
ON THE NON-VANISHING OF HECKE L-VALUES MODULO p
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Abstract. In this article, we follow Hida’s approach to establish an analogue of Washington’s theorem on
the non-vanishing modulo p of Hecke L-values for CM fields with anticyclotomic twists.
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Introduction

The purpose of this paper is to study the non-vanishing modulo p property of Hecke L-values for CM fields
via arithmetic of Eisenstein series. Let F be a totally real field of degree d over Q and K be a totally imaginary
quadratic extension of F . Let Σ be a CM type of K. Then we can attach the CM period Ω∞ = (Ω∞,σ)σ ∈
(C×)Σ to a Néron differential on an abelian scheme A/Z of CM type (K, Σ). Let p > 2 be a rational prime
and let ` 6= p be a rational prime and l be a prime of F above `. Let c be the nontrivial element in Gal(K/F).
We fix an arithmetic Hecke character χ of K× with infinity type kΣ + κ(1− c), where k is a positive integer
and κ = Σσ∈Σκσσ with integers κσ ≥ 0. For a multi-index κ =

∑
σ∈Σ κσσ ∈ Z[Σ], we write Ωκ∞ = Ωκσ∞,σ and

aκ = a
∑
σ κσ for a ∈ C×.

Let Kln be the ray class field of conductor ln and let Kl∞ = ∪nKln . Let K−l∞ be the maximal pro-`
anticyclotomic extension of K in Kl∞ and let Γ− = Gal(K−l∞/K). Let X−l be the set of finite order characters
of Γ−. For every ν ∈ X−l , we consider the complex number

Lalg,l(0, χν) :=
πκΓΣ(kΣ + κ)L(l)(0, χν)

ΩkΣ+2κ
∞

,

where ΓΣ(kΣ+κ) =
∏
σ∈Σ Γ(k+κσ). It is known that Lalg,l(0, χν) ∈ Z(p) if p is uramified in F and prime to

the conductor of χ . We are interested in the non-vanishing property of Lalg,l(0, χν) modulo p when ν varies
in X−l . To be precise, we fix two embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Cp once and for all and let m be the
maximal ideal of Z(p) induced by ιp. We ask if the following non-vanishing modulo p property holds for (χ, l).

(NV) ι−1
∞ (Lalg,l(0, χν)) 6≡ 0mod m for almost all ν ∈ X−l .

Here almost all means "except for finitely many ν ∈ X−l " if dimQ`
Fl = 1 and "Zariski dense subset of X−l " if

dimQ`
Fl > 1 (See [Hid04a, p.737]).

This problem has been studied extensively by Hida for general CM fields in [Hid04a] and [Hid07] under
the hypothesis that Σ is p-ordinary and by T. Finis in [Fin06] for imaginary quadratic fields under a different
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hypothesis. Let τK/F be the quadratic character associated to K/F and DK/F be the different of K/F . Let
C be the conductor of χ. The following theorem is proved by Hida in [Hid07].

Theorem. Suppose that Σ is p-ordinary and p > 2 is unramified in F . If (pl,C) = 1 and C is a product
of split prime factors over F , then (NV) holds for (χ, l) unless the following three conditions are satisfied
simultaneously:
(M1) K/F is unramified everywhere,
(M2) τK/F (c) has value −1, where c is the polarization ideal of A/Z,
(M3) For all ideal a of F prime to pC, χNF/Q(a) ≡ τK/F (a) (mod m).

We shall say χ is residually self-dual if the condition (M3) holds for χ. By [Hid10, Lemma 5.2], the
hypotheses (M1-3) is equivalent to the condition (V): χ is residually self-dual, and the root number associated
to χ is congruent to −1 modulo m.

We are mainly concerned about the (NV) property of self-dual characters. Recall that χ is self-dual if
χ|A×F = τK/F |·|AF . Such characters are of its own interest because an important class of them arises from
Hecke characters associated to CM abelian varieties over totally real fields (cf. [Shi98, Thm.20.15]). Note
that as the conductor of self-dual characters by definition is divisible by ramified primes, these characters
in general are not covered in Hida’s theorem unless K/F is unramified. Our main motivation for the (NV)
property of self-dual characters is the application to Iwasawa main conjecture for CM fields (cf. [Hid07] and
[Hsi11]). In our subsequent work [Hsi11], this property is used to show the non-vanishing modulo p of the
period integral of certain theta functions which is related to Fourier-Jacobi coefficients of Eisenstein series on
unitary groups of degree three. When K is an imaginary quadratic field and l splits in K, the problem of the
non-vanishing modulo p of Hecke L-values associated to self-dual characters has been solved completely by T.
Finis in [Fin06] through direct study on the period integral of theta functions modulo p (self-dual characters
are called anticyclotomic in [Fin06]).

We shall state our main result after preparing some notation. Write C = C+IR, where C+, I and R are a
product of split, inert and ramified prime factors over F respectively. Let vp be the p-adic valuation induced
by ιp. For each v|C−, let µp(χv) be the local invariant defined by

µp(χv) := inf
x∈K×v

vp(χ(x)− 1).

Note that µp(χv) agrees with the one defined in [Fin06] when χ is self-dual. Following Hida, we make the
following hypotheses for (p,K, Σ):

p > 2 is unramified in F ;(unr)

Σ is p-ordinary.(ord)

Our main result is as follows.

Theorem A. Let χ be a self-dual Hecke character of K× such that
(L) µp(χv) = 0 for every v|C−,
(R) The global root number W (χ∗) = 1, where χ∗ := χ|·|−

1
2

AK
,

(C) R is square-free.
In addition to (unr), (ord), we further assume

• (pl,DK/FC) = 1,
• l splits in K.

Then (NV) holds for (χ, l).

Note that as χ is self-dual, the assumption (R) is equivalent to Hida’s condition (V). Indeed, the assumptions
(L) and (R) are necessary for the (NV) property. The assumption (R) is due to the functional equation of the
complex L-function L(s, χ), and the failure of (NV) without (L) has been observed by Gillard (cf. [Fin06,
Theorem 1.1]). We remark that our result in particular can be applied to Hecke characters attached to
certain CM elliptic curves over totally real fields. For example, let E be an elliptic curve over F with CM
by an imaginary quadratic field M. Let K = FM and let χ be the Hecke character of K× such that
L(s, χ−1) = L(E/F , s). Then it is well known that the assumptions (L) and (C) hold if (DK/F ,#(O×M)) = 1
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and p > 3. In general, (C) is expected to be unnecessary. The very reason we impose them is due to the
difficulty of the computation of certain Gauss sums Aβ(χ) = Aβ(χs)|s=0 defined in (4.14). We leave the
removal of (C) to our forthcoming paper [Hsi14, §6].

We also consider the case χ is not residually self-dual. In particular, this implies the failure of (V). We
prove the following result in Corollary 6.5, which gives a partial generalization of Hida’s theorem.

Theorem B. Suppose that (unr), (ord) and (pl,DK/FC) = 1. Suppose further that the following conditions
hold:

(L) µp(χv) = 0 for every v|C−,
(N) χ is not residually self-dual.

Then (NV) holds for (χ, l).

The proof is based on Hida’s ideas in [Hid04a], where Hida provided a general strategy to study the problem
of the non-vanishing of Hecke L-values modulo p via a study on the Fourier coefficients of Eisenstein series.
The starting point of Hida is Damerell’s formula, which relates a sum of suitable Eisenstein series evaluated
at CM points to Hecke L-values for CM fields. And then he proves a key result on Zariski density of CM
points in Hilbert modular varieties modulo p, by which he is able to reduce the problem to non-vanishing
of an Eisenstein series modulo p using a variant of Sinnot’s argument. The assumption that C is a product
of split primes solely results from the difficulty of the calculation of Fourier coefficients of Eisenstein series.
Following Hida’s strategy, we first construct an Eisenstein measure which interpolates the Hecke L-values by
the evaluation at CM points. The construction of our Eisenstein measure is from representation theoretic
point of view, and Damerell’s formula is actually a period integral of Eisenstein series against a non-split
torus. Fourier coefficients of our Eisenstein series are decomposed into a product of local Whittaker integrals.
Through an explicit calculation of these local integrals, we find that some Fourier coefficient is non-zero modulo
p provided that certain epsilon dichotomy holds (See Proposition 6.7).

Here is the outline of this article. We fix notation and recall some basic facts about Hilbert modular varieties
and CM points in the first three sections. We basically follow the exposition in [Hid04a] except that we use an
adelic description of CM points. Readers who are familiar with [Hid04a] may begin with §4, which is the bulk
of this paper. In §4, we give the construction of Eisenstein series and the calculation of some local Whittaker
integrals. The formulas of the key integrals Ãβ(χ) are summarized in Proposition 4.4 and Proposition 4.5.
The explicit calculation of the period integral of our Eisenstein series is carried out in §5. Finally we show
some Fourier coefficient of our Eisenstein series is non-zero modulo p in §6.

Acknowledgments. The author would like to thank Prof. Hida for helpful email correspondence during prepa-
ration of this article. Also the author would like to thank Prof. Sun, Hae-Sang for useful conversation during
the stay in Korea Institute of Advanced Study in September 2009. Finally, the author is very grateful to the
referee for many valuable suggestions on the improvements of our main results (especially on Lemma 6.4 and
Corollary 6.5) in the previous version of this manuscript.

1. Notation and definitions

1.1. Throughout F is a totally real field of degree d over Q and K is a totally imaginary quadratic extension
of F . Let c be the complex conjugation, the unique non-trivial element in Gal(K/F). Let O (resp. R) be the
ring of integer of F (resp. K). Let DF (resp. DF ) be the different (resp. discriminant) of F/Q. Let DK/F be
the different of K/F . For every fractional ideal b of O, set b∗ = b−1D−1

F . Denote by a = Hom(F ,C) the set
of archimedean places of F . Denote by h (resp. hK) the set of finite places of F (resp. K). We often write
v for a place of F and w for the place of K above v. Denote by Fv the completion of F at v and by $v a
unifomrmizer of Fv. Let Kv = Fv ⊗F K.

Fix two rational primes p 6= `. Let l be a prime of F above `. Let Σ be a fixed CM type of K as in the
introduction. We shall identify Σ with a by the restriction to F . We assume (unr) and (ord) for (p,K, Σ)
throughout this article. Let

Σp = {w ∈ hK | w|p and w is induced by ιp ◦ σ for σ ∈ Σ} .
We recall that Σ is p-ordinary if Σp ∩Σpc = ∅ and Σp ∪Σpc = {w ∈ hK | w|p}. Note that (ord) implies that
every prime of F above p splits in K.
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1.2. If L is a number field, AL is the adele of L and AL,f is the finite part of AL. The ring of integers of L
is denoted by OL. For a ∈ AL, we put

ilL(a) := a(OL ⊗ Ẑ) ∩ L.

Let ψQ be the standard additive character of AQ/Q such that ψQ(x∞) = exp(2πix∞), x∞ ∈ R. We define
ψL : AL/L→ C× by ψL(x) = ψQ ◦ TL/Q(x). For β ∈ L, ψL,β(x) = ψL(βx). If L = F , we write ψ for ψF .

