FIVE-VARIABLE p-ADIC L-FUNCTIONS FOR U(3) x U(2)

MING-LUN HSIEH AND SHUNSUKE YAMANA

ABSTRACT. We construct a five-variable p-adic L-function attached to Hida
families on the definite unitary groups U(3) and U(2) by using the Ichino-
Ikeda formula. The interpolation formula fits into the conjectural shape of
p-adic L-functions predicted by Coates and Perrin-Riou.
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1. INTRODUCTION

The aim of this paper is to construct a five-variable p-adic L-function interpolat-
ing a square root of the algebraic part of central values of the L-series attached to
a pair of Hida families on the definite unitary groups U(3) and U(2). We establish
the explicit interpolation formulae which completely comply with the conjectural
framework described in Km [Coal9al.

Let E be an imaginary quadratlc field. Throughout this paper we fix a prime
number p > 3 which splits in ' and an embedding ¢, : Q — Qp, where Qp is a
fixed algebraic closure of Q.

1.1. Hida families on U(n) and the associated Galois representations. Fix
a finite extension F' of Q, and denote its maximal compact subring by O. For each
positive integer n, let T,, C GL,, be the diagonal torus. Let

n = O[Tn(Zy)] = lim O[T, (Z/p™Z)]

le
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be the completed group algebra, and I,, a local and normal A,-algebra finite and
flat over A,,. We say that an O-algebra homomorphism @ : I, — Q, is locally

algebraic if its restriction to T},(Zp) is of the form Q(z1,...,2,) =[]} Pt €, (%)

i=1 "1

with (kq,,...,kg,) € Z" and characters €q, : Z, — @: of finite order. We call
kg = (kQys---,kq,) € Z" the weight of @ and eq = (eq,,---,€q,) the finite part
of Q. Let X1, be the set of locally algebraic points in Spec I,L(Qp) We say that
Q € Xj, is dominant if kg, < kg, < -+ < kg,, and @ is sufficiently regular
if kg, < kg, < -+ < kq,. Let %+ be the subset of locally algebraic points of
dominant weights and f{++ the subset of points of sufficiently regular Welghts

We denote the rings of adeles of Q and F by A and E. Let z — z¢ be the
non-trivial automorphism of £. We write p for the prime ideal induced by the
restriction of ¢, to E. Fix a positive definite Hermitian matrix 7" in M, (E). For
g € M,,(E) we define g := T—1%°T. The definite unitary group U(n) associated
with T is the algebraic group defined over QQ by setting

U(n)(R) = {g € MW (E®q R) | g*g = 1,.}

for any Q-algebra R.

We shall make use of Hida theory for definite unitary groups developed in [Ger19,
§2]. Let N be a positive integer only divisible by primes g # p split in E. Choose an
ideal 91 of the ring t of integers of E such that 99 = Nt. This ideal 91 shall be re-
ferred to as the tame level. Hida theory produces a free A,-module ey,qSY (™ (O, A)
of finite rank equipped with a faithful action of the universal ordinary Hecke algebra
T (™) (N) for the unitary group U(n) (See [Gerl9) Definition 2.23]). The A,-module
eoraSY (™ (M, A,,) is referred to the space of ordinary A,-adic forms, which roughly
speaking consists of p-adic families of p-ordinary modular forms on U(n) invari-
ant by the mirabolic subgroup of level ¢. An I,-adic Hida family f on U(n) is
a non-zero Hecke eigenform in eq,qSUY("™) M, 1,) = eordSU(”)(‘ﬁ, An) ®4,, I, which
induces a A,-algebra homomorphism Az : T()(N) — IL,,.

Denote the absolute Galois group of a field L by ', and its cyclotomic character
by €cyc. Let m be the maximal ideal of L,,. To each I,-adic Hida family f, one can
associate the residual semisimple Galois representation py : 'y — GLy, (I, /m) (see
[Ger19l Proposition 2.28]). If ¢ is absolutely irreducible, then we can further obtain
the Galois representation py : 'y — GL,,(I,,) unramified outside primes dividing
Np and primes | where U(n)(Q;) is ramified (see [Ger19l Proposition 2.29] for more
details). Denote by V¢ the free I,,-module of rank n on which I' acts via pg. For
each Q) € Z{f;, the specialization Vg ¢y := V¢ ®In,Q@p is the geometric p-adic Galois
representation associated with some automorphic representation TQ = ®yTQu Of

U(n)(A). Let %temp be the set of points @ € X{ such that mq is everywhere
tempered. Then the representation Vy is conjugate self dual in the sense that

Vf ~ Vf ®€Cyc .

