(S7T1X772®X HLSW1UX7T2’U®X’U)

Note that if 71, 72, and  are unitary, then L(s, 7 ® 2 ®) is an entire function if and only if 7, and 7y ®x 2

are not isomorphic up to unramified twist (cf. [JS81) Proposition 3.3]). Let S be a finite set of places of Q
containing the archimedean place such that for all v ¢ S,

e 7, and my, are spherical, and x, is unramified,
o Wy w=Wg v, Wy, o = Wr, », are the normalized local Whittaker newforms, and ®, = Iz, ¢z, -

By [JacT2, Proposition 15.9], for all v ¢ S we have
\IJ(W%?LU’ Wg&z,va fXU’lelw;l’(pv’S,L) = L(Sawl,v X T 4y & Xv)~

2

It follows that (5.11]) can be rephrased in the following form

<@17Q02 : EA(_a fX,X71w71 k) 87%)>

(5-12) _ L(S77T1 X T ® X) H \IJ(WW%sz’v’melele#I’ms—%)
CQ(Q) L(S, Tlw X T2 & Xv) .

5.4. The interpolation formula and Rankin-Selberg L-values. Now we return to the setting in §5.2]
and keep the notation there. Let 7 and w5 be the cuspidal automorphic representation generated by the
automorphic forms ¢ and ¢, associated with p-stabilized newforms f = f, and g = g, respectively. From
the discussion in @ we know the Whittaker functions of ¢ and ¢, can be factorized into a product of local
Whittaker newforms and p-ordinary Whittaker functions

W, =W, [T Waron Woy = WS T] Wea -
v#p v#p

veES

Let x = epw?*s and D be the Eisenstein datum (xw1, (), x " 'w ™ w1 (), C1, C2). Define the local Godement
section

(5.13) IDs00 =1

* P—
Xoo Xl wit ol k2l vasvf T fx,xllwz_lﬁﬁuz,s



20

SHIH-YU CHEN AND MING-LUN HSIEH

with the Bruhat-Schwartz function @Lol ka] and ®p , in Definition By definition
* P * —

fD,s T Hf'D,s,v - va —
v

is the Godement section attached to ®5

_ plki—k2] -1, 1
1y 174)5’;1*’“2])5 - D713 : ®w1 E B(X X w 7‘9)
[k1—ka]

Proposition 5.3. For every sufficiently large positive integer n, we have

ks — ki1 — k
gFf,a(QlaQZ,P) :L(M

" \/jl —2ks+ko+1
2 T X T ®@X) - (1) Mg () (—1) - V=1)

Q-le
rd *

SSZROR | RH0| —

0N

where W' (s) and W} (s) are normalized local zeta integrals given by
ord ord *
\Ijord( )7 ( ( )W”Tlp I/V7T2p7f'D,sfl )
P L(s,m1,p ® T2,p @ Xp)

(-1 -G 1)
wr b3 g, )6(2)

Uy(s) = ¢q.(1) YWar o Wao oo 5o 10)
‘ (Q.(2)[Nlq, L(s, 710 ® a0 ® Xx¢)
Proor. By (5.11)), we find that

(P(Tootn) s, 0q - Eal= i ) @ wyfy)
=<p(JOot

n)‘z"f7¥’g : A(_»fp S,l)>
=(q(2)7!

d d
( (jOO) Tr17OOvWTF27O<>7fD 5—3, oo)' ( ( )W;r)fpv 7?2rp7f’DS H\IJ 1,45 Wz,é:fD s—1 g)
L#p
We must calculate the archimedean local zeta integral. Note that 7 o, and 7y o, are discrete series of weight
k1 and ko, and the corresponding Whittaker newforms W -« and Wr,  are given in (2.8). Let k' =k
Recall that f3 ; . is the Godement section attached to %1 We obtain

