HEEGNER CYCLES AND p-adic L-FUNCTIONS

FRANCESC CASTELLA AND MING-LUN HSIEH

ABSTRACT. In this paper, we deduce the vanishing of Selmer groups for the Rankin—Selberg convo-
lution of a cusp form with a theta series of higher weight from the nonvanishing of the associated
L-value, thus establishing the rank 0 case of the Bloch—Kato conjecture in these cases. Our methods
are based on the connection between Heegner cycles and p-adic L-functions, building upon recent
work of Bertolini, Darmon and Prasanna, and on an extension of Kolyvagin’s method of Euler sys-
tems to the anticyclotomic setting. In the course of the proof, we also obtain a higher weight analogue
of Mazur’s conjecture (as proven in weight 2 by Cornut—Vatsal), and as a consequence of our results,
we deduce from Nekovai’s work a proof of the parity conjecture in this setting.
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1. INTRODUCTION

Let f € S5%(I'o(N)) be a newform of weight 2r > 2 and level N. Fix an odd prime p { N. Let
F/Q, be a finite extension containing the image of the Fourier coefficients of f under a fixed embedding
1, : Q = C,, and denote by

pr: Gal(Q/Q) — Autr(Vy(r)) ~ GLo(F)

the self-dual Tate twist of the p-adic Galois representation associated to f. Let K /Q be an imaginary
quadratic field of odd discriminant —Dy < —3 and let y : Gg = Gal(Q/K) — F* be a locally
algebraic anticyclotomic character. The G g-representation

Vix = Vi(r) @ x

is then conjugate self-dual, and the associated Rankin L-series L(f,x, s) satisfies a functional equation
relating its values at s and 2r — s. The Bloch—Kato conjectures (see [BK90], [FPR94]), which provide
a vast generalization of the Birch—Swinnerton-Dyer conjecture and Dirichlet’s class number formula,
predict in this context the equality

BK ords_, L(f, x, 8) = dimpSel(K, V,
fix

between the order of vanishing at the central point of the Rankin L-series L(f, x, s) and the size of the
Bloch-Kato Selmer group Sel(X, Vy ) for the representation Vi .

Hypothesis (H). The following hypotheses are assumed throughout.
(a) p12(2r — DIN@(N);
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(b) the conductor of x is prime to N;
(¢) N is a product of primes split in K;
(d) p=pp is split in K, where p is induced by 1,,.

Our first arithmetic application is the proof of new “rank zero” cases of conjecture (BK]).
Theorem A. Assume further that the newform f is ordinary at p. If L(f,x,r) # 0, then
dimF Sel(K, vaX) = 0.

Remark. Let €(Vy,) = %1 be the sign of the functional equation of L(f,x,s). The non-vanishing of
L(f,x,r) implies €(Vy ) = +1. On the other hand, under our Hypothesis (H), the global sign e(V7 )
is completely determined by the local sign at the archimedean place, which in turn depends on the
infinity type of x. More precisely, let cOg be the conductor of x and let (j, —j) be its infinity type, so
that for every o € K* with a = 1 (mod ¢Og) we have

x(recy(a)) = (a/a)’,
where rec, : (K ® Q,)* — G% is the geometrically normalized local reciprocity law map at p. Then
one can show that
eViy)==+1 <= j>rorj<—r
In particular, the characters x for which Theorem A applies are all of infinite order.

Let I'y; := Gal(K/K) be the Galois group of the anticyclotomic Z,-extension of K. Write ¢ = ¢,p®
with pt ¢,. Suppose that x = 1dg, where 1 is an anticyclotomic character of infinity type (r, —r) and
conductor ¢,Ok and ¢y is a p-adic character of I',.. The proof of Theorem A rests on the study of a p-
adic L-function %, 4 (f) € Z,[I'%] defined by the interpolation of the central critical values L(f,v¢, 1),
as ¢ runs over a Zariski-dense subset of p-adic characters of I' ;. In a slightly different form, this p-adic
L-function was introduced in the earlier work of Bertolini, Darmon and Prasanna [BDP13|, where they
proved a remarkable formula relating the values of .Z}, ,;(f) at unramified characters outside the range
of interpolation to the p-adic Abel-Jacobi images of generalized Heegner cycles.

Let T} (r) be a Gal(Q/Q)-stable Op-lattice in V;(r). As a key step toward the proof of Theorem A,
we produce Iwasawa cohomology classes

2y € Hiy (Koo, Vy(r)) = lim  HY(K',T(r)) ®o, F
KCK'CKoo
interpolating generalized Heegner cycles over the anticyclotomic tower. Moreover, based on an exten-
sion of the calculations of [BDP13] we prove an “explicit reciprocity law”:

(Lpy(zp)wr @72 = (=c;71) - Lpu(f)
(cf. Theorem|5.7) relating the p-adic L-function %, ,(f) to the image of the classes z; under a variant
of Perrin-Riou’s big logarithm map Ly . The assumption that p = pp splits in K and the p-ordinarity
of f are crucially used at this point. The non-ordinary case will be treated in a forthcoming work of
S. Kobayashi.

With the result at hand, the proof of Theorem A follows easily. Indeed, by the interpolation property
of %, (f), the nonvanishing of the L-value L(f, x,r) in the statement implies the nonvanishing of the
value of 2, (f) at ¢o = 1~ 1x; by our explicit reciprocity law, this translates into the nonvanishing
of the natural image of zy in H*(K,, V¢(r) ® x~*). Combined with a suitable extension of Kolyvagin’s
method of Euler systems with local conditions at p (see , we then use this to establish the vanishing
of Sel(K, Vi ).

Remark. Under more stringent hypotheses, a version of Theorem A was proven in [Cas14]. The strategy
followed in loc.cit. is the same as in this paper, but with our classes z; replaced by the specializations
v§(3c0) of Howard’s system of big Heegner points [How(7] attached to the Hida family passing through
f. In particular, a key ingredient in [Casl4] is the proof of a certain “two-variable” explicit reciprocity
law, which specializes to a relation between %, ,(f) and the image of vf(3+) under £, ;. Comparing
the resulting two formulas for %, ,(f), the equality

vi(3c) = 25

follows easily, yielding an important refinement of the main result of [Cas13].
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Next we consider the case
e(Vix) =—1 & —r<j<m

so the central L-value L(f, x,r) vanishes, and we expect the nonvanishing of Selmer groups. In we
construct the classes zf ., € H'(K,, V) over ring class fields K,, of K. These classes are obtained
by taking the y-component of the p-adic Abel-Jacobi image of generalized Heegner cycles, and they
enjoy the properties of an anticyclotomic Fuler system. The aforementioned extension of Kolyvagin’s
methods to the anticyclotomic setting, which follows from a combination of arguments developed by
Nekovar [Nek95] and Bertolini-Darmon [BD90], also applies to Hecke characters y with infinity types
(j,—7) with —r < j < r, and by these methods we obtain a proof of the following result without the
p-ordinary hypothesis on f. Put 2y, := corg_;x(2f,x,c)-

Theorem B. Assume that e(Vy,) = —1. If zy, # 0, then
Sel(K, VﬁX) =F- Zfx-

Remark. The expected extension of the Gross—Zagier formula of [Zha97] to generalized Heegner cycles,
together with the conjectural injectivity of the p-adic Abel-Jacobi map [Nek00, Conj. (2.1.2)], would
yield a proof of the implication L'(f, x,7) # 0 = 2y, # 0, for any x as above with ¢(Vy,) = —1. In
these favorable circumstances, our Theorem B would imply conjecture in the “rank one” case.

Appealing to the nonvanishing results of [Hsil4], in Theorem 3.7 we show that the p-adic L-function
Zou(f) € Z,[T%] is nonzero, and hence, as x varies, all but finitely many of the values L(f, x,r)
appearing in Theorem A are nonzero; our result thus covers most cases of conjecture for those
X. Moreover, combined with [Nek(07, Corollary (5.3.2)], the above generic nonvanishing and our The-
orems A and B yield a proof of the “parity conjecture” for Vy , .

Theorem C. Suppose that f is ordinary at p. Then
ords=,L(f, x,s) = dimpSel(K, Vy,) (mod 2).
That is, the equality predicted by conjecture (BK|) holds modulo 2.

Finally, we note that the nontriviality of %, (f), combined with our extension of the p-adic Gross—
Zagier formula of [BDP13], immediately yields an analogue of Mazur’s nonvanishing conjecture [Maz84]
for generalized Heegner cycles and ranks of Selmer groups (see Theorem [6.3)).
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Notation and definitions. We let p be a prime and fix embeddings 2, : Q — C, and 1 : Q—C
throughout. Let A = Aq be the adele ring of Q. Let ¢ = [[ ¥, : Q\A — C* be the standard
additive character with ¥ (z) = exp(2miz). For each finite prime ¢, denote by ord, : Q% — Z the
normalized valuation with ord,(¢) = 1. If N is a positive integer, denote by p, the group scheme of

reY 2mi

N-th roots of unity. We set uy = px(Q) and (n := exp(5¢).
If ¢ : Z; — C* is a continuous character of conductor ¢", define the Gauss sum

g = > bu)ih.
u€(Z/qnZ)x
By definition, g(1) = 1 for the trivial character 1. If F is a finite extension of Q, and = is an irreducible
representation of GL,(F) (n =1,2), we let
e(s,m) :==e(s,m, P, 0 Trr/q,)
be the local e-factor attached to the additive character ¥, o Trg/q, (see [Sch02] Section 1.1] for the

definition and basic properties). If x : Q — C* is a character of conductor ¢", then we have

(1.1) e(s,x) =a(x ) - x(—=¢Mq ", e(s,x)e(l — s, x7") = x(-1).
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If L is a number field or a local field, we denote by G, the absolute Galois group of L and by Of,
the ring of integers of L.

2. MODULAR CURVES AND CM POINTS

2.1. Igusa schemes and modular curves. Let N > 3 be an integer prime to p, and let Ig(N)/z(p)
be the Igusa scheme over Z,), which is the moduli space parameterizing elliptic curves with I'; (Np)-
level structure. More precisely, for each locally noetherian scheme S over Z(,), Ig(N)(S) is the set
of isomorphism classes of pairs (A,n) consisting of an elliptic curve A over S and a T';(Np*>)-level
structure n = (9", n,) : py @ pyee — A[N] @ A[p>], an immersion as group schemes over S. For a
non-negative integer n, let Y1 (Np™),q be the usual open modular curve of level I'y (Np™). Put

) ={g € GLa@) 9= () mod Ny

= * ok
o) ={o < GLa@) 1= (1) tmod 8 |
Letting H be the complex upper half-plane, the curve Y7 (Np™) admits the complex uniformization
Yi(Np")(C) = GL>(Q)"\H x GLx(Q)/Us (Np"),
where GL2(Q)™ is the subgroup of GL2(Q) with positive determinants. Since the generic fiber Ig(N) /q

is given by

Ig(N)/q = limY1(Np")/q,

n

this yields a map

~

H x GL2(Q) = Ig(N)(C), = = (72,92) = [(Az, 7).

We now give an explicit construction of pairs (A, 7,) of complex elliptic curves with I'y (Np*°)-level
structure. Let V = Qe; & Qes be the two-dimensional Q-vector space equipped with the symplectic
pairing

(ae1 + beg, cer + des) = ad — be,
and let GL2(Q) act on V from the right via

b
(wertyen)- (4 5) = (aat cpjes + (b4 yea
For 7 € H, define the map p, : V — C by
pr(aer + bes) = at + b.
Then p, induces an isomorphism Vg := R®q V ~ C. Let L be the standard lattice Ze; ® Zes, and
for every g = <Ccl 2) € GLQ(Q) define the Z-lattice L, C V by

L, := (261 o) 262)9/ nv,

where ¢’ is the main involution defined by

g = (d b) =g ldetg.

—C a

~

The C-pair (A, n,) attached to = (74, 9,) € H x GL2(Q) is then given by
Ay =C/Ly, Ly :=ps(Lg,),
and the T'; (Np°°)-level structure n, = (ng(cp ), Ne,p) is given by the immersions
NP pn > NT'Z/Z@ Ly, (4= pr (§/N ® e2g,),

Nep' tp — Qp/Zp @ Ly, an — pr, (/D" @ e2g,).

Here we have used the identification Q/Z ®z Lg, = Q/Z ®z Ly, . The lattice L, C C is called
the period lattice of A, attached to the standard differential form dw, with w the standard complex
coordinate of C.
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2.2. Modular forms. We briefly recall the definitions and standard facts about geometric and p-adic
modular forms. The basic references are [Kat73], [Kat78] and [Hid04].

Geometric modular forms.

Definition 2.1. Let £ be an integer, and let B be a Z,-algebra. A geometric modular form f of
weight k& on Ig(NN) defined over B is a rule assigning to every triple (A,n,w), ¢ over a B-algebra C,
consisting of a point [(A4,n)] € Ig(N)(C) and a basis w of H*(A,wa,c) over C, a value f(A,n,w) € C
such that the following conditions are satisfied:
(G1) f(A,nw)=f(A,n,w)eCif (A, nw)~ (A n,w) over C.
(G2) If ¢ : C — C’ is any B-algebra homomorphism, then
f((Avnaw) ®c C,) = <P(f(A777aW))

(G3) f(A,n,tw) =t"Ff(Anw) forallt € C*.

(G4) Letting (Tate(q), Nean, Wean) be the Tate elliptic curve G, /g% with the canonical level structure
Nean and the canonical differential we,, over Z((q)), the value f(Tate(q), Nean, Wean) lies in B[q].
We call

f(Tate(q), Nean, Wean) € B[q]
the algebraic Fourier expansion of f.

If f is a geometric modular form of weight k£ defined over a subring O C C, then f gives rise to a

~

holomorphic function f : Hix GLy(Q) — C by the rule

f(z) = f(Aqg, 0, 2midw), =z € Hx GLy(Q),
where w is the standard complex coordinate of A, = C/L,. This function f satisfies the transformation
rule:

f(ar, ag) = (det oz)_gJ(oz,T)k f(1,9) (a€GLx(Q)T),
where J : GLy(R)* x H — C is the automorphy factor defined by
b
Hor) = (etg)H v+ o= (2 4))

C

Moreover, the function f(—,1) : H — C is a classical elliptic modular form of weight k& with analytic
Fourier expansion

f(T, 1) — Z an(f)eQTrinT7

n>0

and we have the equality between algebraic and analytic Fourier expansions (c¢f. [Kat78, §1.7])

f(Tate<q)a Tcan, Wcan) = Z an(f)qn € O[[q]]

n>0
We say that f is of level To(Np™) if £(7,gu) = £(7, g) for all u € Uy(Np™).

p-adic modular forms. Let R be a p-adic ring, and let IAg(N)/R = hgm Ig(N)/r/pmr be the formal
completion of Ig(NN) . Define the space V,,(NV, R) of p-adic modular forms of level N by

V,(N,R) := HO(fg(N)/R,O@(N)/R)
= lim HO(1g(N), Oryv) @ B/p" ).

