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1. INTRODUCTION

Let F' be a number field with adele ring A, K a quadratic extension of F'
with adele ring K and D a quaternion algebra over F. Let Dg = D ®Qp K
be a quaternion algebra over K. Let ex be the character of F*\A* of order
2 corresponding to K via class field theory. Let m; be an irreducible unitary
cuspidal automorphic representation of GLa(A) with central character w;.
We denote the base change lift of m; to GL2(K) by m; . We impose on ;
and D the following conditions:

(Cent) wiwows = €x;
(Cusp) m; i is cuspidal;
(JL) there exists an irreducible automorphic representation 7TZ-[7)K of D (A)
associated to m; x by the Jacquet-Langlands correspondence;
(Per) the period integral

Bi(¢:) = ¢i(h)(w; 'ex)(Npyr(h)) dh

/AXDX (F)\D* (&)

does not vanish for some ¢; € 7riDK, where Np,r denotes the re-

duced norm on D and dh = [], dh, is the Tamagawa measure on
A*\D*(A).
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(Arc) K is split at all the archimedean places of F'.
The assumption (JL) is automatic if D ~ My(K'). The assumption (Per)
is automatic if D ~ My(F) (see Proposition 2.13|[I])). The assumption (Arc)
is made for convenience to simplify the local calculations in
Put Il = m ® my ® w3 and H% = 7T1D7K ® 7r2D7K ® W:?K. One of the purposes
of this article is to establish an explicit formula relating the period integral

oonom=[  aE@6EE)E

on Hg to the central value L(%, H): L(%, T X T X 7r3) of the triple prod-
uct L-series associated to the Langlands parameters of m; and the eight-
dimensional representation of the L-group of GLa x GLo x GLs. Here
2 =], d=, is the Tamagawa measure on K*\ D (A).
For each place v of I’ we let F,, be the completion of F' at v and put

D,=D®F,, Dk, = D® K,

We will explicitly factorize B; into local functionals in Choose a local
invariant form B;, € Hom px (ﬁ? 7, Wi v, ) SO that

Bi(¢i) = HBi,v(¢i,v)

for ¢; = R € 7T,L-DK, and B; (¢i) = 1 for almost all v. Put
3
By = B1y® Bay®Bay, L(s,Ad(I) @ ex) = [ [ L(s, Ad(mi) @ ex).
i=1
We define an element of the space
(1.1) Hom (I, C)

by the convergent integral

L(¢v) = / B, (HQZ (&v)9w) d&y
Ky DX\D},

for ¢, € H%} = Trf) K, ® 775 K, ® 7731)) K, where d¢, is the measure defined by

the quotient of d=, by dh,. Let e(D,) be either 1 or —1 according as D is
split at v or not. Fix a non-trivial additive character ¢» = [], ¥, of F\A.

We write
1

V(HU) =7 (27 Tlw X T2 X 773,1171/)1))

for the central value of the triple product gamma factor. Note that ~(IL,)
is independent of the choice of ¥, by Remark .

Theorem 1.1. Assume that K, ~ F, x Fy if v is archimedean. The func-
tional I, is non-vanishing if and only if

V() # —ex (=1)e(Dy).
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If K, ~ F, x F,, then y(II,) = 5(%,@,1} X Ty X 7T37U,1/)v) is the local
root number, and Theorem is known as the epsilon dichotomy, proved
by Prasad in [Pra90] On the other hand, if K, is not split at v, then
Dk, ~ Ms(K,), and (L.I) is one-dimensional (see Remark [3.4|(1)). Two
functionals thus constructed satisfy the relation stated in Proposition [4.7]
Note that «(IL,) may not be a sign.

Theorem 1.2. Assume the following conditions:

e v is non-archimedean,

€x, 1S unramified,

G(Dv) =1,

By(¢v) =1 and 132 (k) ¢y = ¢y for k € GLa(ok, X 0k, X 0k,),

d&, is the right invariant measure on K GLo(F,)\GL2(K,) which
gives o GLa(op,)\GLa(0k,) volume 1.

Then .
I (¢ ) _ CF’U (2)2L<§7H0) ) 1 +’7(Hv)
ST DL, AA(TL) ® eg,) 2
When ~(I1,) # —ex(—1)e(D,), we normalize the functional I, by setting
L(1,Ad(IL,) ® ek, ) 2

I, =

G @PL(AIL) Dy +er (D)

Theorem 1.3. Assume the conditions (Arc), (Cent) and (Cusp). If there
exists a quaternion algebra D over F' which satisfies €(D,) # —ex(—1)v(IL,)
for all v, then such D satisfies the conditions (JL) and (Per), and we have

_ o-3 CF() 2
f=z" L(1,Ad(II ®eK IZII

as elements of HomD}x((A) Ik, ).

Remark 1.4. (1) We define the L-series L(s, Ad(m;) ® €x) as the ratio
L(s,Ad(m;) ® ex) = L(s,m; x 7 @ € )/ L(s, €x).

Since m; % m ® e€x by (Cusp), the L-series L(s, Ad(m;) ® €x) has
neither zero nor pole at s = 1.

(2) Fix a € F* and define the character ¢ of F, by ¢%(z) = ¢, (az) for
x € F,. Then

1

1
i (2,7T1,u X oy X 7T3,m¢3> = (w1w2w3)4(a)'y (2a

Therefore v(I1,) is independent of the choice of 1,,.
(3) If v(II,)? # 1 for some v, then there exists a quaternion algebra D
such that e(D,) # —ex(—1)y(IL,) for all v (see Proposition [5.3).

When K = F x F', Theorem is nothing but Ichino’s formula proved
in [Ich08]. Ichino considers an étale cubic algebra over F. It should not be
difficult to extend Theorem [T.3]to this case. The proof follows the same line

Tl X T2y X 773,va¢v> .
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as in the proof of [Ich08]. The global ingredient is the vanishing of incoherent
Eisenstein series (see Proposition [5.1]), which is combined with the seesaw
identity. The assumption (Cusp) will be used to apply Proposition at
the last stage of the proof of Theorem The local ingredient is the local
functional equation of Garrett’s zeta integral. Corollary will relate the
zeta integral to the sum of the two invariant trilinear forms. Then the local
functional equation gives the relation stated in Proposition [£.7] from which
Theorem [L1] follows. Theorem can be deduced from the unramified
computation of the zeta integral.

Here is a short summary of the content of this paper. Section [2] de-
scribes the quaternary quadratic space Vp and studies theta lifts from GLo
to GO(Vp). Section |3| constructs the local invariant trilinear forms. Section
relates those trilinear forms to (partial) zeta integrals and proves Theorems
and Section [5| applies the seesaw machinery, following [HK91].

2. TWISTED SHIMIZU CORRESPONDENCE

2.1. Quaternary quadratic spaces. Let D and K be a quaternion algebra
and a quadratic extension over an arbitrary field F' of characteristic zero.
Fix an element § € F*\ F*? so that K = F(v/§). The main involution ¢
of D is uniquely determined by the conditions z + z* € F and zx* € F for
every x € D. The norm map Ng/p : K — F* is defined by Ng/p(k) = kk,
where ~ denotes the non-trivial automorphism of K over F'.

Given a central simple algebra A over K, by an involution (anti-involution)
of A, we mean an arbitrary F-linear automorphism (resp. anti-automorphism)
of A of order 2. It is said to be of the second kind if its restriction to K
coincides with ~. Let Dg = D ®p K be a quaternion algebra over K. We
K-linearly extend ¢ to an anti-involution of Dy, which is the main involu-
tion of Dg. An involution o of Dk of the second kind can be defined by
olr®k)=z®kforz€Dand ke K.

Involutions of M,,(K) of the first and second kind are defined by z —
and o(z);; = @;; for x = (z;;) € M,,(K), where ‘ is the transpose of z. Put

Sym,,(F) = {b € M,,(F) | b= b}, D°={zxe D]z =—z},

Her,(F) = {£ € M,(K) | (&) = ¢}, In = <1On —371) :

We define the symplectic similitude group by
GSpyy, = {9 € GLan | 9409 = vu(9) T, vn(9) € G}

and the similitude unitary group of a Hermitian matrix ¢ € Her, (F') with
det ¢ # 0 by

GU(¢) = {g € Res/pGLy | g¢'0(g) = ve(9), ve(g) € G}
The action p; of the group Dy on the subspace

Vp ={z € Dk | o(z) =2'} = F®V6D°
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is given by p1(§)r = £xo(£)". Define a quadratic form ( , )p on Vp by
(z,2)p = xzz* for x € Vp. The discriminant algebra of Vp is K.
The triplet (D, p1, Vp) forms a prehomogeneous vector space. Note that

(p1(&)x, p1(§)2)p = N yp(€€°) (2, 2)p
for x € Vp and § € D Put
Yp=A{y€Vp|(yy)p#0}
Given y € Vp, we can define an involution o, of Dx of the second kind by
ay(x) = oy 'ay).