We choose once and for all an embedding ι∞ : Q ↪→ C and an isomorphism ι : C ' Cp, where Cp is the
completion of an algebraic closure of Qp. Let ιp = ιι∞ : Q ↪→ Cp be their composition. We regard L as a
subfield in C (resp. Cp) via ι∞ (resp. ιp) and Hom(L,Q) = Hom(L,Cp).

Let Z be the ring of algebraic integers of Q and let Zp be the p-adic completion of Z in Cp with the maximal
ideal mp. Let m = ι−1

p (mp).

1.3. Let F be a local field. Denote by |·|F the absolute value of F . We often drop the subscript F if it is
clear from the context. We fix the choice of our Haar measure dx on F . If F = R, dx is the Lebesgue measure
on R. If F = C, dx is the twice the Lebesgue measure. If F is a non-archimedean local field, dx (resp.
d×x) is the Haar measure on F (resp. F×) normalized so that vol(OF , dx) = 1 (resp. vol(O×F ,d×x) = 1). If
µ : F× → C× is a character of F×, define

a(µ) = inf
{
n ∈ Z≥0 | µ|1+$nvOv

= 1
}
.

2. Hilbert modular varieties and Hilbert modular forms

2.1. We follow the exposition in [Hid04b, §4.2]. Let V = Fe1 ⊕ Fe2 be a two dimensional F-vector space
and 〈 , 〉 : V×V → F be the F-bilinear alternating pairing defined by 〈e1, e2〉 = 1. Let L = Oe1 ⊕ O∗e2 be
the standard O-lattice in V . Let G = GL2 /F . We identify vectors in V with row vectors according to the
basis e1, e2, so G has a natural right action on V .

For each finite place v of F , we put

K0
v = {g ∈ G(Fv) | (L ⊗O Ov)g = L ⊗O Ov} .

Let K0 =
∏
v∈hK

0
v and K0

p =
∏
v|pK

0
v . For a prime-to-p` positive integer N , we define an open-compact

subgroup U(N) of G(AF,f ) by

(2.1) U(N) := {g ∈ G(AF,f ) | g ≡ 1 (mod NL )} .

Let K be an open-compact subgroup of G(AF,f ) such that Kp = K0
p . We assume that K ⊃ U(N) for some

N as above and that K is sufficiently small so that the following condition holds:

(neat) K is neat and det(K) ∩O×+ ⊂ (K ∩O×)2.

2.2. Kottwitz models. We first review Kottwitz models of Hilbert modular varieties.

Definition 2.1 (S-quadruples). Let � be a finite set of rational primes and letW(�) = Z(�)[ζN ], ζ = exp( 2πi
N ).

Define the fibered category A(�)
K over SCH/W(�)

as follows. Let S be a locally noethoerian connected W(�)-
scheme and let s be a geometric point of S. Objects are abelian varieties with real multiplication (AVRM)
over S of level K, i.e. a S-quadruple A = (A, λ̄, ι, η(�))S consisting of the following data:

(1) A is an abelian scheme of dimension d over S.
(2) ι : O ↪→ EndS A⊗Z Z(�) .
(3) λ is a prime-to-� polarization of A over S and λ̄ is the O(�),+-orbit of λ. Namely

λ̄ = O(�),+λ :=
{
λ′ ∈ Hom(A,At)⊗Z Z(�) | λ′ = λ ◦ a, a ∈ O(�),+

}
.

(4) η(�) = η(�)K(�) is a π1(S, s)-invariantK(p)-orbit of isomorphisms of OK-modules η(�) : L ⊗ZA
(�)
f

∼→
V (�)(As) := H1(As,A

(�)
f ). Here we define η(�)g for g ∈ G(A

(�)
F,f ) by η(�)g(x) = η(�)(g ∗ x).

Furthermore, (A, λ̄, ι, η(�))S satisfies the following conditions:
• Let t denote the Rosati involution induced by λ on EndS A⊗ Z(�) . Then ι(b)t = ι(b), ∀ b ∈ O.
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• Let eλ be the Weil pairing induced by λ. Lifting the isomorphism Z/NZ ' Z/NZ(1) induced by ζN to
an isomorphism ζ : Ẑ ' Ẑ(1), we can regard eλ as an F-alternating form eλ : V (�)(As)×V (�)(As)→
D−1
F ⊗Z A

(�)
f . Let eη denote the F-alternating form on V (�)(As) induced by eη(x, x′) = 〈xη, x′η〉.

Then
eλ = u · eη for some u ∈ A

(�)
F,f .

• As O⊗Z OS-modules, we have an isomorphism LieA ' O⊗Z OS locally under Zariski topology of S.
For two S-quadruples A = (A, λ̄, ι, η(�))S and A′ = (A′, λ′, ι′, (η′)(�))S , we define the morphisms by

HomA(�)
K

(A,A′) =
{
φ ∈ HomO(A,A′) | φ∗λ′ = λ̄, φ ◦ (η′)(�) = η(�)

}
.

We say A ∼ A′ (resp. A ' A′) if there exists a prime-to-� isogeny (resp. isomorphism) in HomA(�)
K

(A,A′).

We consider the cases when � = ∅ and {p}. When � = ∅ is the empty set and W(�) = Q(ζN ), we define
the functor EK : SCH/Q(ζN ) → SETS by

EK(S) =
{
A = (A, λ̄, ι, η)S ∈ AK(S)

}
/ ∼ .

By the theory of Shimura-Deligne, EK is represented by a quasi-projective scheme ShK over Q(ζN ). We define
the functor EK : SCH/Q → SETS by

EK(S) =
{

(A, λ̄, ι, η) ∈ A(�)
K (S) | η(�)(L ⊗Z Ẑ) = H1(As, Ẑ)

}
/ ' .

By the discussion in [Hid04b, p.136], we have EK
∼→ EK under the hypothesis (neat).

When � = {p}, we write W for W(p) and define functor E(p)
K : SCH/W → SETS by

E(p)
K (S) =

{
A = (A, λ̄, ι, η(p))S ∈ A(p)

K(p)(S)
}
/ ∼ .

In [Kot92], Kottwitz shows E(p)
K is representable by a quasi-projective scheme Sh(p)

K over W if K is neat.
Similarly we define the functor E(p)

K : SCH/W → SETS by

E
(p)
K (S) =

{
(A, λ̄, ι, η(p)) ∈ A(p)

K (S) | η(p)(L ⊗Z Ẑ(p)) = H1(As, Ẑ
(p))
}
/ ' .

It is shown in [Hid04b, §4.2.1] that E(p)
K
∼→ E(p)

K .

2.3. Igusa schemes. For each positive integer n, put

Kn :=

{
g = (gv) ∈ K | gp ≡

(
1 ∗
0 ∗

)
(mod pn)

}
Definition 2.2 (S-quintuples). Let n be a positive integer. We define the fibered category A(p)

K,n whose
objects are AVRM over an W-scheme of level Kn, i.e. a S-quintuple (A, j)S consisting of a S-quadruple
A = (A, λ̄, ι, η(p)) ∈ A(p)

K(p)(S) and a monomorphism

j : O∗ ⊗ µpn ↪→ A[pn]

as O-group schemes over S. We call j a level-pn structure of A. Morphisms are

HomA(p)
K,n

((A, j), (A′, j′)) =

{
φ ∈ HomA(p)

K(p)

(A,A′) | φj = j′
}
.

Define the functor I(p)
K,n : SCH/W → SETS by

I
(p)
K,n(S) =

{
(A, j) = (A, λ̄, ι, η(p), j)S ∈ A(p)

K,n(S) | η(p)(L ⊗Z Ẑ(p)) = T (p)(A)
}
/ ' .

It is known that I(p)
K,n are relatively representable over E(p)

K (cf. [SGA64, Prop. 3.12]), so it is represented by
a scheme over W, which we denote by IK,n.

For n ≥ n′ > 0, the natural morphism πn,n′ : IK,n → IK,n′ induced by the inclusion O∗⊗µpn′ ↪→ O∗⊗µpn
is finite étale . The forgetful morphism π : IK,n → Sh

(p)
K defined by π : (A, j) 7→ A are étale for all n > 0.

Hence IK,n is smooth over SpecW. The image of π is the pre-image of ordinary abelian schemes in IK,n⊗ F̄p.
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2.4. Complex uniformization. We describe the complex points ShK(C). Put

X+ = {τ = (τσ)σ∈a ∈ Ca | Im τσ > 0 for all σ ∈ a} .

Let F+ be the set of totally positive elements in F and let G(F)+ = {g ∈ G(F) | det g ∈ F+}. Define the
complex Hilbert modular variety by

M(X+,K) := G(F)+\X+×G(AF,f )/K.

It is well known that M(X+,K)
∼→ ShK(C) by the theory of abelian varieties over C.

For τ = (τσ)σ∈a ∈ X+, we let pτ be the period map V ⊗Q R
∼→ Ca defined by pτ (ae1 + be2) = aτ + b,

a, b ∈ F ⊗Q R = Ra. We can associate a AVRM to (τ, g) ∈ X+×G(AF,f ) as follows.

• The complex abelian variety Ag(τ) = Ca/pτ (Lg), where Lg := (L ⊗Z Ẑ)g−1 ∩ V .
• The F+-orbit of polarization 〈 , 〉can on Ag(τ) is given by the Riemann form 〈 , 〉 ◦ p−1

τ .
• The ιC : O ↪→ EndAg(τ)⊗Z Q is induced from the pull back of the natural F-action on V via pτ .
• The level structure ηg : L ⊗Z Af

∼→ (g ∗L )⊗Z Af = H1(Ag(τ),Af ) is defined by ηg(v) = vg−1.

Let Ag(τ) denote theC-quadruple (Ag(τ), 〈 , 〉can, ι,Kηg). Then [(τ, g)] 7→ [Ag(τ)] gives rise to an isomorphism
M(X+,K)

∼→ ShK(C).
Let z = {zσ}σ∈a be the standard complex coordinates of Ca and dz = {dzσ}σ∈a. Then O-action on dz

is given by ιC(α)∗dzσ = σ(α)dzσ, σ ∈ a = Hom(F ,C). Let z = zid be the coordinate corresponding to
ι∞ : F ↪→ Q ↪→ C. Then

(2.2) (O ⊗Z C)dz = H0(Ag(τ),ΩAg(τ)/C).

2.5. Hilbert modular forms.

2.5.1. For τ ∈ C and g =

[
a b
c d

]
∈ GL2(R), we put

(2.3) J(g, τ) = cτ + d.

For τ = (τσ)σ∈a ∈ X+ and g∞ = (gσ)σ∈a ∈ G(F ⊗Q R), we put

J(g∞, τ) =
∏
σ∈a

J(gσ, τσ).

Definition 2.3. Denote by Mk(K,C) the space of holomorphic Hilbert modular form of parallel weight k
and level K. Each f ∈ Mk(K,C) is a C-valued function f : X+×G(AF,f ) → C such that the function
f(−, gf ) : X+ → C is holomorphic for each gf ∈ G(AF,f ) and

f(α(τ, gf )u) = J(α, τ)kΣf(τ, gf ) for all u ∈ K and α ∈ G(F)+.

2.5.2. Fourier expansion. For every f ∈Mk(K,C), we have the Fourier expansion

f(τ, gf ) =
∑

β∈F+∪{0}

Wβ(f , gf )e2πiTF/Q(βτ).