Thus elements in V,,(N, R) are formal functions on the Igusa tower Ig(IN). We say that a p-adic modular
form f is of weight k € Z, if for every u € Z, we have

(2.1) F(An) =uFf(A 0D ), [(An)] = [(A,0",n,)] € Tg(N) /g

R If f is a geometric modular form defined over R, then we can associate to f a p-adic modular form
f, called the p-adic avatar of f, as follows. Let C' be a complete local R-algebra, and let (A,n) be
an elliptic curve with I'; (Np>)-level structure. The p>-level structure 7, : pt, — A[p>] induces an
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isomorphism 7, : G~ A (here A is the formal group of A), which in turn gives rise to a differential
W(np) € Lie(4) = Lie(A) ~ Lie(G,,) = C. Then f is the p-adic modular form defined by the rule

o~

F(An) = f(An,0(m)),  [(An)] € 18(N)/r
(¢f. [Kat78, (1.10.15)]). It follows from the definition that if f is a geometric modular form of weight
k and level T'o(Np™), then f is a p-adic modular form of weight k.

2.3. CM points (I). Let K be an imaginary quadratic field of discriminant —Dg < 0, and denote by
z +— Z the complex conjugation on C, which gives the non-trivial automorphism of K. In this section,
we assume that p > 2 is a prime split in Ok and write

pOK = pﬁa

where p is the prime ideal above p determined by the embedding Q < C,,.
Define ¥ € K by

0

_ D/-l-\/—DK D - Dy ifQJ[DK,
2 ’ Dy /2 if 2| Dg.

Then Ok = Z + Z9 and 99 is a local uniformizer of Q, for ¢ ramified in K. If M is a positive integer,
we decompose M = MM~ with the prime factors of M+ (resp. M ™) split (resp. inert or ramified)
in K. For each prime ¢ = qq split in K, we write

Zq Rz OK = qua@ quq,
where e and ez are the idempotents in Z, ®z O corresponding to q and q, respectively.

We assume that NOg = NN for some ideal M of Ok. Let ¢ be a positive integer, let O, := Z+cOx
be the order of conductor ¢, and let K, be the ring class field of K of conductor c¢. Let a be a fractional
ideal of O, and let a € K* with aK N O, = a. To the ideal a and the finite idele a, we associate a
C-pair (Aq,7,) of complex CM elliptic curves with I'; (Np>°)-level structure as follows. Define A4 to
be the complex elliptic curve C/a~!. For each prime ¢ | pN, let q be the prime of Ok above ¢ with
q|9p, and let aq € Q, be the g-component, of a. We then have (Z, ®z a~') N Qqeq = Zga, 'ceq and
the exact sequence

Aala™] = pye @ ag ' ceq = Aalg™] > Qq/Zy © ag'eq,

and we define 1, = (néf’), Nap) : By D Moo =+ Aa[N] D Aa[p™] = Ag[N] @ Aq[p™] to be the embedding
determined by the isomorphism g, = Aq[q"] sending

ANEL Y ®agtqdeDeq if g | NTp,
? ilq" @ ag! ifg| N~

Denote by V the valuation ring ¢, 1(O.;;p) N K2, Tt follows from the theory of complex multiplication
[Shi98|, 18.6, 21.1] combined with the criterion of Serre-Tate [ST68] that (A4, 7,) actually descends to
a discrete valuation ring V, inside V. Thus [(Aq, 114)] is defined over Vy and belongs to Ig(N)(Vp). We
call [(Aq,74)] € Ig(N)(V) the CM point attached to (a,a).

If a is a prime-to-Np integral ideal of O, we write (A4, 1) for the triple (A4, n,) with g-component
aq = 1 for every q | Np. If a = O, we write (Ac,7.) for (Ao, ,n0,). In this case, we see immediately
from the construction that A, = A./A.[a] and the isogeny A\, : A, — A, induced by the quotient map
C/O. — C/a~1 yields 74 = A\q 0 7.

2.4. CM points (II). We give an explicit complex uniformization of the CM points introduced above.
Consider the embedding K — M>(Q) given by
a(@+9)+b —add
a b '
For each g € GLy(Q), denote by [(9, g)] the image of (9, g) in lim Y1(Np™)(C) = Ig(N)(C). Shimura’s
reciprocity law for CM points (cf. [Hid04, Cor.4.20]) implies that [(9, g)] € Ig(N)(K?P) and
(22) reci (a)[(9,9)] = [(9,39)] (a € K¥),

where recy : KX\I?X — Gal(K?"/K) is the geometrically normalized reciprocity law map.

a19—|—b&—><
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Let ¢, = cfc; be a positive integer prime to p and fix a decomposition ¢f O = €€. Define

~ 1 0).
) = (6) € GLa@ by = (g §) ifateiNp, and

= (99 . o
5p = —9)~* (1 1) € GLy(K4) = GL2(Qq) if ¢ = qq with g | €0p.

Let ¢ = cop™ with n > 0. We define 7. =[], ve,q € GLQ(@) by Ye,q = 1if g1 cNp,
qordq(c) 1 ) o
Yeg = 0 1 if ¢ = qq with q | €Np,
1 0 . R
Ye,q = <0 qordq(c)ordq(N)> if q | ¢ N™.

Let & :=¢(®)n, € GLg(Q) be the product. An elementary computation shows that O, = py(Le¢,) and
that for ¢ = qq with q | €0p, we have

a 0
(23) (5 ) =taer+ben)s, (@be Q)
and
(2.4) fé,q cZger @ ZLges ~ 72, Rz O, pg(egféq) = qordQ(c)eq,

so we have [(¢,&.)] = [(Ac, 1c)]. Define
e = [(Ae; ne)] = [(9,€c)] € Tg(N)(C).
In general, if a € K(PN)X and q = a@c N K is a fractional ideal of O, we let
0q = reck (a” )|k, (npe) € Gal(K.(Mp™)/K),

where K (91p°) is the compositum of K. and the ray class field of K of conductor Mp>°. Thus o, is
the image of a under the classical Artin map. We have

(2.5) o = [(Aa,m0)] = [(0,371&)] = 27" € Ig(N)(Ke(Mp™)).

Here the first equality can be verified by noting that the main involution induces the complex conju-
gation on A% and using (2.3), and the second equality follows from Shimura’s reciprocity law for CM

points (2.2).

2.5. CM periods. Let er be the p-adic completion of the maximal unramified extension Q)" of Qp,
and let W be the ring of integers of Qgr. If a is a prime-to-pN fractional ideal of O, with p 1 ¢, then
(A4, 7m4) has a model defined over V™ := W N K?P. In the sequel, we shall still denote this model by
(Aq,7Mq) and simply write A for Ap,.

Fix a Néron differential w4 of A over V''. There exists a unique prime-to-p isogeny Aq : 44 — A
inducing the identity map on both the complex Lie algebras C = Lie A4(C) — C = Lie A(C) via
the complex uniformizations and on the p-divisible groups pr,ec = Ag[p™] = p,c = A[p™] via the
level structures at p. Letting wy, := Aiwa be the pull-back of wy, we see that there exists a pair
(Qk, Q) € C* x W* such that

Qk - 2midw = Qp - B(Nap) = wa,,

where w is the standard complex coordinate of C/a~! = A,(C). The pair (Q,€,) are called the
complex and p-adic periods of K. Note that the ratio Qx /€, does not depend on the choice of Néron
differential wy4.

3. ANTICYCLOTOMIC p-ADIC L-FUNCTIONS

In this section, we review the anticyclotomic p-adic L-functions that were originally constructed in
[Bralll], [BDP13] and [Hsil4] from various points of view. Our purpose is to extend their interpolation
formulae to include p-ramified characters and to prove the nonvanishing of these p-adic L-functions, so
we find it more convenient to adopt the approach of [Brall], based on the use of Serre-Tate coordinates.
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3.1. t-expansion of p-adic modular forms. Let x = [(4o,7n)] be a point in the Igusa tower Ig(N)(F,)
and let Sy < Ig(N)w be the local deformation space of x over W. The p>-level structure 7, deter-
mines a point Pk € T),(Af)), where A is the dual abelian variety of Ay and T),(Af§) = m Ab[p™(Fp)
is the p-adic Tate module of Af. Let Acan: Ao = Af be the canonical principal polarization.

For each deformation A,g over a local Artinian ring (R,mg), let ga: Tp(Ao) x Tp(Af) — 1 + mg
be the Serre-Tate bilinear form attached to A, g (see [Kat81]). The canonical Serre-Tate coordinate
t: §x — (A}m is defined by

t(A) = qa(AGn(Px), Px)
and yields an identification Og = W[t — 1].

Let f € V,(N, W) be a p- adlc modular form over W. The t-expansion f(t) of f around x is defined

by
ft) = flg, e Wt =11,
and we let df be the p-adic measure on Z, such that

/ tdf(z) = £(2).
Z

I4

Moreover, if ¢ : Z, — Oc, is any continuous function, we define f ® ¢(t) € Oc, [t — 1] by

f @ o) /d» jerdf = Z/ () (2) - (t—1)",

Lemma 3.1. If ¢: Z,/p"Z, — Oc,, then
foot)y=p" > > (TUou)f(t).
wEZ/p™Z (Eppn

If ¢ :Z, — Zy is z +— 2*, then

a1k
roon = || 0.
PrROOF. This is well-known. For example, see [Hid93| §3.5 (5)]. O

3.2. Serre—Tate coordinates of CM points. Suppose that c is a positive 1nteger with ptc. Let a
be a prime-to-c¢Ip integral ideal of O, and let a € K(M)X he such that a = a(’) N K. Define N(a) by

N(a) := degree of the Q-isogeny C/O — C/a™*
=c '#(0./a) =ct |a|;i< .

Let x4 = [(Aa,Ma)] € Ig(N)(V) be the CM point attached to a and let ¢ be the canonical Serre-Tate
coordinate of x4 := x4 ®y IF We will use the following notation: for each z € Q,, set

(3.1) n(z) := (é j) € GLy(Q,) C GLy(Q).
Put

za ¥ 1(z) = [(9,a En(2))] € Ig(N)(V).
Lemma 3.2. Let u € Z,. We have (x4 *xn(up™™)) ® F, = x,, and

Haq * n(up™™)) = (N VPR

ProoF.  Let (A,74)/y, be a model of the CM elliptic curve (Aq,74) over a discrete valuation ring

Vo C V. Let A= A®F,. Recall that e, and ez are idempotents in K ®q K — Q,®q K corresponding
to p and p respectively. In fact

1

I01-1Q9 I01-1990
ep:f’ eﬁ:f’
v -1 v -1

so we have

(3.2) polers)) = €5, Doleas,) = ep.
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The complex uniformization a: (C/a™",74) ~ (A,1n4),c yields the identifications
o Zpey ® Zypey = Ly @z a7 = T,(A)
and
@ e @ Zpey >~ Alp™],  a: Zyeg ~ Ty(A).

Here A is the formal group attached to Ajv,- Let eq: Tp(A) x Tp(AY) — Z, be the Weil pairing. Let
Ao: A — A" be the prime-to-p polarization induced by the Riemann form (z,w)y = (Im¥)~! Im(2w)
on C/a~!. The complex uniformization a* = a o \y: C — A*(C) induces a': C/N(a)a=t ~ A*(C)
and a': Zyey ® Zpe, ~ T, (AY) with of @ Zpey ~ Tp(jt). By [Mum08, Theorem 1, page 237] and (3.2),

we have

ea(aa(eg) + ba(ey), cal(e5) + dat(ep)) = —(ad — be) (9 — )~ = —(ad — be)\/—Dx

(Note the sign —1.) The canonical polarization Acayn : A =~ A" is given by a(z) — o'(N(a)z).
Let y be the complex point (J,a '¢n(up™)) and let (B,715) v, be a model of (A4,,n,) over Vy
(enlarging Vy if necessary), so [(B,n5)] = [y]. The period lattice L, of B(C) is given by

—1

Ly = pﬂ(Ll>7 L' = (261 2] 262)n(_up_n)§éa_l nv.
By a direct computation and (3.2]), we find that
1 —u —n
Z, ®z Ly = py(Zpe1 ® Zyes (O ij > VepSp)
= po((Zp(er —up™"e2) © Zpea)s,)
=Zy(ep —up "ep) © Zpey,

so the complex uniformization 5: (C/L,,n,) ~ (B,n5),c induces the identification
u
B Zp(eg — ;D?ep) © Zyey ~ Tp(B).

With the above preparations, we see that over C there are natural isomorphisms

AJAlp] = B/Blp] =~ C/a~'p; " (pe =pNO)

induced by the inclusions of L, and a=! in a=!p_ !, which extend uniquely to an isomorphism A/ A[p] ~

B/Blp] over Vy ([ECI0, Prop. 2.7]). By construction, A[p] and B[p] are connected components of A[p]
and B[p], so we get the isomorphism (A, 77)7» ~ (B, n5)7?, where (—)7» denotes the conjugate of the
p-th power Frobenius o, and hence (A, n7) ~ (B,ng). This shows that [y] ®@F, = xq. To compute the

value t(B), we note that Py, = a'(ep) and that the Weil pairing of A induces Ejg: B\[poo] X T,,(Zt) —

G, so that Eg(B(p~"ep), o' (ep)) = van_DK_l ([Kat81l, page 150]). For a sufficiently large integer m,
we have

t(B) = qB(Acam (P, )s Px,) = as(N(a) " a(ep), o' (ep))
= Ep(“p™a(p "ep), at(eﬁ))N(“rl,

where “p™” : A[p™|(F,) — A is the Drinfeld lift map. To compute the lift, from the diagram

(33) 0 —— pye @ Zpey —>Zp @ K/Ly —— Qp /2, @ Zpey —> 0
iz ﬁlz alz
0 ——— B[p™] B[p*] Qp/Zp @ Tp(A) —=0

we can see that the p™-torsion point a(p~™e5) € p~"Z,/Z, T, (A) = Alp™](F,) has a lift B(p~™e5—
up~ " "ey) € B[p™], so the Drinfeld lift “p™”a(p~™ep) is given by B(—up"e,) € g[p‘”]. Hence, we
obtain

t(B) = EB(ﬂ(p_nep),at(eﬁ))_uN(arl _ C;?N(a)*l\/ﬂfl' 0
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Proposition 3.3. Let f € V,(N,W) be a p-adic modular form with t-ezpansion f(t) around x, @ F,,.

Put .
fa(t) — f(tN(a)_lx/fDK )

If n is a positive integer and ¢: (Z/p"Z)* — Oép is a primitive Dirichlet character, then

fa®@d(za) =p "g(0) > ¢ '(u): f(zaxn(up™)).

u€(Z/pnZ)*
ProOOF. This follows from Lemma [3.1] combined with Lemma [3.2] O
3.3. Anticyclotomic p-adic L-functions.

Hecke characters and p-adic Galois characters. A Hecke character x : K*\ A — C* is called a Hecke
character of infinity type (m,n) if xoo(z) = 2™Zz", and is called anticyclotomic if  is trivial on A*.

For each prime q of Ok, we let xq: Kq — C* denote the g-component of x, and if x has conductor
¢ and a is any fractional ideal prime to ¢, we write x(a) for x(a), where a is an idele with aOxNK =a
and aq =1 for all q ] c.

Definition 3.4. The p-adic avatar ¥ : KX\IA(X — C, of a Hecke character x of infinity type (m,n)
is defined by

X(2) =ipoig (x(2)zy' 2z
for z € K*.