Lemma 2.1. Let 7 be an involution of Dk of the second kind. Then there
exists y € Vp such that T = oy.

Proof. The Skolem-Noether theorem implies that 7(x)* = 7(x*) for all x €
Dy . Thus we can define two anti-involutions oy and 79 of D of the second

kind by o¢g(z) = o(z*) and 19(z) = 7(2*) for z € Dg. Lemma 2.10 of [PR94]

gives an element y € D such that 79(z) = y~log(z)y and oo(y) =y. O

Let D, :={z € Dk | oy(x) = =} be an F-subalgebra of D.
Lemma 2.2. D, is a quaternion algebra over I’ such that Dy @ K = Dy.

Proof. 1t is evident that D, has dimension 4 over F' and D, ® K = D.
Thus D, is central over F. If D, has a non-trivial two-sided ideal, then so
does Dp. O

Let GO(Vp) denote the orthogonal similitude group of Vp defined by
GO(Vp) ={h € GL(Vp) | (hx,hy)p = v(h)(z,y)p, v(h) € Gy}.

The subgroup GSO(Vp) of GO(Vp) consists of the elements h such that
det h = v(h)?. We view D} as a subgroup of GSO(Vp) via p1. There is an
exact sequence

(2.1) 1— KX 2B (F* x DY) » (t) & GO(Vp) — 1,

where

L

po(e) = (Ngyp(c), e h), pla,§)v = ap1(§)v, p(t)o = v
for v € Vp, and t acts on Dy by =+ o(x). Observe that
v(p(a,€)) = a*Ni/p(£€")-

Given a € F* and a quadratic space (V,(, )), we write V' for the space
V quipped with the quadratic form a(, ). Put

VDy:{LL'EDK‘Jy(x):J;L}’ Vy:{feD[X(‘ny(f)LEFX}.

Equip Vp, with a quadratic form defined by (z,z)p, = z2* for z € Vp,.
The following lemma is straightforward to prove.
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Lemma 2.3. Notation being as above, we have Vp, = Vpy~'. Puta =
(v,y)p. Then the map x — wxy for x € Vp, gives an isomorphism of Vﬁy
onto Vp.

When D = My(F), we write V. = Vp and (, )+ = (, )p. In this case
= Jy et o=o, Vi =V4J, - Hery(F)
for x € Dg. Note that (vV8J1&,V0J1€), = ddet ¢ for € € Hery(F).

2.2. Quaternary quadratic spaces over local fields. Let F' be a local
field of characteristic zero. Then Dy ~ Ma(K). We denote by e(D) the
Hasse invariant of D and by ex the quadratic character of F'* whose kernel
is Ng/p(K™). If (D) = —1, then V. and Vp have opposite Hasse invariants.

Remark 2.4. The quadratic space V, is isomorphic to the orthogonal sum
of the norm form on K with a split binary quadratic space as a quadratic
space. Take ov € F'* so that ex(a) = ¢(D). Then V, ~ V¥

Proposition 2.5. Lety € Vp.
(1) Fiz an element y_ € Yp with ex(dety_) = —1. Then
Yp = p1(GL2(K))12 U p1(GL2(K))y-.

(2) e(Dy) = ex((y,y)p)e(D).
(3) V, = KD

Proof. 1f y' € Yp,, then
y'y € Vp, Oyly = (Uy)y’a Dy/y = (Dy>y"
Thanks to Lemma we may assume that D = My(F) and o0 = p. Put
Y= yMQ(F) = {\/gjl €| € € Hera(F), det & # 0}

The group GLa(K) acts on ¥ by pi(g)y = gye(9)' = gy.Ji'o(g)J; " for
g € GLy(K) and y € Y. Note that p1(g)(& - V0.J1) = g€l(g) - V6.J1. Since
there are two equivalence classes of non-degenerate Hermitian matrices £ of

size 2 classified by the sign ex (— det £), one can deduce ().
We write y = V/0.J - €71 with ¢ € Hera(F). Let 2 € My(F),. Then
z= oy wy) =& o(x) hE T = Efp(x)' T, w€fo(x) = detuw - €,
It is well-known that

QU(E) ~ (D} x K*)/F*,

where D¢ is a quaternion algebra with e€(D¢) = ex(—det) = ex(dety).
Now follows from the observation

My (F), N GL2(K) = {g € GU(§) | A¢(g) = det g} ~ D/

Clearly, K* D, C V,. We shall prove the reverse inclusion. Let § € V.
Put a := £oy(§)" € F*. Since o, has order 2 and acts on K non-trivially,
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we get a = oy(a) = (€& and a? = Ny p(det £). We can therefore take
k € K* so that det ¢ = akk™'. Then since

¢ = akk™" = oy (&) Rk,
we have £k = o,(£k), which proves (3). O

2.3. The Weil representation for similitudes. Given a € GL,, b €
Sym,, and a scalar t € G,,, we put

Let P, = M N be the Siegel parabolic subgroup of GSp,,, given by
M = {m(a)d(t) | a € GL,, t € G, }, N ={n(b) | b € Sym,, }.

We denote the kernels of the similitude characters v, : GSpy,, — Gy, and
v : GO(Vp) — G,, by Sp,, and O(Vp), and the centers of GSp,, and
GO(Vp) by Z, and Zp. Note that Z, and Zp are isomorphic to G,,.

Let F' be a number field with adele ring A and eg the quadratic Hecke
character corresponding to a quadratic extension K/F via class field the-
ory. Fix a non-trivial additive character ¢ = [, ¢y of A/F. Let Qf , =
@€Y, , denote the Weil representation of Spy,, (A) x O(Vp, A) with respect
to 1 on the Schwartz space S(V}5(A)) with

(2.2) Dp(m(a))®(z) = ex(det a)| det al*®(za), a € GL,(A),
Dp(0(0))@(x) = P(tr(b(x, ) p)) (), b € Sym,, (A),
bay(R)®(z) = ®(h~ '), h € O(Vp,A),

where (z,2z)p = ((x;,xj)p) € Sym,, (A).
On the orthogonal similitude group GO(Vp, A) we can extend Qp , by

L(h)®(x) = [v(h)["@(h~"2).
We use it to extend QBw to a representation of the group
Ry ={(h,9) € GO(VD) x GSpy, | vn(g) =v(h)}.
Since L(h)Q%7w(g)L(h)_1 = QBw(d(t)gd(t)_l) with ¢ = v(h) for g €
Spy,(A) and h € GO(Vp,A), one obtains a representation of the semidi-
rect product GO(Vp, A) x Sp,,(A) on S(Vj(A)). By composition with the
isomorphism (h, g) — (h,d(v(h))~tg) from R,, onto GO(Vp) x Sps,,, we get
the representation of R, (A) on S(V5(A)), which we denote also by €, .
Remark 2.6. Note that for z € A* and ® € S(V5(A))
QP (2, 2)® = ex(2)" .
We can form the theta series as a function on R, (F)\R,(A) defined by

O(h,g;®) = > Qb (h,g)®(x).
zeVE(F)
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Definition 2.7. Let B be the open subgroup of A* which consists of ideles
v(h) with h € GO(Vp,A). Let SK be the set of real places of F at which
either K or D is not split. When v € S , the subgroup B, consists of
positive real numbers in F.X. If v ¢ S& then we set B, = Ng, /g, (K,). Put

GSpy, (A)" = {g € GSpy,(A) [ vn(g) € B},
GSp,,, (F)* = GSpy,, (F)) N GSpy, (A)*,
Gsp2n(Fv)* = {g € GSp2n(Fv) ‘ Vn(g) € Bv}

2.4. The quadratic base change as a theta lift. Let n = 1. Then
GSpy >~ GLy. We start with a quadratic extension K /F of non-archimedean
local fields of characteristic zero. Fix a non-trivial additive character ¥ on
F and a quaternion algebra D over F'. We will abbreviate Q}lw = Q;(D) t
denote the local Weil representation.

Recall the subgroup
GLa(F)* = GSpy(F)* = {g € GLa(F) | ex(det g) = 1}.