— ko.
( )Wﬂ'l OO?WTrz,(XHf’D 3_7 )
y O 10 -y 0 s—1 * X
AX /SO‘Z(R) 1,00 (0 1) (0 1>)Wﬂ'2w(( O 1) u)XOO| ‘R (y)fD73_%7oo(u)dUd y
/
o (VoK (ST —s—K /2 L y 0 y 0 s=1 g,
w02 e (s B [ (4 ) (4 D)t
a+kse—k' K _—s—k'/2 K’ s+MER2 1 _amy x
=(=1)*"27" (=17 L(s+— Y e M dxy
(—1)4(y/=T)ksth1—kag—ki-1p ( n k ;k2> I'e (S+ ky ;—kz B 1)
:(—1)a(\/j1)2k3+k1_k22_k1_1 “L(8,71 00 X T2,00 @ Xoo)-
Combining Proposition (5.12) and the fact that wy,(—1) = 12 () (—1)(—1)" and [SLa(N) : To(N)] =
11 2l e get the proposition O
(N Tq,2)INg,’ V¢ & prop :

6. THE CALCULATION OF LOCAL ZETA INTEGRALS

In this section, we calculate the normalized local zeta integrals \I/grd(s) and ¥} (s) in Proposition The
notation is as in We will continue to use the local Haar measures normalized in



ON PRIMITIVE p-ADIC RANKIN-SELBERG L-FUNCTIONS 21

6.1. The p-adic place.

Lemma 6.1. For all sufficiently large n, we have

Cp(2) Oéf‘*ﬁ p| |Qp( p")wa,p(—1)

Cp(l) V(s, T2,p ® iy xp)

In particular, \Ilord( )= ( fy9®x), where Eg(s, fy9 ® x) is the modified p-Euler factor given by

( ( )Word Word7f5’87%}p) —

7\'1p T2,p

L(s, m2,p ® s Xp) ) 1
e(s,2,p ® apxp)L(1 — 5,7y, ® a]?lX;l) L(s,m1p X T2 @ Xp)

(6.1) Ex(s, fLg@x) =

ProOF.  To simply the notation, we omit the subscript p in the proof. For example, we write 1, w1, f5 , ||
for ™1 p, w1, [P s pr|"|q, - According to Definition ID.s = fxx—1w-1,0p,s be the Godement section associ-
ated with

[ 1.
¢X“’“1,<p>

Ppp =0, 1,1
P X7 W ()

. 0 -1\, -~
ful(} 3 ) =Py @
Let Werd = Word for i = 1,2. By (2.10 -, we have

(D) =asktows wal(l 1) = a0

Using the integration formula
y 0\ /0 -1 %
o F((O 1) (1 m))dxd Y

A direct computation shows that

_ 6(2)
/N\ PGL>(Qp) Flo)g = (1)

for F € L'(N\ PGL2(Q,)), we obtain
( ( )Word Ord7fD 5_7)

G G G T Tl G N Gy DR AR (g N

Cp( )
S (0 2) (b (@ D ot
_Cp(2)af~lzp(g) Jwri (" )/P 5 Word(<—0y (1)> ((1) _xl))XOést%(y)axwwfjp)(x)dxydx

for sufficiently large n. By the local functional equation for GL(2) [Bum98, Theorem 4.7.5|, the above integral
equals

1
(2 )afW1 |-|(p ) x(=1) /Q . W;rd(<g ?) ((1) f))w{lx_la]1|-|;_s(y)axwwllp)(x)dxydx

Gp(1) (s, T2 @ arx) .
_Cp(2)afw1 1| |(p™) x(=1)
7y (s,m0 @ agx)
/ W(ym)pawy ' 1af1\-Il_s(y)axww;gp)(x)dxydw

62 o o M X / o

—1) |1—s x
Cp( ) (3 7T2®an) af gy X || (y)(bxww_l (_y)d Y.

1,(p)
Since ay, ay and wiw; (p) are unramified, we find that

G Y wa(-1)
CP( ) '7(57772®O‘fx).
This completes the proof. O

( ( )Word ord’fD 577) —
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6.2. The {-adic case with ¢ | N. In this subsection, we compute the local zeta integral ¥} (s) under certain
minimal Hypothesis (M) below. Recall that an irreducible admissible representation m of GL2(Qy) is called
minimal if the exponent of the conductor ¢(r) of 7 is minimal among the twists = ® x for all characters x of
Q.. In this subsection, we assume the following minimal hypothesis for (f, g)

Hypothesis (M). For every ¢ | N, there exists a rearrangement {mi,m} = {7 ¢, 7, ¢} such that
e 71 is minimal,
e FEither m; is discrete series or m; and w5 are both principal series.
e If m; and my are both principal series with L(s,m; X m2) # 1, then 7 is also minimal.