Via the reciprocity law map recg, each p-adic Galois character p: G = Gal(Q/K) — C, will be

implicitly regarded as a p-adic character p: K X\I? * — C;. We say that a p-adic Galois character
p is locally algebraic if p = pa is the p-adic avatar of some Hecke character pa. A locally algebraic
character p is called of infinity type (m,n) if the associated Hecke character pa is of infinity type
(m,n), and the conductor of p is defined to be the conductor of pa. Note that if pa is unramified at p
and of infinity type (m,n), then p is crystalline at p as p|g x, IS an unramified twist of the m-th power
of the p-adic cyclotomic character.

Modular forms. In the remainder of this article, we fix f € S5%(T'o(IN)) to be an elliptic newform (i.e.

normalized eigenform for all Hecke operators) of weight 27 and level Ny | N. Let
fla) =) an(H)g"
n>0
be the g-expansion of f at the infinity cusp. Let F' be a finite extension of Q, containing the Hecke
field of f, i.e. the field generated by {a,(f)}, over Q. Let s be the automorphic form attached to
f,ie @r: AXGL2(Q)\ GL2(A) — C is the function satisfying
01 (goot) = J(goos 1) "2 f(goot),  for goo € GL2(R)*,u € Ui (Ny),

and let 7 = ®'my be the irreducible cuspidal automorphic representation on GL2(A) generated by 5.
Note that 7 has trivial central character. Define the automorphic form cp‘} by

(3.4) 5 (9) = ¢r(9) —ap(Hp"0s(g7p) + 0 s (970),

where v, = ((1) 2) € GL2(Q,) — GL2(Q). Define the complex function £*: H x GLQ(Q) — C by

£(7,97) = ¢ ((goor 97)) (goos i) |det gy ,

(3.5)
(goo € GL2(R)™, gooi = 7).

Then there is a unique geometric modular form f* of weight 2r and level T'o(Np?) defined over Op
such that:

o [P(Ag,na, 2midw) = £2(x) for z € H x GLy(Q),

e with Fourier expansion

fb (Tate(Q)7 Tlcan, wcan) = Z an(f)qn

pin
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The p-adic avatar fb € V,(N,Op) of f introduced in is a p-adic modular form of weight 2r.

Explicit Waldspurger formula. We recall a result on the explicit calculation of toric period integrals in
[Hsild]. Let ¢ = c,p™ with ptc, and n > 0. Put

PicO, := K*X\K*/O}.
If a € KX and a = aK N O, is the _corresponding fractional ideal of O, we shall write [a] = [a]
for its class in Pic O.. Let x: K*\Ax /O — C* be an anticyclotomic Hecke character, and set
A(x) = {primes ¢ | D such that x, is unramified and ¢ | Ny.}.
We assume the following Heegner hypothesis:
(Heeg’) Ny is a square-free product of primes ramified in K,

and that (f, x) satisfies the condition

(ST) a,(f)x(q) = —1 for every g € A(x) (¢0x = ¢°).
Definition 3.5. Define the y-toric period by

R = X ot = (T )

[a]€Pic O,

= (i) - Y P0at) Al an (@) (boy @)

la]ePic O,

Let i be the automorphic representation of GLa(A k) obtained by the base change of 7 to K, and
let L(s,mx ® x) be the automorphic L-function on GLy(A k) attached to mx twisted by x o det H If
x has infinity type (r +m, —r — m) with m > 0, define the algebraic central value La”lg(%7 T ® X) by

1
1 gy = L tmlm+D)  Lig e ©x)
2 (47)2r+2m+1(Tm o9)2r+2m Q%,er)

and the p-adic multiplier e, (f, x) by
N2 oifpte,

ep(f.x) = (1 =2, (N~ xz(p) + x5 (*)p~ :
ifple.

e(5:xp) 7
Proposition 3.6. Suppose that
(a) x has infinity type (r,—7r) and (¢, NT) =1,

(b) (Heeg) and [ T) hold for (£, x)-

(¢) The conductor of x is cOk.

Then we have
2

b
() = 955 mc 0 0) 700 2000+ ¥4 D el o) - x ™ (E(),
K

where u == #(0x)/2 and £(f) =[], e(%,m,) is the global root number of f.

27

PrROOF.  We will follow the notations in [Hsil4]. Let W) = W7 T[,_., Wy.»: GLa(A) = C be the
Whittaker function defined in [HsiI4l §3.6], and let gai: GL2(Q)\ GL2(A) — C be the associated

automorphic form given by
a 0
wo =X w5 Vo

acQ
Let ¢ = (So0,5(%)) € GLo(A) with ¢(>) as in and define the toric period integral
Py(m()epx) = / px (ts)x(t)dt,
KX AX\A%

ISee [TacT2, Thm. 20.6] for the existence of the quadratic base change, and [JL70, §11] for the definition of L-functions
on GL(2).
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where dt is the Tamagawa measure on Ay /A*. Under the assumption (b), the explicit Waldspurger
formula in [Hsil4] Theorem 3.14] implies that

(41;()2221 cep(f.X) L(%WK ® x) - CL()N(m,x)?,

where N (m, x) =[], .- L(1,7k,/q,) and C7(x) is the constant

(3.6) Py (m(<)¢x)? = |Di| % -

o 1
Crlx) =270 [ (5o m @ xa)

qle, q;ép
1 _
2#(A(X +3 HE ) H 5(§an) 2
qN q|€,q#p

In the last equality, we used the formulae
_ e(s,m)xg 1 (M) ifg | NT,
£(s, g @ xg) = (8, Tq @ xT1) = vra
( q Xq) ( q ¥ Xgq ) {E(l _ 57Xq)_2 if ¢ ‘ .

On the other hand, under assumption (a) one can verify that
D Da(ee, u€))x(w) = ox(gCs) - [[olxg ™) - e [T (1 +1/9)
[u]eOX/OX ql¢ qle”

by comparing the Whittaker functions of the automorphic forms <p'} and ¢, on both sides, where
c = (cq)q € K* is the idele with cqg = ¢4 if q | € and ¢q = 1 if ¢ { €. From this equation, we
obtain

P, (m(<)p x(a)py(as
(T(S)px) = FUK E;O (a)py (as)
1C K
2N (m, X _ _
= Hg D) D oxtae™) YT Do, auge)x(u)
qle [a]€Pic Ok [u]eOX /OX
2N Tr X Ol" C
= Doun JTe0a) X @) D @ (ses aube)x(w).
q|¢ [a]EPic O,
We thus find
2N (7, x) -1 b
(3.7) P (m(S)py) = c\/DiuK 1_!5 (L, xq)™ - P (f)-
It is clear that the theorem follows from and . O

Analytic construction of the p-adic L-function. Let Kpe = U, K, be the ring class field of conductor
p>, and let ' := = Gal(Kp~/K). Then the Galois group I' of the anticyclotomic Z,-extension is the

maximal free quotient of T. Denote by C (F Oc,) the space of continuous O, -valued functions on T,
and let X, C C(F, Oc,) be the set of locally algebraic p-adic characters p: I' — (’)ép.

Let rec, : Q¥ = K — Gal(K*/K) — T be the local reciprocity law map. For p € X, we define
pp Q) — CJ by

pp(B) = plrecy(B)),
and for p € C(T, Oc, ), we define p|[a] : Z) — Oc, by
plla](z) = p(recy(v)o; ') = p(recy (z) rec (a)).
For each a € K(©"P)% with associated fractional ideal a C O.,, let (Aq,mq) be the CM elliptic curve

with level structure introduced in Let tq be the canonical Serre-Tate coordinate of fb around
Xq = [(Aa;7a)] @ Fp, and set

(3.8) Plte) = PENOVPE Y e Wt —1] (N(a) = |al5L c7).
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Definition 3.7 (Analytic anticyclotomic p-adic L-functions). Let 1 be an anticyclotomic Hecke char-
acter of infinity type (r, —r), and let ¢,Ok be the prime-to-p part of the conductor of ¥. Define the
p-adic measure %}, ,,(f) on I" by

Za) = Y w@N@ T (B @ vplla]) (Ae7a):
[a]ePic O,
We shall also view %, ,,(f) as an element in the semi-local ring W[T].

The p-adic measure %, (f) satisfies the following interpolation formula at characters of infinity
type (m, —m) with m > 0. In what follows, we assume (Heeg)), (ST) for (f,+) and that (c,,pNT) = 1.

Proposition 3.8. If (E € X, is the p-adic avatar of a Hecke character ¢ of infinity type (m, —m)
with m > 0 and p-power conductor, then

~ 2
(%gffﬁﬁ’) = D5 i @) - ep(f,96) - OV ) - 2P e(f) - ud /D

PROOF.  Suppose that m = 0. Then $ = ¢ is a finite order character, and x := ¢ is an anticyclo-
tomic Hecke character of infinity type (r, —7). Let cOk be the conductor of x (so ¢ = ¢,p™). Suppose
that n > 0. By Definition [3.7] and Proposition we have

L@ =c; Y (fox) @xl -, (@

[a]ePic O,

=p7"g0w)es Y. Xlan@ Y Pl n(upT)xp(uh).

[a]€Pic O, UE(Zp /P Zp)*

(3.9)

For z € Q, we use z (resp. 2) to denote the finite idele in KX with z at p (resp. p) and 1 at all the
other places. Since f° is of weight 2r and level T'o(Np?), a direct calculation shows that

2r
P (o # n(up™)) = £, 5 €,n(up™)) - o5
K
) ) Q2r
= (9, @ tupp; "Ee,pm)) - Qgr (uey),
K

where (Qg,,) are the periods defined in Note that we used (2.3)) in the last equation. We thus
find

Zu(f)(@) _ p"aXp)Cp 3 3

o o0 X ar (@ hup) € (9, @ ugpy ™ - &)
p

[a]€Pic Oc, wcDX /O

P "a(xp)co - —n
= TTP : Z X|-|A;(a)fb(19,apﬁ “&e)
K [a]€Pic O,

5(17Xp22><2£(—1>cr. S XAl @ (0,0 (by (TI)).

[a]€Pic O,

Therefore, according to Definition [3.5] we obtain
Low(f)(@)  el3ixp) n .
Pﬂé')gr)( ) _ 2921; . Px(fb) pT 3 (Imﬂ) )
P K
The proposition for the case m = 0 and n > 0 now follows from Theorem [3.6] If n =0, i.e. x, =1 is
the trivial character on Z,, then one can use (3.4) and the fact that ¢ is a Hecke eigenform to show
that fg Q@ xp(xa) = fg(xa), so (3.9) is still vali and as above the proposition also follows in this case.
For general m > 0, comparing the interpolation formulas for %, ,(f) and for the p-adic L-function
2, (m,v) constructed in [Hsil4, Thm. A] at p-ramified finite order characters (m = 0), we find that

2The p-adic modular form fb is called the p-depletion of f The reason to take the p-depletion is to make the measure

associated to ‘fb supported on Z;f
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Lo w(f) =u- 2L (m,¢) with u = 2#AW) 3¢ e(f)v/ D, and hence the general interpolation formulae
of 2, (f) can be deduced from those of £, (m, %) in loc.cit.. We omit the details. O

We now prove the nonvanishing of the p-adic L-function .2, ,(f).
Theorem 3.9. Suppose (Ny, Dk ) = 1. For all but finitely many ¢ € Xpoo, we have L, 4 (f)(¢) # 0.

PROOF. Since f has conductor prime to Dy, f can not be a CM form arising from K, and hence
the /-adic representation pys, is irreducible when restricted to G for every prime ¢. Therefore, it is
well-known that there exist infinitely many primes ¢ such that:

e (s prime to pNDg [, .- (1 +q),

e the residual Galois representation pyr |, is absolutely irreducible.
By [Hsil4, Theorem C], the central L-values {L*8(1/2,7x ® ¢¢)} are non-zero modulo ¢ for all but
finitely many finite order characters ¢ € X,. (Note that the roles of p and ¢ have been switched here.)
In particular, this implies that .Z}, ,(f) does not vanish identically, and hence the theorem follows from
p-adic Weierstrass preparation theorem. O

4. GENERALIZED HEEGNER CYCLES

4.1. Definitions. We continue to let f € S8V (T'o(N)) be a newform of weight 2r and level N. We
assume the (strong) Heegner condition

(Heeg) N is a product of primes split in K.

Thus (Heeg’) and (ST)) will automatically hold. Let K = Q(v/—Dg) be the imaginary quadratic field
of discriminant — Dy . If r > 1, we further assume that

(can) either Di > 3 is odd, or 8 | Dg.

This assumption ensures the existence of canonical elliptic curves in the sense of Gross (see [Yan04
Thm. 0.1]). We shall fix a canonical elliptic curve A with CM by Ok, which is characterized by the
following properties:

e A is equipped with CM by [-]: Ox ~ End A.

e There is a complex uniformization £: C/Okg ~ A(C).

e Ais a Q-curve defined over Hjf, where Hjt = Q(j(Ofk)) is the real subfield of the Hilbert

class field Hg of K.

e The conductor of A is only divisible by prime factors of Dg.

For each positive integer ¢, let €, := £(c710,./Ok) C A be a cyclic subgroup of order c. The elliptic
curve A/%, is defined over the real subfield Q(j(O.)) of the ring class field K. of conductor c¢. Let
@ A/, — Ac/k, be the isogeny given by the natural quotient map. Then A/%. is equipped with
the complex uniformization A, ~ C/O, such that ¢.: C/Ox — C/O. is given by z — cz. Thus we
see that the elliptic curve A, introduced in descends to the elliptic curve A/%,, still denoted by
A, in the sequel.

For any ideal a of O, in this section we always assume that aOQp is prime to cDgpdl. Let a be
an ideal of O, and recall that o4 € Gal(K®/K) is the image of a under the Artin map, where K¢ is
the maximal abelian a-ramified extension of K. Then, by the main theorem of complex multiplication
(cf. [dS8T, Prop. 1.5, p.42]), we have A, = AZ* and the isogeny Aq: A; — Aq in §2.3]is actually defined
over K. and characterized by the rule
(4.1) Aa(x) = 0q(z) for all x € A[m], (m,N(a)) = 1.

Define the isogeny

Pa = A © Pe: A/KC — Aa/KC7
and let I'y be the graph
Ta =A{pa(z),2) | z € A} C AgxA.
Let K, be the compositum of K, and the ray class field of conductor 9. Let x4 = [(Aq,74)] €

Y1(N)(K,) be the CM point associated to a as in the last paragraph of and let o/ be the
universal elliptic curve over Y;(N). Then z, determines an embedding i, : Aq — &7, and we define

Va = (iz, xid)(Tq) = {(iz, (pa(2)),2) | 2 € A} C o xA.
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Denote by Wa,._o the Kuga—Sato variety of dimension 2r—1 (¢f. [BDP13| p.1056]). Following [BDP13|
p.1063], define the cycle Y, in the generalized Kuga—Sato variety Xo, o := Wo,_5 x A2"~2 by

Yo =V2"2C (in,(Aq) x A)?"72 = Xo,_o.

Let ex = ew X €4, with ey € Z[Aut(Wa,_2)] and €4 € Z[Aut(A%"~2)] the idempotents defined in
[BDP13| (2.1.2), (1.4.4)]. The following definition is given in [BDPI3, p.1063].

Definition 4.1. The generalized Heegner cycle A, associated to the isogeny g is
Atpa = €x [Ta] S CHZT_I(XQT,Q/KC)O’Q.