Let 7* be an infinite-dimensional irreducible admissible representation of

GLa(F)*. The maximal (7*)V-isotypic quotient of c- 1ndGO(V)XGL2(F) Q (D)

is of the form (7*)Y X ©2(7*), where (7*)¥ is the contragredlent repre—
sentation of 7* and ©F(7*) is a (possibly zero) smooth representation of
GO(Vp).

Let m be a generic irreducible admissible representation of GLa(F) of
central character w. We write 7 for the base change of 7 to GLa(K).

Definition 2.8. When 7|qp,(r)+ is reducible, Lemma 4.1 of [GI11] allows

us to write W\GLQ( Py = + @ n~, where 7% are irreducible representations
of GLy(F)* such that
OR(rt) #0, OR(r") =0.
We set
@g(ﬂ) _ (77 ) ?f W’GLQ(F)* ?S T“educib'le,
(W’GLQ(F ) if 7lgr,(py+ 18 irreducible.

Proposition 2.9 ([Lul7] P(r) is nonzero, irreducible and

)- ©
OR(x )|D>< o = T Mweg.
Proof. See Section 3 of [Lul7] (cf. (2.1)). O

We switch to the global setting. Thus F' is a number field and 7 an ir-
reducible cuspidal automorphic representation of GLa(A) with central char-
acter w. For a technical reason we assume that all the archimedean places
of F are split in K. Given a cusp form f € m and ¢ € S(Vp(A)), we define
an automorphic form on GO(Vp, A) by

0(& 1) =/ f(99)0(&, 99" ¢) dg,
SLa2(F)\SL2(A)
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where we choose ¢’ € GLa(A)* so that det ¢’ = v(§). Here, dg = [], dgs
is the Tamagawa measure on SLy(A). Let 62 () denote the automorphic
representation of GO(Vp, A) generated by 0(&; f, @), as ¢ € S(Vp(A)) and
f € m vary.

We denote the base change of 7 to GL2(K) by mx. We denote the Jacquet-
Langlands lift of 7, to D3 (A) by R if it exists. By the following result

72 can be extended to a representation of GO(Vp, A).

Proposition 2.10. Assume that T is cuspidal. The space 0% (r) is not

zero precisely when 77113 exists. In this case

HID((W)]DIX((A)XAX ~ 7P R wey,.

Proof. This is due, in essence, to [Shi72]. The standard L-function of
T|sL,(a) twisted by ek is L(s, Ad(m) ® ex) and is holomorphic and not zero
at s = 1 by assumption (cf. Remark [L.4|(I)). Theorem 11.6 of [GQT14]
applied to the restriction of 0(&; f, ¢) to SO(Vp, A) implies that the global
theta lift 92 () is not zero if the local theta lift of m, to GO(Vp,) is not
zero for all v. O

2.5. Factorization of the Flicker-Rallis period. Let 7 be an irreducible
cuspidal automorphic representation of GLy(A) whose base change mx is
cuspidal. We define an element

Be Home(A)(ﬂ'Ilg, (weK) o ND/F)

by the period integral

B(¢) = ¢(h)(w™ e ) (hh') dh,

/AXDX(F)\DX(A)
where dh is the Tamagawa measure on A*\D*(A). B
Define the Whittaker function of f € m with respect to ¥ by

Wy(g) = /F RLCHIOE:

where db =[], db, is the Tamagawa measure on A. Assume that Wy(g) =
1, Wu(gy), where W,(13) = 1 for almost all v. Define a map B, : m, ®
S(VDU) - C by

Bv(Wv, Spv) = «(Dv)

/ Wo (@) (@) p0(1) i
U (Fy)\SL2(Fy)

for each place v of F, where U = {n(b) | b € G,} and dg, is the quotient
measure of dg, by db,. Since there exists pg € S(F,) and for ¢ > 0 there

exists pe € S(F,) such that
e(Dy €
Q4P (m(a)k) o (1)] < [aleo(a),  [Wo(m(a)k)| < lalpe(a?)

for a € F and k € SLa(op,) (cf. p. 298 of [Ich08]), the integral converges
absolutely.
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Let S¢, be a finite set of places of F' including all archimedean places so
that for v ¢ Sy,

€K, is unramified,

1, is trivial on ox, but non-trivial on p, 1,

W, (GLy(op,)) = 1,

€(Dy) =1 and ¢, is the characteristic function of Vp, N Ma(ok, ),
vol(SLa(0,),dgy) = 1.

Here op, and ok, are the maximal compact subrings of F;, and K, and p,
is the maximal ideal of oF,.

Proposition 2.11. (1) If v & Sy, then By(Wy, ) = %&)?W“).
(2) If T is cuspidal, then

B0/, ) = 265(2) " L3 (1, Ad(r) ® ex) H (W 00).
€Sy,

Remark 2.12. Proposition 5 of [Wal85| deals with the case K = F x F.

Let v ¢ Sy . Fix a prime element w, of of,. Then

vaSOU ZW EKv( ’L)

Since the Shintani formula (cf. [Wal85, p. 190]) gives

Wv(m(wm:(avﬁv)_iw”«wgi 1>> (@B)” ’;ZW,

where {ay, 5, } is the Satake parameter of 7, and g, is the cardinality of the
residue field of op,, we get by a simple calculation.

When D is not split, one can use the Siegel-Weil formula to prove the
formula as in the proof of Proposition 2.3 of [YZZ13]. The rest of this
section is devoted to proving Proposition for D = My(F') and 0 = p.

Recall that K = F(V/§). Define an additive character 1. on K, which is

trivial on K + A, by w‘;{( ) = U)(TK/F<\[)) for k € K, where Tk /p is the

trace map from K to A. We define the Whittaker function of ¢ € mx with
respect to w‘;( by

Wo(g) = /K )RR 0k

where dk is the Tamagawa measure on K. Let da, and dc, be the self-

dual Haar measures of F, with respect to ¢,. Put d*a, = (p,(1 )da”| For

a, € F) we put t(a,) = <av (1)> € GLao(F,).

0
Proposition 2.13. (1) There ezists ¢ € T such that B(¢) # 0.
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(2) Let ¢ € Tk be factorizable, i.e., Wy = @,Wy, . Then

Bo(W,
Blo) =2t adm s o [ 257 i\d?wi) D)
where
Bo(Wo,) = | We,(t(a0))(w, e, ) (av) A ay.

Ef

Proof. We extend w™'ef to a character y of KX /K*. Put 0 = 7 ®~. The
Asai L-function of o is (¢ (s)L(s, Ad(7)®€k) and so by Remark [1.4|[L)), it has
a pole at s = 1, which proves (see [FZ95]). Put Al = {a € A* | |a|] = 1}.
Since the volume of F*\A® with respect to [], d*a, is the residue of (p(s)
at s = 1, Proposition 3.2 of [Zhal4] includes (2). O

Once we establish the identity
Buy(Ws,) = CFv(l)Bv(an Pv),

Proposition follows from Proposition [2.13|[2). The mixed model of
QL is realized on S(K, @ F?). The intertwining map I : S(V*(F,)) —

S(K, @ F?) is given by a partial Fourier transform
k' Voc,
I(py)(k;a,b) = wv(cva)cpv<<b 3 ) )dcv
F, v/
(see §5.2 of [KR94]). Let t € FX. Since v(d(t)) = det(t - 12) = t?, Remark

2.6] gives
QF (d(),t- 12)pu = ex, (HQ (t7-d(1), 12)¢u,

from which it follows that
1(Qy, (d(t),t - 12)py)(k; a,b)

=, (1) [ dolca)ie (td(t—l) < ;Zg @) d(t—l)b> dey

=exc, ()|t T (py) (K5t a,t™ D).

Let f € m and ¢ € S(V*(A)) be factorizable. Put ¢ = 0(f,¢). The
Whittaker function of ¢ with respect to ¢§( is given by

_ . QJ,_ .y . s ;
Wi(€) /Q<A>\SL2(A)”V?(Q)I( 516.69)2)01:1.0 09 = [T W &)
for £ € GL2(K), where det g’ = Ny, p(det &) (see §5.1 of [Lul7]). We have
W, (t()) = wu(t)We, (d(t))

—m%ww/ Wa(o) L9, (30)0) (13£,0) dg.
U(Fy)\SLa(Fy)
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By the Fourier inversion formula we get

BuWo) = | W (t(t)) (@7 exc ) (h) 1y

(1) | Wo(@)2, (30)00(12) dd
U(Fy)\SL2(Fv)

as claimed.