We call Wβ(f , gf ) the β-th Fourier coefficient of f at gf .
For a semi-group L in F , let L+ = F+ ∩ L and L≥0 = L+ ∪ {0}. If B is a ring, we denote by BJLK the set

of all formal series ∑
β∈L

aβq
β , aβ ∈ B.

Let a, b ∈ (A
(pN)
F,f )× and let a = ilF (a) and b = ilF (b). The q-expansion of f at the cusp (a, b) is given by

(2.4) f |(a,b)(q) =
∑

β∈(N−1ab)≥0

Wβ(f ,

[
b−1 0
0 a

]
)qβ ∈ CJ(N−1ab)≥0K.

If B is a W-algebra in C, we put

Mk(K,B) =
{
f ∈Mk(K,C) | f |(a,b)(q) ∈ BJ(N−1ab)≥0K at all cusps (a, b)

}
.
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2.5.3. Tate objects. Let S be a set of d-linear Q-independent elements in Hom(F ,Q) such that l(F+) > 0
for l ∈ S . If L is a lattice in F and n a positive integer, let LS ,n = {x ∈ L | l(x) > −n for all l ∈ S }
and put B((L; S )) = lim

n→∞
BJLS ,nK. To a pair (a, b) of two prime-to-pN fractional ideals , we can attach

the Tate AVRM Tatea,b(q) = a∗ ⊗Z Gm/qb over Z((ab; S )) with O-action ιcan. As described in [Kat78],
Tatea,b(q) has a canonical ab−1-polarization λcan and also carries ωcan a canonical O⊗Z((ab; S ))-generator
of ΩTatea,b induced by the isomorphism Lie(Tatea,b(q)/Z((ab;S ))) = a∗ ⊗Z Lie(Gm) ' a∗ ⊗ Z((ab; S )). Let

La,b = L ·
[
b

a−1

]
= be1 ⊕ a∗e2. Then we have a level N -structure ηcan : N−1La,b/La,b

∼→ Tatea,b(q)[N ]

over Z[ζN ]((N−1ab; S )) induced by the fixed primitive N -th root of unity ζN . We write Tatea,b for the
Tate Z((ab; S ))-quadruple (Tatea,b(q), λcan, ιcan, η

(p)
can) at (a, b). In addition, since a is prime to p, we let

η0
p,can : O∗ ⊗Z µpn = a∗ ⊗Z µpn ↪→ Tatea,b(q) be the canonical level pn-structure induced by the natural
inclusion a∗ ⊗Z µpn ↪→ a∗ ⊗Z Gm.

2.5.4. Geometric modular forms. We collect here definitions and basic facts of geometric modular forms. For
the precise theory, we refer to [Kat78] or [Hid04b]. Let T = ResO/Z Gm and κ ∈ Hom(T,Gm). Let B be a
Z(p)-algebra. Consider [A] = [(A, λ, ι, η(p))] ∈ EK(C) for a B-algebra C with a differential form ω generating
H0(A,ΩA/C) over O ⊗Z C. A geometric modular form f over B of weight κ and level K is a functorial rule
of assigning a value f(A,ω) ∈ C satisfying the following axioms.
(G1) f(A,ω) = f(A′,ω′) ∈ C if (A,ω) ' (A′,ω′) over C,
(G2) For a B-algebra homomorphism ϕ : C → C ′, we have

f((A,ω)⊗C C ′) = ϕ(f(A,ω)),

(G3) f(A, aω) = κ(a−1)f(A,ω) for all a ∈ T (C) = (O ⊗Z C)×,
(G4) f(Tatea,b,ωcan) ∈ B[ζN ]J(N−1ab)≥0K at all cusps (a, b).

For a positive integer k, we regard k ∈ Hom(T,Gm) as the character t 7→ NF/Q(t)k. We denote byMk(K,B)
the space of geometric modular forms over B of weight k and level K.

For each f ∈Mk(K,C), we regard f as a holomorphic Hilbert modular form of weight k and level K by

f(τ, gf ) = f(Ag(τ), 〈 , 〉can, ιC, ηg, 2πidz),

where dz is the differential form in (2.2). By GAGA principle, this gives rise to an isomorphismMk(K,C)
∼→

Mk(K,C). As discussed in [Kat78, §1.7], the evaluation f(Tatea,b,ωcan) is independent of the auxiliary choice
of S in the construction of the Tate object. Moreover, we have the following important identity which bridges
holomorphic modular forms and geometric modular forms.

f |(a,b)(q) = f(Tatea,b,ωcan) ∈ CJ(N−1ab)≥0K.

By q-expansion principle, if B is W-algebra in C, thenMk(K,B) = Mk(K,B).

2.5.5. p-adic modular forms. Let B be a p-adic ring in Cp. Let V (K,B) be the space of Katz p-adic modular
forms over B defined by

V (K,B) := lim←−
m

lim−→
n

H0(IK,n/B/pmB ,OIK,n).

In other words, Katz p-adic modular forms are formal functions on Igusa towers.
Let C be a B/pmB-algebra. For each C-point [(A, j)] ∈ lim−→m

lim←−n IK,n(C), the level p∞-structure j induces
an isomorphism j∗ : O∗ ⊗Z Lie(Ĝm/C) = O∗ ⊗Z C

∼→ Lie(A). Let dt/t be the canonical invariant differential
form of Ĝm. Then j∗dt/t := dt/t◦j∗ is a generator of H0(A,ΩA) as a O⊗ZC-module. We thus have a natural
injection

(2.5)
Mk(K,B) ↪→ V (K,B)

f 7→ f̂(A, j) := f(A, j∗dt/t)

which preserves the q-expansions in the sense that f̂ |(a,b)(q) := f̂(Tatea,b, η
0
p,can) = f |(a,b)(q). We will call f̂

the p-adic avatar of f .
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2.6. Hecke action. Let h ∈ G(A
(p)
F,f ) and let hK := hKh−1. We define a morphism |h : E(p)

hK
∼→ E(p)

K by

A = (A, λ̄, ι, η(p)) 7→ A |h = (A, λ̄, ι, hη(p)).

Then |h induces anW-isomorphism Sh
(p)
K
∼→ Sh

(p)
Kh

, and |h thus acts on spaces of modular forms. In particular,
for F ∈ V (K,W), we define F |h ∈ V (hK,W) by

F |h(A) = F (A |h).

Let K0(l) := {g ∈ K | e2g ∈ O∗e2 (mod lL )}. Define the Ul-operator on V (K0(l),W) by

F |Ul =
∑

u∈O∗/lO∗
F |
[
$l u
0 1

]
.

Using the description of complex points of Sh(p)
K (C) in §2.4, it is not difficult to verify by definition that

for (τ, g) ∈ X+×G(AF,f ) two pairs (Ag(τ) |h,ω) and (Agh(τ),ω) of C-quadruples and invariant differential
forms are Z(p)-isogenous, so we have the isomorphism:

(2.6)
Mk(K,C)

∼→Mk(hK,C)

f 7→ f |h(τ, g) = f(τ, gh).

3. CM points

3.1. In this section, we give an adelic description of CM points in Hilbert modular varieties. Fix a prime-to-p
integral ideal C of R such that (pl,CDK/F ) = 1. Write C = C+C−, where C− = IR, I (resp. R) is a product of
inert (resp. ramified) primes in K/F and C+ = FFc is a product of split primes in K/F such that (F,Fc) = 1
and F ⊂ Fcc. Recall that we have assumed (unr) and (ord) in the introduction. Let Σ be a p-ordinary CM
type of K and identify Σ with a by the restriction to F . We choose ϑ ∈ K such that

(d1) ϑc = −ϑ and Imσ(ϑ) > 0 for all σ ∈ Σ,
(d2) c(R) := D−1

F (2ϑD−1
K/F ) is prime to pDK/F lCCc.

Let ϑΣ := (σ(ϑ))σ∈Σ ∈ X+. Let D = −ϑ2 ∈ F+ and define ρ : K ↪→M2(F) by

ρ(aϑ+ b) =

[
b −Da
a b

]
.

Consider the isomorphism qϑ : K ∼→ F2 = V defined by qϑ(aϑ + b) = ae1 + be2. It is clear that (0, 1)ρ(α) =
qϑ(α) and qϑ(xα) = qϑ(x)ρ(α) for α, x ∈ K. Let C(Σ) be the K-module whose underlying space is CΣ

with the K-action given α(xσ) = (σ(α)xσ). Then we have a canonical isomorphism K ⊗Q R = C(Σ), and
pϑ := q−1

ϑ : V ⊗Q R
∼→ K⊗Q R = C(Σ) is the period map associated to ϑΣ .

3.2. A good level structure.

3.2.1. For each v|pFFc, we decompose v = ww into two places w and w of K with w|FΣp. Here w|FΣp means
w|F or w ∈ Σp. Let ew (resp. ew) be the idempotent associated to w (resp. w). Then {ew, ew} gives an
Ov-basis of Rv. Let ϑw ∈ Fv such that ϑ = −ϑwew + ϑwew.

For inert or ramified place v and w the place of K above v, we fix a Ov-basis {1,θv} such that θv is a
uniformizer if v is ramified and θ = −θ if v - 2. Let δv := θv − θv be a fixed generator of the relative different
DKw/Fv .

Fix a finite idele dF = (dFv ) ∈ AF,f such that ilF (dF ) = DF . By (d2), we may choose dFv = 2ϑδ−1
v if

v|DK/FI (resp. dFv = −2ϑw if w|FΣp).

3.2.2. We shall choose a basis {e1,v, e2,v} of R ⊗O Ov for each finite place v 6= l of F . If v - plCCc, we
choose {e1,v, e2,v} in R ⊗ Ov such that R ⊗O Ov = Ove1,v ⊕ O∗ve2,v. It is clear that {e1,v, e2,v} can be
taken to be {ϑ, 1} except for finitely many v. If v|pFFc, let {e1,v, e2,v} = {ew, dFv · ew} with w|FΣp. If v
is inert or ramified, let {e1,v, e2,v} = {θv, dFv · 1}. For every integer n ≥ 0, we let Rn = O + lnR, and let{
e

(n)
1,l , e

(n)
2,l

}
:= {−1,−dFl

$n
l θl} be a basis of Rn ⊗O Ol.
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For v ∈ h, let ςv (resp. ς(n)
l ) be the element in GL2(Fv) such that eiς−1

v = qϑ(ei,v) (resp. ei(ς
(n)
l )−1 =

qϑ(e
(n)
i,l )). For v = σ ∈ a, let ςv =

[
Imσ(ϑ) 0

0 1

]
. Define ς(l) =

∏
v 6=l ςv ∈ GL2(A

(l)
F ) and ς(n) = ς(l)×ς(n)

l ∈

GL2(AF ). Let ςf and ς(n)
f be the finite components of ς and ς(n) respectively. By the definition of ς(n), we

have
(L ⊗Z Ẑ) · (ς(n)

f )−1 = qϑ(l−nRn ⊗Z Ẑ).

The matrix representation of ςv according to the basis {e1, e2} for v|plDK/FCCc is given as follows:

(3.1)

ςv =

[
dFv −2−1tv
0 d−1

Fv

]
, tv = θv + θv if v|DK/FI,

ςv =

[
dFv

2 − 1
2

dFv
−2ϑw

−1
2ϑw

]
=

[
−ϑw − 1

2

1 −1
2ϑw

]
if v|pFFc and w|FΣp,

ς
(n)
l =

[
−bl 1
al 0

] [
dFl

$n
l 0

0 1

]
(θl = alϑ+ bl, al ∈ O×l , bl ∈ Ol).