4.2. Generalized Heegner classes (I). Let p be a prime with p{2(2r—1)IN¢(N). Let F be a finite
extension of Q,, containing the Hecke field of f. Let V; be the two-dimensional p-adic representation of
Gq over F attached to the newform f by Deligne, and denote by V(r) the Tate twist Vy ® e[, ., where

cyc?

Ecye is the p-adic cyclotomic character. Following [BDP13, §3.1], we consider the p-adic Abel-Jacobi
map

Oep 2 CHY ™ (Xop o/ K)o — H' (Ko, ex Hy ~*(Xor—2 g, Zp) (2r — 1))
— H' (Ko, ew H* ™' (War 2 5, Zp) (1)) © Sym® 2 H} (A, Zy) (r — 1))
— H' (K., T ® S""'(A)),

where T is the Galois stable Op-lattice in V;(r) in [Nek92, §3], and S"~1(A) is the G g,.-module

STY(A) = Sym* 2 T, (A)(1 —7)

with T,,(A) the p-adic Tate module of A. For every ideal a of O, define the generalized Heegner class

Zf,q associated to a by

(4.2) o= Paf(Ay,) € HY (K., T ® 5™ (A)) KSR = HLUK,, T © S (A)).

In the following, we shall simply write zs . for zf o, .

4.3. Norm relations.

Lemma 4.2. If D C (A, x A)?>"2 is a cycle of codimension r — 1 such that D is zero in the Néron—
Severi group of NS(Aq x A)>"=2, then the p-adic Abel-Jacobi image of ex(ir,)«(D) in HY (K., T ®
S™=Y(A)) is also trivial.

PrROOF.  This follows from the fact that the Abel-Jacobi image of e€x (i, ).«(D) lies in the image of
the map

H' (Ko, ex Hyl 7 (Ad75? x AT 2y)) = H' (Ko, ex Hiy = (Xan—2 5. Zp))
4r—5/ 41 2r— A2r—
and ex H! 5(Aa‘j‘6 % Aja 2. 7Z,)=0. O
We refer to for the definition of the character K4 appearing in the next result.
Lemma 4.3. Suppose aOf is trivial in Pic Ok, and let o := Ka(a) € K*. Then for every ideal b of

O, prime to cND, we have
(idx[a])"Ags = Ay, -
PROOF. Let 0 = 04 € Gal(K®/H{K). By definition, A” = A and A7 = Aap. Note that for any
t € Alm] with (m,N(ab)) =1, we have o(t) = A\qo(t) = [a](t) and
@l o lal(t) = ¢h(o(t) = o(pe(t)) = Aalpn(t))-

This implies that ¢Z o [a] = Aq © .. Therefore,

[a] 0 9f = ¢f o] = AF o ¢ o [a] = Af © Aa 0 pe = Pap,
and

(idx[a])* Ty = ([a]xid).I'g* = Llajopr =Ty, = Lap-

The lemma thus follows immediately from 27® = zqp. O
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Let G, := Gal(Kcyn /K pn-1), which is identified with ker {Pic Ogpn — Pic Oppn-1} via the Artin
isomorphism. The usual Hecke correspondence T, associated with a prime ¢ t N on the Kuga—Sato
variety Wa,_o (see [Sch90, §4]) induces the Hecke correspondence T}, x id on the generalized Kuga—Sato
variety Xop_o = War_o x A?"72. In what follows, we shall still write T, for T x id if no confusion
arises.

Proposition 4.4. Assume that p{c. If p = pp is split in K, then for alln > 1 we have

2r—2

Tpzfepn—1 =D " Zfepn=2 + COTK /K,y (Zficpm )

where u, = #(0OX), and o, o5 € Gal(K./K) are the Frobenius elements of p and p. Moreover, if £ {c
is inert in K, then
TgZﬁC = Corch/Kc (Zﬁcg).
PrOOF. Let £ C O.pn-1 be a sublattice of Opn-1 with index p, and let Ay = C/L. Let ¢p: Ap —
Agpn—1 be the isogeny induced by £ < Opn-1. We have two cases:
Case(i): L is an Opr-ideal and the class [£] is trivial in Pic Ogyn-1, so we can write £ = aa™! for
some integral Opn-ideal a with o = K4 (a). Then we have Az ~ A, and
Yz 0 pa = [pa] o Yepn-1.
Denote by T, the translation map by a torsion point x € Ay xA. Then we have
L] ol ={(z,9) [ ve(e) = veleay)}
z€ker o
= {($>y) | 1/)5(:17) = @cp"*l(pay)}
= (idx[pa])*¥zTo_ .-
This implies that p - I'a and p- (idx[a])*¢zl'o_,_, are equal in the Néron—Severi group NS(AqaxA),
and hence by Lemma [£.2] we have
Zf7u = (idx [a])*wZmepnfl .
Using Lemma and the projection formula (idx [a]).(idx[a])* = N(aOg)?"~2, we conclude that

(4.3) ’l/)sz’cpn—l = Z;,ucp”'
Case(ii): L = pO.pn-> and p is split in K. Then Ay ~ A pn-2, and

wll O Pepn—2 = Pepn—1-
Note that

wzrown_l = |_| T(*z,O)(Focpn—z )a
z€kery o

soyzlo ., andp-To_,_, are equal in the Néron—Severi group NS(An-2xA). By Lemma we
have
(4.4) Vrzpepn = D72 2f opn-2.

Choose a set Z of representatives of fractional Opn-ideals of ker {Pic Ocpn — PicOgpn— }, and let

—_

Ei={a'aC Oy |a€ZE, a=Fala)}.

If p is split, then
{L C Ocpnfl | [Ocpnfl . E] = p} = E* ] {pocpnf2} 5

and thus by (4.3) and (4.4)) we see that

_ * _2r—2 o
Tpzf epn—1 = E YL Zfepr—1 =D “Zf epn—2 + E ZF cpn-
Lcocpn—17 occGy
[OcpnfliL]:P

If 7 is inert and n = 1, then

{LCO|[0:: L] =1} ={a"aC O, |aideal of Oy, o =Fa(a)},
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and hence
Tng,c = Z Zid'
o€Gal(Kqo/Ke)

This completes the proof. O

4.4. Generalized Heegner classes (II). Let ¢, be a positive integer with (¢,,pN) = 1, and let
x: Gal(K,,p=/K) — Of be alocally algebraic anticyclotomic character of infinity type (j, —j) with
—r < j < rand conductor ¢,p*O. The aim of this section is to construct classes zf .. € H' (K., T®Xx)
by taking the corestriction of zf. for every c divisible by c,p®. However, note that the CM elliptic
curve A is only defined over the Hilbert class field Hg, so the group Gal(K./K) does not act on zy .
in general. In order to get a natural Galois action, we consider

B/K = RQSHK/KA,

the abelian variety obtained by restriction of scalars. As is well-known, B is a CM abelian variety over
K and M := Q ®z Endg B is a product of CM fields over K with dim B = [M : K] = [Hk : K] (see
[Rub81l Prop. (1.2)]).
Let I(Dg) be the group of prime-to-D fractional ideals of K, and let
Fa:I(Dg) — M*

be the CM character associated to B with the following properties (¢f. [Rub81, Lemma, p.457]):
o Ka(aa) = xa-Ka(a) for all @ € K* with « prime to Dk and a € I(Dg).
e For all a € I(Dg) and t € B[m] with (m,N(a)) = 1, we have
Ka(a)(t) = oa(t);

and if oy is trivial on Hg (or equivalently, if a is the norm of an ideal of Hg ), then k4(a) € K*
and o4(t) = [Fa(a)]t for all t € A[m].

Define the G g-module
S"H(B) = Sym* 2 T,,(B)(1 — 1) ®z, Op ~ Indgk "' (A) ®z, Or.

Enlarge F' so that M C F, and let k4 : Gxg — O} be the p-adic avatar of k4. By the above properties
of the CM character k4, we have

TP(B) ®Qp F = @ pK’A7
pEHom(M,F)

where Pr4(0) := p(ka(o)). If follows that if &7, is the p-adic character of Gk defined by x7(0) =
k(Tor™1), where 7 is the complex conjugation, then (k7 /k4)’ has infinity type (j, —j) and is a direct
summand of S"~1(B) as Gx-modules. Therefore, there exists a finite order anticyclotomic character
X+ such that y is realized as a direct summand of S"~!(B) ® x; as Gx-modules, and let

(4.5) ey : S UB)®xi — x

be the corresponding G g-equivariant projection. Note that yx; is unique up to multiplication by a
character of Gal(Hg /K), and that it has the same conductor as x. In view of the decomposition

T,(B)= @  T(4) ~mddE (T,(4)).

pEGal(Hy /K)

we shall regard the classes 2,4 of (4.2)) as elements z¢ , € H' (K., T®S"~!(B)) via the natural inclusion
T,(A) — T,(B) for ¢ divisible by c,p® and a an O,-ideal.

Proposition 4.5. Let a be an O.-ideal with (a,cNDg) = 1. Then

Xt(0a) - (id @ e) 2%, = Xegy (0a) - (id @ €y) 2 0.
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PROOF. We write o4 = reck (™), where a € K(9* is such that a0, N K = a, and let 0 = 04 €
Gal(K./K). One easily verifies that

(idx X0 )« Ap, = {(Aa(®e(2)); Aaok (2) | 2 € A}
= 12" (Ma0k (2)); Aaoic (2) | 2 € A}
= A7,
We have the following fact:
Fa(@Ok)=(Np )€ €D  Hom(4?, A7) C End(B).
pEGal(Hr /K)

This can be checked, for instance, by comparing the action of both sides on the p-adic Tate module of
B (see Eq. (4.1))). By the above fact, we find that

2§ o= P (A7) = (IdXXa0g ) 2f,0 = [Fa(aO0K )]« (2f.q),

where [F4(aOk )], denotes the push-forward of %4 (aOx) acting on Sym?" 2 Hét(B/G, Z,). Note that
[Fa(aOk)]. induces the Galois action o4 on Helt(B/a, Z,)(=~ T, (Pic” B g)) and that

ex(0® eiye (0) @ xe(0)t) = x(0)ext
for every t € S (B) ® x; = Sym* 2 Hét(B/a, Z,)(r — 1) ® x¢ by the definition of e,. We thus find
that
(id®@ey)2f. = ex([Fa(aOk)l 21.q)
= X?lEé;cT(Ua) ex(0a ® 523;1 (0a) ® Xxt(0a) - 2f,a)
= X?lgi;r(au)X(aa) : (id ® ex)zf,ua
and the proposition follows. O

For each integer ¢ divisible by the conductor of x, put z7.®x: := 25 € H' (K., T®S" 1 (B)® xt),
and let s, . be the x-component of the class zy . defined by

(4.6) 2o = (d®ey) (21, @ xt) € H (K., T ® X).

‘We finish this section with the 7proof of two lemmas which will be used in @ Recall that we have
fixed a decomposition NOg = NN.

Lemma 4.6. Let 7 be the complex conjugation. Then

(zrx.e)” = wy - x(om) - (2p.x-1.0)7™,
where wy € {£1} is the Atkin-Lehner eigenvalue of f.

Proor.  We begin by noting that complex conjugation does indeed act on zy ., since the elliptic curve
A is defined over the real field H} Let wy be the Atkin—Lehner involution, and set 9. := 91N O..
We have the relations wy (7(z.)) = o5y and wi [I'g] = N - [[c] in NS(Acx A) (¢f. [Shnl6, Lemma 20]),
from which we find that

(wn xid)*Agz = N™~1 - AL
Combined with Lemma the above equation yields the lemma. O

Lemma 4.7. Let £t cNDg be a prime inert in K. Let X be a prime of Q above £, and let Aop and .
be the primes of Ko and K. below . Denote by Ky, and Ky, be the completions of K.y and K. at
Aee and A, respectively. Then

)FK‘Obg)

resk, , i, (Ioca(zf,x.c =locx,, (2f,x,ct);

where Froby € Gal(Q}*/Qq) is the Frobenius element of (.
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PROOF.  Since x is anticyclotomic and £ is inert, x is a trivial character of Gk, _, and hence Frob, acts
naturally on H' (K, ,T ® x) = H'(K_,T). The natural isogeny A, — A, reduces to the Frobenius
map Frob, modulo A, so we find that

(Frobg X 1)(AC) = Acg,
where &7 denotes the reduction of As modulo A. The lemma follows. O

4.5. The p-adic Gross—Zagier formula of Bertolini-Darmon—Prasanna. The purpose of this
section is to give a mild extension of the p-adic Gross—Zagier formula in [BDP13, Thm. 5.13], which
relates the Bloch—Kato logarithm of generalized Heegner classes to the values of the p-adic L-function
2, w(f) at characters outside the range of interpolation. We keep the notation as in §4.4]

Some notation for p-adic representations. Let L be a finite extension of Q,, and let V' be a finite
dimensional F-vector space with a continuous F-linear action of Gr. Recall that Dggr (V) denotes
the filtered (L ®q, F)-module (Bqr ®q, V)“%, where Bqg is Fontaine’s ring of p-adic periods. We let
t € Bar be Fontaine’s p-adic analogue of 27i associated with the compatible system {ZP(CPn)}n=1,2,...
of p-power roots of unity. If V' is a de Rham representation (i.e. dimy Dgg, (V) = dimp V'), then
there is a canonical isomorphism Dgr g(V) = E ®r, Dgr, (V) for any finite extension E/L. Denote
by (, ) the de Rham pairing

<, > : DdR,L(V) X DdR,L(V*(l)) — L ®Qp F— Cp,
where V* = Homp(V, F). Let Beis C Bgr be the crystalline period ring and define Deyis (V) =
(Beris ®@q, V)GL. Then Deris,. (V) is an (Lo ®q, F')-module equipped with the action of crystalline
Frobenius ®, where Ly is the maximal unramified subfield of L. When L = Q,,, we write Dgr (V) =
Dar,q, (V) and Depis(V) = Dais,q, (V). If V is a crystalline representation (i.e. dimp, Deris, (V) =
dimp V), then we have a canonical isomorphism L ®p,, Deris,,(V) = Dagr, (V).
Let HY(L,V) be the image of the Bloch-Kato exponential map
Dyr, (V)

FﬂODdRyL(V) + DcrisyL(V)cpzl
and Hf(L,V) C H'(L,V) be the Bloch-Kato ‘finite’ subspace. If Do yis,.(V)®=! = 0, then the natural
inclusion H}(L,V) C H}c (L,V) is an equality (see for example [BK90, Cor. 3.8.4]), and we define the
Bloch—Kato logarithm map

— H'(L,V),

eXpLVV .

Dyr,(V)
Fil'Dyg. (V)
to be the inverse of the Bloch—Kato exponential. We also let exp* be the dual exponential map

exp” = expj,y : H'(L,V*(1)) — Fil’ Dar,.(V*(1)),

log :=logy,  : Hf (L, V) — = (Fil’Dgr. 1 (V*(1)))Y

obtained by dualizing exp, , with respect to the de Rham and local Tate pairings (cf. [LZ14] §2.4]).

Recall that we assumed p = pp splits in K, with p induced by the fixed embedding 1, : Q — C,. If
E is a finite extension of K, we denote by E}, the completion of £ at the prime induced by 72, With a
slight the abuse of notation, we call E, the p-adic completion of £, and for any G g-module V', we let

loc, : HY(E,V) — HY(E,,V)
denote the localization map.