3. LOCAL TRILINEAR FORMS

3.1. Flicker-Rallis functionals. In this and the next section we fix an
inert place v of F' and suppress it from the notation. Thus F = F, is a
non-archimedean local field of characteristic zero, K a quadratic extension
of F', D a quaternion algebra over F', ¢ a fixed non-trivial additive character
of F, and ek the quadratic character of F* whose kernel is N/ p(K*). We
denote by Np,p : D* — F* the reduced norm and by 7p,p : D — F' the
reduced trace. Let ap(z) = |z| denote the normalized absolute value of
z € F*.

Recall that Dg = D ® K ~ Ma(K). The main involution of D induces
an anti-involution ¢ of Dy of the first kind. Let o be the involution of Dg
of the second kind such that D = {z € Dk | o(x) = x}. Equip Vp =
{z € Dk | o(x) = '} with a quadratic form defined by (z,z)p = zx*. The
discriminant character of Vp is ex. The morphisms p; : D% — GSO(Vp)
and v : Di — F* are given by p1(§)z = xo(§)" (see ) and v(§) =
Ng/p(£€") for x € Vp and € € Dy.

Let 7 be an irreducible unitary admissible infinite-dimensional represen-
tation of GLy(F') whose central character is w. Given a € F'*, we define an
additive character ¢* on F' by setting ¢*(b) = 1(ab) for b € F.. We denote
by mx the base change lift of 7 to GLo(K), by W¥* () the Whittaker model
of 7 with respect to 1%, and by A(7) the real number defined by

GL2(F)

A if 7= Indp (%) (xap Kwy™

0  if 7 is tempered,
>‘(7T) = { 1

ap),

where A € R and y is a unitary character of F*.
Given W € W¥(r), we define W* € W¥" (r) by

We(g) = W(d(a)"g).
Fix y € Yp. Put a = (y,y)p. For p € S(Vp) and £ € GO(Vp) we put

By(6:W, ) = / We(gd(m(©) ) (€, d(v(©))(y) g
U\SLa(F)

One can see that this integral converges absolutely, likewise for B.
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Remark 3.1. Taking Lemma into account, we define ¢, € S(Vp,) by
oy(z) = @(zy) for x € Vp,. It is easy to see that for x € Vp,

) (h g)p(ay) = A (B, g)y ).

Lemma 3.2. For k€ K*, h € D and £ € GO(Vp) we have
By (kh&; W, @) = (werc) (Kkhh') By (& W, ).
Moreover, if £ € D}, then
ByeWee) = [ Wrdm O @)y € (1)) di
U\SLa (F)

Proof. The first part can be derived from (2.2]) or Proposition Changing
the variable g — d(v(€))gd(v(£)™1), we get

By(&W,p) = / W (d( (€))L (p1(6), dw(€)3)e(y)Iv ()] dg.

U\SLa(F)
For g € SLy(F) and £ € D we have

AP (p1(€), dw(©)9)p(y) = ()2 (g)p(€ yole ™)),

Since yo ()" = o(wo(y")" = oley) = (0(y)oy(2)) = oy(z)'y for € Di,
we get the stated expression. O

L

By Proposition there exists an equivariant surjective map
5 D
Oy : WY (m)|s15(m) ® S(VD) = O ().
Lemma [3.2] gives rise to the following functional B,,.

Proposition 3.3. There is By € Hom ) (@%‘ (m), (wer)oNp, /) such that

B, = By o0,.

3.2. Construction of trilinear forms. Let 7; be an irreducible unitary
admissible infinite-dimensional representation of GLa(F') with central char-
acter w; on which we impose the following condition:

(Cent) WiWows = €K .

Recall that @% (Wi)’GLz(K) ~ m; . We associate to y € Vp a functional
By € HomD; (@%’ (i), (wiex) o Np, /) by Proposition Fix a right
GLa(K)-invariant measure d,§ on K* D\GLz(K). Define an element of

Homgyp, (k) (O (m1) © O (m2) © O5 (m3), C)

by the integral

CRV By (w1 1 (€)61) By (a1 (€)62) By (ms 1 (€)3) dy
KXD;\GL2(K)
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for ¢; € m; k. We will prove the convergence under the following condition:
1
(%) A1) + A(mz) + Alms) < 5.

Remark 3.4. (1) Since wiwows = €k, we have
e(1/2,m1 x X Mo i X T3.x) = €(1/2,m x w9 x 73)e(1/2, 7 x 73 x 7y ) = 1.
Theorem 1.4 of [Pra9(] gives
dim Homgr, (k) (71,5 ® T2,k @ M3, C) = 1.

(2) If mp,ma, m3 are local components of cuspidal automorphic represen-
tations, then (%) is fulfilled by the result [KS02] on the Ramanujan
estimate for m; and hence L(s, 71 X ma X m3) is holomorphic at s = %

3.3. Convergence.

Lemma 3.5. If (%) holds, then the integral 1s absolutely convergent.

Remark 3.6. When K = F x F', the convergence is proved in Lemma 2.1 of
[LchOg].

Lemma [3.7] below is stronger than Lemma [3.5. Put
E=FxFxF Il=m ®m® s, U:{n(b)GGLQ(E)|b€E}.

Define Tg/p : E — F by Tg/p(z,y,2) = v+ y + 2z and algebraic groups
U C G by

G = {g S RE/FGL2 ’ detg € Gm},
U’ ={n(z) |z e Re/rGa, Ty p(x) =0}
We embed G diagonally in GSpg via the map

al b1
a9 bg

L e
cp di)’\ca da)’ \c3 d3 c1 dy
C2 do
c3 ds

Once and for all we fix a Haar measure dg on SLy(F') and use it to define a
Haar measure dg’ on SLy(E). Let dz and dv be the self-dual Haar measures
of F with respect to 1. We use them to define Haar measures du’ on U
and du on U. We denote by dg and dg the quotient measures of dg’ by
du® and du, respectively.

Put o = (y,y)p and € = ex (). Let

W) = W (m) @ W (r2) © W (s)
be the Whittaker model of II with respect to 9 o Tg/p. Given
W=W@W, @ Ws € WHII), &= ®p®pseSVE),
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we consider the integral
spw.e) = [ By (6 W1, 00) By (6 Wy 02) By (6 W ) d .
K> D;\GL2(K)

Lemma |3.2| gives the expression
/ [ W) B0 (B Ry (e)) g
GLa(K)/K* Dy JU\SL2(E)

of J5H(W,®), where W* = W' @ W5 @ W§' € W% (II). The measure dyé
is defined in If ' € Yp satisfies ex((¢/,4y')p) = €, then Proposition

gives £’ € GLy(K) such that ¢y = &'yo(¢')". Since (v, v )p = av(¢),
it turns out that the integral is independent of the choice of y (cf. Remark

1),

Lemma 3.7. The integral above converges absolutely. Moreover, it defines
an element of

Homo(v,) (0" (1) ® O (m2) @ O (3), C).
Proof. To prove the invariance, it suffices to show that
IHW, Qb (p(a, 1)) = TH(W, ®)

for a € F* in view of (2.1)). Since ex((p(a,t)y, p(a,t)y)p) = ¢, it follows
from the expression above.

Without loss of generality we may assume that y = 1 € Vp in view of
Lemma Recall the decomposition Vp = F @ v/§D° and

GSO(Vp) = p(F* x D), SO(VdD°) ~ D* /F*
(see (2.1)). It therefore suffices to show that the integral

/ [ W9, 1 g
SO(Vp)/SO(v/8D°) JU\SLa(E)
is absolutely convergent.