Moreover, by the local description of p-adic Galois representations [Ger19, Corollary
2.33] at p combined with [TU99, Lemma 7.2], there exists a filtration {Fil;(V¢|r,, )},
of I, -stable lattices

{0} = Filo(V¢|rp, ) € Fili(Velrg,) € - CFilo(Velrg,) = Vlrg,
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such that for every @ € 3€;; , the specialization Vi f)|1"Ep is Hodge-Tate and each
graded piece

gr;(Vos)lrs, ) == Fili(Vo(g)lre, )/Fili-1 (Vo(g)lre, )

has Hodge-Tate weights —kqg, —i+1 for 1 <14 < n. Here the Hodge-Tate weight of
Qp(1) is 1 in our convention. Likewise there exists a filtration {Fﬂi(Vf|FEF)}?:1 of

I'g,-stable lattices in V¢ such that such that for every @ € .’{It , each graded piece

gt (Vo lre,) = Fili(Vocp e, ) /Filio1(Vos Irs,)
is Hodge-Tate of weight kq,_, ., —i+ 1.

1.2. The algebraicity of central values. Let k = (ky,ky,...,k,) and k' =

r'n
(ki, kb, ..., kl,_1) be tuples of integers satisfying the following interlacing relation

(1.1) by < Ky Shy < oor < <k <k < <K <k,

Let 7 be an irreducible tempered automorphic representation of U(n)(A) such that
T has highest weight —k, and ¢ an irreducible tempered automorphic represen-
tation of U(n — 1)(A) such that oo, has highest weight —&'.

The complete automorphic L-function for the product 7 x ¢ is defined by

L(s,m x o) = L% (s,BC(r) x BC(0)),

where BC(7) (resp. BC(0)) is the functorial lift of 7 (resp. o) to an automorphic
representation of GL,,(E) (resp. GL,,—1(E)) (cf. [Lablll, Corollaire 5.3]). The L-
function in the right hand side has been defined by the Rankin-Selberg convolution
whose local and global analytic theories were established by Jacquet, Piatetski-
Shapiro and Shalika in [JPSS83]. Let L(s,o,Ad) and L(s, 7, Ad) be the complete
adjoint L-functions of ¢ and m, respectively. These are the Asai and twisted Asai
L-functions of BC(c) and BC(r) (cf. Remark [4.1)). The ratio

L(%, T X U)
L(1,7,Ad)L(1, 0, Ad)

is indeed an algebraic number thanks to [GL21l Theorem C] and [Che23| Corollary

7.9]. Proposition proves its refinement for central values by using Shimura’s

mass formula.

1.3. The period. To make our interpolation formula meaningful, we will give the
definition of periods for critical L-values associated with the Galois representation
Vg. We denote the conductor of wg by 9r,. In this introductory section we use a
simplified period defined by n n

QM (Vo)) = (K - Ko(Mrg )12 LD (1,70, Ad)E (7 p, Ad)B

TQ,p
for a positive integer M, where

e 2779 ig the order of the S-group associated to the L-parameter of TQ;

LM (1, g, Ad) is the partial adjoint L-series of g with the archimdean
factor but without Euler factors at primes dividing M,
B, is the normalized local norm of the essential Whittaker function at p

(see Proposition ;
E(mqQp, Ad) is the modified Euler factor for the adjoint motive attached to

Q(f) defined in Definition
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It is proved that the adjoint L-value L™) (1, 7g, Ad) is roughly the Petersson norm
of the suitably normalized generic form on the quasi-split inner form of U(n) for
n < 3in a forthcoming work of Shih-Yu Chen. This period QM) (Vo(#)) is canonical
in the sense that it only depends on M and the representation 7 associated with
the form Q(f). N

1.4. The product L-series for U(3) x U(2). Fix positive rational numbers ¢; and
ta. Let U(3) and U(2) be the definite unitary groups attached to T" and 7", where

t .