Some de Rham cohomology classes. By the work of Scholl [Sch90], it is known that V}; can be realised
as a quotient of He?:_l(WQT_Q/Q, Q,) ®q, I, and we get the composite quotient map
Hip (War—2/F) = Dar(HZ ' (War—2 0, Qp) @q, F) — Dar(Vy)
by applying the comparison isomorphism [Tsu99]. Let wy € H, gﬁfl(Wgr,g /F) be the differential form
attached to the newform f via the rule in [BDP13} Cor. 2.3], and let wy € Dqr(V¥) be the image of
ws.
Let L = Hg , be the p-adic completion of Hx. The Og-action on A /L gives rises to a canonical de-
composition of the de Rham cohomology group Hig(A/L) = Héi)? (A/L)® Hgi% (A/L). Recall our fixed
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choice of Néron differential wsq € H 3’1;?(/1/ L), which determines n4 € Hgg (A/L) by the requirement
that (wa,na) =1 (¢f. [BDP13| page 1051]). We shall view w4, 14 as elements in DdR,L(Helt(A/a, Q)

by the comparison isomorphism, and let
wz_lﬂnz_l_j (—-r<j<r)

be the resulting basis for DdR’L(SmeT_QHét(A/G, Q,)), where ', 7,71 is as in [BDP13, (1.4.6)].

p-adic Gross—Zagier formula. Define the generalized Heegner class zy, attached to (f,x) by

Zfy = COFKCOPS/K(Zf,X,COpS)

= Z Xt (U) ' (ld ® eX)Z;copS

(4.7) occGal(K.,ps / K)
= Y xehl(00)- ([ ®ey)zra
[a]€Pic O, ps

where ¢,p*Ok is the conductor of y.

Remark 4.8. By [Nek00, Thm. 3.3.1], the classes zf . from lie in the Bloch—Kato Selmer group
Sel(K.,T ® x) C H'(K,,T ® x); in particular, locy(2f,q) € Hf(Kcp, T ® S™7'(A)) and locy(zy,y) €
H}(Kp, T®x).

Theorem 4.9. Suppose p = pp splits in K. Let 1) be an anticyclotomic Hecke character of infinity type

(r,—r) and conductor c¢,Ok with (¢,, Np) = 1. Ifg/b\ € Xpeo is the p-adic avatar of an anticyclotomic
Hecke character of infinity type (r+ j, —j — r) with —r < j <r and conductor p" Ok with n > 1, then

@ 1 -1 ny . 1—r =1/ n M s
vaéilg(b ) _ g(¢P )dzi(p ]?Cij)l'/)lﬂ (p ) '<1ng(zf,x)awf®qu 1+]n:4 1 jt1—2T>’

where x 1= @‘1(?5 and log, := logolocy.

PROOF.  Let t, be the Serre-Tate coordinate of x4 := [(Aq4, 7a)] ® F,,. Since the Fourier coefficients
a, (f*) of f* vanish for n divisible by p, we have

U (1) =) Py =0.

¢r=1

This implies that the associated measure dfg is supported on Z;7 and hence by Lemma that

(72 @ vp6!1la]) (t) = (0a)N@)™ - (77 P @ 87 (t0).

where 6 is the operator acting on Og  as ta%. Put ¢ := 1~ 1¢. By Proposition we thus find that

Zou(NE = 3 w@N@ " (fieud ) (o)

[a]€Pic O,
= Y aN@ - (6P eg) @)
[a]€Pic O,
=p e D EM@N@ - DT 0T P (wexn(up™))ép(w).
[a]ePic O, u€(Z/p™Z)*
Since =7 _be is a p-adic modular form of weight —2j, we deduce from |i together with 1) that
H_j_"fb(xu xn(up ")) = H_j_"fb(recK(a_lupp;")xcopn,)qu.

From the relations

~

X(recx(a)) = E(rec (a) = E(a)apay”,  ecyela) = lalay, eoye(uppl) = u,
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it follows that

Low(NO ) =p a7 Y xelye(reck(a)) 0777 P (reck (a)ae,pm ) Xp (P7)
(4 8) [a]€Pic(O,,pn)
=9(& )P xp (™) - > Xelye(0) - 0777 (22 ).

oceGal(K,., pn /K)
On the other hand, if 0 = o, with a € K®eoN)* and a = a@fnpn N K, then
079" P (2g ) = 07 P (wa) = 07977 £ (20, B(a),

where @(1q,,) is the differential form induced from the p>°-level structure 7, , defined in For the
isogeny ¢q : A — Aq, one can verify that deg ¢, = cop™ |a|;1( and

K [N ~ Co
B 010)) = o B0 p) = 22w
P

Thus following the calculations in Proposition 3.24, Lemma 3.23, and Lemma 3.22 of [BDP13], we see
that

(4.9) 07T P @) =

(cop™ |a‘:¢()7]‘471 ( Co )2j b —14+j r—1—j
g =2 - (log, (2 Jwr @'y g2y
(Tl _|_])| Qp < gp( f,a)) f A Na >

where

b 27 2541
Zfa = Zf,a ap(f)p 7 vauocopn—l —p7T Z2fa0, n-2-

cop

Substituting (4.9) into (4.8), and using that ¢ has the exact conductor p™ (n > 1) and ¢, is unramified,
we conclude that

Zow(N(67) -0

g(f—l)clfrpfnrx (pn) ., 3 i o

- -1+ ')lp ' Yo xend (0a) - (logy (25 4), wr @i T R
J): o€Cal(K,,pn /K)

9(bp )dp (P")ck "y (0") . i 112

M e D Xl (00) - (logy(r.a))s oy @ wiy I
’ la]ePic O,

9(6p e (P")ck "y (") P14 r—1mj 12

= p (;_1_,O_j)!p '<10gp(2’f,x),wf®wA +J,'7A Jtl 2 >
as was to be shown. O

5. EXPLICIT RECIPROCITY LAW

5.1. The Perrin-Riou big logarithm. In this section we deduce from the main result of [LZI4] the
construction of a variant of the Perrin-Riou logarithm map for certain relative height one Lubin-Tate
extensions.

For any commutative compact p-adic Lie group G and any complete discretely valued extension
E of Qp, we let Ap,(G) = Hm Ogrl[G/G?"], Ap(G) := Ao, (G) ®o, E, and Hp(G) be the ring of
tempered p-adic distributions on G valued in E. If L is a finite extension of Q, and G is the Galois
group of a p-adic Lie extension of Lo, = U,L, of L with L, /L finite and Galois, we define

HIZW(LOMV) = (mHl(Ln,T)) ®Zp va

where T is any Gp-stable lattice in V' (this is independent of the choice of T').
In the following, we let L be a finite unramified extension of Q, with ring of integers Oy, and let
F" denote the composite of Q)" with a finite extension F' of Q.

Theorem 5.1. Let V be a crystalline F-representation of G, with non-negative Hodge—Tate weights,
and assume that V has no quotient isomorphic to the trivial representation. Let § be a relative height
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one Lubin-Tate formal group over Or,/Z,, and let T' := Gal(L(Fp~)/L) = 2. If VEEG=) =0, there
exists a Az, (I')-linear map

Ly : Hi (L(Fp=),V) — Hpu () @1 Deyis, (V)

with the following interpolation property: for any z € H{, (L(Fp=),V) and any locally algebraic char-
acter x : I' — Q; of Hodge—Tate weight j and conductor p™, we have

n -1 (==t Xt - f
Lo@)(0) = (v ) PN Er sy n )BT <0,
P(x,p~1@-1) gl expi,V(X—1>*(1)(Z" Y@t if 1 >0,

where

o c(x7Y) and P(x*, X) are the epsilon-factor and the L-factor for Galois characters x and x*,
respectively (see [LZ14, §2.8] for the definitions).
o & is the crystalline Frobenius operator on Q, ®r Do.is, .. (V) acting trivially on the first factor.

o zX € HY(L,V(x™Y)) is the specialisation of z at x*.

Proor. Let K, C L- ng be a p-adic Lie extension of F' containing Fur. L(Sp~), and set G :=
Gal(K/L). By [LZ14, Thm. 4.7] there exists a Ap, (G)-linear map

LG HE (Ko, V) — Hpu (G) @1 Deis,£.(V)

satisfying the above interpolation formula for all continuous characters x of G (see [loc.cit., Thm. 4.15]).

Let J be the kernel of the natural projection H z..(G) = Hpuw (I'). The corestriction map

is injective, and its cokernel is HZ (Koo, V)[J], which vanishes if V96 — 0. Thus quotienting £
by J we obtain a map

Hiy (L(pe=), V) = Hyy (Koo, V) /T — Hpu (L) @1 Desis, (V)

with the desired properties. O

5.2. Iwasawa cohomology classes. Keep the notations from and for any positive integer c, let
> = XY, be a finite set of places of K containing the primes above pNc. Recall the Heegner classes
zfa € HY (K., T ® S™(A)) of 4.2) attached to every integral O.-ideal a.

In this section we further assume that p = pp splits in K and that the newform f is ordinary at p,
i.e. the p-th Fourier coefficient a,(f) € Of. The latter assumption will be crucial to construct, out of
the classes 2y opn = zy,0,,» for varying n, elements in the Iwasawa cohomololy groups

Hiy(Kepe, T) i= lim H' (Gal(K™ /Ko ), T),
where K* is the maximal extension of K unramified outside X.

Definition 5.2. Let a be the p-adic unit root of X2 —a,(f)X +p?"~1. The a-stabilized Heegner class
Zf.a0 € HY (K., T ® S""1(A)) is given by

2r—2 .
- Zfa— P ; 2f,a0,/p ) if p|e,
Ja,« = r— .
i(l—%a,a) (171704 O'F)'Zf,a if pte,

where u. = #0 and o, 05 € Gal(K./K) are the Frobenius elements of p and p.
Lemma 5.3. For all ¢ > 1, we have
COrK,, /K. (2f.cpa) = Q- Zfcoan

PRrROOF. This follows from a straightforward computation using Proposition 4.4 O
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Now let 2% q denote the image of z¢ o under the natural map
id®e’: HY(K.,T® S"'(B)) — H(K.,T),

where €° = eq is the projection (4.5) attached to the trivial character (so x = x; = 1). Similarly as
before, we shall simply write 2% .0 for 2% 0. In view of Lemma the classes a™”
compatible under corestricion, thus defining the Iwasawa cohomology class

(5.1) Zfca = @a‘" 2% epn o € Hi (Kepos, T).

n

o
Zf,cpn,a are

For any character x of Gal(K p~/K.) we may consider the twist of z¢ .o in H' (K., T ® x). The
next lemma compares the resulting classes, for characters x of finite order, to the classes 2z . of

Lemma 5.4. Suppose that ptc. Let x : Gal(Kcpe /K.) = Oép be a nontrivial finite order character
of conductor ¢p™, and let z;‘ .o De the image of zy . , under the y-specialization map

Hi (Kepoo, T) — HY (K., T ® X).

Then

X  _ ,-n.
zf,c,a =a Zf,x,ct

PrOOF. Directly from the definition of z¢ . o, by [Rub00, Lemma 2.4.3] we see that

Z?,qa = ain Z X(U)(Z?,cp",a)(T?
c€Gal(K pn /K,)

and since x is nontrivial, we may replace 2% . , by 2% ., in this equation. By Proposition (noting
that e, can be taken to be e® with x; = x), the result follows from the definition (4.6) of zf .. O

5.3. Explicit reciprocity law for generalized Heegner cycles. We now specialize the local ma-
chinery of to the global setting in In particular, we assume that p = pp splits in K and that
the newform f € S5V (I'g(V)) is ordinary at p.

Let ¢ be an anticyclotomic Hecke character of infinity type (r, —r) and conductor ¢,Of with p 1 ¢,.
Recall that the p-adic avatar {b\ is a p-adic character of Gal(K,,,~/K) valued in some finite extension
Q, which by the hypothesis on the conductor is crystalline at the primes above p. Let F' be a finite

extension of Q, containing the Fourier coefficients of f and the values of 12, and let Vy =2 F 2 be the
Galois representation associated to f. We assume throughout that p{ N, so that Vf|GQp is crystalline.
By p-ordinarity, there is an exact sequence of Gq,-modules

00—V, —V; — FV; —0

with Z*V; = F and with the Gq,-action on .# TV} being unramified (see [Wil88, Thm. 2.1.4]). Let
T C V¢(r) be a Gq-stable lattice as in and set F1T := F*tV(r)NT. Let

V= Vi) @9 ow, . e = Y,
The dual representation V* is Homp(V, F) = Vi(r — 1) ® 72,,. Define
FEV = FEVi(r) 04y, FTV* = Homp(FTV, F).

We next introduce an element wy, € Deys .(# ~V*). Recall that A is the canonical CM elliptic
curve over the Hilbert class field Hg fixed in Let ka : Gy — AutTy(A) =2 Z) be the character
describing the Galois action on the p-adic Tate module of A. Thus Hét(A/a, Q) =kt KAEqye 8S
G ,-modules. Recall that ¢t € Bqr denotes Fontaine’s p-adic analogue of 27 and set

ta = Qpt,
where ), is the p-adic CM period defined in Then t4 generates Dy, F(H{Zl), and according to
the discussion in [dS87, §11.4.3] we have

(5.2) wa =ta, na =t;'t.
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On the other hand, note that the character 7%5;,2 is trivial on the inertia group, and Dcris(zzp(fr)) =
Fuwy, is a one-dimensional F-vector space with generator w,. Define the class

Wiy = wp @t @wy € Denis(V(1)).
With a slight abuse of notation, we shall still denote by wy,y its image under the natural projection
Dais(V*(1)) = Deais(# ~V*(1)), which is nonzero by weak-admissibility ([Fon94, §3.3]). Moreover,
since the periods of unramified characters lie in F"" := Q;rF C B.:is, there exists a non-zero element
Q€ F such that, for all © € De¢is(F V), we have

(5.3) (T, wry) = (2,0 @T7)Qy,
and the action of the crystalline Frobenius ® is given by
(5.4) (@, ®wryp) = a™ (D) - (2, w10).

Let Loo/L denote the p-adic completion of K ,e/K., and let ' := Gal(Ls/L). Let h, be the
order of p in Pic(O,,), and write p"» = (7) with 7 € O,,. Then L is the unramified extension of
Q, of degree h,. By local class field theory, L, is contained in the extension L(Fpe) obtained by
adjoining to L the torsion points of the relative height one Lubin-Tate formal group § attached to
the uniformizer 7/7 (see [Shnl6l Prop. 37] for details). Note that the element recy,(7/7) fixes L(Fpoo)

and acts on .Z TV by a multiplication by (ﬁ;’w )a’», which is not 1 by Ramanujan’s conjecture for f

[Del71], [Del80]. This implies that (ﬁ"’V)GL(%x) = 0, and hence we may consider the big logarithm
map L gz+y of Theorem over the extension Lo, /L.

Lemma 5.5. The composition of £ g+y with the natural pairing
<—, wf’w> : Hij‘\ur (P) (39 Dcris(9+V) X Dcris(ﬂ_v*(l)) — Hﬁur (P)
has image contained in the Iwasawa algebra A 5, (T).