Let o and 0 denote the maximal compact subring of F' and K, respec-
tively. For simplicity we assume that 2§ € o5. Let L = Vp N Ma(ok) be a
maximal integral lattice of Vp. Put

C={heSO(Vp)|hL=L}, Lla={ze€Vp|(z,x)p=1, (z,L)p =a}

for each fractional ideal a of op. Note that L[a] = () unless a D op as L is
maximal. Fix a generator w of the maximal ideal p of or. For each non-
negative integer j we choose elements z; € L[p~/] and h; € SO(Vp) such
that x; = h; - 1. Then L[p~7] = C - z; by Theorem 10.5 of [Shi04]. This
combined with Witt’s theorem gives the relative Cartan decomposition

(3.2) SO(Vp) = |j C - h;SO(VsD®).
7=0
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0 —Vow? i (w0
T = 1 , h':p<w ],< >>h0.
’ (\/gwj 0 > ’ 0 1

It is enough to prove that the integral

Zq% / /U o, VB @)B(e ) dge

is absolutely convergent in view of Proposition 2.6 of [KT10]. Equivalently,
we will show that the triple integral

2j 3 a o) al-2 X ade
Zq //E /SL2 oy V@D ((m(@)k)) (e z;)|al ™ dkd"ad

converges absolutely, where |a| = |ajagas| for a = (a1, a2,a3) € E* and
0p = 0 X o X op. There exists &9 € S(E?) and for ¢ > 0 there exists
®. € S(E) such that

Let

12D, (L(m(a)k))@(c - z;)| < |a]*@o(w’a, @ a),
W(m(a)k)| < |a|' a1 |72 |ag| 227 a5 |0 (a?)
fora € EX, k € SLa(og) and ¢ € C. We take € so that
1 —3e — 2\(m1) — 2A(m2) — 2A(m3) > 0.
Then the double integral

/ / ‘3’1 E(PO tat ! )90() ’t’ 2d>< d><
rx Jpx ‘(11’2)‘ Wl)’a2|2>\ T |a3‘2)\(7r3

— |a|1 E(I)O(t2a7a)90(t) |t|1—36d><ad><t
Fx JEX ‘ta1‘2>‘(7r1)|ta2’2>\(7r2)’ta3‘2>‘(7r3)

converges absolutely for ¢ € S(F'). We have thus completed our proof. [

4. THE TRILINEAR FORMS AND LOCAL ZETA INTEGRALS

4.1. Garrett’s integral representation. Recall that Z3 denotes the cen-
ter of GSpg and £ = F' x F' x F. Put

0 00|-1 00 00040 0 -1
01 0,0 00O 00 0,0 -1 0
(4.1) n= 00 1,0 00O wo = 00 0|-1 0 O
1 11,0 00 |’ 001,0 0 O
00 0/-1 10 010,0 O O
00 0-1 01 1000 O O
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We take Haar measures d*z = (p(1)% and d*v = (p(1)¥ of F*. Let

El v
d* be the Haar measure on F*/F*2 so that

f(v)d*v :/ f(2*0) dzd*v
X F></F><2 X

for f € L'(F*). We define a Haar measure dg on Z3U’\G by

( 2) /Z3U0\G f(g) & /FX/FXZ /(JO\SLQ(E) |V| f( (V)g) gav

for f € LY(Z3U°\G). Let dz be the self-dual Haar measure on Vp with re-
spect to ¥ ((x,y)p). We take the measure d*x = (r(1)L(2, ex)|(z, 2) p|~2dz
on Yp, which is invariant under the action p; of Dj;. For each y € Yp we

define a map py, : D — Yp by p,(§) = p1(§)y = Eyo(§)" for € € Dje. Put
Uy =1{§ € D | py(§) =y}
We obtain a D j-invariant measure d,&’ on Dy /U, by the pull-back d,& =

pyd*z. In view of Proposition we obtain a measure d,& on D/ K* Dy
as the quotient of d,&’ by d*z.

Remark 4.1. Given h € D}, we define ¢, : Do — Dy by 1,(€) = héh™! for
¢ € Dj. Since ¢} o O (hyy = 9 © p1(h)*, we have

oy (nyy€ = dys-
When ¢ = ex((y,y)p), we have

B . Zv(© Wyl
43) [ swas= /| oo o SO O e

for any Schwartz function f on Vp.
Let 71,0, w3 be irreducible unitary generic admissible representations
of GLo(F) which satisfy (Cent) and (%). Put G* = G N GSpg(F)* (see

Definition [2.7). Given o € F* and a Whittaker function W € W¥(II) with
respect to ¢ o T, we define W € W¥ (1) by

We(g) = W(d(a)'g).

Let K be the standard maximal compact subgroup of GSpg(F'). Let
I5(s,ex) be the normalized induced representation of GSpg(F'), consisting
of all smooth right K-finite functions f(*) : GSpg(F) — C such that

FOd(t)n(z)m(a)g) = ex (deta)[t?(deta)*[*+ £ (g).
We associate to ® € S(V3) a function fp on GSpg(F)* defined by

where h € GO(Vp) is chosen so that v(h) = v3(g). The right hand side is
independent of the choice of h. Since it satisfies

fa(d(t)n(b)m(a)g) = ex(det a)[t3(det a)?| fo(g)
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for a € GL3(F'), b € Symg(F') and ¢t € N/ p(K*), it is uniquely extended

to an element fé,o) of I3(0, ek ).
The local integral

2 )= [ e ) de

converges absolutely by (%) and [Tke92, Lemma 2.1]. If @ is of order
zero, €k is unramified, ® is the characteristic function of Vp N Ma (o),
W(GLa(0og)) = 1 and vol(0xU%0r)\G(or),dg) = 1, then by Theorem 3.1
of [PSR&7|

L(310)

0)y _
#4) 2OV I = Gt

4.2. Partial zeta integrals and trilinear forms. If K ~ F x F, then
v(II) = ¢(II) is a sign, and hence y(II) # —e(D) if and only if (II) = ¢(D)
if and only if fg is non-vanishing by epsilon dichotomy. Therefore we will
assume that K is a quadratic extension of a non-archimedean local field F.
Let a € F*. We introduce the partial zeta integral

71w, @) = / W (g) fa(milg)) dg.
Z3U0\G*
Observe that

2 (ne(d(a)gr, d(e)gz, d(a)gs)) = ex(@)|al "L £ (nulg1, g2, g5)

and hence by the change of variables g — d(a)gd(a)™?

v <o [ Wiedie) A onde)gd() ) de

(4.5) = ex(a)lof Wi(gd(a) )Y (ni(gd () ")) dg.
Z3UO0\G*

When ex (o) = —1, we get
ZW, 1) = 22 (W, ®) — |a[T' 2" (W, ®).
Proposition 4.2. Let a € F*, ® € S(V3) and W € WY (II). Then
Z*W*, @) = |ale(D)L(2,ex) I P (W, ).
Corollary 4.3. Let ® € S(V3) and W € W¥(1I). Then
ZW, f0) = e(D)L(2, exc) " (I (W, ®) — 75 (W, ).

We will prove Proposition in Granted Proposition we can
easily prove Theorems and
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4.3. The proof of Theorem Let 71,9, m3 be irreducible unitary
generic admissible representations of GLa(F') which satisfy (Cent) and (¥).
Define the intertwining operator M (s) : Is(s,ex) — I3(—S$,€x) ® €x o v3 by

M(s) £ (g) = [2]%/2 / £ (g n(b)g) b,

Syms (F
where wy is defined in and db is the self-dual Haar measure of Syms(F')
with respect to (b,b') — ¢ (tr(bb')). This integral is absolutely convergent
for R(s) > 0 and can be meromorphically continued to the whole complex
plane. We normalize the operator M (s) by setting

M*(s) =~v(2s — 1,ex,¥)y(4s — 1,1,9) M (s).

The gamma factor (s, II,v) is defined as the proportionality constant of
the functional equation

Z(W, M*(s)f9) = o <s i ;,H,zb) ZW, f¥)

for £ ¢ I5(s,ex ). This gamma factor coincides with (s, 01 ® o2 ® 03,1)
by Proposition 3.3.7 of [Ram00] (cf. [CCI20]), where o; be the 2-dimensional
representation of the Weil-Deligne group of F' associated to m; by the local
Langlands correspondence for GLg. The central value y(II) = 7(%, IT, 1/1) is
independent of the choice of ¢ (see Remark [1.4)2)).

Theorem 4.4. The following conditions are equivalent:
o I € Homgr, k) (71,5 ® T2,k ®@ 73,1, C) is zero;
o y(II) = —e-€¢(D).
Theorem [4.4] can be deduced from Lemma [4.5 and Proposition [£.7] below.

Lemma 4.5. There are VW € WJ’(H) and ® € S(V3) such that not both
IHW, @) and I, (W, ®) are zero.
Proof. Given o € F*, we define an element f§ € I3(0,ex) by f&(g9) =

O)(gd(a)) for g € GSpg(F). Put Rs(Vp) == {fo | ® € S(V3)}. Fix
ap € F* with ex(ag) = —1. Theorem 2.1 of [KR94] tells us that

13(0, EK) = R3(VD) D Rg(Vgo).

Since R3(VH°) = {fs° | ® € S(V3)}, the space I5(0, ) is a C-linear span
of elements of the form fg. .

