ON THE p-INVARIANT OF ANTICYCLOTOMIC p-ADIC L-FUNCTIONS FOR CM
FIELDS

MING-LUN HSIEH

ABsTrRACT. In this article, we follow Hida’s approach to study the p-invariant of the anticyclotomic projection
of p-adic Hecke L-function for CM fields along a branch character. We prove a conjecture of Gillard on the
vanishing of the p-invariant and give a p-invariant formula for self-dual branch characters.
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INTRODUCTION

The purpose of this article is to study the vanishing of Iwasawa p-invariant of anticyclotomic p-adic Hecke
L-functions for CM fields. To state our main result precisely, let us begin with some notation. Let p > 2 be
an odd rational prime. Let F be a totally real field of degree d over Q and K be a totally imaginary quadratic
extension of F. Let D be the discriminant of F. Fix two embeddings to,: Q — C and ¢,,: Q — C,, once and
for all. Let ¢ denote the complex conjugation on C which induces the unique non-trivial element of Gal(XC/F).
We assume the following hypothesis throughout this article:

(ord) Every prime of F above p splits in K.

Fix a p-ordinary CM type X, namely X is a CM type of I such that p-adic places induced by elements in
X via 1, are disjoint from those induced by elements in Y'c. The existence of such a CM type X' is assured
by our assumption (ord). We recall some properties of p-adic L-functions for CM fields. As in [Kat78|, to
a Néron differential on an abelian scheme A,z of CM type (K, X) we can attach the complex CM period
Qoo = (Qs0,0)o € (C*)¥ and the p-adic CM period Q, = (Qp0)s € (Z)* . Let € be a prime-to-p integral
ideal of K and decompose € = €T€~, where €T (reps. €7) is a product of split prime factors (resp. ramified
or inert prime factors) over F. Let Z(€) be the ray class group of K modulo €p>°. In [Kat7§| and [HT93], a
Z,-valued p-adic measure L¢ 5; on Z(€) is constructed such that
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2 M.-L. HSIEH

where (i) A is a Hecke character modulo €p™ of infinity type kX + k(1 — ¢) with either £ > 1 and k € Z>¢[X]
or k <1and kX + k € Z+([Y], and \ is the p-adic avatar of A\ regarded as a p-adic Galois character via
geometrically normalized reciprocity law, (ii) Ful,(A) and Fulg+ () are certain modified Euler factors (See
(4.16)), (iii) ¥ is a well-chosen element in K such that Im ¥ is totally positive and ¢(9) = —4.
We fix a Hecke character x of infinity type kX with £ > 1 and suppose that
¢ is the prime-to-p conductor Y.

Let I'" be the maximal Z,-free quotient of the anticyclotomic quotient Z(€)~ of Z(€). Let £ y be the
p-adic measure on I'™ obtained by the pull-back of L¢ 5 along x. In other words, for every locally constant
function ¢ on I'", we have

/ $dLy = oXd Le.s.
7(¢)

We call L;’ 5> the anticyclotomic p-adic L-function with the branch character x. Let v, be the valuation of
C, normalized so that v,(p) = 1. Recall that the p-invariant u(p) of a Z,-valued p-adic measure ¢ on a
p-adic group H is defined to be

)=, ot up(p(U)).

Let py v = p(£) x) be the p-invariant of £ 5. On the other hand, for each v|€~, we define the local
invariant g, (x.) by

:U'p(Xv) = inf UP(XU( )_ 1)
zELY

One of our main results in this paper is to give an exact formula of P 5o when the Hecke character x is self-dual
in terms of the local invariants p,(x,) attached to x. Recall that we say x is self-dual if X|A]xr = Ti/Fl | Aps
where 7ic,r is the quadratic character associated to KC/F. It is not difficult to see that p,(x,) agrees with the
one defined in [Fin06E| when y is self-dual.

We remark that an important class of self-dual characters are those associated to CM abelian varieties over
totally real fields (cf. [Shi98, 20.15]). Our first result is the determination of u y if x is self-dual.

Theorem A. Suppose that pt Dr. Let x be a self-dual Hecke character of K* such that
(R) the global root number W(A*) = 1, where \* := XH;E

Then we have
Pow =D tip(Xo):
v|€—

If the branch character x is not self-dual, we do not get the precise formula of p1) y;, but we can still offer
the following criterion on the vanishing of Iy 5> at least when x is not residually self-dual (Cor. .

Theorem B. Suppose that pt Dx and that

(L) fp(xe) = 0 for every o],
(N) x is not residually self-dual, namely Xy # Tic;rwr (mod m).

Then p 5, = 0.

The above two theorems verify a conjecture of Gillard [Gil91l p.21 Conjecture (ii)] when p t+ D (cf. the
discussion in [Hid11 p.3]). Note that by the functional equation of complex L-functions, the p-invariant
py s =00 (le. L o =0)if x is self-dual and W(A*) = —1. If K is an imaginary quadratic field, Theorem
is proved by T. Finis [Fin06]. For general CM fields, both theorems are proved by Hida [Hid10| under the
assumption that €~ = (1). The idea of Hida is to construct a family of p-integral Eisenstein series {£;},.p
indexed by a suitable finite subset D of transcendental automorphism groups of the deformation space of
the ordinary CM abelian variety A 5 such that the t-expansion of some linear combination & of {5}, at
the CM point A JF, 8ives rise to the power series expansion of the measure L . Using a key result on the
linear independence of modular forms modulo p [Hid10, Thm. 3.20, Cor. 3.21] combmed with the g-expansion
principle, Hida reduces the determination of Moy 5> tO an explicit computation of the Fourier coefficients of the

1Self-dual characters are called anticyclotomic therein.
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Eisenstein series £2. Assuming ¢~ = (1), Hida computes the Fourier coefficients of £, from which he is able
to deduce a necessary and sufficient condition for the vanishing of u-invariant Iy, s As remarked by Hida,
the reason for the assumption €~ = (1) is that the calculation of the Fourier coefficients is rather complicated
if € £ (1).

The aim of this paper is to lift the assumption €~ = (1). The idea is to construct a new family of the toric
Eisenstein series {£,},.p of which the Fourier coefficients can be computed with the help of representation
theory and rewrite £ as a linear combination of these £,. The construction of &, relies on a special choice
of local sections in a certain local principal series at each place of F. The choice of local sections outside
p has been made in [Hsil2, §4.3]. At the places above p, such a choice is inspired by [HLS06], where Katz
p-adic Eisenstein measure is studied from representation theoretic point of view. To obtain the formula of
Py 50 We have to compute explicitly all Fourier coefficients of £,, which in turn can be decomposed into a
product of the local Whittaker integrals attached to these local sections. In [Hsil2], the local Whittaker
integrals are determined explicitly by a straightforward computation at all places v other than those inert or
ramified with v(€~) > 1. In general, for each v|€~ and g € Ff, the local 8-th Whittaker integral is essentially
the partial Gauss sum Ag(x,) given by

As(xe) = /f @+ 2718y gR (B da,

where ¢ € KC, such that ¢(§) = —d and ¥° is an additive character on F,,. It turns out that the y-invariant p v,
is determined by the p-adic valuations of Ag(x,) with § in the global field F for all v|€~, and in particular,
the non-vanishing modulo p of Ag(x,) for some § € F implies the vanishing of ty ;- 1t seems that Ap(xw) is
difficult to evaluate in general. However, we can deduce the vanishing of p. ;, assuming the vanishing of the
local invariant g, () for each v|€~. In other words, we can show the existence of 8 € F such that

(n.v.) Ap(xv) # 0 (mod m) for all v|€™.

Indeed, it is shown in [Hsil2l Lemma 6.4] that at each v|€~ there exists some 3, in the local field F, with
Apg, (xv) non-vanishing modulo p, and then the strong approximation enables us to deduce easily the existence
of B in the global field F with the property if x is not residually self-dual. In the special case yx is
self-dual and the global root number W(A\*) = +1, we further need to show that this 3, satisfies certain
epsilon dichotomy (See Prop. . Under the assumption the ramified part of €~ is square-free, this epsilon
dichotomy for f, is verified in [Hsil2]. To treat the general case, we identify Ag(x,) with the Whittaker
integral associated to a certain Siegel-Weil section in the degenerate principal series of U(1,1) and apply
results in [HKS96| §6 and §8] to show that 8 indeed satisfies the epsilon dichotomy whenever Ag(x,) # 0.

This paper is organized as follows. In the first three sections, we review the theory of p-adic Hilbert modular
forms and CM points in Hilbert modular varieties. In §4 we give the construction of our p-adic Eisenstein
measure £ (Prop. . We show in Prop. that the period integral of £ against a non-split torus gives rise
to p-adic L-functions for CM fields constructed in [Kat78] and [HT93]. In §5, we review Hida’s theorem on the
linear independence of modular forms applied by the automorphisms in D proved in [Hid10]. Finally, in
after establishing a crucial lemma (Lemma[6.1)) relating the non-vanishing of Ag(x,) to the epsilon dichotomy
of 3, we prove our main result (Theorem

Acknowledgments. The author would like to thank Professor Tamotsu Ikeda for helpful suggestions. The
author is also very grateful to the referee for the careful reading of the manuscript and the suggestions on the
improvements of the exposition.