Proor. This follows easily from the Frobenius eigenvalue formula (5.4)) and [LZ14] Prop. 4.8]. O

In what follows, we make the identification Gal(K, /K., ) ~T = Gal(Ls/L) via the restriction
map. Let p : I' — W* be a continuous character, where W is the ring of the integers in F. For
every z € H), (K. p=,T), denote by z®@ p € H}, (K., p=,T @ p) the p-twist of z. By definition, for any
x : ' = W* we have

(Z®p)x =z"X € Hl(KcO’T®pX)'

As shown in [LZ16] Prop. 2.4.2], there is an isomorphism H{, (K. p~,T) ~ H' (K. ,T ® Ao, (T)).

Thus letting fco = Gal(K, p~/K) we may view z¢ ., o as an element in H* (K., , Ao, (fco)) via
Hllw(Kcop‘” ) T) = Hl(Kcov Aoy I) — Hl(Kcoa Aoy (fcu))7

and define

(5.5) zg = corg, /ik(Zfc,a) € H (K, T ® Ao, (Le,)).

Similarly as in (see Remark , the Heegner classes 2% ; lie in the Bloch-Kato Selmer group
Sel(K.,T) C H'(K.,T); in particular, locy(2$,) € Hj(K.p,T). On the other hand, by [Nek(6,
Lem. 9.6.3] and [loc.cit., Prop. 12.5.9.2] the Bloch-Kato finite subspace H} (K., T) is identified with

the image of the natural map H'(K.,, Z+tT) — H'(K.,,T), and hence locy(z§,c, ) naturally defines
a class in H}, (Loo, Z1T).

Definition 5.6 (Algebraic anticyclotomic p-adic L-functions). Let i : fco — O3 be as before. Set
Loy @971 1= corre, i Ly (100 (24,00 © 7))

- Z £L¢+V(10Cp(z?,co,a ® 1271))72;(071) € Dcri5(9+v) ® Aﬁur (fcn)7
UGFCO/FCO

and letting resk . : I, —»I= Gal(Kp~ /K) be the restriction map, define
Lp(2f) = resg e (L3(27 @ 7)) € Deris(FTV) @ A (T).
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Theorem 5.7. Suppose p = pp splits in K. Let f € S5V (To(N)) with pt N be a p-ordinary newform,
and let 1 be an anticyclotomic Hecke character of infinity type (r, —r) and conductor c,Ox with ptc,.
Then

(Loy(zs)wr @t = (b ) Loy (f) - 0-1p € Apu (D),

where gy p :=recy(—1)| K, € T is an element of order two.

PROOF. Let $ : T — CX be the p-adic avatar of a Hecke character ¢ of infinity type (r, —r) and
P

conductor p™, for any n > 1, and set y := 1?’135, which is a finite order character. Applying Lemma
we find that z}‘ =a "-zf,, where z}‘ denotes the x-specialization of zy. By Theorem (with j = 0),
we thus obtain

_9(0p o ()eh Ty (")

.,%,w(f)(a_l) (r—1)! (log, (25, ), wy @wy R
(56) -1 n —r =1/ n
— Oén . g(¢p )d)P(p )C(I) 7/’;7 (p ) . <10gp(z)f() ® tr,w]f ® t—2r>.

(r—1)!
On the other hand, a straightforward calculation reveals that the e-factor for the p-adic Galois character
¢p defined in [LZI14, §2.8] agrees with Tate’s e-factor for ¢y, i.e. £(¢p) = (0, ¢y) = g(dp ") dp(—p").
Therefore, by Theorem combined with (5.3)) and (5.4)), we find that
(Low(z)wp@t77) (671
= (Lpp(zs),wrp) (1) - Q'

) = a6y )on(0") 0"y ) - oy ) 0 )21
=~ Blo g MEIREIE D) og, () 017y 017,

(r—1)!

Since 9 has conductor prime to p, we have g(d);l) = g(Xgl) in formula (5.7). Comparing (5.6) and
lb we see that both sides of the desired equality agree when evaluated at ¢~!. Since the set of all
such characters ¢ (for varying n > 1) is Zariski-dense in the space of continuous p-adic characters of T,

and both sides of the desired equality are elements in the Iwasawa algebra Az, (T'), the result follows
from the p-adic Weierstrass preparation theorem. O

We are now ready to prove the “explicit reciprocity law” relating the image of generalized Heegner
classes under the dual exponential map to the central values of the Rankin L-series L(f, x, s) associated
with f and the theta series of an anticyclotomic locally algebraic Galois character x of conductor cOf.
Recall that L(f, x,s) is defined by the analytic continuation of the Dirichlet series

aN(a)(f)X(Ua)

1
N(a)* (Re(s) >r+ =),

L(fx,8) =C2s+1-2r)> 5

a
where a runs over ideals of Ox with (a,cOk) = 1. In terms of automorphic L-functions, we have
1
L(f,X,S) = L(S+ 5 —nNTK ®XA)7
where 7 is the base change of the automorphic representation 7 generated by f, and xa is the Hecke

character of K* associated to x. Also, recall from (5.2)) the relation wans = t.

Corollary 5.8. With notations and assumptions as in Theorem let x : Gal(K,,p/K) — OF be
a locally algebraic p-adic character of infinity type (j,—j) with j > r and conductor c,p"Ok. Then

L (f, x,r)

* -1 —j—r j—r\2 __ 2 2r—1 2\ 1
{exp*(locy(zf ), wr @w,’ "y ") = crr ey (f)? - (0777 a?)" - x YO e
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where cy ¢ = 8ui /D2 ~te(f),
(1—a x(op)p™ 1) (1 —a x(op)p"7") ifn=0,
1 ifn>0;
Tr

L¥8(f, 1) = <(~’4‘)§;12£f§;f) L),

Proor. Choose an anticyclotomic Hecke character ¢ of infinity type (r, —r) and conductor ¢, such
that the character ¢ = x~! is of infinity type (j —r,7 —j) and conductor p". Assume first that n > 0.
By Theorem and Theorem we then see that

(Lpw(zp),wr @) (0)
-~ -1 .
= 9(¢p)pp(—p") - @™y (p") - ( — ) - {exp™(locy (2 ) @7 wyp @172
—1 .
=xa" (0, ¢, Wy P (5 — 1)) - (exp(locy (2 )),wp @77
=+a" (0,0, ", )pT TG -+ 1) <exp*(10cp(z3§71)),wf Rt " ®w2jn£>Q§j'
On the other hand, by the interpolation formula in Proposition (with m = j — r), we have

(59) (‘g‘“‘m(@> = L (f o r) 25 by) 2 GO ) 2/ Diceoe

(5.8)

Q7
where ) )
e(5:¥pdp) Tt = a5, 0y 165 ) = 20,05 0y )2
Combining (5.8) and (5.9) with the equality in Theorem we find that
* -1 —r -3 3 Lalg f?X?T r— n — r—
{exp*(locy (2} ), wr @ 7" @wy’))? = r(y—(r+1))2 (P a?)" - p(MTY) - 22ud /D e (f).

This proves the result when n > 0; the case n = 0 is similar, and is left to the reader. O

6. THE ARITHMETIC APPLICATIONS

In this section, we state our main arithmetic applications in this paper, whose proof will be based on
the results of the preceding sections combined with Kolyvagin’s method of Euler systems. The details
of the Euler system argument will be given in §7.

6.1. Setup and running hypotheses. Let f € S5%(I'y(N)) be a newform, and let F//Q,, be a finite
extension with the ring of integers O = Op containing the Fourier coefficients of f. Let

pr - GQ — GLF(Vf) ~ GLQ(F)

be the p-adic Galois representation attached to f, and set p} := p ® ey, and V = Vi(r). Let
x: Gal(K, pe/K) — O* be a locally algebraic character of infinity type (j, —j) and conductor cOg
and set Vi, := V|g, ® x. Recall that the Bloch-Kato Selmer group of Vy , is defined by

K,V
Sel(K, V) —ker{ YK, Vi) —>HH1(KVJ;X;}
vy »X

where ) 1
H}(thvf X) = ker (H1<Kv7vf’x) — Hl(K'U 7Vf)X)> ?fp*v7
; ker (H (Ky, Vi) — HYK,, Vi ® Bms)) ifp|o

We summarize the running hypotheses in this section.
Hypothesis (H).

(o) P20 NGOV

() (g s o

(c) (co, )

(d) pOk = pp is spht in K.
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Let €(Vy,) = £1 be the sign in the functional equation for L(f,x,s). To calculate the sign, we
note that €(Vy,) = [[, (2, 7k, ® Xo) is a product of local root numbers over places v of Q. By the
formulae [Sch02, (9), (12)], we see that £(3,7k, ® X,) = 1 for all finite place v under the hypothesis
. On the other hand, since 7., is the unitary discrete series of weight 2r — 1, we have

1 1 1 . ) : Lo
(5 T @ Xoc) = (51 HH)e(5 b = (VD)
where p: C* — C* is the character z — z/Z ([Tat79l (3.2.5)]). Therefore, we find that
(6.1) e(Viy) = (V=1)Pr=1+20H =242 — 1 0 < j <

6.2. Nonvanishing of generalized Heegner cycles. Recall from the construction of the gen-
eralized Heegner classes z, € H'(K,T ® x) in ([4.7).
Theorem 6.1. Suppose that e(Vy ) = —1. The following two statements hold.

(1) If zg, # 0, then Sel(K, Vi) =F - zf .
(2) The classes zf, are nonzero in H' (K, Vy4) for all but finitely many finite order characters
QZSZ Gal(pr/K) — ,LLpoo .
Proor. The first part is a restatement of Theorem The second part follows immediately from
Theorem [£.9] and the nonvanishing of the p-adic L-function in Theorem O

6.3. Vanishing of Selmer groups. Assume further that f is ordinary at p in this subsection.
Theorem 6.2. If L(f,x,r) # 0, then Sel(K,V;,) = {0}.

PrOOF. The nonvanishing of the central value L(f, x,r) implies that e(Vy,) = +1, and hence x
has infinity type (j,—j) with j > r or j < —r by (6.1). Let x"(g9) := x(7g7), where 7 is the
complex conjugation. Then clearly L(f, x",r) = L(f, x,r) and the action of 7 induces an isomorphism
Sel(K, Vi,x) = Sel(K, Vfy~), so we may assume that j > r. One then immediately checks that Vi |y,

has positive Hodge—Tate Weightﬂ while the Hodge—Tate weights of Vf7x|GKF are all < 0. By [BK90,
Thm. 4.1(ii)] we thus have

HY(K,, Vi) ifv=p
1 _ vy Vfix )
Let zjﬁ € H'(K,T®x) be the x-specialization of the Iwasawa cohomology class z¢ defined in (5.5). By
Corollary the nonvanishing of L(f, x,r) implies that loc, (z}‘il) # 0 (note that the factor e} (f,x)

never vanishes). The result thus follows from Theorem [7.9 g

Combined with the nonvanishing of the p-adic L-function in Theorem [3.9] the results of Theorem[6.1]
and Theorem [6.2)allow us to immediately obtain the following analogue of the growth number conjecture
in [Maz84] on the asymptotic behavior of the ranks of Selmer groups over ring class fields.

Theorem 6.3. There exists a non-negative integer e such that the formula

1—
dimp Sel(Kpn, Vi) = % Ky K] +e

holds for all sufficiently large n.

6.4. The parity conjecture. In combination with Nekovai’s results on the parity of a p-adic family
of Galois representations [Nek07], our results imply the following parity conjecture for Vy . We heartily
thank Ben Howard for drawing this application to our attention.

Theorem 6.4. Suppose that f is ordinary at p. Then we have
ords—,L(f, x, s) = dimpSel(K, Vy,) (mod 2).

3Here our convention is that p-adic cyclotomic character has Hodge—Tate weight +1.
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PrOOF. Let K /K be the anticyclotomic Z,-extension and let I'; := Gal(K /K). Let A := O[I'¢]
and let X : Gg — A* be the universal deformation of y defined by g — X(g)g|K;' Recall that

T € Gq ~\ Gk is the complex conjugation. Let Indg X = Aey @ Aey be the Gg-module defined by

g(aep + bey) = X(g)ae, + X7 (g)bey for g € G,
T(aep + bey) = bey, + aep.

Let T :=T®0o Indg X, which is a self-dual left A[Gg]-module equipped with a skew-symmetric paring
defined in [Nek07, Example (5.3.4)], and define the A[Gq,]-submodule 7,5 C T by

T =

FTTOQA if —r<j<nr,
T ® Aey ifj>rorj<—r.

Then (T, 7,") satisfies [Nek(7, (5.1.2) (1)-(4)]. Moreover, one verifies that for any finite order character
¢ : I'y — ppeo, the specialization 74 = T ® Ind% x¢ together with the corresponding subspace 7:¢
also satisfy conditions (5)—(8) in loc.citﬁ

Let F(¢) be the field generated over F' by the values of ¢, let O(¢) be the ring of integers of F(¢),
and put Vg = Ty @0() F(¢). Let €(Vg) € {1} be the sign of the Weil-Deligne representation
attached to V. Under Hypothesis (H), it is well-known that ¢(Vy) = €(Vy,y) is independent of ¢, and
as already noted we have

-1 if —r<j<r,
41 ifj>rorj<—r

e(Vix) = {

Now choose a Hecke character ¢ of infinity type (r, —r) and conductor ¢,Ok such that Xlﬁ* is of
p-power conductor. By Theorem we can choose ¢ sufficiently wildly ramified such that

(6.3) Lo (N~ 19) # 0.

Thus Proposition and Theorem imply that dimpg) Sel(K, Vy o) = 0 if €(Vy ) = 41, while
Theorems and imply that dimpgg) Sel(K, Vi) = 1 if (V) = —1. On the other hand, by
Shapiro’s lemma we can verify that

Sel(K, Vi yo) =~ Sel(Q, Vy).
Therefore, by [Nek07, Cor. (5.3.2)] (see also [Nek09]), we conclude that
dimF Sel(K, VﬁX) = dimF(¢) Sel(K, VﬁX(i’) = G(Vﬁx) (HlOd 2),

and the parity conjecture for Vy , follows. O

7. KOLYVAGIN’S METHOD FOR GENERALIZED HEEGNER CYCLES

We keep the setup and Hypothesis (H) introduced in except that we do not assume that p is split
in K. In particular, f € S3%(I'g(N)) is a newform of level N prime to p, and x : Gal(K,, pe/K) = O
is a locally algebraic anticyclotomic Galois character of infinity type (j, —j) and conductor cOp. Write
¢ = ¢op® with (¢,,pN) = 1. The aim of this section it to develop a suitable extension of Kolyvagin’s
method of Euler systems for the Galois representation V ® x. We largely follow Nekovai’s approach
[INek92].

4As explained in [Nek07, Example (5.3.4)(5)], this follows from properties [loc.cit.,(2)-(3)] for Tg, whose verification
is immediate. Indeed, (7’(;5,’7;!'45) satisfies the Panchishkin condition of [Nek(07, Def. (3.3.1)] by construction, and Ty is
pure of weight 1 at all finite places, since Ramanujan’s conjecture holds for f; and anticyclotomic Hecke characters are
pure of weight 0.
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7.1. Notation. For each positive integer n, let K, be the ring class field of K of conductor n, and
let A, = Gal(K,,/K). If Ais a Gg,-module unramified outside pNc,, let H'(K,, A) denote the
cohomology group H*(Gal(K*"/K,), A), where K> is the maximal extension of K unramified outside
the prime factors of pNcon.