If 7HW,®) =4, (W,®) =0 for all W € WY(II) and ® € S(V}3), then
Z(W, @) =0 for all @ € F* by Proposition and hence Z(W, f§) =0
for all « € F* by (4.5)). This is a contradiction as the zeta integral defines
a non-zero functional on II ® I3(0, ex) by Proposition 3.3 of [PSR87]. O

Let S € Symg(F) with det S # 0. For a section f() of I3(s, ex) we put

Ws(f) = /S o I won®)(tr(sh) ab
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The integral can be continued to an entire function in s. Let ¢(.S) be either 1
or —1 according to whether S is split or anisotropic. Theorem 2.1 combined
with Lemma 3.1 of [Ikel7] gives

We(M*(s)f®) = e(S)ex (4 det S)|4det S| 2 Wg(f)).
Lemma 4.6. Let ® € S(V3). Then
M*0) £ = e (—1)e(D) £ - e 0 vs.

Proof. 1t suffices to determine M* (O)féo)]SPG(F). The operator M*(0) pre-
serves the space R3(Vp) by Proposition 5.5 of [KR92]. Since this space is
irreducible as an Spg(F')-module by Corollary 3.7 of [KR92], the operator
M*(0) acts on it by scalar multiplication. Take S such that €(S) = 1 and
ex(—4detS) = e(D). Then Wg(M*(0)fs) = ex(—1)e(D)Ws(fs). Since
such an S is represented by Vp (cf. Remark [2.4)), Proposition 2.7 of [KR94]
gives ® € S(V3) with Ws(fs) # 0. O

Proposition 4.7. For all W € WY(II) and ® € S(V3) we have
(1= ex(=1e(Dy(IL)) I (W, @) = —(1 + ex (=1)e(D)y(I1)) I, (W, D).
Proof. Take a € F* with ex(a) =
200, M*(0) [§) = ex(—1)e(D)Z(W, 1§ - exc o vs)
ex (=1)e(D)(Z* (W, ®) + [l Z* (W, @)
= ex(—1)L(2,ex) (I WV, @) + I, (W, D))
by Lemma and Proposition

We combine Corollary [£.3] with the functional equation

ZW, M*(0)£) = v (I Z(W, £)
to verify the relation. O

—1. Then we have

Corollary [£.3] and Proposition [4.7] give the following result:

Corollary 4.8. Let ® € S(V3) and W € W¥(II). If y(IT) # —ex(—1)e(D),
then
2

e(D) + ex (—1)(IT)
4.4. The proof of Theorem Letting y = 1 € Vp, we put
=(p(2)L(1, Ad(m;) ® €K)_1By € Hompx (WfK, (wiex) oNp/p),
where B, is as in Proposition and define 6 : Il ® S(V3) — IIE. by
OOV, @) = 0,(W1, 1) @ 0, (Wa, p2) @ 0,(W3, ¢3)
for W=W1; @ Wo ® W3 and ® = p1 ® 2 ® 3. We define an element

2w, 19 = L2, ex) T IE (W, B).

Iu S HOIHD;; (WEK & 772?}( ® ﬂé?K?(C)
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by the convergent integral

I(¢1@d2®¢3) = / B (w7 (€)61) B (w51 (€)92) B (m e () 03) &,
K*D*\D}
where d¢ = d €. Assuming that v (II) # —eg (—1)e(D), we normalize I? by

G@PL(LT) D)+ ex(— Dy (1)
By the definition of BE the functionals I? and fg are related as follows:
L(1, Ad(I) ® ex) L(3,10) e(D) + ex(~1)(I0)

_ ’ _ . ’
IEW, @) = TOE oW, ®)) = @ 5 I8
Corollary [4.8| gives

(4.6) 2w, g ®) = g g

Cr(2)L(2; k)
Now we assume that ex, 7, T, w3 are unramified, ¢ has order 0 and

e(D) =1, vol(o;Uo(oF)\G(oF),dg) =1,
VVi(GLQ(OF)) = 1, VOI(O;(GLQ(OF)\GLQ(OK),dg) =1.
Let ¢; be the characteristic function of V* N Ms(0g). Then
B (0,(Wi, 1)) = 1, LW, ®)) =1

by Proposition and (4.4)).
4.5. The proof of Proposition The rest of this section is devoted to
the proof of Proposition [£.2] The proof is similar to that of Proposition 5.1
of [Ich08] but more complicated as Proposition says that the action
of GLy(K) divides Yp into two orbits Y, = yg U Yy, where
V5 ={y€¥p|ex((y.y)p) = £1}.

Recall that v(§) = N/ p(det &) for £ € GLa(K). We associate to ® € S(VH)
a function Hf(CI)) : GLa(K) x SLa(E) — C by

HP(€,9:9) = L(2,ex) (2D, (e(9) @) (€0 (8)").
Take y € Yp. Define @, € S(VD3y) by ®,(z) = ®(xy) for x € ng. Put

Y= (Yy)p, e=c¢ex(y), vs=r30L,
Jo(9) = J3(9)

2 4%z

Cr(1)

v(§)

Hy (€, m(2)g; @y )ex(2)

dy&

2

/GLQ(K)/KXDyX Fx
for g € SLa(FE). The integral makes sense by Proposition .
Lemma 4.9. Let ® € S(V3). Then for g € G*

¥ (ng) = e(D)|ws(g)| " (J4 (d(vs(g) Mg) + Jg (dws(g) H)g))-
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Proof. Since f(g)) (nd(v)g) = k() éo) (ng) for all v € F* and g € Spg(F),

v

we may assume that g € SLo(E). Put

0 0|-1 0

11 1

wp = | Y 121 0 0 A=1{0 1 0

1 1 0l0 o | 00 1
0 0|0 1y

Then 7 = wym(A). Recall that

(D) (T1)ply) = / o(@)p((z, y)p) dz = / o(@)((z, y)p) dz

Vb Yp
for ¢ € S(Vp). We see therefore that for g € Spg(F')
(D)3 (ng) = (D)}, (wim(A)g)2(0)

:/yD Qng(m(A)g)(I)(x,0,0)dx:/ Q%“g)@(az,x,x) dz.

Yp
Take y € Yp. Employing (4.3), we rewrite the right hand side as a sum of
v(é)?
03, (1(9) P (20, (€ ‘Zy—dxzd £
/GLM)/KXD; /F Do) =0 D ey 7
It is equal to J¥(g) by (2.2) and Remark O
To simplify notation, we put
B =Ng/p(K™), B¢ =F*\ B, Br =B x B xB.

Let R>( be the set of non-negative real numbers. Fix a R>p-valued function
B € C°(E*) whose support is contained in Bg and such that f(au) = (a)
for a € Bg and u € 02 NBg. Let C = op. We choose a R>q-valued function
¢ € C°(F) so that

¢(1) =0, supp(¢) - C C supp(¢),
$a(0) = 1, supp(¢) N (1 - B°) = 0

and such that qAﬁa(x +v) = gﬁa(x) for € F' and v € Tg/p(supp(B) - 0p).
Here ¢o € S (F) is the Fourier transform of ¢ defined by

ba(b) = /F ¢(2)*(2b) doz

for b € F, where doz = |a|'/?dz is the self-dual Haar measure of F with
respect to Y. We can define a function Tg 4 00 Z3U N\ G* by

(5 1) (5 )%= dalTermpstad™

for b € E, a,d € E* with ad € B and k € GLa(0g) N G*. One can easily
verify that TS s 18 well-defined.
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We define a modified truncated partial zeta integral by
25w, @) = [ W) folm(e))75 o(8) de.
Z3UO\G*

Since Z*(W*, ®) is absolutely convergent and TS s 18 bounded, this integral
is absolutely convergent. Put

=15 = [ W) () e de.
Z3UO\G*
where € = ex((y,y)p). Then Lemma 4.9 gives
75 sV, @) = e(D) (I +157;).
Following [Ich0§]|, for given g € G*, we put

dXv
Wiole / o W (d(v)g)7s 4(n(z/3)d(v)g)v (vz — 2)|v|” Cpa(l)daz'

Then W ;(n(z)g) = ¢*(—Tg/r(2))W5 4(g) for z € E and g € G*.

Lemma 4.10. (1) If ex (@) # ¢, then I35 = 0.
(2) IfOé = (y7y)D7 then

7Y = |af

o Hy2 (6 & 2)WE o (d(w(§) ™) E) dEdy¢.