1. NOTATION AND DEFINITIONS

1.1. Let F be a totally real field of degree d over Q and let K be a totally imaginary quadratic extension
of F. Let ¢ be the complex conjugation, the unique non-trivial element in Gal(X/F). Let O and R be the
ring of integer of F and K respectively. Let Dx (resp. Dx) be the different (resp. discriminant) of F/Q.
Let Di;r (resp. D7) be the different (resp. discriminant) of K/ F. For every fractional ideal b of O, set
b* = ble;—l. Denote by a = Hom(F, C) the set of archimedean places of F. Denote by h (resp. hy) the set
of finite places of F (resp. K). We often write v for a place of F and w for the place of K above v. Denote
by F, the completion of F at v and by w, a uniformizer of F,. Let K, = F, ® K.
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We fix a rational prime p. Throughout this article, in addition to , we further assume
(unr) 2<ptDg.
If X is a CM type of K, we put
¥, ={w € hg | w|p and w is induced by ¢, oo for 0 € X'}.

Recall that X is p-ordinary if X, N X,c = ) and X}, U X, ¢ is the set of places of K lying above p. The existence
of p-ordinary CM types is assured by (ord)). Hereafter we fix a p-ordinary CM type X, and identify X with a
by the restriction to F.

1.2. If L is a number field, Ay, is the adele of L and Ay s is the finite part of Az. The ring of integers of L
is denoted by Oy,. For a € A}, we put

il (a) :== a(OL ® Z)N L.

Denote by G, the absolute Galois group and by recy, : AF — G% the geometrically normalized reciprocity
law. Let 1q be the standard additive character of Aq/Q such that ¥q(rs) = exp(2Tizs), Too € R. We
define vr : Ap/L — C* by ¢p(x) = ¥q o Trpq(x). For B € L, ¥ g(x) = ¢p(Bx). If L = F, we write ¢ for
YrF.

We choose once and for all an embedding to, : Q = C and an isomorphism ¢ : C ~ C,,, where C,, is the
completion of an algebraic closure of Q,. Let ¢, = tio : Q <> C,, be their composition. We regard L as a
subfield in C (resp. C,) via Lo (resp. t,) and Hom(L, Q) = Hom(L, C,).

Let Z be the ring of algebraic integers of Q and let Zp be the p-adic completion of Z in C,. Let Z be the
ring of algebraic integers of Q and let Zp be the p-adic completion of Z in C, with the maximal ideal m,. Let
m = ¢ (my).

1.3. Let F be a local field. We fix the choice of our Haar measure dx on F. If F' is archimedean, dz is the
Lebesgue measure on F. If F' is a non-archimedean local field, dz (resp. d*z) is the Haar measure on F' (resp.
F*) normalized so that vol(Op,dz) = 1 (resp. vol(Of,d”z) = 1). Denote by || the absolute value of F'
such that d(ax) = |a| dz for a € F*. We often drop the subscript F' if it is clear from the context.

2. HILBERT MODULAR SHIMURA VARIETIES AND HILBERT MODULAR FORMS

2.1. The purpose of this section is to review standard facts about Hilbert modular Shimura varieties and
Hilbert modular forms. We follow the exposition in [Hid04l §4.2]. Let V = Fe; @& Fey be a two dimensional
F-vector space and (, ) : VXV — F be the F-bilinear alternating pairing defined by (ea,e;) = 1. Let

& = Oe; @ O*ey be the standard O-lattice in V. Let G = GLy ;z. For g = {(CI Z} € My(F), we define an

involution ¢ = —dc _ab . If g € GLy(F) = G(F), then ¢’ = g~1detg. We identify vectors in V with row
vectors according to the basis e, e2, so G has a natural right action on V. Define a left action of G on V' by
gxr:=x-g,xeV.

For a finite place v of F, we put

K0={geG(F) | g* (L ®00,) =L200,}.

Let K = [[,cp Ky and K} = L, K?. For a prime-to-p positive integer N, we define an open-compact
subgroup U(N) of G(Ar s) by

(2.1) UN):={ge€GAry)|g=1(mod NY)}.

Let K be an open-compact subgroup of G(Ar y) such that K, = K. We assume that K D U(N) for some
N as above and that K is sufficiently small so that the following condition holds:

(neat) K is neat and det(K) N O C (KNO*)%



THE p-INVARIANT OF ANTICYCLOTOMIC p-ADIC L-FUNCTIONS 5

2.2. Kottwitz models. We recall Kottwitz models of Hilbert modular Shimura varieties.

Definition 2.1 (S-quadruples). Let O be a finite set of rational primes and let U be an open-compact
subgroup of K such that U D U(N) for some positive integer N prime to [J. Let Wy = Zo)[Cn] with

27t

(v = exp(5*). Define the fibered category .Agj) over the category SCH )y, of schemes over Wy as follows.
Let S be a locally noethoerian connected Wy-scheme and let s be a geometric point of S. Objects are abelian
varieties with real multiplication (AVRM) over S of level U, i.e. a S-quadruple (A, X, ., 7)) consisting of
the following data:

(1) A is an abelian scheme of dimension d over S.
(2) t:0 — Endg A ®z Z(D) .
(3) Ais a prime-to-0 polarization of A over S and X is the O 4-orbit of A\. Namely

5\ = O(I:I),—i-)\ = {)\/ € Hom(A,At) Xz Z(D) ‘ )\I =)o a, ac O(D),+} .

4) 7P = n@U©®) is a 7, (S, 5)-invariant UH-orbit of isomorphisms of Ox-modules ) : L @5 A;D) =
VO (A5) := Hy (45, AEF)). Here we define nJg for g € G(AE}) by nPg(z) = @ (zg=).
Furthermore, (4, A, L,ﬁ(D)) s satisfies the following conditions:
e Let ' denote the Rosati involution induced by A on Endg A ® Z ). Then ¢(b)" = +(b), Vb € O.
e Let ¢* be the Weil pairing induced by A. Lifting the isomorphism Z/NZ ~ Z/NZ(1) induced by (y
to an isomorphism ¢ : Z ~ Z(1), we can regard e* as an F-alternating form e : V) (4) x VE)(4) —
0" ®z A(fD). Let ¢ denote the F-alternating form on V() (A) induced by e?(z,z') = (n(zx), n(z")).

Then

e = u-e" for some u € A(}I-]}.

e As O ®z Og-modules, we have an isomorphism Lie A ~ O ®z Og locally under Zariski topology of S.
For two S-quadruples A = (A, X, 1,77)g and A’ = (A", N,//, 7)) g, we define morphisms by

Hom 0, (4, 4) = {¢ € Homo(4,4) | N = X, 6o/ @ =7}
K
We say A ~ A’ (resp. A ~ A') if there exists a prime-to-[J isogeny (resp. isomorphism) in Hom o) (4, A
K

We consider the cases when O = @) and {p}. When O = ) is the empty set and U is an open-compact
subgroup in G(ASE}) = G(Ar ), we define the functor & : SCH )y, — SETS by

gU(S) = {(A’j‘vaﬁ)S € .AK(S)}/N '

By the theory of Shimura-Deligne, &y is represented by Shy which is a quasi-projective scheme over Wy. We
define the functor €y : SCH )y, — SETS by

eu(S) = {(A 007 € AT () 1L 22 2) = Hi(As )}/ ~.

By the discussion in [[Hid04), p.136], we have €x —+ Ex under the hypothesis .
When O = {p} and U = K, we let W = Wi = Z,[(n] and define functor £ : SCH,y, — SETS by

v (s) = {(A 2,775 € AL, (S)}/ ~ .

In [Kot92], Kottwitz shows 51(?) is representable by a quasi-projective scheme Sh(;) over W if K is neat.
Similarly we define the functor G(Ig) : SCH )y — SETS by

e (5) = {(A%,0,77) € AL () | 1P 07 29) = Hy(A5, 20}/ =
It is shown in [Hid04, §4.2.1] that ) 5 £®),
Let ¢ be a prime-to-pN ideal of O and let ¢ € (Ag’f}[))x such that ¢ = ilx(c). We say (A4, \,1,7®) is ¢

polarized if A € A such that e* = ue” with u € cdet(K). The isomorphism class [(4, A, +,7")] is independent
of a choice of A in A under the assumption (¢f. [Hid04l p.136]). We consider the functor

(’EEI}){(S) = {c—polarized S-quadruple [(4,\,,7P)g] € Qfg?)(S)} .
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Then @S’ I)( is represented by a geometrically irreducible scheme S hg)(c) /w, and we have
(2.2) si =] ShZ©)m.
[JeCt(K)

where Cl%(K) is the narrow ray class group of F with level det(K).
2.3. Igusa schemes. Let n be a positive integer. Define the functor I}?’)n : SCH )y — SETS by
S = I.(9) = {(A X0 7? )}/ ~,
where (A, ), L,ﬁ(p))s is a S-quadruple, j is a level p"-structure, i.e. an O-group scheme morphism:
J: 0" @z pyn — Alp"],

and ~ means modulo prime-to-p isogeny. It is known that Igf’)n
Lemma (2.1.6.4)]) and thus is represented by a scheme I .
Now we consider S-quintuples (A, \,, 7%, j)g such that [(A,\,.,7P)] e QE:’I)((S). Define the functor

TP (¢) : SCHy — SETS by

is relatively representable over £ 1(5 ) (¢f. [HLSO6,

S HI}?L(C)(S) = {(A,/\,L,ﬁ(p),j)g as above} /~.