Recall that T is the Gg-stable O-lattice of the self-dual Galois representation V' as in [Nek92| §3].
By [Nek92, Prop. 3.1(2)], there is a Gq-equivariant O-linear perfect pairing

(7.1) (,)V:TxT — O1),

and for any local field L, let (, )z, : H'(L,T) x H'(L,T) — O denote the local Tate pairing induced
by (, ). Let w be a uniformizer of O and let F = O/(w) be the residue field. If M is a positive integer,
we abbreviate
Oy :=0/aMO, Ty :=T/xMO.

We let ¢ always denote a rational prime inert in K, and let A be the prime of Ok above ¢, Ky be the
completion of K at A, and Frob, be the Frobenius element of A in Gg. If A is a discrete O[G k]-module,
we denote by AV the Pontryagin dual of A. Let H}(Kx, A) and H{(Ky, A) := H' (K, A)/H(Ky, A)
be the finite part and the singular quotient of H'(K, A), respectively. Denote by loc, : H' (K, A) —
H' (K, A) the localization map at ¢ and by

O HY(K,A) — H(K), A)
the composition of loc, with the quotient map H'(Ky, A) — H(Ky, A).
7.2. Kolyvagin’s anticyclotomic Euler systems. Denote by . the set of square-free products of

primes £ inert in K with ¢ 2pNc¢,. Let 7 denote the complex conjugation, and let wy € {£1} be the
Atkin—Lehner eigenvalue of f.

Definition 7.1. An anticyclotomic Euler system attached to (7', x) is a collection {c, },, ., of classes
¢, € HY (K., T ® x~ 1) such that for every n = mf € # we have:

(El) CorKnc;Km,c(c’ﬂ) = aé(f) ' Cm;
(E2) loci(cpn) = resk,,. 5, K. (loci(cm
(E3) if x? = 1, then ¢, = wy - x(o57) - €™

)Frobz)

b

We briefly recall the construction of derivative classes attached to an anticyclotomic Euler system
c = {cn},c - First we make an auxiliary choice of a positive integer v such that p” annihilates:
(i) the kernel and cokernel of the map resy k, : H' (K, Ty @ x 1) — HY (K, Tay @ x~1)A for
all positive integers n and M;
(ii) the local cohomology groups H'(K,, Ty ® x 1) for all v | ¢, N.
The existence of such v follows from [Nek92, Prop. 6.3, Cor. 6.4, Lem. 10.1]. Define the constant
(7.2) By =min {ordg(z —1) |z- Iy € pj @ x (Gk), v € Z)}.
A rational prime / is called an M -admissible Kolyvagin prime if
e (12¢Np is inert in K
e a,(f) =/+1=0(mod M),
o MHBitly gt 14 a,(f)0t—.
Let %) be the set of square-free products of M-admissible primes, and for each n € ¢}, let G,, denote
the Galois group Gal(K,./K.) C Acp,. For each ¢ | n, the group Gy is cyclic of order £+ 1, and we have
a canonical decomposition G,, = H12|n Gy. Fixing a generator o, for each Gy, Kolyvagin’s derivative
operators are defined by
¢
D, = Ziaz € Z[Gy]
i=1
and
D, =[] Dr € Z[G,] C O[An].
Ln
Then for each n € J#); there is a unique Dys(n) € H* (K., Ty @ x 1) such that

resk, i, (Dar(n)) = p* Dyen,
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and the derivative class r,-1(n) is defined by

Ky-1(n) := corg, /x(Du(n)) € HYK, Ty @ x7Y).

We next introduce Euler systems with local conditions at p. Let F C HY (K ® Q,,V® x~ 1) be
an F-vector subspace and let F* C H'(K ® Q,,V ® X) be the orthogonal complement of F under
the local Tate pairing. We assume that 7* = F if x? = 1. Let Fr C H'(K ® Q,,T ® x~!) be the
inverse image of F under the natural map H'(K ® Q,,7T @ x™') - HY(K ® Q,,V ® x™') and let
Fu C HY (K ®Qp, Ty ® x~ ') be the image of Fr under the reduction map H'(K ® Q,, T ® x ') —
HY (K ® Qp, Ty @ x~1). For each positive integer n, let Selgfn)(K, Ty ® x~1) be the n-imprimitive
Selmer group defined by

1 -1

SelP (K, Ty @ x71) 1= {s e HY(K, Ty @ x ) | }2;8 c ;IL(K”’TM ®x7) f?;;’ Lp”’ } .

Note that if p | n, then Sel-(;-l) (K, Ty ®x 1) does not depend on the choice of . When n = 1 we shall
simply write Selz(K, Tar @ x 1) for Sel ™ (K, Tar @ x~1). We let
Selr(K,V/T ® x ') := lim Sel (K, Tas @ x
M

and define Selz« (K, Ty ® x) in a similar way.
Let
ci == corg, k(c1) € H' (K, T®x ).
By [Nek92, Prop.10.2 (2)(3)], the derivative classes r,-1(n) satisfy

(K1) k-1 (n) € Sl (K, Tyy @ x 1),

and by definition we see that
ky-1(1) = p*cg (mod w™).
If £ is an M-admissible prime, then G, acts trivially on Tpy ® y !
ap: Hi(K\, Ty @ x 1) = HY(KY /K, Tag) — T,
BE: Hsl(K)\a T]\/I ® X_l) = Hl(K;\Ha TM) ;> TM7
given by evaluation of cocycles at Frob, and -y, respectively, where ~, is a generator of the pro-p part
of the tame inertia group of K. Define the finite-to-singular map

pr =Py toag s Hy(Ko, Ty @ x 1) = Hi(Kx, T @ x71).
Then it is proved in [Nek92, Prop. 10.2] that for every M-admissible prime £ | n, we have the relations

_ rflena 1—r a 1—r
) (S D et m/) = (St = 25 ) oty ()

w

, and there are isomorphisms

(K3) Ky-1(n)7 = €n - ky—1(n) if x* =1,
where €, = x(on) - wy - (=1)*( € {£1} with w(n) the number of prime divisors of n.
Definition 7.2. Let ES(T, x, F) be the space of anticyclotomic Euler systems with local condition F,

consisting of anticyclotomic Euler systems ¢ = {c,}, ., satisfying, in addition to (E1-3) in Defini-
tion the conditions:

(E4) ck € Selr(K,T® x~ ') and ¢} € Selr- (K, T ® x) (& loc,(ck) € Fr and loc,(ck) € Fi);
(E5) for every M and n € J#yy, we have x,-1(n) € Sels—fl)(K, Ty @ x71) (& locy(ky-1(n)) € Fur).

The following is one of the key technical results in this paper.
Theorem 7.3. If c € ES(T, x, F) is an Euler system with local condition F with
cx #0 i HY(K,V®ox),
then Selr-(K,V ® x) = F - ck.

In the next two sections we shall give the applications of this result to the Euler system constructed
in this paper, postponing the proof of Theorem [7.3] to
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7.3. Euler system for generalized Heegner cycles (I). Suppose p = pp splits in K, and for this
section assume that y has infinity type (j, —j) with

—r<g<nr

1

We consider the x~!-component zs, -1, of the generalized Heegner classes zy,,, as defined in (4.6).

Proposition 7.4. If n = ml with ¢ inert in K and c | m, then:

(1) COI‘Kme (Zf,xfl,n) = ag(f) . Zf’X—l’m.
(2) loce(zfx—1.1) = 1€k, \. K, »(10Ce((Zfy~1.m
(3) (zfx—10)7 = wyp - X(o57)(25.x.n) T

PROOF.  These properties follow from Proposition .4] Lemma[£.6] and Lemma[4.7] respectively. [

)Frobe)'

Lemma 7.5. Suppose p > 2r —1 and p { c¢. Let w be a place of K. above p, and let K., be the
completion of K. at w. If L'/L/K.,, are finite unramified extensions, then the corestriction map

corp gt Hi(L', Toy @ x) — Hp(L,Tar ® X)
is surjective, and the restriction map
vesppt H' (L, T @ x 1) /Hp(L, Ty @ x ") — H' (L', Tyy @ x 1) /Hp(L', Ty @ x7)
1s injective.
PrROOF. By local Tate duality, it suffices to establish the first claim. Since p > 2r—1, the Bloch-Kato
group H }(L, T ® x) for the crystalline representation 7'® y admits a description in terms of Fontaine—
Laffaille modules (see [BK90, Lem. 4.5(c)]). Thus let D be the Fontaine-Laffaille O -module attached

to T'® x as a Gr-module. Then D ®p, Oy, is the Fontaine-Laffaille module of T' ® x regarded as a
Gr-module, and by loc.cit. we have the commutative diagram

—1
D’ @0, Op 275 D0 20, Of —> HNL,T @) — 0
ll@TrL//L ll@’I‘rL//L J{corL//L

DO

DO HNL,T ® x) —=0,

where fq is the usual Frobenius map. The surjectivity of corz,/;, thus follows from the surjectivity of
the trace map Trp/r : O — OL. O

For each n € J# define
Cgeeg = Zf a1 e
Set cheee .= {cgeeg}%% and let Fpk = H} (K ®Q,,V ®x 1) be given by the usual Bloch-Kato

finite subspaces.

Proposition 7.6. We have c};feg =251, and chees ¢ ES(T, x 71, Fak) is an Euler system with local
condition FBK-

PROOF. The first claim is clear. On the other hand, it follows from Proposition that chees
satisfies conditions (E1-3) in Deﬁnition To see that c"°® also satisfies conditions (E4) and (E5) in
Deﬁnition we note that loc, (251 ne) € Hf(Kne, T@®x ™) by [Niz97]. Since the action of complex
conjugation induces an isomorphism Hjlc (K®Q,T®x 1)~ H}c (K ®Qq,T ® x) for every prime g,

we see that (c'°°8)7 satisfies (E4). Therefore, we have cje®® = Zp -1 € Selpy (K, T ® x™') and

locy (resk, k., (Pam(n)) = locy, (p3”Dnzf7m’X71) € H}(Kcn,w, Ty @x 1)

for each place w | p. By Lemma this implies that loc,, (Das(n)) € H}(Kc’w, Ty ® x~ 1), and hence
loc,(ky-1(n)) € Far, as was to be shown. O

Theorem 7.7. If 2z, #0€ H' (K,V ® x), then
Sel(K,V ® x) = Selpy (K, VR x) = F - zf ..
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Proor. Note that by Proposition 3) we have the equivalence
Zfx = 0 «— Zfx-1 = 0.
Thus Proposition [7.6] combined with Theorem [7.3] yields the result. O

7.4. Euler system for generalized Heegner cycles (II). As in the preceding section, we assume
that p = pp splits in K, but suppose now that x has infinity type (j, —j) with

j=r.
In addition, in this section we assume that f is ordinary at p.

Let Z)JS be the x-specialization of the Iwasawa cohomology class z; defined in (5.5). For every place
v of K above p, let £, C H'(K,,V ® x) be the subspace spanned by locv(z}‘). Then

L1y =L, NH (K, T ® x) = Ow *locy(z}) + H' (Ky, T)tor

for some a,, € Z>¢, where H'(— )0, denotes the torsion subgroup of H'(—). Let £ € H'(K,,V®x™!)
be the orthogonal complement of £,, and set L* := LT @ ,C%. We will choose the integer v in @ large
enough so that p H'(K,,T)ior = {0} for each v | p.

Consider the Iwasawa cohomology classes z¢,, := z¢,, o from , and for each n € J# define

-1
Cgeeg’T = Z?ficn 6 Hl(KCTHT ® Xﬁl)

to be the specialization of z¢ ¢, at x~ L. Set cheest .= {cly‘feg’f}nex.

Proposition 7.8. The collection ct**®T € ES(T, x, L*) is an Euler system for the local condition L*

oy Jheeg,t _ o x7!
with ¢y =" =z

PrOOF.  We begin by noting that for inert primes ¢ with n = mf € J£, we have
(1) corr,, Ky (Zfn) = ac(f) - Zf,m;
(2) loce(zyn) = resk,,. s Ko (l0Ce(Zf,m)
(3) 2}, =wy o 27,
since by Lemma [5.4] and Proposition [7.4] these relations hold after specialization at every finite order
ramified character. Specializing the same relations to x~!, we thus find that conditions (E1-3) are
satisfied by ch¢&t. The validity of (E4) for c"*°&:T and its image under 7 follows from the fact that if v
and © are the two places of K above p, then loc, (che®®T) = locv(z}‘il) belongs to H*(K,, ZTT@x™!)
and the action of complex conjugation sends H'(K,, #+tT ® x~1) to HY (K, . ZTT ® x). We now
proceed to verify condition (E5) for c¢P¢°&:f. For any finite extension L/K,, let

(Vo HYL, Ty @ x D xHYL, Ty @ x) — O/a™O

F\I‘Ob[)

)

be the canonical pairing. By [Rub00, Prop. 1.4.3], it suffices to show that (loc,(ry-1(n)), L1v) K, =0,
ie.

(7.3) (locy(ky-1(n)), @™ *loc,(z}) + )k, = 0 (mod wM), for all x € H (K, T)tor-

Let v be a place of K above p and let w/wg be places of K,,./K. above v. Let K and N be the
completion of K, and K, at wy and w, respectively, and note that A//K is an unramified extension.
Set

Koo := KK, Ny = K N.
Let U, be a set of representatives of Az/A. u,, where A, = Gal(K/K,) is the decomposition group
of v, and let A, = Gal(K./K) as always. By Lemma there exists yn o € Hi, (Noo, Thr) Hsuch
that

corn /x(Ya,0) = 1ocuy, (tesk, k. (™ “ozy,,)) (mod wM).

5The argument for the existence of yar , given here is false since Lemma only applies to absolute unramified
extensions. One may use instead Perrin-Riou’s theory to show Proposition 7.8. See [KO18, Lemma 5.7] for the correct
statement and a proof. We are very grateful to Kobayashi for pointing out this important error.
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It is easy to see that x,—1(n) is divisible by p”, and so (k-1 (n), H'(K,,T)or) = 0. On the other

hand, we compute

X

(Ky-1(n),locy (w™ " z?ﬁ))KU = Z (locw, (pDr(n)),10Cw, (tesk,, k(@™ UZ?,CO)»K
c€A,,, pEY,

= Z (locy, (pDar(n)), COrpn /K (YX/,O—»IC
UGACO , PEY,

1
= > p"(locy(pDnz} ) YN o )N
o€A.,, pEY,

Thus to verify (7.3]) it remains to show that (loc,, (pDnz}‘y_c;), YN .o)N =0 (mod wM). Consider Perrin-
Riou’s A-adic local pairing ([PR94, 3.6.1]):

(Nt Hiy(Noo, Tar) X Hiy (Noo, Tar) — Ao(T) @ O/w™.
Recall that for every x = l'glm Tm and y = yﬂlm Ym in Hi, (Nao, Thr), the pairing is defined by
<x7 y>Noc = lh&n Z <$m7 Uym>N7n g,
m geGal(Ny /N)

and it enjoys the interpolation property: if x : I' = O* is any p-adic character, then

(@, ) (X) = (&%, 9w
Since for any finite order character ¢ of I and any p € A, , the classes yﬁ/’a and loc,, (pz?co) belong
to H(N,T @ ¢), we see that (10cy(pDnzf,.cn), YA'0)x = 0, and hence

—1 —1
(locw (pDnz¥ 1)), YXr o )N = (loCu (pDnzf.cn)X YN o) N

= (locw (pDnzf.cn), YN0 ) n(X) = 0 (mod ™).