Remark 6.2. Note that if the above hypothesis holds for (f, g), then it holds for the specialization of (f, g) at
any classical point by the rigidity of automorphic types for Hida families described in [FO12, Lemma 2.14] (See
also [Hsi21, Remark 3.1]). Moreover, one can always find a Dirichlet character A such that (7; ® A\, m; ® A™1)
satisfies Hypothesis (M).

Let £ be a prime factor of N. So £ belongs to ¥ ;) LI X5 L Xi5) as described in (5.1)). Note that in this case

X is unramified at ¢, and ¥} (s) is symmetric for (¢, mg ). Let (w1, m2) as above. For ¢ = 1,2, let ¢; = ¢(m;)
be the exponent of the conductor of 7;. Set ¢ = max{ecy,ca} = ords(N) > 0. We write

a(t)((t) ?)u(m)(é f)w(_ol (1)) (te QF, z e Q).

For a non-negative integer n, let

ny _ Z, Zy
UO(K ) = GLQ(Z@) n (enze Zg) .

In what follows, we assume Hypothesis (M) throughout this subsection. We often omit the subscript ¢ as
before. We first treat the case £ € ¥j).

Lemma 6.3. If £ € ¥, then we have

)N,

U (Wey W [0y ) = o e m X m @),

and hence ¥ (s) = 1.

Proor.  Write Wi and Wy for Wy, and Wy, respectively. Recall that f3 . = f1 w-1.4, s is the Godement
section attached to the Bruhat-Schwartz function ®p = Iz, ® Iz,. Since x is unramified, we may assume
x = 1. For k € GLy(Qy), put

T(u) = Wi (a(t)u)Wa(a(—t)u) |t]*~" d*¢.
Q/
Then Z and f7 . are indeed functions on N(Q¢)\ GL2(Qe)/Up(£°), so we have
(6.2) W(W, Wa, [ 1) = vol (U (£°), du) > Z(w)ff 1 (u).
wEGL2(Zg) /U (£°)

To evaluate the above sum, we give an explicit formula for the function f7 . and Z. First of all, it is easy
573
to verify that f7 . (1) = L(2s,w),
ST

Py ) =Fp,y 0 (5 )= Bstel (60

Foaci((n 9)) =25l

and that
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for z € Qg t € Z), and n € Z. In view of the definition of X;y in (5.1) and Hypothesis (M), we must have
that m = p1 By and my = ps B vy are principal series such that

c=c(v1) =c(ve) >0; p1,Hus and wiwy are unramified.
For i = 1,2 we have

Wila(t) = pal-|? ()Iz, (t),

1

Wi alt)o) = ) & (G ) il POz, 0

Combined with the equation e(1/2,m1)e(1/2, m3) = v1v2(€°)ve(—1), we obtain
Z(1) = (1= ppz(0) [€1°) 71
T (w) = pu ez (6) 71017 (1 = v () €)1

Moreover, for 0 < n < ¢, from the explicit formula for Whittaker newforms in Proposition (ii) below, we
deduce by a straightforward computation that

7((n 1)) = mmey =i

With the above formulae, using a complete coset representatives for GLa(Zy) /Uy (¢°) given by

{16

and the relation w = pq pav1ve, we find that the sum in (6.2) equals

f;p,sé(1)1(1)+:§:;(12—1)@0—"—1f73,55(@ ?))I(@ ?))

x € Zg/fCZg,y € EZz/ECZZ}.

e () (w)

c—1
=L(2s,w) (L(Sv pap2) + Y vaiva(C) [0 4 v (€9) |6 L(s, V1V2)>

n=1
=L(s, p1p2)L(s, 1) = L(s, 71 X m2).
Hence we obtain
U (Wi, Wa, f;;ys,%) = vol(Uo(£°), du)L(s, m x m2)
= [GLa(Ze) : Up(€™)] ™ - L(s, 71 X 7).
The lemma follows. ]
Proposition 6.4. Let i} be the set of continuous characters of Z) . For § € i}, we extend & to a character

of Q) so that £(¢) = 1. Let 7 = pB v with ¢(p) =0 and c¢(v) = ¢ > 0. Let Wr € W(w,9) be the Whittaker

newform. Forn >0, let W7(rn) =p ((gln (1))) W

(i) Forn=0, Wéo)(a(t)) is supported in q~Zy. Fort € Z; and —c < m < —1, we have

2

<Y e @,ufl)ls(t),

€L c(vE—1)=—m

WO (a(em)) = |2 ¢ (1)u(0) e (%)
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and
O p=1p1y _ 11/2 (1 1N\t
Wﬂ' (a,(f t))_w‘ Cé(l)ﬂ(f) € iaﬂ- € §7V£ f(_t)
€€Z c(6)=c
c(ve~H=1
I Gte) s (5.7 vima),