3.3. For every a ∈ A×K,f , we let

An(a)/C := Aρ(a)ς(n)(ϑΣ) = (Aρ(g)ς(n)(ϑΣ), 〈 , 〉can, ιcan, η(a)) ∈ ShK(C)

be the C-quadruple associated to (ϑΣ , ρ(a)ς
(n)
f ) as in §2.4. Then An(a)/C is an abelian variety with CM by

K. Let W be the p-adic completion of the maximal unramified extension of Zp in Cp. By the general theory
of CM abelian varieties, the C-quadruple An(a)/C descends to a W -quadruple An(a). Moreover, since K is
p-ordinary, An(a)⊗W F̄p is an ordinary abelian variety, hence the level p∞-structure η(a)p over C descends to
a level p∞-structure over W . Thus we obtain a map xn : A×K,f → lim←−m IK,m(W ) ⊂ IK,∞(W ), which factors
through CK := A×K,f/K× the idele class group of K. The collection of points Cl∞ := t∞n=1xn(CK) in IK,∞(W )
is called CM points in Hilbert modular varieties.

3.4. Polarization ideal. The alternating pairing 〈 , 〉 : K×K :→ F defined by 〈x, y〉 = (c(x)y − xc(y))/2ϑ
induces an isomorphism R ∧O R = c(R)−1D−1

F for the fractional ideal c(R) = D−1
F (2ϑD−1

K/F ). Then c(R) is
the polarization of CM points x0(1). From the equation

D−1
F det(ςf ) = ∧2L ς−1

f = ∧2R = c(R)−1D−1
F ,

we find that c(R) = (det(ςf )). Moreover, for a ∈ A×K, the polarization ideal of x0(a) is c(a) := c(R)NK/F (a),
a = ilK(a).

3.5. Measures associated to Ul-eigenforms.

3.5.1. We briefly recall Hida’s construction of the measure associated to an Ul-eigenform in [Hid04a, §3].
Define the compact subgroup Un = (C1)Σ×(Rn ⊗ Ẑ)× in A×K = (C×)Σ×A×K,f , where C1 is the unit circle
in C×. Let Cln = K×A×F\A

×
K/Un and let [·]n : A×K → Cln be the quotient map. Let Cl∞ = lim←−n Cln. For

a ∈ A×K, we let [a] := lim←−n[a]n ∈ Cl∞ be the holomorphic image in Cl∞. Henceforth, every ν ∈ X−l will be
regarded implicitly as a p-adic character of Cl∞ by geometrically normalized reciprocity law.

Let E ∈ V (K0(l),O) for some finite extension O of Zp and let χ̂ be the p-adic avatar of χ. Assuming the
following:

(i) E is a Ul-eigenform with the eigenvalue al(E) ∈ Z
×
p ;

(ii) E(xn(ta)) = χ̂−1(a)E(xn(t)), a ∈ Un ·A×F ,
Hida in [Hid04a, (3.9)] associates a Zp-valued measure ϕE on Cl∞ to the Ul-eigenform E such that for a
function φ : Cln → Zp, we have

(3.2)
∫
Cl∞

φdϕE := al(E)−n ·
∑

[t]n∈Cln

E(xn(t))χ̂(t)φ([t]n).
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3.5.2. Let ∆ be the torsion subgroup of Cl∞. Let Clalg be the subgroup of Cl∞ generated by [a] for
a ∈ (A

(l)
K )× and ∆alg = Clalg ∩∆. We choose a set of representatives B = {b} of ∆/∆alg in ∆ and a set of

representatives R = {r} of ∆alg in (A
(pl)
K,f )×. Thus ∆ = B[R] = {b[r]}b∈B,r∈R. For a ∈ (A

(pl)
K,f )×, we define

E|[a] := E|ρς(a), ρς(a) := ς−1ρ(a)ς ∈ G(A
(pl)
F,f ).

By definition, E|[a](xn(t)) = E(xn(ta)). Following Hida (cf. [Hid07, (4.4) p.25]), we put

(3.3) ER =
∑
r∈R

χ̂(r)E|[r].

In [Hid04a], Hida reduces the non-vanishing of L-values to the non-vanishing of Eisenstein series by proving
the following theorem.

Theorem 3.1 (Theorem 3.2 and Theorem 3.3 [Hid04a]). Suppose the following conditions in addition to (unr)
and (ord):
(H) Write the order of the Sylow `-subgroup of F[χ]× as `r(χ). Then there exists a strict ideal class c ∈ ClF

such that c = c(a) for some R-ideal a and for every u ∈ O prime to l, we can find β ≡ umod lr(χ) with
aβ(ER, c) 6≡ 0 (mod mp),

where aβ(ER, c) is the β-th Fourier coefficient of ER at the cusp (O, c−1). Then∫
Cl∞

νdE 6≡ 0 (mod mp) for almost all ν ∈ X−l .

Remark. As pointed by the referee, if l has degree one over Q, the above theorem is Theorem 3.2 [Hid04a]. In
general, the theorem holds under the assumption (h) in Theorem 3.3 loc.cit. , which is slightly weaker than
(H) (See the discussion [Hid04a, p.778]).

4. Construction of the Eisenstein series

4.1. Let χ be a Hecke character of K× with infinity type kΣ + κ(1 − c), where k ≥ 1 is an integer and
κ =

∑
κσσ ∈ Z[Σ], κσ ≥ 0. Let c(χ) be the conductor of χ. We assume that C = c(χ)S, where S is only

divisible by primes split in K/F and (c(χ)l,S) = 1. Put

χ∗ = χ|·|−
1
2

AK
and χ+ = χ|A×F .

Let K0
∞ :=

∏
v∈a SO(2,R) be a maximal compact subgroup of G(F ⊗Q R). For s ∈ C, we let I(s, χ+) denote

the space consisting of smooth and K0
∞-finite functions φ : G(AF )→ C such that

φ(

[
a b
0 d

]
g) = χ−1

+ (d)
∣∣∣a
d

∣∣∣s
AF

φ(g).

Conventionally, functions in I(s, χ+) are called sections. Let B be the upper triangular subgroup of G. The
adelic Eisenstein series associated to a section φ ∈ I(s, χ+) is defined by

EA(g, φ) =
∑

γ∈B(F)\G(F)

φ(γg).

The series EA(g, φ) is absolutely convergent for Re s� 0.

4.2. Fourier coefficients of Eisenstein series. Put w =

[
0 −1
1 0

]
. Let v be a place of F and let Iv(s, χ+)

be the local constitute of I(s, χ+) at v. For φv ∈ Iv(s, χ+) and β ∈ Fv, we recall that the β-th local Whittaker
integral Wβ(φv, gv) is defined by

Wβ(φv, gv) =

∫
Fv
φv(w

[
1 xv
0 1

]
gv)ψ(−βxv)dxv,

and the intertwining operator Mw is defined by

Mwφv(gv) =

∫
Fv
φv(w

[
1 xv
0 1

]
gv)dxv.
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By definition, Mwφv(gv) is the 0-th local Whittaker integral. It is well known that local Whittaker integrals
converge absolutely for Re s� 0, and have meromorphic continuation to all s ∈ C.

If φ = ⊗vφv is a decomposable section, then it is well known that EA(g, φ) has the following Fourier
expansion:

(4.1)

EA(g, φ) = φ(g) +Mwφ(g) +
∑
β∈F

Wβ(EA, g), where

Mwφ(g) =
1√
|DF |R

·
∏
v

Mwφv(gv) ; Wβ(EA, g) =
1√
|DF |R

·
∏
v

Wβ(φv, gv).

The sum φ(g) +Mwφ(g) is called the constant term of EA(g, φ).

4.3. The choice of local sections and Fourier coefficients. In this subsection, we will choose for each
place v a good local section φχ,s,v in Iv(s, χ+) and calculate its local β-th Fourier coefficient for β ∈ F×v .

4.3.1. We first introduce some notation and definitions. Let S◦ =
{
v ∈ h | v - lCCcDK/F

}
. Let v be a place

of F . Let L/Fv be a finite extension and let dL be a generator of the absolute different DL of L. Let
ψL := ψ ◦ TL/Fv . Given a character µ : L× → C, we recall that the epsilon factor ε(s, µ, ψL) in [Tat79] is
defined by

ε(s, µ, ψL) = |c|sL
∫
c−1O×L

µ−1(x)ψL(x)dLx (c = dL$
a(µ)
L ).

Here dLx is the Haar measure on L self-dual with respect to ψL. If ϕ is a Bruhat-Schwartz function on L, the
zeta integral Z(s, µ, ϕ) is given by

Z(s, µ, ϕ) =

∫
L

ϕ(x)µ(x) |x|sL d×x (s ∈ C).

The local root number W (µ) is defined by

W (µ) := ε(
1

2
, µ, ψL)

(cf. [MS00, p.281 (3.8)]). It is well known that |W (µ)|C = 1 if µ is unitary.
To simplify the notation, we let F = Fv (resp. E = K ⊗F Fv) and let dF = dFv be the fixed generator of

the absolute different DF in §3.2.1. Write χ (resp. χ+, χ∗) for χv (resp. χ+,v, χ∗v). If v ∈ h, we let Ov = OF
(resp. Rv = R ⊗O Ov) and let $ = $v be a uniformizer of F . For a set Y , denote by IY the characteristic
function of Y .

4.3.2. v is archimedean. Let v = σ ∈ Σ and F = R. For g ∈ G(F ) = GL2(R), we put

δ(g) = |det(g)| ·
∣∣∣J(g, i)J(g, i)

∣∣∣−1

.

Define the section φhk,s,σ ∈ Iv(s, χ+) of weight k by

(4.2) φhk,s,σ(g) := J(g, i)−kδ(g)s.

The intertwining operator Mwφk,s,σ is given by

(4.3) Mwφ
h
k,s,σ(g) = ik(2π)

Γ(k + 2s− 1)

Γ(k + s)Γ(s)
· J(g, i)

k
det(g)−kδ(g)1−s.

For (x, y) ∈ R×R+ and β ∈ R×, it is well known that

(4.4) Wβ(φhk,s,σ,

[
y x
0 1

]
)|s=0 =

(2πi)k

Γ(k)
σ(β)k−1 exp(2πiσ(β)(x+ iy)) · IR+(σ(β)).

Define the section φn.h.k,κσ,s,σ
∈ I(s, χ+) of weight k + 2κσ by

(4.5) φn.h.k,κσ,s,σ(g) := J(g, i)−k−κσJ(g, i)
κσ
δ(g)s.

Let V+ be the weight raising differential operator in [JL70, p.165] given by

V+ =

[
1 0
0 −1

]
⊗ 1 +

[
0 1
1 0

]
⊗ i ∈ Lie(GL2(R))⊗R C.
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Denote by V κσ+ the operator (V +)κσ acting on Iv(s, χ+). By [JL70, Lemma 5.6 (iii)], we have

(4.6) V κσσ+ φhk,s,σ =
2κσΓ(k + κσ + 2s)

Γ(k + 2s)
φn.h.k,κσ,s,σ.