GLa(K)/K* Dy /U\SLZ (E)

Proof. To simplify notation, we write X, = GL2(K)/K* D,f. Changing the
variables g — m(z~!)g, we get

gr=hl [ [ [ oG e m e
zsuo0nGg Jx, JFx

< exc(2) H2 (€, d(vs(g) V) ) aw(6)? dx( 6

/ / / W(d(z u) )T/B ¢(d(z v)g)
F*2\B JUNSLy(E) Jx, JFx

HDY (6, 8 ®,)| 2w (€)2] 2 dyedigd s
r(1 )

by (4.2)). Combining the integrals over F'*?\B and F* into an integral over
B and integrating over U\ U, we obtain

Iavy X

B9 _ a N o\ 17Dy e e o d*v .
|v[2 _/UO\SLz /x/ WHAWIR)TE s (d(W)B)Hyy (&, 85 2y )liw (&) ‘CF( )dy&1g
)| « dav yeq
], i B T [ @z 0 g

where

Lyh(g.&v) = a1y /F%/Ja(Z/V)TE‘,¢(d(l/)n(Z/?’)g)W(V(é)Z) daz.
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Changing the variables z — vz, we get

LEi(g.&v) = o 2!/ V(@™ (v — 1)2)75,4(n(2/3)d(v)g) daz.
When g = diag(a,a ')k with a € EX and k € SLy(0g), we get
Lgi(g. & v) =la” ¥ |g(1 — o~y (&)v)Ba®v ™).

If o= ly E B¢, then L (g,f7 v) =0 for v € B due to our choice of ¢, which
proves

From now on we assume that o = 7. Recall that supp(8) C Bg. Thus
Lg’g(g,f, v) = 0 unless v € B, so that the integral over B can be replaced

by the integral over F*. Changing the variables v +— v(£) v, we get
d*v
2 e} a,y -1z -1
we( L e v) —— =lalT Wg 4 (d(v .
v(©)F [ W awRILEL &) S5 ~lal WS (e e)

Finally, we justify the manipulations above. Our task is to check that

/3€y /U\SLQ(E) /B/FWa(d(V)gm%w(b(g))‘b(ﬁyff(ﬁ)b)

o d*v
X |1/1/(£)|27'/37¢(n(z/3)d(1/) g) dzCT(U

is absolutely convergent. We have only to show that the integral

ZqQJ/ /EX /SL (0r) W (d(v)m(a)k)Q} ;(«(m(a)k))P(cz;yo(c))

x |v*B(a’v 1) a|~ 2dxydkdxadc

is absolutely convergent in view of the relative Cartan decomposition (3.2)).
Since the integral

v~ 1a?|(1-9/20 (ta, t 1 _ d*t
o o e ey WAlat avad
Fx Jpx Jpx v tad A tag | M m) [y Lag M 2]

is convergent for ®y € S(E?) and ¢ € S(F), the proof is complete. O
For each n € N we define ¢,, € C°(F) by
On(z) = [@| " P(@"2).

dgd,¢

Then - R
(¢n)o(b) = @a(w"D).
The functions ¢, satisfy the condition on ¢.
Take y € Yp with (y,y)p = a. Lemma gives

Z} 5, (W, ®) = e(D)ISY .
A function 73 on Z3U\G* is defined by

(36 8-
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forbe E, a,d € E* and k € GLa(0g) NG*. We consider a truncated partial
zeta integral defined by

zv @)= [ W) feln(e)ma(e) de
Z3UO\G*
Since le T8 6, (8) = T5(g) for g € G*, we have

lim 73, (W*, @) = Z5(W*, @)

n—oo

by the dominated convergence theorem. Put

W;(g) = W*(g)7s(8), $5g(v) = W5(d(v)g)v.
By the proof of Lemma 5.5 of [IchO§]

Wg,% /Qsﬁg ¢n() a”

for g € G*. Since @a(o) = $o(0) = 1, we arrive at
Jim W5, (8) = 95 g(1) = W5(e)-

As in the proof of Lemma 5.6 of [IchO8| one can interchange the integrals
with the limit as n — oo in Lemma [4.10|[2)), so that

HY (85 @)W (d(v(§) ™) &) dEd,¢.

A, o, = lo

GL2(K)/K* Dy /U\SLQ(E)
For each m € N we choose 3, € C°(E*), which satisfies the condition

on &, so that 0 < B,(a) < 1 and lim Sp(a) = 1 for a € Bg. Then

m—0o0
0 < 73,(9) <1and lim 75,(9) =1 for g € G*. Since Z*(W*,®) is
m—0o0
absolutely convergent, we can use the dominated convergence theorem to
interchange the integrals with the limit as m — oo to obtain

ZH (W, @) = lim_Zj; (W)
=¢(D) lim lim Iy

M—00 N—00 Bm7 n (D)’a’L(Q’EK)fljB(chp)
(cf. Remark ,

5. THE BASIC IDENTITY

5.1. Measures. We first choose Haar measures on various groups as follows.
Once and for all we fix a non-trivial additive character 1 =[], 1, of A/F.

For each place v of F' we take Haar measures d*z, = (p, (1 )|djv| of F} and

d*k, = ¢ Kv(l)%, where dz, and dk, are the self-dual measures on F,,
and K, with respect to ¥, and 9, o T, /p,, and a, (k,) = |ky|k, denotes
the normalized absolute value. We define the Tamagawa measure of A*
by d*z = c}l [1, d* 2, where cp denotes the residue of the complete zeta
function (p(s) = [, ¢r,(s) at s = 1. Let =’ be a gauge form on Dj; defined
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over F. Let d=/ be the measure on DIX<U associated to Z'. On D (A) we
take the Tamagawa measure

2 = e k(27 DR ] k. (D¢, (2)AE,.

Let d= be the quotient measure of d=" by d*k.

Let d*x = (JC?T“;QD be a D j-invariant gauge form on Yp, where dz is the dif-

ferential form dzjdzsdzsdzy on Vp for a system of coordinates x1, zo, x3, 24
of Vp over F. Recall the map p = 1 : D)z — Vp defined by p(&) = £o(£)"
for ¢ € Dy, and the subgroup U = Uy = {£ € Dy | p(§) = 1}. Let
uw = Z'/p*d*x be the gauge form on U determined by =’ and p*d*z (see
p. 12 of [Wei65]). We define the Tamagawa measure on U(A) by

dp = (p(2) 7' DR” [ [ ¢, (2)dpe.

Let dg”, dg’ and dh be the Tamagawa measures on Z3(A)\G(A), SLy(E)
and O(Vp, A), respectively.

5.2. Siegel Eisenstein series. Fix a maximal compact subgroup I of
GSpg(A). Let I3(s,ex) = ®,13(s,€x,) consist of all right IC-finite functions
f©) . GSpg(A) — C such that

F(d(t)n(z)m(a)g) = ex(det a)[t*(det a)’[*T! f©)(g)

for t € A*, z € Symy(A), a € GL3(A) and g € GSpg(A). The Eisenstein
series associated to f(5) € I3(s, ex) is defined by

E(g; f¥) = > ¥ (vg)
YEP3(F)\GSpg (F)

for s > 2. The series has meromorphic continuation to the whole s-plane
and has no poles on the unitary axis s = 0.

Define the character dp, of P3(A) by dp,(d(t)n(z)m(a)) = [t|73|det al?.
We extend dp, to the right K-invariant function on GSpg(A) by the Iwasawa
decomposition. Let ® = ®,®, € S(V3(A)). Set fo(g) = [, fo,(gs) for

g = (9v) € GSpg(A)*. Recall that f; is extended to a section fés) of I3(s, €x)
by /5" (9) = 6,(9)" /3 (9) for g € GSpg(A).
We associated to ® the series defined for s > 2 and g € GSpg(A)* by
E(s,g;®) = > 3y (79)° fo(79)-
YEP(F)*\GSpg (F)*
We extend E(s, g; @) to a left GSpg(F')-invariant function on
Gx = GSpg(F)GSpg(A)" = {g € GSps(A) | v3(g) € F*B}.