Then I}f)n(c) is represented by a scheme I ,,(c) over Sh%?) (¢), and Ik ,,(¢) can be identified with a geometrically
irreducible subscheme of I, ([DR80, Thm. (4.5)]). For n > n' > 0, the natural morphism 7, »/ : I n(c) —
Ir¢ v (c) induced by the inclusion O* ® p,n — O* @ p,n is finite étale . The forgetful morphism 7 : Ik »(c) —
Sh(lg)(c) defined by 7 : (4, j) — A is étale for all n > 0. Hence Ik ,(¢) is smooth over Spec W. We write Ik (c)
for Jim | I (c).

2.4. Complex uniformization. We describe the complex points Shy(C) for U C G(Ar s). Put
Xt ={7=(7)sca € C* | Im7, > 0 for all o € a}.

Let Fy be the set of totally positive elements in F and let G(F)" = {g € G(F) | detg € F;}. Define the
complex Hilbert modular Shimura variety by

M(X*,U) = G(F)N\XTxG(Ar ;)/U.

It is well known that M (X T, K) = Shy(C) by the theory of abelian varieties over C (cf. [Hid04, §4.2]).
For 7 = (7,)sea € X, we let p; be the isomorphism V ®q R = C? defined by p, (aej + bes) = at + b with
a,be F ®q R = R?® We can associate a AVRM to (7,9) € Xt xG(Ar s) as follows.

e The complex abelian variety Ay (1) = C?/p,(%,), where £ := (£ @z Af)g ' NV.

e The F-orbit of polarization (, )., on Ag(7) is given by the Riemann form (, )eqn := (, ) o p; '
e The 1c : O — End A4 (7) ®z Q is induced from the pull back of the natural F-action on V via p..
e The level structure n, : £ @z Ay = £, @z Ay = Hi(Ay(7), Ay) is defined by n,(v) = vg™'.

Let Ag4(7) denote the C-quadruple (Ag(7),(, ).an> tc, Kny). Then the map [(7,g)] — [A4(7)] gives rise to an

isomorphism M (X*+,U) = Shy(C).
For a positive integer n, the exponential map gives the isomorphism exp(27i—) : p~"Z/Z ~ Hpn and thus
induces a level p™-structure j(gp):

g1
(gp): OF @z ppn = O%es @z p "Z|Z — L R7,p "Z|Z = Ay(T)[P"].
Put
n 1 * n
Ky = {96K|9p5 {0 1] (mod p )}



THE p-INVARIANT OF ANTICYCLOTOMIC p-ADIC L-FUNCTIONS 7

We have a non-canonical isomorphism:
M(XT, K" 5 Ikn(C)
(7 9)] = [(Ag(T), ( Veans e T 5 (9p))]-

Let 2 = {25 },¢a be the standard complex coordinates of C* and dz = {dz,},.,. Then O-action on dz
is given by 1c(a)*dz, = o(a)dz,, 0 € a = Hom(F,C). Let z = 24 be the coordinate corresponding to
loo : F — Q — C. Then

(2.3) (0O ®z C)dz = H(Ay(1), Qa,(r)/c)-

2.5. Hilbert modular forms. For 7 € C and g = {i b} € GL2(R), we put

d
(2.4) J(g,7) = cT +d.
For 7 = (T5)oca € X and goo = (9o )oeca € G(F ®q R), we put
l(gooa T) = H J(gaa Ta)-
oca

Definition 2.2. Denote by M (K7, C) the space of holomorphic Hilbert modular form of parallel weight kX'
and level K7'. Each f € My (K}, C) is a C-valued function f : X*xG(Ar ;) — C such that the function
f(—,gf) : X* — C is holomorphic for each g5 € G(Ar ) and

f(a(r, gf)u) = J(a, 7)* (7, g;) for all u € K}* and o € G(F)T.
For every f € My (K7, C), we have the Fourier expansion
f(r.gr) = Y Wa(f,gp)e?™ Mrr/aln).
BeFU{0}

We call Wg(f, g5) the S-th Fourier coefficient of f at g;.
For a lattice L in F, let Ly = F. N L. If B is a ring, we denote by B[L.] the set of all formal series

ag + Z aﬁqﬂ, ap, ag € B.
BEL

Let a,b € (A(]f’]}]))X and let a = ilx(a) and b = ilz(b). The g-expansion of f at the cusp (a, b) is given by

(2.5) flan@= >  Wslf [b;g

i e crvtan).
BE(N~1tab)>o

If B is a W-algebra in C, we put
My (¢, KT, B) = {f € My (K}, C) | f|(a,p)(q) € B[(N"'ab)] for all (a,b) with ab™! = c}.

2.5.1. Tate objects. Let . be a set of d linearly Q-independent elements in Hom(F, Q) such that I(F;) > 0

for | € . If L is a lattice in F and n a positive integer, let Ly ,, = {x € L | l(z) > —n for all | € .} and

put B((L;.#)) = lim B[Ly,]. To a pair (a,b) of two prime-to-pN fractional ideals , we can attach the Tate
n—oo

AVRM Tateq (q) = a* @z G /q® over Z((ab; ) with O-action tea,. As described in [Kat78], Tateq s(q)
has a canonical ab~!-polarization A.q, and also carries weq, a canonical O ® Z((ab;.¥))-generator of QTate,
induced by the isomorphism Lie(T'ateq,5(q)/z((ab.5))) = ¢ ®z Lie(Gyp,) ~ a* ® Z((ab; ). Since a is prime
to p, the natural inclusion a* ®z p,n < a* ®z Gy, induces a canonical level p"-structure 7, can: O @z ppn =

0" @z pyn — Tateqp(q). Let Ly = £ - [b a‘l] = be; ® a*es. Then we have a level N-structure

0B N1 Lo/ Lo =5 Tatea(q)[N] over Z[Cy]((N~tab;.#)) induced by the fixed primitive N-th root of
unity (n. We write T'ate, ,, for the Tate Z((ab;.7))-quintuple (Tateq s(q), Acan; Lcan,ﬁgg)n, Mp.can) 8t (a,b).
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2.5.2. Geometric modular forms. We collect here definitions and basic facts of geometric modular forms. The
whole theory can found in [Kat78| and [Hid04]. Let T' = Resp/z G, and x € Hom(T,G,,). Let B be an
O-algebra. Consider [(4,7)] = [(A, A, 1,7, §)] € Ik.n(c)(C) (vesp. [(A,7)] = [(A, N, 6,77, 5)] € Ik (C)) for
a B-algebra C' with a differential form w generating H°(A4, Q4 sc) over O ®z C. A geometric modular form
f over B of weight x on I n(c) (resp. Ik ) is a functorial rule of assigning a value f(4, j,w) € C satisfying
the following axioms.

(G1) f(Aj,w)=f(4",j,w) € Cif (4j,w)~(4j,w') over C,
(G2) For a B-algebra homomorphism ¢ : C — C’, we have
(4, j,w) ®c C') = o(f(A, j,w)),
(G3) f((A,j,aw) = r(a 1) f(4, j,w) for all a € T(C) = (0O @z C)*,
(G4) f(Tate, p,wean) € B[(N~'ab)>o] at all cusps (a,b) in I n(c) (resp. Ixn).
For a positive integer k, we regard k € Hom(T',G,,) as the character # — Nz /q(z)¥, z € O*. We denote by
My(c, KT, B) (resp. My (K7, B)) the space of geometric modular forms over B of weight k on Ik ,(c) (resp.

Irn). For f € My(KY, B), we write f|. € My(c, KT, B) for fl1, (-
For each f € My (K7, C), we regard f as a holomorphic Hilbert modular form of weight k and level K}* by

f(7,95) = F(Ag(T), Acan, L, Ty, 2mid2),

where dz is the differential form in . By GAGA principle, this gives rise to an isomorphism My, (K}, C) &
M (K7, C) and My (¢, KT, C) = My(c, KT, C). As discussed in [Kat78, §1.7], the evaluation f(Tate, , Wean)
is independent of the auxiliary choice of . in the construction of the Tate object. Moreover, we have the
following important identity which bridges holomorphic modular forms and geometric modular forms

El(a0)(@) = £(Zatey p, wean) € C(N " ab).].
By the g-expansion principle (See [Lanl2|), if B is W-algebra in C and f € My (¢, K7, B) ~ My(c, K}', B),
then f|. € My(c, K7, B).

2.5.3. p-adic modular forms. Let B be a p-adic W-algebra in C,. Let V(c,K,B) be the space of Katz
p-adic modular forms over B defined by

V(C, K, B) = @@HO(IK,H(C)/B/me, O]Km’).

In other words, Katz p-adic modular forms are formal functions on the Igusa tower. Let C' be a B/p™B-
algebra. For each C-point [(4,7)] = [(4,\, 1, 7P, ] € Ix(c)(C) = lim , T (€)(C), the p>-level structure j
induces an isomorphism j, : O* ®z C ~ Lie A, which in turns gives rlse 1o a generator w(j) of HY(A,Q4) as
a O ®z C-module. We thus have a natural injection

Mk(c,K{’,B) — V(c,K,B)
fe FA ) = f(A, j,w(j))

~

which preserves the g-expansions in the sense that ﬂ(ayb)(q) = f(Tate,y) = fl(a,0)(q). We will call f the
p-adic avatar of f.

(2.6)

2.6. Hecke action. Let h € G(A pN)) Put ,K = hKh™'. We define |h : If’}?n (p) n by

(AN 0, 7P),5) = Alh = (AN, 0, 1Pk, 5).

~

Then |h induces an W-isomorphism Ix , — I, k.. In addition, |h induces an W-isomorphism Ik ,(c) =
I, i n(c(h)) with ¢(h) = cdet(h)~! and hence My (c(h), K}, B) = My (¢, , K}, B) for every W-algebra B.