4.3.3. v ∈ S◦. In this case, χ is unramified. Define φχ,s,v(g) to be the spherical Godement section in Iv(s, χ+).
To be precise, put

φχ,s,v(g) =fΦv (g) := |det g|s
∫
F×

Φv((0, t)g)χ+(t) |t|2s d×t, where

Φv = IOv⊕O∗v .

It is well known that the local Whittaker integral is

(4.7) Wβ(φχ,s,v,

[
cv

1

]
)|s=0 =

1− χ∗($)v(βcv)+1

1− χ∗($)
· |DF |−1 · IOv (βcv),

and the intertwining operator is given by

(4.8) Mwφχ,s,v(

[
cv

1

]
) = Lv(2s− 1, χ+) |cv|1−s χ−1

+ (cv).

4.3.4. v|FFc. If v|FFc is split in K, write v = ww with w|F and χv = (χw, χw). Then a(χw) ≥ a(χw). We
shall define our local section at v to be the Godement section associated to certain Bruhat-Schwartz functions.
We first introduce some Bruhat-Schwartz functions. For a character µ : F× → C×, we define

ϕµ(x) = IO×v (x)µ(x) (x ∈ F ).

Define ϕw = ϕχw and

ϕw =

{
ϕχ−1

w
if χw is ramified,

IOv if χw is unramified.

Let Φv(x, y) = ϕw(x)ϕ̂w(y), where ϕ̂w is the Fourier transform of ϕw defined by

ϕ̂w(y) =

∫
F

ϕw(x)ψ(yx)dx.

Define φχ,s,v ∈ Iv(s, χ+) by

(4.9) φχ,s,v(g) = fΦv (g) := |det g|s
∫
F×

Φv((0, t)g)χ+(t) |t|2s d×t.

A straightforward calculation shows that the local Whittaker integral is

(4.10)

Wβ(φχ,s,v, 1) =

∫
F×

ϕw(x)ϕ̂w(−βx−1) · χ+(x) |x|2s−1
d×x

=

∫
F×

ϕw(x)ϕw(βx−1) · |DF |−1 · χ+(x) |x|2s−1
d×x

= χ+(β)ϕw(β) |β|2s−1 · |DF |−1
,

and the intertwining operator is given by

(4.11) Mwφχ,s,v(1) = 0.

4.3.5. v = l. Let φχ,v,s ∈ Iv(s, χ+) be the uniqueN(Ov)-invariant section supported in the big cellB(F )wN(O∗v)
and φχ,v,s(w) = 1. One checks easily that φχ,s,v|Ul given by

φχ,s,v|Ul(g) =
∑

u∈O∗v/lO∗v

φχ,s,v(g

[
$ u
0 1

]
)

is also supported in the big cell and is invariant by N(O∗v). In particular, φχ,s,v is an Ul-eigenform, and the
eigenvalue is χ−1

+ ($l).
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The local β-th Whittaker integral is given by

(4.12)
Wβ(φχ,v,s,

[
c

1

]
)|s=0 =

∫
F

φχ,v,s(w

[
1 x

1

] [
c

1

]
)ψ(−βx)dx|s=0

= IOv (βc),

and the intertwining operator is given by Mwφχ,s,v(

[
c 0
0 1

]
)|s=0 = 1.

4.3.6. v|DK/FC−. In this case, E is a field and G(F ) = B(F )ρ(E×). Let w be the place of E above v
and let $E be a uniformizer of E. Let R′ be the product of ramified primes where χ is unramified, i.e.
R′ =

∏
q|DK/F ,q-C− q. Let φχ,s,v be the unique function on G(F ) such that

(4.13) φχ,s,v(

[
a b
0 d

]
ρ(z)ςv) = L(s, χv) · χ−1

+ (d)
∣∣∣a
d

∣∣∣s · χ−1(k), b ∈ B(F ), z ∈ E×,

where L(s, χv) is the local Euler factor of χv defined by

L(s, χv) =

{
1 if v|RI,

1
1−χv($E)|$E |sE

if v|R′.

Then φχ,s,v defines a smooth section in Iv(s, χ+).
To calculate the local β-th Whittaker integral of φχ,s,v, we recall that in §3.2.1, we have fixed δ = δv = 2ϑd−1

F

a generator of DK/F and an Ov-basis {1,θ} = {1,θv} of Rv so that δ = 2θ if v - 2 and δ = θ − θ if v|2. In
addition, θ is a uniformizer of Rv if v is ramified. Let t = tv = 2θ − δ = θ + θ ∈ Ov. Let ψ◦(x) := ψ(−d−1

F x)
and χs = χ|·|sE for s ∈ C. For Re s� 0, we have

1

L(s, χv)
·Wβ(φχ,s,v, 1)

=

∫
F

φχ,s,v(w

[
1 x+ 2−1td−1

F

0 1

] [
d−1
F 0
0 dF

]
ςv)ψ

◦(dFβx)dx

=ψ◦(−2−1tβ)χs(dF )
∣∣d−2
F

∣∣ · ∫
F

φχ,s,v(

[
1

x2+D
−x
x2+D

0 1

] [
x −D
1 x

]
ςv)ψ

◦(−d−1
F βx)dx

=ψ◦(−2−1tβ)χs(dF )
∣∣d−2
F

∣∣ · ∫
F

χ−1
s (x+ ϑ)ψ◦(d−1

F βx)dx

=ψ◦(−2−1tβ)
∣∣d−1
F

∣∣ · ∫
F

χ−1
s (x+ 2−1δ)ψ◦(βx)dx.

We put

(4.14) Aβ(χs) :=

∫
F

χ−1
s (x+ 2−1δ)ψ◦(βx)dx.

Making change of variable, we find that

(4.15)
Aβ(χs) =ψ◦(2−1tβ) · Ãβ(χs), where

Ãβ(χs) =

∫
F

χ−1
s (x+ θ)ψ◦(βx)dx.

In particular, the intertwining operator Mwφχ,s,v(1) =
∣∣d−1
F

∣∣ · L(s, χv)Ã0(χs). We investigate the analytic
behavior of Ãβ(χs). For β ∈ F and M ≥ v(C−), we have

Ãβ(χs) =

∫
$−MOv

χ−1
s (x+ θ)ψ◦(βx)dx+

∑
j>M

χ∗|·|s($j)

∫
O×v

χ−1(x)ψ◦(β$−jx)dx

for Re s sufficiently large. This shows that Ãβ(χs) has meromorphic continuation to all s ∈ C, and Ãβ(χs) is
holomorphic at s = 0 except when β = 0, χv is unramified and χ∗($) = 1. In particular, when k ≥ 2, Ã0(χs)
and the intertwining operator Mwφχ,s,v(1) are finite at s = 0.
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Now we have

(4.16) Wβ(φχ,s,v, 1)|s=0 =
∣∣d−1
F

∣∣ · L(s, χv)Ãβ(χs)|s=0.

In what follows, we let β ∈ F× and let Ãβ(χ) := Ãβ(χs)|s=0 (resp. Aβ(χ) := Aβ(χs)|s=0). Then Aβ(χ) =

ψ◦(2−1tβ) · Ãβ(χ). On the other hand, by our choice of θ it is clear that |x+ θ|E ≥ |θ|E for all x ∈ $−MOv.
Let MC,β = max {v(C−), v(C−) + v(β)}. Then for M ≥MC,β , we have

(4.17)
Ãβ(χ) =

∫
$−MOv

χ−1(x+ θ)ψ◦(βx)dx

= |$|1+M
∑

x∈Ov/($1+2M )

χ−1($−Mx+ θ)ψ◦(β$−Mx).

The following lemma shows the p-integrality of these local Whittaker integrals Wβ(φχ,s,v, 1)|s=0.

Lemma 4.1. Suppose that v|DK/FC−. There exists a finite extension O of OF,(p) such that for all β ∈ F×

Wβ(φχ,s,v, 1)|s=0 ∈ O.

In addition, if v|C−, then

(4.18) Wβ(φχ,s,v, 1)|s=0 = ψ◦(−2−1tβ)
∣∣d−1
F

∣∣ ·Aβ(χ) =
∣∣d−1
F

∣∣ · Ãβ(χ).

If v|R′ and v(β) = −1, then

(4.19) Wβ(φχ,s,v, 1)|s=0 =
∣∣d−1
F

∣∣χ−1(θ) |$| .

Proof. First note that it is not difficult to deduce from (4.17) that Ãβ(χ) = 0 if v(β) < −1 −MC,β , and
that Ãβ(χ) belongs to the OF,(p)-algebra generated by the values of χ and ψ◦($−2v(C−)−1) for all β ∈ F×.
Then the assertions are clear if v|C−. Suppose that v|R′. Then v is ramified in E and χ is unramified at v.
For s ∈ C, let αs := χs($) |$|−1. For Re s� 0, we have

Ãβ(χs) =

∫
F

χ−1
s (x+ θ)ψ◦(βx)

=

∫
$Ov

χ−1
s (x+ θ)ψ◦(βx)dx+

v(β)+1∑
j=0

∣∣$−j∣∣χs($j)

∫
O×v

ψ◦(β$−jx)dx

= χ−1
s (θ)

∫
$Ov

ψ◦(βx) +

v(β)+1∑
j=0

αjs · (
∫
Ov

ψ◦(β$−jx)dx−
∫
$Ov

ψ◦(β$−jx)dx).

If v(β) ≥ 0, we find that

Ãβ(χs) =χ−1
s (θ) |$|+ 1− αv(β)+1

s

1− αs
· (1− |$|)− |$|αv(β)+1

s

=(1− χs(θ))(1 + |$|χ−1
s (θ)) · 1− αv(β)+2

s

1− αs
.

In addition, we have Ãβ(χs) = 0 if v(β) < −1 and

Ãβ(χs) = (1− χs(θ)) · χ−1
s (θ) |$| if v(β) = −1.

In any case, the assertions in the case v|R′ follow immediately from (4.16) and the formulas of Ãβ(χs). �

4.3.7. Calculation of Ãβ(χ). We give an explicit calculation of the local integral Ã(χ) under the assumption
w(C−) = 1. Introduce an auxiliary integral I(β) for β ∈ F defined by

I(β) :=

∫
Ov

χ−1(x+ θ)ψ◦(βx)dx.

The explicit formulas of Ãβ(χ) are deduced from the following two lemmas.

Lemma 4.2. Suppose w(C−) ≤ 1.



NON-VANISHING OF HECKE L-VALUES MODULO p 15

(1) If v(β) ≥ 0 and χ|O×v 6= 1, then

Ãβ(χ) =I(0) + χ−1|·|(−d−1
F β) · ε(1, χ+|·|−1

, ψ).

(2) If v(β) ≥ 0 and χ|O×v = 1, then

Ãβ(χ) = I(0) +

v(β)∑
j=1

χ∗($j) · (1− |$|)− χ∗($v(β)+1) · |$| (χ∗ = χ|·|−
1
2

E ).

(3) If v(β) < 0, then Ãβ(χ) = I(β).

Proof. It is clear that under our assumption on the conductor of χ, we have

Ãβ(χ) =

∫
F

χ−1(x+ θ)ψ◦(βx)

= I(β) +

v(β)+1∑
j=1

|$|−j
∫
O×v

χ−1(
x

$j
)ψ◦(

βx

$j
)dx.

Then the lemma follows immediately. �

Lemma 4.3.
(1) If v(β) < −1, then I(β) = 0.
(2) If v is ramified, then I(0) = χ∗(θ−1) |$|

1
2 .