T = 1 , T’_{l ]

ta
to

Let X' be the finite set consisting of primes g such that U(2)(Q,) is compact. Let
N and N’ be natural numbers that satisfy the following condition:

(splt) all the prime factors of NN’ are split in E.
To simply the discussion of the introduction, we assume that
(odd) NN'isodd and 2 ¢ Y.
Fix a decomposition Nt = 9N and N't = NI Let
f € eaaS"® (N, Iy), g € e0aS"? (W, Ip)
be Hida families. We further assume that the residual Galois representations pg
and pg are both absolutely irreducible. Let Vy and V be the Galois representation
of I'g associated with the Hida family f and g respectively. Consider the tensor

product representation Vpg := Vi ® V4 of rank six over the five variable Iwasawa
algebra Is®0I,. Define the induced representation V of T'g by

V= Ind2 (Vy, © €2,0).

cyc
For each prime number ¢ we denote the Weil-Deligne group of Q, by Wg . For

each Q = (Q,Q’) € .’fiz X Xi';, let Vg be the specialization of V at Q and define
the complex L-series of the p-adic Galois representation Vg by the Euler product

L(Vg,s) =[] Ls(Va.s)

of the local L-factors attached to WDy(Vg) ®5 ;0 €, where WD, (V) is the
Weil-Deligne representation of Wq, over @p associated to Vg. Putting
()‘Ql’)‘Qw)‘Qs) = (7kQ1 +1, 7kQ2v 7kQ3 - 1)5
1 1
(hQs s Q) = (—ng + 5 —kay — 2>,

we define the archimedean L-factor of Vg by
1
r(vos)= [T I FC(S+ 5 t1Ae, +MQ;>,
i=1,2,3j=1,2

where T'c(s) = 2(27)°T'(s). We are interested in the algebraic part of the value of
L(Vg,s) at s = 0. Note that L(Vg,0) are central values as VV ® ecye =~ V is self-
dual. With the assumption (splt]), the specializations of the Hecke eigensystems
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Ag(f) = Qo Ay and AQ’(g) := Q' o \g determine unique unitary automorphic

representations wg and o/ of U(3)(A) and U(2)(A), and we have

1
I'(Vg,s)L(Vg,s) = L(s +35,7g X O'Q/).
Consider the set of critical points defined by
X = {(Q.Q) € K™ x XM | ko < —kqy < kq, < —kg; < ko, ).
For Q = (Q, Q') € X" we view the algebraic number

[(Vo,0)L(Vg,0) L7 xog)
Q(NN/)(VQ(f))Q(NN,)(VQ/(g)) L(l,ﬂ'g,Ad)L(l,O’Ql,Ad)

(mod @X)

through the embedding ¢y, as a p-adic number. The purpose of this paper is to

understand the p-adic behavior of this ratio when Q € f{%}it varies.

1.5. The modified Euler factor at p. To introduce the modified Euler factor
at p, we prepare some notation. We consider the rank three I'g, -invariant and
I'g,-invariant subspaces of V¢4 by

Fily Vg = FiliVylr,, © V,Irg, + FilaVylr,, ©FilV,|r,, ;
Fil%_Vfg = Flﬂle:h"E6 (24 ‘/gh'*E5 + Fﬂng»‘h*EE X F111Vg|pEﬁ,

and define the six dimensional I'g, -invariant subspace of V by
FiltV = (Fﬂ;{V g @FIEV fg) ® el

The pair (FilTV,Xg!") satisfies the Panchishkin condition in [Gre94, p. 217] in
the sense that all the Hodge-Tate numbers of Filt Vg are positive but none of the
Hodge-Tate numbers of Vg/FilTVg is positive for Q € Xt

Let ¥ : A/Q — C* be the additive character with the archimedean component
o (x) = e2™V=1* and ¥, + Q, — C* the local component of % at the prime
number p. Let dz be the self-dual Haar measure on Q, with respect to 1,,. For
each p-adic representation V' of I'g,, recall that the y-factor (V) s) is defined by

_ e(WD,(V), 4, dz)L,(VV,1-s)
7( 55) - Lp(‘/, S) )

where e(WD,,(V'), 9, dz) is the local constant defined in [Del73, §4]. The modified
Euler factor at p is defined by

1
V(File@ O)W(FilgVQ, 0) L,(Vo,0)

E(FilTVyg) =

1.6. Interpolation formulae. Let Frac(Ig,QAi)oIg) stand for the total ring of frac-
tions of Is@eIs.

Theorem 1.1. We assume and (splt). Then there exists a unique ele-
ment L,(V) € Frac(Is®ela) which does not have a pole at any critical point
Q=(Q,Q") € Xy and such that

- T(Vg,0)L(Vg,0)

QNI (Vg () JANND (Vg )

Q(L,(V)) E(FilTVy).
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Remark 1.2. (1) We note that the global root number
1 .