The subgroup B of A* is defined in Definition The set G is a subgroup
of GSpg(A) of index 2 as F*B = F*Ng,p(K*). The series (s, g; ®) is

related to E(g; fés)) in the following way:
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Proposition 5.1. (1) If g € Gk, then E(g; fés)) =E&(s,9;P).
(2) If g ¢ Gxc. then lim B(g; fg”) = 0.
Proof. The first statement is clear from GSpg(F') = P3(F)GSpg(F)*. Sup-
pose that ® = ®,®, is factorizable. Take an idele a ¢ F*B. Note that
0 _ _
150 (9d(a) = |a[ 03, ,(d(a) ' gd(a)) 2(0)
for g € Spg(A). Then

0, ., (d(a0) " god(ar)) = QF, yav(g0)
is the local Weil representation associated to the dual pair Spg(F,) x O(Vp').
By Remark there exists no global quadratic space with ng as its com-

pletions. In other words, the series E(gd(a); fés)) is incoherent and vanishes
at s = 0 by Theorem 3.1(ii) of [KR94]. O

5.3. The Siegel-Weil formula. When D is not split, the theta integral
is defined, for g € GSpg(A)* and ® € S(V3(A)), by

0(g; ®) = / O(hh', g; ®)dh,
O(Vp,F)\O(Vp,A)

where ' € GO(Vp, A) with v(h') = v3(g). It does not depend on the choice
of h/. Here the Haar measure dh gives O(Vp, F)\O(Vp, A) volume 1. In the
case D ~ Ma(K) the theta integral can be defined by regularization (see
[KR94]). The group B =BNF* consists of ideles v(h) with h € GO(Vp, F)
by Eichler’s norm theorem. It follows from Remark [2.6] that

0(2v9; @) = ek (2)0(g; @)
for z € Z3(A), v € GSpg(F)* and g € GSpg(A)*.
The Siegel-Weil formula is now stated as follows:

£(0,g; @) = 20(g; ).

The reader who has interested in this formula can consult [HK91, Theorem
4.1] or [KR94, Theorem 6.12].

5.4. The seesaw identity. Put E = A x A x A. Let II be an irreducible
cuspidal automorphic representation of GLg(E) whose central character has
the restriction ex to A*. For a cusp form F = f; ® fo ® f3 € II and
D = 1 ® oy ® p3 € S(V(A)) the global zeta integral is defined by

Z(F, §9) = / F(&")E((g"); /) dg",
Z3(A)G(F)\G(A)

where dg” is the Tamagawa measure of Z3(A)\G(A).
We consider the period integral I, which is an element of

D D D
HomD;((A) (T x @ Tk @73k, C),
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defined by

I(¢1 ® ¢ ® ¢3) = $1(8)P2(&)9s3(&) dE,

/H<XD;X<(F)\D;X<(A)
where d¢ is the Tamagawa measure on K*\ D (A). Put
H-= {(hl,hg, hg) S GO(VD)3 ’ V(hl) = V(hg) = I/(hg)},
G(A)* = G(A) N GSpg(A)*™.
Let F=fi® fo® fselland & = ¢ ® p2 ® 3 € S(VB(A)). We write
3
o(hs 7. 8) = [[ s fio) = [ F(g)O(h; (g'gn), @) dg’
i SLz(E)\SLz(E)

for h = (hi, ha, hg) € H(A), where g, € G(A) with det(g) = v(h) and dg’
denotes the Tamagawa measure of SLy(E).

Proposition 5.2 (The seesaw identity).
lim Z(F, £ = 1(6(F, @)).
S—

Proof. Let Gg = G(F)G(A)* = G(A)NGk be a subgroup of G(A) of index
2. Since the function g — E(u(g); £*)) is the extension of £(0,:(g); ®) by
zero from G to G(A) by Proposition

lim Z(F, £)) = / F(g"E(0, (g"); ) dg”"
570 Z5(A)G(F)\Gx
The Siegel-Weil formula gives

lim Z(F, ) = 2 F(g")0(u(g"); @) g,
s—

/zg(A)G<F>*\G<A>*

where G(F)* = G(F) N G(A)*. Since Z3\G =~ PGLy x (SLy x SLg), the
Tamagawa measure dg” gives the domain Z3(A)G(F)*\G(A)* volume 1.
Now we apply the seesaw pair:

0(h; F,®) GSpﬁ 0(g; @
1 GO VD><

Set C := BA*?\B. Note that
Z3(A)G(F)*SLy(E)\G(A)* ~ Zp(A)GO(Vp, F)O(Vp, A)\GO(Vp,A) ~ C

is compact. Fix a Haar measure dc giving C volume 1. We have

L F(g)00(g") @) dg"
J\G(A)*

/ / Fl(g'ge) / O(hhe, (g'g.); ®) dhdg'de
SL2(E)\SLa(E O(Vp,F)\O(Vp,A)
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:// O(hhe; F, @) dhde
C JO(Vp,F)\O(Vp,A)

_ / O(h; F, @) dh.
Z5(B)GO(V, F)\GO(Vi,A)

This integral factorizes into the product of local invariant trilinear forms
constructed in Section [3| by Prasad’s uniqueness theorem. Put

H = (G, x D{) x (t), H’=G,, x Df, Zgo = Gm x Rg/pGm.
Recall the homomorphism p : H — GO(Vp) defined in . Since dh gives
Zp(A)GO(Vp, F)\GO(Vp, A)

volume 1, we have

2/ C 0(ph): F. @) dh
Zo (WP N\ (8)

:2/ i ~ O(p(h); F,®@)dh
Zgo(A)HO(F)\HO(4)

— / 6(¢: F, @) de.
KX D (F)\D (&)

If v is inert, then D _-invariant trilinear forms are invariant under the action
of t by Lemma The analogous invariance holds for split places. There-
fore the integral over Zgo(A)H(F)\H(A) can be replaced by the integral
over Zzo(A)HO(F)\H"(A) in the second line. O
5.5. The proof of Theorem We hereafter require the base change

IIx to be cuspidal. We write L(s,II,) for the triple product L-factor of II,.
The epsilon factor is defined by the relation

8(87 H’U7 w’v) = 7(87 Hm 1/)’1))

Clearly, e(I1,) = v(II,) if II,, is self-dual.
For a quaternion algebra D over F' we consider the following condition:

(1) €(Dy) # —ex(—1)v(I1,) for all v.

Proposition 5.3. (1) If D satisfies (1), then it satisfies (JL) and (Per).
(2) If there exists a place v such that y(I1,)? # 1, then there is a quater-
nion algebra which satisfies (1).

L(s,11,)
L(l -8, Hl\)/) '

Proof. Since Dk, ~ Ma(K,) unless K, ~ F, x F,, the Jacquet-Langlands
lift 72 exists if and only if the local Jacquet-Langlands lift 72 of 7, to DX
exists for all the split places v.

Assume that D satisfies (). Then the functional fgv is non-vanishing

for all v by Theorem A fortiori, 7er” exists and B, B2 4, B3, are non-

vanishing. Thus 7TID< exists. For B; to be non-vanishing there is no global

obstruction in view of Propositions and[2.11)(2). Hence (#) implies (Per).
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If the cardinality of the residue field of op, is sufficiently large, then
L(3,1L,)# —L(%,11Y) in view of Remark (3.4 .. It follows that 'y( v) #—1
for all but finitely many places of F'. One can now trivially prove (2)) by the
Minkowski-Hasse theorem. ([l

We are now ready to prove the central value formula. From now on we
assume that D satisfies (f). We denote the Jacquet-Langlands lift of IIx to
(Dg @ E)* by H%. Take p = 91 ® P2 R d3 = Ry, € H% so that

B(p) := B1(¢1)Ba(p2)B3(¢3) # 0.

Recall the functionals Bt1 and I} defined in § By by Remark E and

Lemma Ih makes sense. Set ,%’5 = Bi v Bz,v ®Bhﬂ]. The formula stated
in Theorem [I.3]is equivalent to the following formula:

o) _,s  Sr(2PL(5,1) 1 I(p)
B(p) LLAAM @ex) L1 28(0p,)

_ If 7 has the factorizable Whittaker function W = @, W, with respect to
1 and if ® = ®,P, is factorizable, then

L%(s+ £,10)
Z(F, Z(Wa, £ 2 Z(Wy, £,
) H vl LS(zs+2,6K)gl§(45+2)Ugq Wo fa,)
where S = Sf, o, U S}, 0, USf, 0. Take F € Il and @ = ®,P, € S(V3(A))
so that 0(F, ®) = . Let W = [[, W, be the Whittaker function of F with
respect to ¢. The formula (4.6 remains true at split places of F (cf. p. 296
of [Ich08]). Hence Proposition gives

LS
I(0(F,®)) = TG a0 CF v]ng
= (p(2) IEOOW,, By)
P07 (5 >g
Since
3
‘@(SO) = CF(2)3 L(lvAd(H) ® GK) ’ 1:['@5(9011)

by Proposition [2.11] we have thus completed our proof.
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