(3) If v is inert and χ|O×v = 1, then I(0) = − |$|.

Proof. Note that if v is ramified, then χ|O×v 6= 1. (1) and (2) follows from the assumption on the conductor
of χ and a simple calculation. (3) follows from the following equation:

0 =

∫
R×v

χ−1(r)dr =

∫
Ov

da

∫
O×v

dbχ−1(a+ bθ) +

∫
O×v

da

∫
$Ov

dbχ−1(a+ bθ)

= (1− |$|)
∫
Ov

χ−1(a+ θ)da+ |$| (1− |$|). �

We summarize the formulas of Ãβ(χ) in the following two propositions.

Proposition 4.4. Suppose that v|C− is ramified such that w(C−) = 1. Then the formula of Ãβ(χ) is given
as follows.

(1) If v(β) ≥ −1, then

Ãβ(χ) = χ∗(θ−1) |$|
1
2 + χ∗(−βd−1

F )ε(1, χ+|·|−1
, ψ).

(2) If v(β) < −1, then Ãβ(χ) = 0.
(3) If v - 2 and v(β) ≥ −1, then

Ãβ(χ) = (χ∗(−2δ−1dF ) + χ∗(2−1β)W (χ∗)) · χ(−d−1
F ) |$|

1
2 .

Proof. In this case, θ is a uniformizer of Rv. It is straightforward to verify that if v(β) = −1, then

I(β) = χ∗(βd−1
F )ε(1, χ+|·|−1

, ψ) + χ∗(θ−1) |$|
1
2 .

Thus (1) and (2) follows from Lemma 4.2 and Lemma 4.3.
Suppose v - 2. Then δ = 2θ, and (3) follows from (1) and the identity ([Roh82, Prop.8])

W (χ∗) = χ∗(2)W (χ∗|F ) = χ(2) |$|−
1
2 ε(1, χ+|·|−1

, ψ). �

Proposition 4.5. Suppose that v|C− is inert such that w(C−) = 1. Then the formula of Ãβ(χ) is given as
follows.

(1) If v(β) = −1, then
Ãβ(χ) = |$| ·

∑
a∈Ov/($)

χ−1(a+ θ)ψ◦(βa).
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(2) If v(β) < −1, then Ãβ(χ) = 0.
(3) If v(β) ≥ 0 and χ|O×v = 1, then

Ãβ(χ) = − |$|+
v(β)∑
j=1

χ∗($j) · (1− |$|)− χ∗($v(β)+1) |$| .

(4) If v(β) ≥ 0 and χ|O×v 6= 1, then

Ãβ(χ) = I(0) + χ∗(−βd−1
F )ε(1, χ+|·|−1

, ψ).

Proof. In this case, both δ and θ are units of R×v . It follows from the definition of I(β) that if v(β) = −1,
then

I(β) = |$| ·
∑

a∈Ov/($)

χ−1(a+ θ)ψ◦(βa).

The proposition follows from Lemma 4.2 and Lemma 4.3 immediately. �

4.4. Normalization of Eisenstein series.

Definition 4.6. For • = h or n.h., we put

φ•χ,s =
⊗
σ∈a

φ•k,s,σ
⊗
v∈h

φχ,s,v.

Define the adelic Eisenstein series E•χ by

(4.20) E•χ(g) = EA(g, φ•χ,s)|s=0, • = h, n.h.

We define the holomorphic (resp. nearly holomorphic) Eisenstein series Ehχ (resp. En.h.χ ) by

Ehχ(τ, gf ) :=
ΓΣ(kΣ)√
|DF |R(2πi)kΣ

· Ehχ (g∞, gf ) · J(g∞, i)
kΣ ,

En.h.χ (τ, gf ) :=
ΓΣ(kΣ)√
|DF |R(2πi)kΣ

· En.h.χ (g∞, gf ) · J(g∞, i)
kΣ+2κ(det g∞)−κ,

((τ, gf ) ∈ X+×G(AF,f ), g∞ ∈ G(F ⊗Q R), g∞i = τ, i = (i)σ∈Σ).

Choose N = NK/Q(CDK/F )m for a sufficiently large integer m so that φχ,s,v are invariant by U(N) for
every v|N , and put K := U(N). Then the section φχ,s is invariant by K0(l).

Proposition 4.7. Let c = (cv) ∈ A×F,f be a finite idele such that cv = 1 at v|plCCcDK/F . Let c = ilF (c).
Suppose either of the following conditions holds:

(1) k > 2,
(2) F 6= O,
(3) χ+ = τK/F |·|AF and l is split in K.

Then Ehχ ∈Mk(K0(l),C). The q-expansion of Ehχ at the cusp (O, c−1) has no constant term and is given by

Ehχ|(O,c−1) =
∑

β∈(N−1c−1)+

aβ(Ehχ, c) · qβ ∈ OJ(N−1c−1)+K

for some finite extension O of OF,(p) in Z, where

aβ(Ehχ, c) =
1

|DF |R
·NF/Q(β)k−1 ·

∏
v∈h

Wβ(φχ,s,v,

[
cv

1

]
)|s=0.

Proof. Let φ(∞)
χ,s = ⊗v∈hφχ,s,v. First we claim that for g∞ = (gσ)σ∈Σ ∈ G(F ⊗Q R),

(4.21) Mwφχ,s((g∞,

[
c

1

]
))|s=0 =

∏
v=σ∈Σ

Mwφ
h
k,s,σ(gσ) ·Mwφ

(∞)
χ,s (

[
c

1

]
)|s=0 = 0.
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Indeed, if k > 2, then (4.21) follows from (4.3) together with the finiteness of L(pC)(−1, χ+), while if there
exists some place v|F, then we find (4.21) in view of (4.11) immediately. If χ+ = τK/F |·|AF and l splits in K,
then k = 1 and χ is ramified at v|DK/F . By (4.8), we find that

Mwφ
(∞)
χ,s (

[
c

1

]
)|s=0 =

∏
v|Cl

Mwφχ,s,v(1)|s=0 · L(lC)(0, τK/F ) |c|AF ,

so (4.21) follows from the fact that

L(lC)(0, τK/F ) = L(C)(0, τK/F )(1− τK/F (l)) = 0.

This proves the claim. In addition, we have φ(∞)
χ,s (

[
c

1

]
) = 0 since φχ,l,s is supported in the big cell.

Therefore, we derive the q-expansion of Ehχ from (4.1) and (4.4).
We study the p-integrality of aβ(Ehχ, c). It is well known that χ takes value in a number field. By the

inspection of formulas in (4.7), (4.10), (4.12), Lemma 4.1, (4.17), we find that∏
v-p∞

Wβ(φχ,s,v,

[
cv

1

]
)|s=0 ∈ O

for some finite extension O of OF,(p). Since χ is unramified at p, we have aβ(Ehχ, c) = 0 if β 6∈ O⊗Zp by (4.7).
Note that v(χ∗($v)) = 1− k and v′(χ∗($v)) = 0 if v|p and v′ 6= v. Thus if β ∈ O ⊗ Zp, then

|DF |−1
R NF/Q(β)k−1

∏
v|p

Wβ(φχ,s,v, 1)|s=0

=NF/Q(β)k−1
∏
v|p

(1 + χ∗($v) + · · ·+ χ∗($v)
v(β)) · |DF |−1

R |DF |
−1
Qp
∈ O.

�

The following proposition is directly deduced from the construction of the section φχ,s and the description
of Hecke action (2.6). The details are omitted

Proposition 4.8. Set DC :=
∏

v|C−DK/F
K×v . Under the assumptions in Proposition 4.7, we have

(1) Ehχ is an Ul-eigenform inMk(K0(l),O) with the eigenvalue χ−1
+ ($l),

(2) Ehχ|[r] = χ−1(r)Ehχ for r ∈ DC,
(3) Ehχ(xn(ta)) = χ−1(a)Ehχ(xn(t)) for a ∈ DCA

×
FUn.

4.5. For σ ∈ a and an integer n, let

δσn :=
1

2πi
(
∂

∂τσ
+

n

2iyσ
)

be the Maass-Shimura’s differential operator. Put

δκσσk := δσk+2κσ ◦ · · · δ
σ
k+2 ◦ δσk and δκk =

∏
σ∈Σ

δκσσk .

Then the weight raising differential operator V κσ+ in §4.3.2 is the representation theoretic avatar of δκσσk in
virtue of the following identity:

δκk =
1

(−8π)κ
V κ+ .

We thus have

(4.22) δκkEhχ =
1

(−4π)κ
· ΓΣ(kΣ + κ)

ΓΣ(kΣ)
· En.h.χ .
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5. Evaluation of Eisenstein series at CM points

5.1. Period integral. Let Eχ := Êhχ be the p-adic avatar of Ehχ as in (2.5). Let {θ(σ)}σ∈Σ be the Dwork-
Katz p-adic differential operators on p-adic modular forms introduced in [Kat78, Cor.(2.6.25)] and let θκ =∏
σ∈Σ(θ(σ))kσ . We consider the Hida’s measure ϕκχ := ϕθκEχ attached to the Ul-eigenform θκEχ ∈ V (K0(l),Zp)

as in (3.2). Let ν be a character on Cln. We have

(5.1)
∫
Cl∞

νdϕκχ = χ+($l)
n ·

∑
[t]n∈Cln

θκEχ(xn(t))χ̂ν(t).

Let (Ω∞,Ωp) ∈ (C×)Σ×(Z
×
p )Σ be the complex and p-adic CM periods of (K, Σ) introduced in [HT93, (4.4

a,b) p.211] (cf. (Ω, c) in [Kat78, (5.1.46), (5.1.48)]). From [Kat78, (2.4.6), (2.6.8), (2.6.33)] we can deduce the
following important identity:

(5.2)
1

ΩkΣ+2κ
p

· θκEχ(xn(t)) =
(2πi)kΣ+2κ

ΩkΣ+2κ
∞

· δκkEhχ(xn(t)) (t ∈ (A
(p)
K,f )×).

Therefore, it follows from (4.22) and (5.1) that

(5.3)

∫
Cl∞

νdϕκχ = χ+($l)
n · (2πi)kΣ+2κ

ΩkΣ+κ
∞

·
∑

[t]n∈Cln

δκkEhχ(xn(t))χν(t)

= χ+($l)
n · πκΓΣ(kΣ + 2κ)√

|DF |R Im(ϑ)κ · ΩkΣ+2κ
∞

·
∑

[t]n∈Cln

En.h.χ (ρ(t)ς(n))χν(t).

Here we choose t ∈ (A
(pl)
K,f )× for a set of representatives [t]n ∈ Cln (so χ̂(t) = χ(t)).

We shall relate (5.3) to certain period integral of Eisenstein series. First we fix the choices of measures. For
each finite place v of F , let d×zv be the normalized Haar measure on K×v so that vol(R×v ,d

×zv) = 1 and let
d×tv = d×zv/d

×xv be the quotient measure on K×v /F×v . If v is archimedean, let d×tv be the Haar measure
on K×v /F×v = C×/R× normalized so that vol(C×/R×,d×tv) = 1. Let d×t =

∏′
v d×tv be a Haar measure

on A×K/A
×
F and let d×t̄ be the quotient measure of d×t on K×A×F\A

×
K by the counting measure on K×. We

define the period integral of En.h.χ by

lK(En.h.χ , ν) :=

∫
K×A×F\A

×
K

En.h.χ (ρ(t)ς(n))χν(t)d×t̄.