This completes the proof. O
Theorem 7.9. If locp(z}‘il) #0, then Sel(K,V ® x) = {0}.

PROOF. To every choice of subspaces F, C H'(K,,V ® x) for every prime v | p, we associate the
generalized Selmer group

1 c H{(K,Vox ) f
H}p,fp(K,Vééx)::{seHl(K,V®x)| ocq(s) € Hp(Kq, VO X) Orqu}_

loc,(s) € F, forv|p

The nonvanishing hypothesis implies that 1065(235) # 0, and hence by Proposition and Theorem|7.3
we have

-1
(7.4) Hp (K, V@x)=F-(z} ) =F-z}.

P

Note that locg(z})" = locp(z}‘_l). The nonvanishing of loc, (zX_l) thus implies that locy(z}) # 0, and
combined with 1] this shows that H}WO(K7 V ® x) = {0}. Finally, in light of the Poitou-Tate exact
sequence

0 — Ho(K,V @y ™) —Hb (K. Vex™) % ;
— Hjo(K,V@x)" — HE o(K,Vex) — 0,

we find that HQ}’O(K7 V®x)=Sel(K,V&yx)=1{0} O

7.5. Kolyvagin’s descent: Proof of Theorem Let ¢ € ES(T, x, F) be an Euler system with
cx #0€ HY(K,V ®x™ 1), or equivalently, with cr € HY (K, T ® X~ 1)tor-
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Preliminaries. Let R, = O[p}(Gq)] C M2(0) and define
By :=inf{n € Z>¢ | w"M2(O) C R,}.
Since py is absolutely irreducible, we have R, @ F' = M> (F), and hence By < 0.
Lemma 7.10. Let E C K, po be a p-ramified abelian extension of Q. Then either E = Q or Q(y/p*),
where p* = (—1)177_117,

PRrROOF. Since p { Dk, the fields E and K are linearly disjoint. It follows that EK is abelian and
dihedral over Q. Hence by class field theory we conclude that either E = Q or Q(1/p¥). O

Let M be a positive integer. Then x~! (mod @) factors through the Galois group Gal(H/K) for
some ring class field K.y~ /H/K,.,. Let H* be the maximal pro-p extension of K., inside %. Then

Gal(H/H") is a cyclic group of order dividing p#1. Since (c,Dg,pN) = 1, the intersection ler i NH°
is a p-ramified solvable extension over Q, and hence lerp; NH* = Q by Lemma [7.10l We conclude
that p}(Gq) = pj(Gyp) and

Ry = Olp}(Gap)].
Lemma 7.11. Let £ : Gypp — O be a character.

(1) If T" C T ® & is an R,-submodule with T' ¢ wTyy, then wB2Ty, T
(2) wh Homp, (T ® &, Ty ®§) = wB20 - I,, where I, is the identity map.

PROOF.  This is essentially [Nek92) Lemma 12.3]. d

Lemma 7.12 (|[Nek92|, proof of Prop. 12.2(b)). Let &1,...,&s : Gy — O be characters, and set
i=1 i=1
Let W C V be an R,-submodule. If the map j : S — Hom(W, Tas) given by
a=(ay,...,as) — jla) : (w1,...,ws) — aqwy + - - a5ws
is injective, then w@ =By Wy,

PrROOF. We proceed by induction on s. For s = 1, the result follows from Lemma 1). Suppose
s>1,and let m: V — V' = ®f_,wM Ty ® & be the map projecting onto the last s — 1 factors.
Let

S =P Oou/(@"), W=rW)cV.
i=2
It is easy to see that S’ — Hom(W’,Ty) is also injective given the injectivity of j, and hence by
induction hypothesis we have @?V’ C W’ with v = (2° — 2)Bs. Let
Vlz’wMianM(@fl‘—)‘/, W, =WnNVY, =kerm,

and let W' — V; /W, be the R, -module map w’ — pri(w), where w is a lifting of w’ in W C V, and
pr1: YV — V) is the first projection. By Lemma|7.11{1), there exists m < n; such that

wm+BQV1 C W C o™V

Let 5/ : V' — V1 /@w™V; be the composition of R,-module maps

~

JV W — VW — V"™V = O/ (w™)
By Lemma [7.11{2), there exists (as,...,as) € O*! such that
B2 (vg,.. . v5) = agvy + - - - + asvs.
In particular, for every (wy,...,ws) € W, we have
—" B2y + wlagwe + - - + @ asws € WO

This shows that (—o™ —mH7 B2 gri—mtvg, m=m+7g,) € S annihilates W. By the injectivity
of j : § < Hom(W, Ths), the equality w™ ~mT7 82 = 0 € O/(w™) implies that m < v + By. Thus
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we have proved the inclusions w252V, € W, and @V’ € W, and it follows that w? 282y c W,
concluding the proof of the lemma. O

Put py = p3 @ Op - Gg — Auto(Thr), let Q(Th) := lerpM be the splitting field of Ty, and set
L=H(Ty) :=H Q(Tm)
Consider the Gal(L/Q)-module H'(L,Ty;) = Hom(Gal(Q/L), Tyr), where o € Gal(L/Q) acts via
(0 f)(s) =0of(o7"s).

£ S © H'(L, Thr )G E/M) is a O[Gal(H/Q)]-submodule, we let L := NyesQ - * be the splitting of S
over L, and put Gg := Gal(Lg/L). We then have an inclusion

S s Hl(gs,TM)Gal(L/H)
and a Gal(L/Q)-equivariant map
Gs — Vg :=Homp (S, T).
Lemma 7.13. Let s = dimp S ® F. Then w® "' =2B2yg 0O|Gs].

PROOF.  Since Gal(#/H’) has order dividing p + 1, the Gal(H/H’)-module S can be decomposed
into a direct sum of cyclic O-modules:

S = @O/ Nt

for some &; : Gal(H/H’) — O*, and so Vg = @5_,wM Ty ®¢; as R,-modules. Applying Lemma-
with W := O[Gs], the result follows

Let G& = GZ=! = (1 + 7)Gs, where 7 is the complex conjugation.

Proposition 7.14.
(1) @P HY(Gal(L/K),Tay @ x~1) = {0}.
(2) LsN H(TQM) - H(TM—i-Bl)-
(8) For each g € Q;, there exist infinitely many primes £ inert in K such that:
° Frobg(Ls/K)(IZ Frobe|rs) = g,
o oM | 0+ 1+ a,(f)
° wM+B1+1 ff +1 :tag(f).

PrROOF. This can be proved by the same argument as in [Nek92, Prop. 12.2]. O

The descent argument. Define the constants Bs, By by

By :=max {n € Zso | cx € w"H (K, T®x 1)}
= max{n €Zso|ck € wnHl(K7T®X)}§

By = { 0 if 2 =1,
YT migegal(k, e /i) 00dew (Y3 (0) — 1) if X2 # L

Put Cy := 6By + By + Bs + By, and choose a positive integer M with

CoP

M > 2C) +2B;.
Let #iy (1) = ¢} (mod @), and for each z € Ty put
ordg(x) :=max{n € Z>o |z € @"T}.
Lemma 7.15. There is an M -admissible prime {1 such that

orde (o, (ky-1(1))) = orde (o, (ky (1)) < Ch.
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PROOF.  Let resg,r : HY(K, Ty @ X~ ') — HYL, Tyy @ x 1) = HY(L, Thr) be the restriction map.
Let s1 =resg,(ky-1(1)) € H'(L,Tar), and consider the O-submodule
S = Osy 4+ Os] € HY(L, Ty,) S E/M),

Take an element t € cwP1+B:+B1Ty 1 with ord,, (t) = By + Bs + By, and define f € Vg by f(s1) =t
and f(s]) = 0 if y # x~!. Using Proposition 1), it is easy to see that f is well-defined. Applying
Lemma [7.13] we find that
B2 (14 7)f = Z ag-g, (ag€O)
gegd
and evaluating at s; we obtain

@t = 3" ag k-1 (1)(g).
gegy

This shows that there is an element g € G& with orde (r,-1(1)(g)) < C1, and the existence of a prime
/1 as in the statement follows from Proposition O

Fix an M-admissible prime ¢; as in Lemma and let S C H'(L,Tys) be the image of the sum of
Selgfl)(K, Ty @ x ') and its complex conjugate. Then S € Hom(Gg, Thr ) E/H) is an O[Gal(H/Q)]-
submodule. We will apply the discussion in the preceding paragraphs to this S.

Setting

do = dimp(V/T @ x )% [@] + dimp Sel 7 (K, V/T @ x*)[w@],
we have
dimg 5 ® F < 2dimg Sel £ (K, Ty © x 1) [w] < 2do + 4.
Let B = 2C1 + 2B; + 2By, define
Cy := B + (22%15 _2)B,,

and let Y C V5+ be the subset consisting of maps f such that p?>“2T, is contained in the O-submodule
generated by f(s1) and f(s2), where

51 :=resg 1 (ky-1(1)), 2 :=resy,(Ky-1({1)).
Lemma 7.16. The set g; NY is non-empty.
PRrROOF. First suppose x? # 1. Define the O-module map
§:Vy —Tu@Ty,  fr—E(f) = (F(s1), f(s2)) = (f (k-1 (1)), f(r5-1(£1))).
Let Vt := f(V;) C T @ Tyy. We claim that
wB(Ty ® Tar) € V7.

Indeed, let S1 C S be the O-submodule generated by {s1, s7, 2,55} where sT := 7-s;. For (t1,t3) €
wBTy @ wBTh, we define g : S; — T by

g(xs1 + ysa + 28] + wsy) = xty + yta.
Note that if zs; + ysy + 257 +wsy = 0, then wP*(zs; + ys2) = @4 (257 + wsT) = 0, and hence
@Bt Biydy, (k-1 () = @520, (1 k-1 (41))) =0
= wQBlJrB‘lyagl(nxfl(l)) = @?B1Biza, (ky (1) = 0
= ordy(y), ordg(2) > M —Cy, —2B; — By > M — B,
and similarly:
OBt Bigy (1) + @ Bit2Bi, (1) =0
= g 2B By (1) = @ PRB2B e (1) =0
= ordg(z), ordg(z) > M — (2C1 +2B4 +2By) = M — B.

We thus find that zt; = yto = 0, and so g is well-defined. Extending g to a map g : S — Ty, we put
fi=g+g" €Vg. Since we have

f(s1) = g(s1) +7g(s7) =t1,  f(s2) = g(s2) — 79(s5) = ta,



HEEGNER CYCLES AND p-adic L-FUNCTIONS 37

this verifies the claim.

Now let g : Thy @ Thvi — Op be the quadratic form defined by ¢(v) = vy A vy for all v = (vy,v2),
and let I C Oy be the ideal generated by {q(v)},cy+. Note that I D> @w?20y;. By Lemma
w® BVt is contained in the O-module generated by £(G&). This implies that w220y, C w?@2 28]
is contained in the ideal generated by {Q(U)}ueg(g;y We thus conclude that there exists g € G& such

that £(g) = (v1, v2) with v; Avy € @O}, and r < 2C,. This shows that
Ovy + Ovy D @ T D w2 Ty,

and hence g € Y.
Next we assume that x2 = 1. Then we have

s] =€s1, S5 =(—€)s2
for some € € {£1}. Define the O-module map
§: Vg — Ty @y =Tu, fr—~E(F) =Ffs1) + fls2) = fry (1) + [y (01)),

and let V* := ¢(V§') C Thr. We now claim that wBT), € V*. Let S; € H(L,Ty) be the submodule
generated by {s1,s2}. For each (t1,t2) € wPT§; & wBT,, = wPBTy, define g : S; — T by

g(xsy +ys2) =ty +yta (x,y € O).

One can verify that g is well-defined as before, and extending g toamap g : S — Ty, we set f :=g+g".
Then f(s;) = 2t; and f(sy) = 2ty, proving the claim. By Lemma [7.13] @ Ty, ¢ @ BVY* is
contained in the O-module generated by & (g;), and we find that

€08 ¢ (=T & =% 1T) U (= 1T 6 =0Ty
which implies that g; NY is non-empty. ]
By Proposition [7.14] and Lemma [7.16] there is a finite set Xy of M-admissible primes such that
{Froby(Ls/K)}es, =G5 NY.
Define the Xy-restricted Selmer group Sels, by
Sels, = {s € Selx(K, Ty ® x) | s(Froby) =0 for all £ € Xy }.
Then we have the exact sequence:

(7.5) P Hi(Ex, Tw @ x~") — Selr(K, Ty @ x)¥ — Sely,, — 0
LES Y

Lemma 7.17. pP12¢2+1 Gely, = {0}.

PROOF. By definition, if s € Sely, then s(gg NY) = 0. Noting that Gs NY erQCZHQg|r - Q;’ ny,
we thus find that

s(GENY)=0 = s(p*?2gH) =0
— p*“2Hlresy 1 (s) =0 € HY(L, Tr).
By Proposition 1), it follows that pB1+2C2+1s = (. O
Lemma 7.18. For each { € Xy, we have
PP HN K, Ty @ x71) C O0pkiy—1(£) + Ogkiy—1 (£07).
PrROOF. By the choice of £ € Xy, we have
BT € O(au(ky-1(1)) + O(cu(ky-1(£1)))-

This is equivalent to ’(DQBH}(K)\,TM @ x 1) C Olocy(ky-1(1)) + Olocy(ky-1(£1)). The lemma thus
follows from property (K2)). O

Now Theorem is a consequence of the following result.

Theorem 7.19. There exists a positive integer C such that
p - (Selz- (K, V/T ® x)/(F/O - c)) = {0}.
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We denote by
(;)x: Hp(Kx, Tay @ X)X H (Kx, Ty @ X71) — Z/MZ

the Tate local pairing. By the exact sequence (|7.5) combined with Lemma and Lemma for
every f € Selz(K, Ty ® x)V we can write

p03 - f= Z agag,‘{x—l(f) + bgaglﬁx—l(gfl), C3:=205+2B +2B; + 1.
AEXy

Thus for every s € Selx(K, Ty ® x) we have

(% - f)(s) = fF(p™ - 9)

= Z <1OC)\(S), b,\@glﬁx—l (5(1»,\
LeXy

= (locy, (8),tx, ), (tx, := Z —bx0p, k-1 (€L1)).

LEX Y

This implies that p©3 annihilates the kernel of the localization map
locy, : Selr(K,Tn ® x) — Hy, == {s € Hi(Kx,,Tn @ x) | (5,000, (ky-1(£1)))x, =0} .
On the other hand, setting

ay = ordg (o, (Fy (1)), ag := ordeBe(0r, ky-1(41)),

by Lemma and (K2) we have a; < C; and as < C1+ By. If M > a1 + a2, an elementary argument
shows that

w201+BlH21 C wa1+a2Hél C wazoa& (K‘X(l))

Combining these together, we deduce that

P2t BItCs Qel 2 (K, Ty @ X) C Oky (1) = Opcke

for every M > 2C7 4 2B, and the theorem follows. O
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