Using the description of the complex points Sh(lg)(C) in the two pairs (Ay(7) |h,w) and (Agn(T),w)
are Zy)-isogenous, so we have the isomorphism:

M (c(h), KT,C) = Mg (¢, kK7, C)

(2.7) £ f|h(r, ) = £(7, gh).
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3. CM POINTS

3.1. In this section, we give an adelic description of CM points in Hilbert modular varieties. Fix a prime-to-p
integral ideal € of R. Decompose € = €€~ where €T = 3. is a product of split primes in K/F such that
(§,5.) =1and § C §¢, and € is a product of non-split primes in K/F. Let

D 1= pl&Dxg,F.
We choose 9 € K such that

(d1) 9¢= -9 and Imo (V) >0 for all 0 € X,
(d2) ¢(R) :== D' (2191),;}}.) is prime to D.

Let 9% := (0(9))yex € XT. Let D = —9? € F, and define p : K < My(F) by
—Da}

plad +b) = B ;

Consider the isomorphism gy : K = F2 = V defined by gy(at + b) = ae; + bea. Note that (0,1)p(a) = gg(a)
and qy(za) = qo(x)p(a) for a,x € K. Let C(X) be the K-module whose underlying space is C* with the K-
action given a(z,) = (0(®)z,). Then we have a canonical isomorphism K ®q R = C(X) and an isomorphism
po=0q;':VeqR 3> KeqR=C(X).

3.2. For each split place v|pFF¢, we decompose v = ww into two places w and W of K with w|FX,. Here
w|§ X, means w|F or w € X,. Let e, (resp. eg) be the idempotent associated to w (resp. w). Then {ey, ew}
gives an O,-basis of R,. Let ¥,, € F, such that ¥ = —V ez + Jyew.

For a non-split place v and w the place of K above v, we fix a O,-basis {1, 8, } such that 6, is a uniformizer
if v is ramified and 0, = —0,, if v 12. We let t, =6, + 6, and let 6, := 0, — 0, be a generator of the relative
different Dy /7, -

Fix a finite idele dr = (dr,) € Ar s such that ilz(dr) = Dr. By condition (d2), we may choose
dr, =206, if v| D€ (resp. dr, = =20, if w|FL,).

3.3. A good level structure. We shall fix a choice of a basis {e; ,,e2,} of R®o O, for each finite place v
of F. If v { p&€&°, we choose {e1 v, €2} in R® O, such that R®o O, = Oye1, & Oles . Note that {eq,,e2,}
can be taken to be {¥,1} except for finitely many v. If v[pFF, let {e1v,e2.} = {em, dx, - €w} with w|FX,.
If v is inert or ramified, let {e1,4,e2,} = {04,dx, - 1}. For v € h, we let ¢, be the element in GLy(F,) such
Img(ﬂ) ﬂ We define ¢ = [[, <» € GL2(Ax). Let g5 be the
finite component of ¢. By the definition of ¢, we have

(£ ®22) ;' = qo(R®z Z).

The matrix representation of ¢, according to {e1,es} for v|D is given as follows:

that e;s; ! = gy(e;r). Forv=0 € a, let ¢, =

d]:,u —2_1tv . _
G = { 0 d;:,} } if v| D/ 7€,
(3.1) dry,  _1 —9, 1
Sy = [_£f1r %] = |: 1w _12:| if ’U|pggc and w|3’2p
20, 204 204,

3.4. The alternating pairing (, )y : ICXIC —> F defined by (x,y) = (c(z)y—=xc(y))/2¢ induces an isomorphism
R Ao R=c¢(R)"'DZ! for ideal ¢(R) = (2197),2/;) On the other hand, by the equation

Dyt det(sp) ' = A2Ls; = AR = ¢(R)"'D;,
we also have c(R)E = det(gf)ﬁ. Note that (ez v, e1,4)9 = 1 for v | p&e€e.
For a € (Agl}f))x’ put a =il (a) and c¢(a) := ¢(R)Nx,r(a). We let
(A(a)aj(a))/c = (‘Ap(a )sy (192) <7 >C(m7 Lcanaﬁ(p) (a)vj(a))

be the c(a)-polarized C-quintuple associated to (9%, p(a)ss) as in Then (A(a),j(a)),c is an abelian
variety with CM by the field K and gives rise to a complex point [(19 7p( )s¢)] in Ix(c(a))(C). Let W be
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the maximal unramified extension of Z, in C, and let W be the p-adic completion of W. By the theory
of CM abelian varieties, the C-quadruple A(a),c is rational over a number field L (See [Shi98, 18.6,21.1]),
which in turn descends to a W-quadruple A(a) by a theorem of Serre-Tate. In addition, since the CM type
Y is p-ordinary, A(a) ® F, is an ordinary abelian variety (cf. [Kat78, 5.1.27]), and hence j(a) descends to a
level p™®-structure over W. We obtain z(a) € IK(c(a))(W) — IK(W). This collection of points x(a) with
a € (Agé’,];p)X is called CM points in Hilbert modular varieties.

4. KATZ EISENSTEIN MEASURE

4.1. In this section, we recall the construction of p-adic L-functions for CM fields following [Kat78] and
[HT93]. First we give the construction of a p-adic Eisenstein measure of Katz, Hida and Tilouine from
representation theoretic point of view. This construction is inspired by [HLS06].

Let A be a Hecke character of K* with infinity type kX + (1 — ¢), where k& > 1 is an integer and
K=Y koo € Z[X], K, > 0. We suppose that € is divisible by the prime-to-p conductor of A. Put

A=Al [p2 and Ay = )\|A;.

Let K2, := [],ca SO(2,R) be a maximal compact subgroup of G(F @qR). For s € C, we let I(s, A;) denote
the space consisting of smooth and K -finite functions ¢ : G(Az) — C such that

g o o=@l s

Conventionally, functions in I(s, Ay) are called sections. Let B be the upper triangular subgroup of G. The
adelic Eisenstein series associated to a section ¢ € I(s, A} ) is defined by

Ea(g.0)= Y, ¢(v9)
YEB(F)\G(F)
The series Ea(g, ¢) is absolutely convergent for Re s > 0.
0 -1
1 0

I,(s,\+) be the local constitute of I(s, Ay) at v. For ¢, € I,(s, \y) and 8 € F,,, we recall that the S-th local
Whittaker integral Wa (¢, g,) is defined by

4.2. Fourier coefficients of Eisenstein series. We put w = Let v be a place of F and let

W,@(¢v7gv) :/}_ ¢U(W gv)¢(_ﬁx1))d'xva

r
o
—

and the intertwining operator My, is defined by

Mol = [ outw |y 7] 001,

By definition, My ®,(gy) is the 0-th local Whittaker integral. It is well known that local Whittaker integrals
converge absolutely for Re s > 0, and have meromorphic continuation to all s € C.

If ¢ = ®,¢, is a decomposable section, then it is well known that Ea(g,¢) has the following Fourier
expansion:

Ea(9,0) = ¢(9) + Mwo(g) + Y Ws(Ea,g), where
BeF

1 ‘Hde)v(gv); Wﬂ(EAyg)

1
YER! = 75 LLWatenan).

The sum ¢(g) + Myw¢(g) is called the constant term of Ea(g,®). The general analytic properties of the local
Whittaker integrals and the constant term can be found in [Bum97, §3.7].

(4.1)

My¢(g) =
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4.3. Choice of the local sections. In this subsection, we recall the choice of sections made in [Hsil2 §4.3].
We first introduce some notation. Let v be a place of F. Let L/F, be a finite extension and let dj, be a
generator of the absolute different of L. Let ¢ :=¢ oTry 7 . If p: L* — C* is a character, define
a(p) =inf{n € Zsg | p(z) =1 forall z € (1+wfOL) N Of }.
We recall that the epsilon factor €(s, p, 1) in [Tat79] is defined by
o) = I [ @hne)de, e = dyi®.
c~ OZ
Here dpz is the Haar measure on L self-dual with respect to tr,. The local root number W () is defined by

W) = (g 1)

(cf. IMSO0Q, p.281 (3.8)]). It is well known that |W(u)|o = 1 if p is unitary. If ¢ is a Bruhat-Schwartz function
on L, the zeta integral Z(s, 1, ) is given by

Z(s, ) = / (@)u(z) 2l &z (s € C).

To simplify our notation, we put F' = F, (resp. E =K ®r F,) and let dp = dr, be the fixed generator
of the different Dx of F/Q in Write A (resp. Ay, A*) for A, (resp. At ,, AF) and the absolute value ||
for H}.v. If v € h, we let O, = OF (resp. R, = R®¢ O,) and let w = w,. For a set Y, denote by Iy the
characteristic function of Y.

The archimedean case: Let v =0 € X and F' = R. For g € GL2(R), we put

5(g) = |det(g)| | 7(9. )T @ D)|

Define the sections QﬁZ’S}U of weight k& and 7" of weight k + 2k, in I, (s, A1) by

k,Ko,S,0

Bhes.o(9) =T (9,9)7*8(9)",
Bk s.0(9) =T (9,0) 7 T (g.9) " 8(9)".
The intertwining operator My ¢y s is given by

I'(k+2s—1)
L'(k+s)[(s)

The case v 1D or v|pFF®: Denote by S(F) and (resp. S(F @ F)) the space of Bruhat-Schwartz functions on
F (resp. F @ F). Recall that the Fourier transform @ for ¢ € S(F) is defined by

20) = [ e@itya)da.
If v|pFF€ is split in K, write v = ww with w|§FX,, and define ¢, o7 € S(F) by

I[Ov (’JJ) if Sc = Ra
Mg (@)px () if §e # R.