Fort #0 € Zy, we have
1
WD a(0) = 7" le)v(=D)e (5.7 ) vl
(il) For 0 < n < ¢, we have

W (@(t)) = Lo (6) - Co(1) 61772 ()0 (;Q

x > £ (;,u§—1>15(—t).

€€Z) 0<e(€)<c—n
(ili) Formn >¢, Wi = w,.
PrROOF. Letn >0and m € Z. For £ € Zz , put

AR E) = [ W (a(m)E ().

z;
For t € Z, we have
Wi (a(€™t)) Z AR (€
gezz

Recall the local functional equation for GL(2)

(M) (g ()11 s=1/2 1, L(s,m®¢&Y) (") (4 ol 1/2-s 1%
/QX W2 (a(t))§ (t) |t] d*t = L(l—s,wv®§)8(s,ﬂ®§_1)/sz W2 (a(t)w) §wr (1) [t d=t.

Let wr = pv be the central character of m. Note that (cf. [Sch02, §2.4])
Was (a(t) =~ |- (0)lz, (1),

p (0 Wala(0) = (o7 ) Wi D).

Therefore, the local functional equation for GL(2) implies that

§— m L ) - 1 s— c
> A 1007 P e (Gm) ) e

meZ

{4

“ o BT () |t g, (£)d L.

A direct calculation shows that

L vt ) I a

c n—c c—n—c 1=s ]' - 1
O ey || e (L) 0 <ot <o

GO I (1= p(0)g)(1 — = (D))
if=1land c—n>1,

(1—p ) ) tif ¢ =1and c=n,

0if ¢(&) > ¢,
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and for 0 < ¢(§) < ¢

L(s,T®&7h)
L(1—s,m ®@&)e(s,m®E1)

(c(&)+ewe=)(1/2-s) _ (1 e -
|€| clerelve ) € (27ﬂ£_1) € (27V§_1>
if 0 < c(x) <cand c(vé™1) #0,

=3 @ e - () e (;usl)
if ¢(¢) = c and c(v€~1) =0,

(1= OF1) (1 — (06 /20 (;) ife—1.

We conclude that for ¢(§) > ¢,

AW (&) =0.

m

For 0 < ¢(¢) <c—mnand c(vé~t) >0, Aﬁ,’f)(g) equals

-1
|£|c/2—n/2 Ce(l)u(g)—c—&-ng (;,71‘) c (;7 I/€_1> 5(_1) if m=n—c,

0 ifm#n-—c
For ¢(¢) = c and c(v&1) =0, ALY (€) equals

1 — |2 =1 (0) ifm=—-1andn=0,
= 0|2 ¢, (1) p(e) e (2,7r> Co(1)"Yg™ 2v(0)™  if m > 0and n =0,
0 ifm< —1orn#0.
For y=1land c—n > 1,
2—n/2 n—ec .
A (e = { 1T Guoe it =n—c,
0 ifm#mn—c.
For y =1 and ¢ = n,
m/2 m .
AW (g) = ™2 p(ey™ it m >0,
0 if m <0.
This completes the proof. O
Now we suppose that £ € ¥, so ordg(C1) = [§] by (5.2). In addition, 7 is minimal and 7y, 72 are discrete
series with L(s,m X m) # 1. This in particular implies that 7o = m ® £ for some unramified character ¢
of Q; by |[GJI78, Propositions (1.2) and (1.4)], and hence ¢ = ¢; = ¢3. Let 7qQ,. be the unramified quadratic
character associated to the unramified quadratic extension of Q. A discrete serires representation 7 is said

tobeof typelif r 7 ® TQ,2> and of type 2if 71 2 7 ® TQ,2- Note that a special representation is always of
type 2.