Then the last term in (5.3) can be expressed as the following period integral∑
[t]n∈Cln

En.h.χ (ρ(t)ς(n))χν(t) =
1

vol(Un,d×t̄)
lK(En.h.χ , ν).

The rest of this section is devoted to the calculation of K(En.h.χ , ν). For brevity, we write φv for φχ,s,v if v ∈ h

and for φn.h.k,κσ,s,σ
in (4.5) if v = σ ∈ a. The first step is to decompose lK(En.h.χ , ν) into a product of local

integrals lKv (φv, ν), where

lKv (φv, ν) =

∫
K×v /F×v

φv(ρ(t)ς(n)
v )χν(tv)d

×tv.

Since ρ : F×\K× → B(F)\G(F) is a bijection, we find that

lK(En.h.χ , ν) =

∫
K×A×F\A

×
K

EA(ρ(t)ς(n), φn.h.χ,s )χν(t)d×t̄|s=0

=

∫
K×A×F\A

×
K

∑
γ∈G(F)/B(F)

φn.h.χ,s (γρ(t)ς(n))χν(t)d×t̄|s=0

=

∫
A×F\A

×
K

φn.h.χ,s (ρ(t)ς(n))χν(t)d×t
∣∣
s=0

=
∏
v

∫
K×v /F×v

φv(ρ(tv)ς
(n)
v )χν(tv)d

×tv|s=0 =
∏
v

lKv (φv, ν)|s=0.



NON-VANISHING OF HECKE L-VALUES MODULO p 19

Write E for Kv and F for Fv. In what follows, we suppress v from the notation and proceed to calculate
the local integral lE(φv, ν).

5.2. v ∈ S◦ or v|FFc. In this case, φ = fΦv,s is the Godement section associated to the Bruhat-Schwartz
function Φv defined in §4.3.4. We have

lE(φ, ν) =

∫
E×/F×

fΦ(ρ(t))χν(t)d×t

=

∫
E×/F×

χν(t)|t|sEd×t

∫
F×

Φv((0, x)ρ(t)ς)χ+(x) |x|2sF d×x

=

∫
E×/F×

∫
F×

χν(tx) |tx|sE Φv((0, 1)ρ(tx)ς)d×td×x

=

∫
E×

χν(z) |z|sE Φv((0, 1)ρ(z)ς)d×z

=Z(s, χν,ΦE),

where ΦE is defined by
ΦE(z) := Φv((0, 1)ρ(z)ς).

Suppose v ∈ S◦. By definition, Φv = IOv⊕O∗v , and hence ΦE = IRv is the characteristic function of Rv. It is
clear that

Z(s, χν,ΦE) = L(s, χν).

Suppose v|FF is a split prime. We write E = Few ⊕ Few and ϑ = −ϑwew + ϑwew with w|F as in §3.2.
Then by definition,

ΦE(z) = Φv((0, 1)ρ(z)

[
−ϑw − 1

2

1 1
−2ϑw

]
) = ϕw(x)ϕ̂w(− y

2ϑw
) (z = xew + yew).

As l - C, ν = (νw, νw) is unramified at v. Therefore,

Z(s, χν,ΦE) = χw(−2ϑw)

∫
E×

χwνw(x)χwνw(y)ϕw(x)ϕ̂w(y) |xy|s d×xd×y

=χw(−2ϑw)Z(s, χwνw, ϕw)Z(s, χwνw, ϕ̂w).

By Tate’s local functional equation, we have

Z(s, χwνw, ϕ̂w) =
L(s, χwνw) · χwνw(−1)

ε(s, χwνw, ψ)L(1− s, χ−1
w ν−1

w )
· Z(1− s, χ−1

w ν−1
w , ϕw).

We find that
Z(s, χν,ΦE)|s=0 = L(0, χν) · LS · CF,

where

(5.4) LS =
∏
q|S

L(1, χ−1
q ν−1

q )−1 and CF =
∏
w|F

χw(2ϑw) · ν−1
w (dF$

a(χw))

ε(0, χw, ψ)
.

Note that CF ∈ Z
×
p .

5.3. v is archimedean or v|DK/FC−. Note that ν is trivial on E× if v is inert or ramified because ν is a
character of Gal(K−l∞/K). If v|DK/FI, by the very definition of φ = φχ,s,v in (4.13), we find that

lE(φ, ν) =

∫
E×/F×

φ(ρ(t)ςv)χν(t)d×t

= vol(E×/F×,d×t) ·

{
1 · · · v|C−,
L(s, χv) · · · v|R′.
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If v = σ|∞ and φ = φn.h.k,κ,s,σ is defined in (4.5), then

lE(φ, ν) =

∫
E×/F×

φn.h.k,κ,s,σ(ρ(t)

[
Imσ(ϑ)

1

]
)χν(t)d×t

= vol(C×/R×,d×t).

5.4. v = l. A direct computation shows that

ρ(t)ς
(n)
l = ρ(x+ yθl)

[
−bldFl

$n
l 1

aldFl
$n

l 0

]
=

[
∗ ∗

xdFl
$n

l al ybl

]
(t = x+ yθl).

We thus find that
ρ(t)ς

(n)
l ∈ B(F )wN(O∗l ) ⇐⇒ t ∈ F×l (1 +$n

l θlOl).

Let Rn,l = Rn ⊗O Ol. Then R×n,l = O×(1 + $n
l θlOl). Let π : E× → E×/F× be the quotient map. Thus we

have

lE(φ, ν) =

∫
E×/F×

φ(ρ(t)ς
(n)
l )χν(t)d×t

= χ+($)−n
∫
E×/F×

Iπ(R×n,l)
(t)d×t = χ+($)−n vol(π(R×n,l),d

×t).

5.5. Evaluation formula. We summarize our local calculations in the following proposition.

Proposition 5.1. Suppose that either of the conditions (1-3) in Proposition 4.7 holds. Then we have the
following evaluation formula:

1

ΩkΣ+2κ
p

·
∫
Cl∞

νdϕκχ =
πκΓΣ(kΣ + κ)L(l)(0, χν)

ΩkΣ+2κ
∞

· 2rLSCF√
|DF |R(Imϑ)κ

,

where r is the number of prime factors of DK/F .

Proof. We note that∑
[t]n∈Cln

En.h.χ (ρ(t)ς(n))χν(t) =
1

vol(Un,d×t̄)
· lK(En.h.χ , ν)

=
1

vol(Un,d×t̄)
·
∏
v

lKv (φχ,s,v, νv)|s=0

= L(l)(0, χν) · 2rLSCF · χ+($)−n.

The proposition follows from (5.3) immediately. �

6. Non-vanishing of Eisenstein series modulo p

6.1. Throughout this section, we retain the assumptions (unr), (ord) and (pl,DK/FC) = 1. Let χ be a
Hecke character of K× and take S to be a split prime q as in §4.1. We remark that an auxiliary split prime
q is introduced to assure the assumption (2) in Proposition 4.7, so the L-value in the evaluation formula
Proposition 5.1 has an extra local factor Lq = L(1, χ−1

q ν−1
q )−1. However, this is harmless to (NV) property

since the closed subgroup generated by associated Frobenious Frobq in Gal(K−l /K) is non-trivial, and hence
the set

{
ν ∈ X−l | L(1, ν−1

q χ−1
q )−1 ≡ 0 (mod m)

}
is a proper closed subset of X−l .

To establish (NV) property for (χ, l), by Hida’s non-vanishing criterion of a p-adic measure associated
to eigenforms (Theorem 3.1) and the evaluation formula of our Eisenstein measure dϕκχ (Proposition 5.1), it
suffices to show the non-vanishing modulo p of some Fourier coefficient of (θκEχ)R = θκERχ at some cusp
(O, c(a)−1).

Lemma 6.1. Put (Ehχ)R =
∑
r∈R Ehχ|[r]. Then we have

(Ehχ)R = #∆alg · Ehχ.

Proof. It can be shown that ∆alg is generated by ramified primes, so R can chosen from elements in∏
v|DK/F K

×
v . The lemma follows form Proposition 4.8 (2). �
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Remark 6.2. Since ERχ is the p-adic avatar of (Ehχ)R and #∆alg is a power of 2, from the above lemma and
the following identity (cf. [HT93, (1.23)])

aβ(θκEχ, c) = βκaβ(Ehχ, c),

we conclude that (NV) property for (χ, l) holds if the following hypothesis (H′) is verified:
(H′) For every u ∈ Ol and a positive integer r, there exist β ∈ O×(p) and c = c(a) such that β ≡ u (mod lr)

and
aβ(Ehχ, c) 6≡ 0 (mod m).

6.2. Let χ be the reduction modulo m of the p-adic avatar of χ and let χ+ = χ|A×F . Let ωF : A×F/F× → µp−1

be the Teichmüller character regarded as a Hecke character of F× via geometrically normalized reciprocity
law. We first treat the case χ is not residually self-dual, namely

χ+ 6≡ τK/FωF (mod m).

The following proposition is due to Hida [Hid04a].

Proposition 6.3 (Hida). Suppose that χ is not residually self-dual. Then (NV) holds for (χ, l) if for every
v|C− there exists ηv ∈ F×v such that

(6.1) Aηv (χv) 6≡ 0 (mod m).

Proof. We have to verify the hypothesis (H′) in Remark 6.2. Given u ∈ Ol and a positive integer r, we
extend ηC− = (ηv)v|C− to an idele η = (ηv) in A×F by taking ηv = 1 for v - lCDK/F or v|FFc, ηl = u and
ηv = $−1

v as in (4.19) if v|R′. Let b− :=
∏

q|C− qMq , Mq = max {vq(C−), vq(C−)− vq(ηv)} and put

U =
{

(x∞, xf ) ∈ R
[F :Q]
+ ×(O ⊗Z Ẑ)× | xf ≡ 1 (mod DK/F lrb−)

}
.

Let c = c(a) and c be the associated idele as in Proposition 4.7 and consider the idele class [cη−1] := F×cη−1U

in A×F . For each idele a ∈ O ⊗Z Ẑ in the class [cη−1] such that each local component av = 1 at v|pDK/FCCc,
we can write a = βcη−1u for β ∈ O×(p) and u ∈ U , and from the explicit formula of aβ(Ehχ, c) (Proposition 4.7
combined with Lemma 4.1, (4.7), (4.10) and (4.12)), we find that

(6.2)

aβ(Ehχ, c) =Cβ ·
∏
v∈S◦

1− χ∗($v)
v(av)+1

1− χ∗($v)
· χ+(cv), where

Cβ = |DF |−1
R ·NF/Q(β)k−1 ·

∏
w|F

χ+(β)ϕw(β)
∣∣D−1
F
∣∣
Fv
· |c|Fl

·
∏
w|R′

χ−1(θv)
∣∣$vD−1

F
∣∣
Fv

×
∏
v|C−

Aηv (χv) ·
∣∣D−1
F
∣∣
Fv
ψ◦(−2−1tvβ).