To a Bruhat-Schwartz function ® € S(F & F), we can associate a Godement section fo s € I,(s, A+) defined
by

(4.3) fiola) 1= detgl” [ @(0.0)9): (o) ol "o

Define the Godement section ¢y s . by

(4.2) Myl o (g) = i*(27) - T(g,0) det(g)"*8(g)" "

Pu () = Ao (@)lox (2); pu(r) = {

Io, (2)log(y) -+-v1D,
4.4 8,0 — 0.ss h (I)?J ’ = 5
(44) Praw = fog.u where B(,9) {sowmsow(y) v | .
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We remark that the choice of ® has its origin in [Kat78, 5.2.17] (c¢f. [HT93, p.209] and [HLS06, 3.3.4]). For
every u € O with v|p, let ¢l and goyj] € S(F) be Bruhat-Schwartz functions given by
() = Litwo, (€)A5" (2) and @ (2) = Ly 1wo,) (@)he(@).

Define @} € S(F @ F) by

1
vol(1 + wO,,d*x

(4.5) e (x,y) = )ww( 2)2i(y) = (@' = Dem(@)@l) (v).

The case v|Dicyr€: In this case, E is a field and G(F) = B(F)p(E*). Let ¢ s be the unique smooth
section in I, (s, A+) such that

(4.6) Brs.ol {0 Z} p(2)s) = L(s, Ay) - AT1(d) \g] AL2) (be B(F), z € EX),

where L(s, \,) is the local Euler factor of A,, and ¢, is defined as in (3.1). Note that L(s,A\,) =1 unless v { €
is ramified in K.

4.4. The local Whittaker integrals. We summarize the formulae of the local Whittaker integrals of the
special local sections ¢y s, in the following proposition.

Proposition 4.1. The local Whittaker integrals of ¢ . are given as follows:

If 0 € a, then

Waldhsor [3 1] leco = o8 explamio(3)(o + ) - Tn. (0(5))

Ifveh and vt D, then

5(311)
Cy _
W5 (dx,s,0, [ J s=0 = Z Ap (! 'Cy |w| - | Dx| ! Io, (Bcy).

If v|D, then
A+ (B) 18I o, (B) - |Df|*1 if v|p¥3C, w|FE, and F. = R,
Wa(ha,s0:Dlsm0 = § Aw(B)Lox (8 ) |Dx|~! if v[p¥F°, wIF L, and F. # R,
L(0 Mv) s(\o) - [Dx[ T (=27 ,d7")  ifv|€ Dyyr,
where
(4.7) A = [ N o 276 (-d7! o)
Fu

If v =ww with w € X, then we have
Ws(fypt> Dls=0 =ruw(B)u(14w,0,)(B) - DA™ (ue OF).

In particular, we have

Wi (dx,5.00 Dls=0 = > Wal(fypur, 1)ls=o,
u€EU,

where U, is the torsion subgroup of OF.

PrROOF.  The formulas of the local integrals of ¢, 5., can be found in [Hsil2) §4.3], and the computation of
the local integral Wp(fgw1,1) is straightforward. We omit the details. a
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Remark 4.2. We remark that the local Whittaker integrals at all finite places belong to a finite extension O
of OF (p)- Indeed, it is well known that Al AL, takes value in a number field L and A, takes value in O )

for each finite v { p, so the local Whittaker integrals Wa(éx s v, [C” 1])|5=0 belongs to Op ) whenever

v 1€ Dy,7. Suppose that v|€~ Dy, 7. Then there is an Mj, > 0 such that |z + 2_1(5le < @™ for all
xew MO, as §, ¢ F,, and we have

Ag(Ny) = [e| oot > A w2716, )90 (Brao, M)
2€0, /(wMsy+2M)

for M > max {v(€),v(€) — v(3)}. We may thus enlarge L such that Ag(),) takes value in Oy, () as well. We
shall fix this L and let O := O, () in the remainder of this paper.

4.5. Normalized Eisenstein series. We introduce some normalized Eisenstein series.

Definition 4.3. For each Bruhat-Schwartz function ® = ®,,®, on F, ® F,, we define

¢)\s ®¢k)sa’®¢)\8v®f¢‘v,sy._h n.h.

o€a vEh,
vtp

and define the adelic Eisenstein series E3(®) by
EX(®)(9) = Ealg, 93,s(®))]s=0, ® = h,n.h..

We define the holomorphic (resp. nearly holomorphic) Eisenstein series E}(®) (resp. EX-"(®)) by

B(0)(r.07) = s BB (g1) - Sl
(4.8) Ls(kX)

]En.h. @ : = E .h. (I) o J o EX+2k d t o —R,
A (@)(7,95) Vs (—zmipiE A (®) (go0r 97) * L(9oc, 1) (det goo)
((1,97) € XTXG(AZ ), goo € G(FRQR), gooi =7, 1= (i)pex).
Let ) = ®,,®) be the Bruhat-Schwartz function on F, & F,, defined in ([£.4). Set
EY = EX(®)) and E} "™ = E}"(@9).

For every u = (uy)y|p €[] =0y, let @1[7"] = ®v‘p<1>£,u“] be the Bruhat-Schwartz function defined in (4.5))

and set

1)\p

E} ., = EX(®})).
We choose N = Ny ,q(€Dx, 7)™ for a sufficiently large integer m so that ¢y s. are invariant by U(N) for

every v|N, and put K := U(N). Then the section d))\’s((l);,u]) is invariant by K7 for a sufficiently large n.
Let ¢ = (c,) € A% such that ¢, =1 at v|D and let ¢ = ilx(c). For each 3 € F,, we define the prime-to-p
B-th Fourier coefficient a(p)(/\, ¢) by

Pne: HWMM,{ J)

7 otpoo s=0
. v(cyB) L
(4.9) = I 2®lox® TT 2181, 10,8 - TT | Do AvolI7 (=)
wl§, wl§, vf® \ =0
FAR F=R
< I L0, X)As(N) v (—27 tud ).
’U‘@fD)C/}-

The last equality follows from the formulae of the local Whittaker integrals in Prop. It is clear that
(p)()\ ¢) belongs to O.
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Proposition 4.4. The Eisenstein series E’)fu belongs to My (K7, C). The g-expansion of Eﬁu at the cusp
(O,¢™ 1Y) has no constant term and is given by

Bl oen@= Y asBl,,0 ¢’ € O[N],
Be(N~temh)y

where the 3-th Fourier coefficient ag(EY ,c) is given by
a5 (EL o ©) =a’ (A, 0) - 857, (B)Lurm,0,) (8)
(4.10) Oz, (8) = [T Au(B). % = @)

weX)
Therefore, I[-E')fu|c € My(c, KT,0) and
Ei)ﬁ‘c = Z ]Eg,u‘ﬁ
uEUy

where Uy, is the torsion subgroup of O,f.

PROOF. By the definition of the local sections ¢y s, for v|p we find that

(b)\,s,v(l) = 07 MW¢)\,S,U(1)|S:O = Oa
SO E&u has no constant term. Therefore, we can derive the g-expansion of Ef’\ from the equations (4.1]), (4.9)
and Prop. To verify the second assertion, note that the Fourier coefficients ag(E%, ¢) can be written as

ag(ER, ¢) =a’ (A, ¢) - Nz/q(8)" " As, (B)Iox ().
Thus, we have

ag(ER,c) = Y ag(EX,,¢).
u€U
This completes the proof. ([l

Remark 4.5. An important feature of our Eisenstein series Eﬁu and ]E’/( is that they are toric Eisenstein
series of eigencharacter A. In other words, they are eigenforms of the Hecke action |[a] := |(§Jf1 pla)sy) for a
class of ideles a € T :=[[, ., To C Af #» Where

vEh
T _ Og F if v is split,
.=
Ky if v is non-split.
More precisely, from the definitions of the sections ¢y s, and fg., it is not difficult to deduce that
P

(4.11) EXlla] =AY (a)EY;  ER lla] = AH@)EY g (a €T,

l1—c

where u.a = ua gpagl € O, . The above equation will play an important role in the proof of Theorem
D

4.6. p-adic Eisenstein measure. For every integral ideal a of R, we put
Uk(a) = {a € (R®zZ)* | a=1(mod a)} :
Let Z(€) be the ray class group of X modulo €p>. Then the reciprocity law recx induces an isomorphism:
recic : im KX\AgE /U (€p") ~ Z(€).