Lemma 6.5. If £ € ¥, then we have

¢qQ.(2) [Nlq,
CQ@(I) L
1

PROOF. We may assume x = 1 as in the previous case. Let f° be the spherical section in B(1,w™!, s — 5)

normalized so that f°(1) = 1. Let r = [£] = ord,(Cy). Then ID,s is the Godement section associated with

Iprz, ® Iz, according to Definition .1} It is easy to verify that
Fay = 1071 L25,) - p(alt™")) .
It is computed in [Hsi21l Proposition 6.9] that U(W,,, Wr,,p(a(¢~7)) f°) equals
1077 L(s,m1 x ) {1 +1e| if m is of type 1,

5 1+ 4 j type 1
v (Wvam,fE s_l) —reT51. 1 af mis of type 1,
7 1 if ™1 is of type 2.

2

(877'['1 ><7T2®X){

1+ L(2s,w) 1 if 71 is of type 2.
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The lemma follows. O
Finally, we consider the last case £ € Xj).
Lemma 6.6. If { € Y, then

()N,

\P(leawﬂmf%’sfé)* CQ (1) .L(S,ﬂ'l ><71'2(X)X)7
14

and hence ¥ (s) = 1.

PrOOF. We may assume x = 1 and write W; = Wr,, i = 1,2 as before. Since £ € Xj;), by definition £ | Cs,

and f7 . is the Godement section associated with Iyez, ® ¢,—1 according to Definition It is easy to see
ST

that

ID,s(k) = w(d)lyyee) (k) for k= (i Z) € GLy(Zy).

Therefore, we obtain

YWy, Wa, ff 1) = / / ID o1 (B)Wr(a(t)u)Wa(a(—t)u) [t]*7 ! d*tdu
2 GLa(Zp) JQy 7 2

= [GLo(Ze) : Up(£)] ™ | Wi (alt)) Wa (a(—t)) [t d*t.
Q/
Hence the lemma follows immediately if we can prove the following equality
(6.3) W1 (a(t)) Wa (a(—t)) |t\s_1 d*t = L(s,m X m3).
Q;
To show (6.3), we first consider the case my is spherical. Then s is not spherical, and hence (6.3)) can be
1
verified easily. Now suppose that 7 is special pq|-|” 2St or ramified principal series p1 B vq with 14 ramified.
1
By the minimality of 7y, g1 is unramified and Wi(a(t)) = p1l-|2(a)lz,(a). We thus conclude that the left
hand side of (6.3)) equals L(s, 72 ® p1). It remains to see
(6.4) L(s,ma @ p1) = L(s,m X m3).

If 7y is supercuspidal, is clear. If my = /,LQH_%St is special, then fails only when 7, is special
and pq o is unramified, which contradicts to the fact that £ ¢ 2 i) If mo = po B vy is principal series, then
the failure of implies that L(s,my ® v1) # 1, and then 7y is minimal by Hypothesis (M) and pqpovive
is unramified. This implies ¢ € ¥, a contradiction. We thus shows 7 and hence (6.3)) if 71 is not
supercuspidal. Finally, suppose that m is supercuspidal. In this case, Wi (t(a)) = ]Izex (a), and we must have

L(s,m x m3) =1 as £ € Xj;). Thus the left hand side equals
Wa(t(a))d*t =1 = L(s,m X ma).
z;
This completes the proof. O

7. THE INTERPOLATION FORMULAE

We prove the main result in this paper with the setting and the notation in the introduction and §5.1
Recall that the finite set Y. in the introduction is

Bexe = {0 € Vi) [ Ty = Mpe ®7Q, ) -
We continue to suppose that f satisfies the Hypothesis (CR) and fix a generator ns of the congruence ideal
of f used in the definition of Hida’s canonical periods ¢ o for Q € .’fﬂ . We have the following

Theorem 7.1. For each a € Z/(p — 1)Z, there exists a unique element E{,’a € R = L1i®0I1[T] such that for
every Q = (Q1,Q2, P) € %7];, we have

L(Vg,0) _
f _ ) Q Cof (1t _1yatl B 1
L o(Q1,Q2, P) =Tvy(0) (VD) ke 10, &y (FIIT V) (=1)"" g () ( I)EGI;L(“L@ )
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where Eg(Fil‘*' Vq) is the modified p-Euler factor defined in (1.3).