By our choices of η and a, Cβ 6≡ 0 (mod m).
Suppose that aβ(Ehχ, c) ≡ 0 (mod m) for all β ∈ O×(p) such that β ≡ u (mod lr). In particular, for every

uniformizer $v ∈ [cη−1] at v - pcCCcDK/F , we deduce from (6.2) that χ∗($v) ≡ χ+ω
−1
F ($v) ≡ −1 (mod m)

Moreover, the argument in [Hid04a, p.780] shows that χ+ω
−1
F is a quadratic character of level U and takes

value −1 on [cη−1]. Moving c = c(a) among prime-to-pCDK/F ideals a of R, we conclude that χ+ω
−1
F ≡

τK/F (mod m), which is a contradiction. �

Lemma 6.4. Let v|C− and w be the place of K above v. Suppose that µp(χv) = 0. Then there exists ηv ∈ F×v
such that

Aηv (χv) 6≡ 0 (mod m).

Moreover, if v is inert and χv|F×v = τKv/Fv , then ηv can be further chosen so that v(ηv) = −w(C−).

Proof. First we make some observations. Notation is as in §4.3.6. We let F = Fv and E = Kv. Let
$ = $v be a uniformizer of F and θ = θv. Recall that µp(χv) = infx∈E× vp(χv(x) − 1), so the assumption
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µp(χv) = 0 is equivalent to χ|E× 6≡ 1 (mod m). Since Aβ(χ) = ψ◦(tβ)Ãβ(χ), it is equivalent to showing the
lemma for Ãβ(χ). For an integer m and a ∈ F , we put

cm(a) =

∫
Ov

χ−1(a+$mx+ θ)dx.

By (4.17), for η ∈ $−mO×v and every sufficiently large positive integer M (depending on m) we have

Ãη(χ) =

∫
$−MOv

χ−1(x+ θ)ψ◦(ηx)dx.

Thus for each a ∈ F we find that

(6.3)

∫
$−mO×v

Ãη(χ)ψ◦(−ηa)dη =

∫
$−MOv

χ−1(x+ θ)dx

∫
$−mO×v

ψ◦(η(x− a))dη

=

∫
Ov

χ−1(a+$mx+ θ)dx−
∫
Ov

χ−1(a+$m−1x+ θ)dx

= cm(a)− cm−1(a).

Now we prove the first assertion by contradiction. Suppose that Ãη(χ) ≡ 0 (mod m) for all η ∈ F×.
The equation (6.3) implies that for every a ∈ F , cm(a) (mod m) is a constant independent of m. Taking a
sufficiently large m0, we find that cm(a) ≡ cm0(a) = χ−1(a + θ) (mod m) for every integer m and a ∈ F .
On the other hand, it is clear that cm(a) = cm(a′) whenever a, a′ ∈ $mOv, so we conclude that the function
a 7→ χ−1(a+θ) (mod m) is the constant function χ−1(θ) on F , and hence χ(1+aθ) ≡ 1 (mod m) for all a ∈ F .
This implies that χv ≡ 1 (mod m), which is a contradiction.

We proceed to prove the second assertion. Suppose that v is inert and χv|F = τE/F . Note that in this
case µp(χv) = 0 is equivalent to χv|O×E 6≡ 1 (mod m). Let m = w(C−) ≥ 1. If Ãη(χ) ≡ 0 (mod m) for all
η ∈ $−mO×v , then it follows from (6.3) that

χ−1(a+ θ) = cm(a) ≡ cm−1(0) (mod m) for a ∈ $m−1Ov.

Therefore, a 7→ χ−1(a + θ) (mod m) is the constant function χ−1(θ) on $m−1Ov, and hence χ(1 + aθ) ≡
1 (mod m) for all a ∈ $m−1Ov. If m = w(C−) > 1, this is impossible, and if m = 1, this contradicts to the
assumption that χ|O×E 6≡ 1 (mod m). �

The following corollary is an immediate consequence of Proposition 6.3 and Lemma 6.4, which gives a
partial generalization of Hida’s theorem.

Corollary 6.5. Suppose that the following conditions hold:
(L) µp(χv) = 0 for every v|C−,
(N) χ is not residually self-dual.

Then (NV) holds for (χ, l).

6.3. We consider the self-dual case. First we recall the following lemma on local root numbers of self-dual
characters.

Lemma 6.6 (Prop. 3.7 [MS00]). Let χ be a self-dual character, i.e. χ|AF = τK/F |·|AF . Then
(1) W (χ∗v) = ±χ∗v(2ϑ).
(2) If v is split, W (χ∗v) = χ∗v(2ϑ).
(3) If v is inert, W (χ∗v) = (−1)a(χ∗v)+v(c(R))χ∗v(2ϑ) (c(R) = D−1

F (2ϑD−1
K/F )).

Proposition 6.7. Let χ be a self-dual character of the global root number W (χ∗) = +1 (χ∗ = χ|·|−
1
2

AK
).

Suppose that l splits in K and that there exists ηv ∈ F×v for each v|C− such that
(i) Aηv (χv) 6≡ 0 (mod m),
(ii) W (χ∗v)τK/F (ηv) = χ∗v(2ϑ).

Then (NV) holds for (χ, l).

Proof. We need to verify the hypothesis (H′) in Remark 6.2. Given u ∈ Ol and a positive integer r, we
extend (ηv)v|C− to an idele η = (ηv) in A×F such that



NON-VANISHING OF HECKE L-VALUES MODULO p 23

• ηl ≡ umod lr and ηv = 1 for every split prime v 6= l,
• W (χ∗v)τK/F (ηv) = χ∗v(2ϑ) for every v|h.

By Lemma 6.6, this is possible since l splits in K. On the other hand, it is well known that W (χ∗σ) = i2κσ+1 =
χ∗σ(ϑ) since χ∗σ(z) = z

|z| · (
z
z )κσ for σ ∈ Σ (cf. [Tat79, p.13]). From the assumption on the global root number

W (χ∗) =
∏
vW (χ∗v) = 1, we deduce that ∏

v∈h

W (χ∗v) =
∏
v∈h

χ∗v(2ϑ).

This implies that τK/F (η) = 1, so we can write

η = βNK/F (a), β ∈ F+, a ∈ A×K.

Moreover by the approximation theorem, the idele a can be further chosen so that a ≡ 1mod p`rCN for any
sufficiently large N . Note that

W (χ∗v)τKw/Fv (β) = W (χ∗v)τK/F (ηv) = χ∗v(2ϑ).

For every sufficiently small ε, we have thus constructed β ∈ F+ ∩O×(pFFc) such that

• β ≡ u (mod lr),
• |β − ηv|Fv < ε for all v|pCCc,
• W (χ∗v)χ

∗
v(β) = χ∗v(2ϑ) for all v ∈ h.

Here we let ε be sufficiently small so that Aβ(χv) = Aηv (χv) for v|C−. Recall that v(c(R)) = 0 for v|pCCc
by our choice of ϑ. By Lemma 6.6 (3), we find that v(β) ≡ v(c(R)) (mod 2) for every inert place v - C−. It
follows that there exists a fractional a of R such that∏

q|C−
qvq(β) = (β)c(R)NK/F (a)−1 = (β)c(a).

Define c ∈ A×F,f as follows: cv = β−1 if v - plCCc, cv = 1 if v|pCCc. Then ilF (c) = c(a) by the choice of β and
c(a). From Proposition 4.7, (4.7), (4.10), (4.12) and (4.18), we find that the β-th Fourier coefficient aβ(Ehχ, c)
of Ehχ at the cusp (O, c−1) is given by

aβ(Ehχ, c) =
1

|DF |R
·
∏
v∈h

Wβ(φχ,s,v,

[
cv

1

]
)|s=0

=
∏
w|F

χw(β) ·
∏
v|C−

Aβ(χv) ·
∣∣D−1
F
∣∣
Fv
ψ◦(−2−1tvβ).

It is clear that the non-vanishing of aβ(Ehχ, c) (mod m) is equivalent to

Aβ(χv) = Aηv (χv) 6≡ 0 (mod m) for every v|C−. �

Now we are ready to prove our main result.

Theorem 6.8. Suppose that l splits in K. Let χ be a self-dual Hecke character such that
(L) µp(χv) = 0 for every v|C−,
(R) The global root number W (χ∗) = 1,
(C) R is square-free.

Then (NV) holds for (χ, l).

Proof. It suffices to verify that for each v|C− there exists ηv ∈ F×v which satisfies (i) and (ii) in Propo-
sition 6.7. For v|R, we take ηv ∈ F×v such that W (χ∗v) = τK/F (ηv)χ

∗
v(2ϑ). Note that the assumption (C)

implies that v - 2. By Proposition 4.4 (3) we find that

Aηv (χ) =(χ∗v(−2δ−1
v dFv ) + χ∗v(2

−1ηv)W (χ∗v)) · χv(−2−1d−1
F ) |$|

1
2

=(χ∗v(ϑ) + χ∗(ϑ))χv(−2−1d−1
F ) |$|

1
2 (2ϑ = dFvδv)

=2χ∗v(ϑ)χv(−2−1d−1
F ) |$|

1
2 6≡ 0 (mod m).
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For v|I, we choose ηv to be as in Lemma 6.4, so Aηv (χv) 6≡ 0 (mod m) and

v(ηv) = w(C−) = a(χ∗v) + v(c(R)).

It follows from Lemma 6.6 (3) that W (χ∗v) = τK/F (ηv)χ
∗
v(2ϑ). �

Remark 6.9. We give a few remarks on Theorem 6.8:
(1) The assumption (C) has been removed in view of [Hsi14, Prop. 6.3].
(2) Let χ1 be a self-dual character and ν be a finite order character such that ν has prime-to-p conductor

and ν ≡ 1 (mod m). As pointed out by the referee, one can prove Theorem 6.8 for χ := χ1ν, keeping
(L) and (C) but replacing (R) by the condition (Rm): W (χ∗) ≡ 1 (mod m), which implies the condition
(R) for χ1. Indeed, as ν must have square-free conductor, (C) holds for χ1, and (L) obviously holds for
χ1 as well. Thus χ1 satisfies the hypothese in Theorem 6.8, and for every u ∈ Ol and r, we can choose
β ∈ F+ as in the proof of Proposition 6.7 such that aβ(Ehχ1

, c) 6≡ 0 (mod m). By the condition (L) the
supports of the conductors of χ and χ1 only differ by split primes, we find that aβ(Ehχ, c) 6≡ 0 (mod m).

(3) From the expression of Aβ(χ) in (4.17), it is not difficult to deduce that if µp(χv) > 0 for some place
v|C−, then Aβ(χv) ≡ 0 (mod m) for all β ∈ F×v , and hence Ehχ ≡ 0 (mod m) by q-expansion principle
(cf. [Hsi14, Prop.6.2] for the self-dual case). In addition, in the self-dual case, we can deduce from
[Hsi14, Lemma 6.1] that if W (χ∗) = −1, then aβ(Ehχ, c) = 0 for all β. It follows that Ehχ|c = 0.

(4) The assumption that l splits in K is only used in Proposition 6.7 to assure the local root number
W (χ∗l ) for all u ∈ Ol and r satisfies certain epsilon dichotomy W (χ∗l )τKl/Fl

(ηv) = χ∗l (2ϑ) whenever
ηv ≡ u (mod lr). This is false for nonsplit l. For example, when l is inert, this dichotomy holds
precisely when vl(ηv) ≡ vl(c(R)) (mod 2). To treat nonsplit l, it seems that one has to refine Theorem
3.2 in [Hid04a] (at least when l has degree one over Q).
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