Let C(Z(€), Z,) be the space of continuous Z,-valued functions on Z(€). Define a subset XT of locally algebraic
p-adic characters by

Xt = {X : Z(€) = Z) | X has infinity type of kX, k > 1},

Then X7 is a Zariski dense subset in C(Z(€),Z,). Let Z; be the subgroup of A,é,f given by
(4.12) Z=RxAZN) [T o. TI K=

v|FFe w|Dyc ) 7€~
Let Z; :=reci(Z1) be a subgroup of Z(€).
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We write ]Eﬁ . for ER| and let €, := E . be the p-adic avatar of E} .. Let {6(0)} . be the Dwork-Katz
p-adic differential operators on p-adic modular forms (|[Kat78, Cor. (2. 6 25)]) and let 0% = [[ .5 0(c)" . The
following is a direct consequence of Prop. [£.4]

Proposition 4.6. There exists a V (¢, K, Z,)-valued p-adic measure €. on Z(&) such that

(i) & is supported in Z1,
(ii) for each X\ € X, we have

/ NE = €.
Z(e)

Moreover, if X has infinity type kX + k(1 — ¢), then

/ € = 07€, ..
7(¢)

PrROOF. Put ag A\ ¢) = tp(B7ag(El, ). Recall that if A is a Hecke character of infinity type kX + k(1 —c),
then Ax, (8) = ,(B**T*)Ax, (8). By definition, we have

as(X,¢) = al (X, Nz q(B) ™" As, (B)px (B).
By the inspection of (4.9), we find that a(ﬂp )(/\, ¢) has the following form:

ag’)()\, ) = ij ~X(aj) for some b; € Z, and

J
e ¥ Il o. II k=

v|FFe w|Dyc ) 7€~

(4.13)

Therefore, we have

) =D b M(is, (8)a))log (B), ix,(8) = (8, 1)y € Ry = (Ry, & Ry)*.

For every ¢ € C(Z(€),Z,), we define ag(¢,c) := 2505 ol(is, (ﬂ),aj))ﬂopx (8). Thus, ¢ — ag(¢,c) defines a
Z,-valued p-adic measure on Z(€) supported in Z;. Define a Z,[(N~1c¢~1)]-valued p-adic measure €.(q) by

gdec(a)= Y ag(s,0)d”.
2 BE(N 1)y
If X € X*, then k= 0 and ag(X, ¢) = 1p(ag(EL, ¢)), and we have
/ AE(q) = > as(X, )¢’ = Exclio.e1)(a).
A(S) BeE(N-1c—1)4

Therefore, by the g-expansion principle and the Zariski density of Xt in C(Z(¢),Z,), the measure €.(q)
descends to a unique V' (¢, K, Z,,)-valued p-adic measure £, supported in Z; such that

/ :\\d€c|(o’cf1)(q) = / NdE.(q) for every A € X+
Z(¢) Z(¢)
In addition, if A has infinity type kX + k(1 — ¢), then

Ocn@= Y ,BasEL))’ = Y ag(X o’

Be(N~temh)y BE(N~Te 1)y

(4.14)

by the effect of the p-adic differential operator 6 on the g-expansions [Kat78| (2.6.27)] (¢f. [HT93, §1.7 p.205]).
This verifies the second assertion. O
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4.7. The period integral. We recall the period integral of the Eisenstein series calculated in [Hsil2l §5].
First we fix the choice of measures. For each finite place v of F, let d*z, be the normalized Haar measure
on KX so that vol(R),d*z,) = 1 and let d*t, = d*z,/d*z, be the quotient measure on K} /Fx. If v is
archimedean, let d*t, be the Haar measure on K /F = C* /R normalized so that vol(C*/R*,d*t,) = 1.
Let d*t = [, d*t, be the Haar measure on A} /A% and let d*# be the quotient measure of d*t on KX A\ A
by the discrete measure on K*. Let ¢, = ¢ s, if v € h and ¢, = vhe if gy € a. Put

A,8,0

I, (Pus Av) =/ o (p(t)sy) Ao (t)d .
K3/ F
Define the period integral Ixc(E¥") of E3-™ by
(B3 = [ B (o)) A1) F
KX AZ\AL

It is shown in [Hsil2| §5.1] that
l]C(E;\lh) = H l)CU (¢va Av)‘s:O'
v

Proposition 4.7. The local period integral lic, (¢y, Ay) is given as follows:

|det <] ™% L(s, \y) <o vf® - o0,
b, (dvs Adv) = 4 L(s,Ao) - vOl(K) /F),d*¢t) -+ v | D€,
vol(C* /R*,d*t) <o v | oo,
PROOF. These formulas can be found in [Hsil2, §5.2, §5.3]. O

It remains to determine the local period integral lxc, (¢py, Ay) for v|pFFc. In this case, ¢, is the Godement
section fgo . associated to the Bruhat-Schwartz function ®0 defined in (4.4). We thus have

e, (60, o) =|det | ° Z(s, A, Brc,) 1= |det §|_5/ Bre, ()ho(2) 2[5, d*2,
-

where @k, is given by
D, (2) == (0, 1)p(2)s0)-
By a direct computation as in [Hsil2, §5.2], we find that
Z(s, Ay, Pic,) = AE(_2ﬁwd}j)Aw(_2ﬁw)Z(sa Aas 0w) Z (85 Aws Puw) (w|2pg)~
By Tate’s local functional equation, we have
L(s, Aw)Aw(—1)

Z 7)\11)7/\11) = — .
(8 4 ) E(SvAwaw)L(l_stwl)

On the other hand,
1 if v|p,
Z(s, Mo, ) = {L(S,)\w) ifU‘Qﬁ',
and dr, = —29,,. Hence, we find that
L(s, ) Aw(—1)
(5, A\, V) L(1 — 5, Aw")
Define the modified Euler factors Euly(A\) and Eulg+(A) by
Eul,(\) == [] Eul(\w); Bule+(N) = [] Bul(Ay), where
wex, wlF

L(0,\y)
€(0, Aw, ) L(1, A')’
Combining Prop. and , we obtain the following formula of the period integral l}c(E/T\L'h').
Proposition 4.8. Let r be the number of prime factors of Dy,r. We have

lic(BR™) =27 - LPD(0, ) - Bul,(\) Eulgs (N).

(4.15) lie, (dos M) = Z(5, A, B, ) = Ay (—20,) -

(w]ZpF).

(4.16)

Eul(Ay) := A (204) -
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4.8. Katz p-adic L-functions. Let Cl_ = K*AZ \AgZ /(R®z Z)*. Recall that we introduced a subgroup
T of AK’f in Remark E Let C1*'8 be the subgroup of Cl_ generated by the image of 7 in Cl_. It is easy to
see that CI™® is in fact generated by primes ramified over F. In particular, ﬁCla_dg is a power of 2. Let D; be
a set of representatives of CI_ /CI™® in (A,(?})X Following [Hid10, (4.12)], we let L¢, 5 be the p-adic measure

on Z(€) such that for each ¢ € C(Z(¢),Z,),

fg@ttes =3 [ ollolde.o o)
Z(¢) a€D,
Here ¢|[a] € C(Z(€),Z,) is the translation given by ¢|[a](z) := ¢(zreck(a)). By Prop. if X is the
p-adic avatar of a Hecke character A of infinity type kX + k(1 — ¢), then we have
(4.17) / MLes =Y Ma)d*Ey o) (z(a)).
Z(e) a€Dy

Let U be the torsion subgroup of £* and let U*% = (K*)1=¢ N R* be a subgroup of U. We have the
following evaluation formula of the measure L¢ 5.

Proposition 4.9. Let (Qx, Q) € (C*)¥ x(Z))¥ be the complex and p-adic CM periods of (K, X) respectively.
Then we have

1

— e / A Le s = LPO(0,)) - Bul,(\) Buler ()
Qp Z(e)

(—1)k27r“F2(kE + I*i)

X DA (Im d)s - Qh=72r [R* : O] - t,
where
ﬁualg or
ti = . .
[R*:0X] yoie

Note that tic is a power of 2.

PROOF. Let 65 be the Maass-Shimura differential operator on modular forms of weight k (See [HT93
(1.21)]). By [Hsi12, (4.22), (5.2)] we find that

1 FE(kZ"FFL)

rmh . CTen-h.
1 . A7 kX 42k . o
(419) QFZF2r -0 8)\,c(a) (1’(0,)) = ( Qk)gq_z,g 5kE})f,c(a) (x(a)), a € (Agc,})x
P 00

Let Ux = (C1)*x(R®Z)* be an open-compact subgroup of Ay = (C*)* <AL ;, where C; is the unit circle
in C*. Let Uk denote the image of Ug in KX AZX\AY. Then (4.17) equals

1 R (27m)k2+2“
R AdLe s = T Z Ma)SFEY (o) (z(a)) by (4.19)
P 2(e) o0 a€Dy

(2m)’“2+2"‘ 1 ol _

T T o OB by (11
o0 - ’ F\AK
()1 To(kE + k) U8 .

= DTy o K v €3, E19.
It is clear that the proposition follows from Prop. O

Remark 4.10. The evaluation formula for the measure L¢ s in Prop. agrees with the measure ¢*
constructed in [HT93, Thm.4.2] up to a product of local Gauss sums at v|FF° and tx, both of which are
p-adic units.
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5. HIDA’S THEOREM ON THE ANTICYCLOTOMIC H-INVARIANT

5.1. We fix a Hecke character x of infinity type kX, k > 1 and suppose € is the prime-to-p conductor of x.
Let Z(€)~ be the anticyclotomic quotient of Z(€). We have an isomorphism

recg : l'&nICXA]X_-,f\A,éJ/UK(Cp") 5 Z(e).