PROOF. For every Dirichlet character A\ unramified at p, let f ® A be the primitive Hida family associated
with f|[A]. Then it is proved in [Hsi21, Proposition 7.5] that there exists a generator 77?®>\ of the congruence
ideal of f ® A such that for every arithmetic point ), we have Qzgx), = Qf Q" Therefore, we can deduce that
up to a units in I, the right hand side of the equation in the theorem is invariant under prime-to-p twists.

According to the discussion in Remark we can choose a Dirichlet character A of conductor ¢(\) such
that ¢(\)? | N and for every arithmetic points (Q1, Q2), the pair (fo,®\ g0, ® A1) satisfies the Hypothesis
(M). Therefore, we may replace F' by the twist (f ® \,g ® A~!) with such \ and then define

ch, ==L, [ INCiY g, € R
ZEZ(H)

We put

2kp — kg, — k
—kp). — Q Q
(m1,m2,X) = (Tg, Tgg, €PW* ), 50 = 21 2.

Then from Proposition [5.3] combined with the local calculation Lemma [6.1] Lemma [6.3] Lemma [6.5] and
Lemma we deduce that /.Zf,a(g) equals

L(sg,m1 X T2 ® X)
Qy

. 5;(80,7’('1 X o & X) . (_1)a+1(\/j1)—2k3+k2+1 H (1 +€_1).

lEXexc
Finally, a simple computation of local Langlands parameters associated with 71 and 75 shows that

le + sz le + kQ?, )
2 2 ’

where Fvé(s) =L(s+1- %,mm X 2,00 @ Xoo) is the T-factor of Vg in (L.1)) and that

L(s,m x 72 ®x) = vy (s + )-L(Vg,s+

g;(SO, T X T & X) = SJ(F11+ VQ)
in view of the definitions (1.3]) and (6.1)). Now the theorem follows. O

We proceed to establish the functional equation of the primitive p-adic L-functions. We first introduce the
R-adic root number for Rankin-Selberg convolution. To begin with, it follows from [Hsi21l, Lemma 6.11] that
there exists ¢P®)(f ® g ® w?) € (I;®pI,)* such that

e (f 0 g®w)(Q1,Q2) =[]t

Up

kg, + ko @
a %’chzpf X Mggqt ®W").
Let Ngg be the tame conductor of 7¢ o, X Taq, for any arithmetic specialization (@1, Qg)ﬁ Then define the
R-adic root number £(P>) (V) € (I; RI[T'])* by

PN (V) 1= Nyg (Ngg)p' - eP)(f @ g @ w?).
which satisfies the following interpolation property

_ le + sz

kp
2 )

(7.1) eP)(V)(Q1,Q2,P) = [] (ke

{#poo

a
1 Tfg, b X Tgg, .t & EpIw,

Corollary 7.2. Suppose that 1y ;)2 (p) = w. Let

F=rov; g=gou
and let F = (j”,_(j) Then we have
LT o a(Eeye(r0) L+ )7 L+ T1) (14 T2)) =01,y (= 1)(=1) - €7 (V) - LT, (D).

3This is independent of any choice of arithmetic specializations by the rigidity of automorphic types in Hida families.
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PrOOF. It suffices to show the equation of both sides are equal after specialized at all arithmetic points
Q= (Q1,Q0,P) € X% Let Q = (Q1,Q2, P) € X% be the arithmetic point defined by

kpz—kp+/€Q2+kp+1, Ep:eglteeQQ.

P = Xflwl_’ gp)wi (lp). Then left hand side specialized at @ equals

& (L—so. [ g@x)- (-1 [T (e

o L(1—sg,my x7my ®@x 1)
( LEY exc

A /71)2k‘1+k272k3+19‘f

We have the relation

e(50,T2,p @ afxp) - Ep(s0, f,9 @ X) = e(1 = 50,73, @ agwi X, ') - Ep(l =5, f,§©X)
and
£(50, T 00 X T2,00 @ Xoo) = (V=1)2F@172 = (—1)F1 71,
as T, and my o are discrete series of weight kg, and kg,. Therefore, by the functional equation

L(1—s,m) xmy @x 1) =¢e(s,m x 2 @ x)L(s,71 X a3 @ X)
and by (7.2), one verifies easily that

(~1)fFo o, (~1LL L (@)= T elso,me x w20 © x0) - LF,4(Q)-
VFEPOO

Keep in mind that wy ,(—1) = thg () (—1)(—1)*@2, and we get the corollary. O
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