Let '~ be the maximal Z,-free quotient of Z(€)~. Each function ¢ on I'~ will be regarded as a function on
Z(€) by the natural projection 7_: Z(€) — Z(€)~ — I'". We define the anticyclotomic projection L 5 of

the measure L¢ 5 by
/ PdL s ::/ X¢dLe, 5.
r- Z(¢)

In what follows, we introduce an open subgroup I of I'” and compute the p-invariant of L¢ 5 restricted to

I'". The introduction of I'" is to treat the case the minus part hy of the class number of K is divisible by p.
Let IV be the open subgroup of I'" generated by the image of Z; in and let Z’ := 7_(I") be the

subgroup of Z(¢). Then we have Z' D Z;. In addition, the reciprocity law recx at X, induces an injective

map recy,: 1 +p0O, = O = Rgp % Z(¢)~ with finite cokernel as p { D, and this map recy, induces an
isomorphism recy, : 1+ pO, = I'. We thus identify I with the subgroup recy, (1 + pO,) of Z(€)~. Note
that I' =T~ ~ 1+ pO,, if p{ hc. Let CI_ D CI1™8 be the image of Z' in Cl_ and let D} (resp. D}) be a set
of representatives of CI’_/CI™® (resp. CI_/Cl") in (Ag?})x (so D" = {1} if p{ hy). Let Dy := DD} be a
set of representatives of Cl,/Clilg. For each b € DY, we denote by Li,z the p-adic measure on 1+ pO, ~T"
obtained by the restriction of £ i to b.I'" := m_(reck (b))I'". To be precise, we have

[ eatts = [ T Golbacy s

(5.1) =2 /z(e:) Lz - (%) l[ab™ " ]dE oo ((a)

aGbD’1
=Y x(abY) / R llab™dE ( (x(a)).
a€bD)] Z(®)

where I, v and Iz are the characteristic functions of b.I" and Z’. Note that the last equality follows from
the fact that the Eisenstein measure &4 has support in Z; C Z’ (Prop. . . Recall that the p-invariant
u(p) of a Z -valued p-adic measure ¢ on a p-adic group H is defined to be

u(p) = Ucfiflfpen vp(p(U))-

Let p 5 and “é)c-, 5> denote the Iwasawa p-invariants of the p-adic measures L) s and L; 5 respectively.

Lemma 5.1. We have p, 5, = bmg ug’( 5
e 1"

ProoOF.  This is clear from the definitions of y-invariants and I'” = UbeD{’ b.I" is a disjoint union. O

We shall follow Hida’s approach to compute the p-invariants “;, 5> via an explicit calculation of the Fourier
coeflicients of the Eisenstein series, using a deep result on the linear independence of modular forms modulo
p [Hid10lL Cor. 3.21].

5.2. Fix c=c(R). A functorial point in I (c) will be written as (A,7), where A = (A, \, 1) and 5 = (7", 7,).
Enlarging W if necessary, we let W be the p-adic ring generated by the values of A on finite ideles over
W. Let my; be the maximal 1deal of W and fix an isomorphism W/mA 5 Fpy. Let T := O0* @z Mpoo and

let T = lﬂ ST = O0* ®z Gp,. Let {& -+ ,&4} be a basis of O over Z and let ¢ be the character

1 €0 = X*(0* ®z Gp,) = Hom(O* ®z Gy, Gy). Then we have Oz = W[[tﬁ1 —1,---t% —1]. Fory =
(A, my) € Ik (c)(F,) C Ik (F,), it is well known that the deformation space §y of y is isomorphic to the formal



THE p-INVARIANT OF ANTICYCLOTOMIC p-ADIC L-FUNCTIONS 19

torus 7 by the theory of Serre-Tate coordinate (JKat81]). The p™-structure 1ny,p of A, induces a canonical
isomorphism ¢, : T' = S, = Spf OIK(c),y (cf. [Hid10, (3.15)]).

Now let x := z(1 )/W € Ik (c )(W) be a fixed CM point of type (K,X) and let zg = x @5 Fp = (4g,m0)-
For a deformation z = (A,7n) /g € S, (R) of 2o over an artinian local ring R with the maximal ideal mz and
the residue field F,, we let t(A,n) = t(¢,, ((A,n)/r)) € 1 + mg. Then x is the canonical lifting of xo, i.e.
t(x)=1. For f € V(c, K, W), we define

J#) =, (f) €05 = W[Th,-- - Tg] (T; =15 —1).
We call the formal power series f(t) the t-ezpansion around g of f. For each u € O, let uz := (4, 7P, unp)
be a deformation of uzy. Then we have t(uz) = t(z)" and hence @y, (f)(t) = o5, (f)(t") = f(t*).

For each a € D, let (a)y, be the unique element in 1 + pO,, such that recx, ((a)y,) = m_(reck(a)) € I.

Recall that U, is the torsion subgroup of O,‘. For every pair (u,a) € U,xD;, we write E, , for E§7u|c(a) €

Mi(c(a), K,0) and let €, 4 be the p-adic avatar of E, ,. Fix a sufficient large finite extension L over Q, so
that x and E, ,|[a] are defined over Oy, for all (u,a), and hence €, 4|[a] € V(¢,Or). For (a,b) € D1 xDY, we

define
=Y Eualt ),
uEU,
ety =3 xlab e la)tl )s).
aEb'Di

For E =E, 4, Eu.4(t) or £(t), we define u(E) € Qxo by
w(E) = inf {v,(@]’) | w"E # 0 (mod m) (m € Zxq)} .

Proposition 5.2. The formal power series EY(t) equals the power series erpansion of the measure Li,z
regarded as a p-adic measure on O, supported on 1+ pO,. In particular, we have u(E°(t)) = /,LI;OE

PROOF.  We compute the t-expansion of £°. For x € Z>o[X], let v, be the p-adic character of I” such that
ve(recs, (y)) = y*, y € 1+ pO,. By the definition of £, we find that

A = Z x(ab™t) <ab_1>;9“§a|[a]|t:1 = Z XV (ab™1)0%Ey o (z(a)),
acbD] acbD}
where £y, 1= Zueup u "Eyq. Let xi be the Hecke character such that the p-adic avatar ¥, is Xv,. Then
X~ has infinity type kX + k(1 — ¢). We are going to show that 60"y, = 0", (o) by comparing the g¢-
expansions. A key observation is that since v, is anticyclotomic and unramified outside p, we find that

(p)( X, c(a)) = a(ﬂp) (XVk, ¢(a)) in view of ([£.13). By the inspection of the g-expansion of &y, at (O,c(a)™!),
we find that

0 eua@) = > > u"a? (x,c(a)xs, (B)luatpo, (8)8+

u€Uy, BeEFL

=Y a(ﬁp)(X, ¢(a))lpx (B)As, (8) (B)% ¢°

BEFy

= > al (xw (@)lox (AR s, ve(B)d”

BEFy
= Y a5 c(a)d” = 0°Ey, @ (0) by EI).
BEF+
We thus conclude that 6%&y o = 0%E, (4) by the g-expansion principle. By (5.1]), we have
071 = Y xwmlab™h)0"Ey, (x(a))

aebD]

Z/ Xi|[ab™]dE (o) (2(a)) = /yndﬁi’c,z.

acbD]
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In other words, §%&%;—; interpolates the x-th moment of the measure Lg’(, 5, and hence the proposition
follows. |

Remark. If p does not divide hy, the t-expansion of & ! is the power series expansion of the p-adic L-function
£ 5

5.3. Let (D})y, C 1+ pO, be the image of D} under (-),.. Regarding U*® as a subgroup of U, by the
imbedding induced by X, we let Dy be a set of representatives of U, /U8 in Up.

Lemma 5.3. Put D :=Dq (D), C O. Then the quotient map D — O;/(R(Xp))l’C is injective.

PROOF. Let aj,as € D) and uj,us € U,. Let a = alagl and a = ili(a). Suppose that u; (a1)y =
uz (az) 5, @' ~¢ for some o € R\, Let y = a”'a € Ag ; and [y] == recx(y) € Z(€)™. Then it is easy to see
that [y?] = [yy~¢] is in the torsion subgroup A of Z(€)~, and hence [y] = [a~a] € A. Tt follows that the ideal
(a)~ta is a product of ramified primes and ideals of O. So [a] € C1™® and a; = as. O

Lemma 5.4 (Prop. 3.4 [HidI0]). Let o € R}, C Ag ; and let f € My(c(a), K, Z,). We have

J ) = a7 a0,
PrOOF. Since o € R(Xp), we can find xg|[o] = (4§,18) € Ix(c(a))(F,) in the prime-to-p isogeny class
(s pe@)m)] € i), (F,) (pe@) == s~ p()s) together with a prime-to-p isogeny & : 0 [[a] = (45, 1) =
xo = (Ay,n). Then &, induces an isomorphism &t §x0 = §IO [a]» Which sends a deformation A5 of g
over a local artinian ring R to the deformation A%,z of x¢|[a]. In addition, there exists a unique isogeny
ar (A%, n%) — (A, n) with the following commutative diagram:

ny ()Y
O} @z Ppoo —— AP*] — 0, ® Q,/Z,

laz lga)”a iazc
n(*l)

O} @z Pp=© Alp™] >0, ® Qp/Zy.

Here 17,(,_1) and (7710,‘)(’1) are morphisms induced by 7, and 7y together with the polarizations of A and A% via
Cartier duality. Therefore, we find that

HAY ") = t(4,m)™ ",
and that
flla](A,n,w(np)) = f(A, ps(a)n, w(np))
(Aaa naa fé,n‘*’(”p))

f
f(Aavna’ 04—2“((’73))) = akZ‘ : f(Aa’na7w(<n3)))'

It is clear that
e 3 ~
Fa )y =a " flle)(t). O

The following theorem is due to Hida [Hid10, Thm. 5.1].

Theorem 5.5 (Hida). The u-invariant Iy, 5 s given by the following formula

—_— . h
Hys = <u,a)é%§xpl, vp(ag(EX ;s c(a))).
BEFy

PRrROOF. Let v € U8, We may write v—! = o' ~¢ for some o € R(Xp) since p is assumed to be unramified in K.

Regarding « as an idele in A, we denote by o and ay the infinite and finite components of « respectively.
Let (a,b) € D1xDY. By Lemma 5.4 and (4.11)), for each u € U, we have

1,,—1

Eunat ) = 0 g () = €t N M o)X M g) = Enalt ).
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Therefore, we find that
Et) =t S ()

u€U, /UE

and

et)= xab™) Y Ealla@l® )=
achD; uEU,

= > b e allal (¢,
(u,a) €Dy xbD]
Note that p { f14*!1# as U/*!# is a subgroup of the torsion subgroup in K£* and p{2- Dr. From Lemma and
the linear independence of modular forms modulo p [Hid10, Thm. 3.20, Cor. 3.21], we deduce that

b(#)) = inf )
w(E°(t)) Rp . (Eua(t))

Since €,4/|[a] is the p-adic avatar of E, 4, it follows from the irreducibility of Igusa tower that (&, |[a](t)) =
w(€y.alla]) = u(Eyq). From the g-expansion principle of p-adic modular forms (J[DR80]) and Lemma we
find that

pow =l wEO)= il fa(E . c(a) 0
BEF+

Corollary 5.6. Suppose that

(L) tp(xo) = 0 for every v]e™,
(N) x is not residually self-dual, namely X1 # Tc/rwr (mod m).

Then p 5 = 0.

PrOOF. It follows from [Hsil2, Prop.6.3 and Lemma 6.4] (following an argument of Hida) that if x is not
residually self-dual, then for some a € D; we can find 8 € O]X_- ) such that

a (v, c(a))) # 0 (mod m) <= ag(E", c(a)) = Y ag(E},,c(a)) # 0 (mod m).
u€Uyp

Hence, v,(ag (Eﬁu, ¢(a))) = 0 for u = 8 (mod p). We conclude that u 5, =0 by Theorem O

6. PROOF OF THEOREM A

6.1. In this subsection, we fix a place v|€~ and let w be the place of K above v. Let E = K, and F = F,.

—1
Let A} := xu|-|g? be a character of E* such that Aj|px = Tg/p. Let dp be the generator of Dr and
0=10,= 2d;119 be the generator of the different D/ fixed in

Lemma 6.1. Let § € F*. If Ag(xv) # 0, then
W) TE/r(B) = A5(29).

PrOOF. Theidea is to identify Ag(x) with the Whittaker integrals of a certain Siegel-Weil section on U(1, 1).
Let W = E with the skew-Hermitian form (z,y)w = d2y. Let G = U(W)(F') be the associated unitary group
and let H = U(W + W~)(F), where W~ is the Hermitian space (W, —(, )u). We let £ = A* and define the
induced representation I(¢,s) of H by

1(6.9) = fsmoott £ e 1[5 | m=et@lal s}

Let A =2 € F and let T = —ABd,". For f € 1(¢,s), following [HKS96, (6.5) p.969] we define the Whittaker
integral by

we(n= [ o} ][5 1)eraan

F
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We embed G into H by

oo L[ g+l 55(g-1)
9HZ(9’1)2{25@—1) g+1 |-

Let ®1 be the section ®,, defined in [HKS96, p.989 (8.6)] with » = 1 the trivial character. Then ®, is the
unique function in I(¢, s) such that ®;1(1) = 1 and ®4(hi(g,1)) = P1(h) for every g € G. Recall that
Asx) = [ € @27 ) o4 ot (B a)da
By the calculation in [HKS96l p.990 (8.14)], we find that
Wr(0)(@2) = 6-1)- [ €115 o+ g u(-A8dE el
(6.1) =¢ll5 * (28 / 5" (4 27 0~ ) e

= €[5* (-21) - Ap(x0).
On the other hand, let x~¢(z) := x~!(z) and let M*(s,£) : I(s,&) — I(—s,£¢) be the normalized intertwining
operator defined in [HKS96, (6.8)]. By [HKS96, (6.10) and Cor. 8.3 (ii)], we have
Wr(0)(M*(0,8)®1) = 7/r(T) - Wr(0)(®1);
M*(0,8)®1 = &§(=6) - W(E) - 1.
Therefore, it follows from that

Tr/p(=ABdE") - As(xv) = E(=0)W(E) - As(xw),
and hence
Ap(xv) # 0= 7g/p(Bdr) = E(=0)W(E) <= W(&)Tp/r(8) = £(20). 0
Proposition 6.2. Suppose v is inert and w(€~) = 1. We have v,(Ag(xv)) > tp(xw) for all B € F*. In
addition, there exists b, € w 1O} such that v,(Ap, (Xv)) = fip(X0)-

PrOOF. Let {1,0} = {1,0,} be the O,-basis of R, fixed in such that §, =20 if v{2and 6, =0 — 0
if v|2. Let t =t, = 6 + 0 and ¥°(x) := w(—dglx). For brevity, we drop the subscript and simply write y for
Xov- Since Y is self-dual, Xl(’); =1 and \*(w) = —1. By [Hsil2 Prop.4.5 (1-3)], the formula of Ag(x) is given
as follows.

(1) If v(B) > 0 and v(B) # 0 (mod 2), then
Ap() = 9°(271B) - (~1)" O (L + [w]).
(2) If either v(8) < —1 or v(B) = 0 (mod 2), then Ag(x) = 0.
(3) If v(B) = —1, then
As() = 0°(271B) - | 3 X7 (@ + 0)y° ().
x€Ekp

It follows immediately that v,(Ag(x)) > vp(1 + || ™) if v(B) # —1, and vp(Ag(x)) > pp(x) if v(B) = —1.
On the other hand, note that p divides 1 4 |@| ™" if p,(x) > 0. Thus v,(Ag(x)) > pp(x) for every 5 € F*.

We proceed to prove the second assertion. Choose a sufficiently large finite extension L of Q, so that x
and Ag(x) for B € w1Of take value in L. Let e, = vy, (p) and let

m = inf vi(x(z+0)=1) =€ )
We define the function f : kg — ky C F, by
f@) =@, (x(x +0) — 1) (mod (wy)).
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For v € Op, define 5 : kp — F,, by ¢5(z) = ¢¥°(Z ) (mod m). Then {U5}5ck,. 8ives a F,-basis of the space
of F,-valued functions on kp. Then f can be uniquely written as f(z) = > mekp G ()Y5(2), where ¢, (f) is
the 7-coefficient of f given by

D=lwl Y fals@) == @l Y x @+ 0y (La)

z€kp zekp
=@, "% (=271B) - Ay (x) (mod my).

Since f is a non-zero function by definition, some ¥-coefficient of f is nonzero, namely c-(f) # 0 (mod mz).
Let b := yw~!. Then vy (A4,(x)) = m and hence v,(Ap(x)) = pp(X)- O

The following proposition is the key ingredient in our proof.

Proposition 6.3. There exists b, € F'* such that

(i) vp(Ap, (Xo)) = p(x0),
(i) WAD)TE/p(by) = A3(20).

PrROOF. When w(€~) =1 and v is inert, (i) is verified in Prop. 6.2l Suppose that either w(€~) > 1 or v is
ramified. Then we must have p1,(x») =0asv{pand p > 2. By [H5112, Lemma 6.4], there exists b, € F* such
that Ay, (xv) Z 0 (mod m). Thus v,(Ap, (Xv)) = pp(X») = 0. To show the epsilon dichotomy property (ii) for
this b,, we note that (i) implies that Ay, (xo) # 0 (xo is ramified), and (ii) follows from Lemma [6.1} O

Remark 6.4. In virtue of [Hsil2, Prop.6.7], Prop. removes the assumption (C) in [Hsil2l Thm. 6.8].
6.2. Now we are ready to prove our main theorem.
Theorem 6.5. Suppose that pt Dr. Let x be a self-dual Hecke character of K* such that

(R) the global root number W(A*) = 1, where \* := XH;i

Then
pes =Y Hp(xw)-
v|€—
ProoF. In view of (4.9) and Prop. [6.2] we find that
vp(aé )(X, Z tp(xw) for all € Fy and a € D;.
v|€—
Combined with the formula (4.10) of ag (E’)fu, ¢(a)) and Theorem this implies that
(6'2) MX > = Z /u'p X’U
v|€—

For each v|€~, we let b, be as in Prop. Then vy (Ap, (o)) = tp(xw) and W(AS) 7,7 (by) = Ay (20) for
every v|€~. From the assumption that W (A ) [I, W(X5) =1 we can deduce that there exists § € F, such
that

(1) B € OF (y550):

(2) Ag(xv) = Ap, (xov) for every v|€™,

(3) Ilge- qvs(® = (B)e(R)Nx, 5 (a) for some prime-to-p€ ideal a of R.
(cf. [Hsil2, Prop.6.7].) Let ¢ € A% ; be the idele such that ¢, = 3~ ! for all v  p€€© and ¢, = 1 if v|p€ee.
Then ¢(a) := ilx(c) = ¢«(R)Nx,r(a ) 1s the ideal corresponding to c. Let u € U, such that u =  (mod p). By

(4.9) and (4.10)), we find that

(6.3) op@s (B (@) = 3 0p(As ) = 37 vp(As, () = 3 siplo).
v|€— v|€— v|€—
Combining Theorem (6.2) with (6.3]), we obtain
== D ). O

v|€—
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