5(2,71'Q X a‘Q/)— +1 for (Q,Q") € X¢"

for (Q,Q") € X¢™ by (splt), and Remark

(2) It is important to note that X" C %}emp by the endoscopic classification
of cuspidal automorphic representations on U(3) (cf. [BC04, 3.2.3, p. 618])
combined with the Ramanujan conjecture [Carl2, Theorem 1.2]. This ex-
plains in particular X{'* contains the dense subset

{(Q Q) e X" x X" | ko, < —kq, < ko, < —kq; < kq,}-

(3) Yifeng Liu [Liu] has recently constructed anticyclotomic p-adic L-functions
for automorphic representations of U(n) x U(n — 1) whose archimedean
component is the trivial representation. Despite our result is restricted to
U(3) x U(2), this paper works with automorphic representations of general
weights at archimedean components and indeed constructs several variable
square root p-adic L-functions attached to Hida families of modular forms
on unitary groups. We also provide more precise interpolation formulae
particularly at anticyclotomic characters which are either of infinite order
or unramified at p. Our result thus offers a refinement of Liu’s work in
the particular case n = 3. We expect to generalize our construction to
U(n) x U(n — 1) in the future.

(4) This paper mainly concerns the p-adic L-functions for the Rankin-Selberg
convolution BC(mwg) x BC(o ) in the balanced case in the sense that the
weights satisfy the interlacing relation . This is an analogue of theta
elements in [BD96] and p-adic triple product L-functions in the balanced
case ([GS20] and [Hsi21]). In a forthcoming joint work with Michael Harris,
we construct p-adic L-functions in the wunbalanced case: the weights of
BC(mq) x BC(o ) satisfy different interlacing relation

k'Ql < *kQ’Q < kQ2 < st < 7kQ'1'
The method uses Hida families of modular forms on non-compact unitary
groups U(2,1) x U(1,1).
In Definition [2.19] we shall construct the Hecke-equivariant perfect pairing
B‘ﬂ : eordSU(n) (m7 X5 In) X eordSU(n) (m7 X5 In) — Ina

which interpolates the canonical bilinear pairing between automorphic forms on
definite unitary groups. Put

nf :B‘ﬁ(.fhf) € In
The element 7y is expected to be related to the congruence number of f. More

precisely, we will construct a theta element Zf 4 € I380I, associated to a pair of
Hida families (f, g) on U(3) x U(2), and define

Therefore, we actually construct the square root for the p-adic L-function for the
Galois representation V.
The proof of Theorem is divided into two steps:
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(i) we construct £ 4 via the p-adic interpolation of the period integrals of
modular forms on U(3) x U(2) along U(2) in Section

(ii) we evaluate those period integrals via the Ikeda-Ichino conjecture explicitly
in Section [

The second step (ii) may have independent interest in some analytic aspects of the
Rankin-Selberg L-values for unitary groups. We begin with a brief outline of the
first step (i).

1.7. Construction of % ,. We denote the finite adele ring of @ by @ Let
G =U(3) and H = U(2). For simplicity we suppose that
N =1, X = 1.

~ o~

We will specify suitable maximal compact subgroups K of G(Q) and K’ of H(Q)
(cf. Appendix . Define open subgroups of K’ by

K"(1) = KNK, K'(p") = K" (1) N <{ [1 :Zpé 1 :p‘} }>

for each positive integer £. We consider the finite sets
X, =GQ\GQ/Ki(p'N), X;=HQ\HQ/K" (), X,=X,x X;.
Define ¢®) = (cl(p)) € G(Q) by

o (1) 8 (1) 7 <z(p) _ {z[_l(g) if [ splits in E and differs from p,
01 0

13 otherwise.

X — X, In §3.2| we construct a collection of regularized diagonal cycles Az of Xy
that are compatible with respect to the projection maps X, — X;_1. We therefore
obtain the big diagonal cycle

Since L(K’/(l)i(”) C <@ (M), we define the map 7(z) = ¢(x)s®) induces a map

o 1 . .
Al (ILIIIZAZ € (1LIH£P1CX@ ®z Lp.
We define an Is®Is-adic modular form on G x H by
F=fKg:limX, - L&l
/0

by F(z,z') = f(z)g(z’). Then F naturally induces a map
F. : lim PicX; ®7 Z, — I300ls.
—/
The element £ 4 equals the theta element ©f attached to F' defined by
OF = F.(AlL) e L®ol,

up to some fudge factor (see (4.6)). This theta element is an analogue for U(2)xU(3)
of theta elements constructed by Bertolini and Darmon [BD96] for SO(2) x SO(3)
(cf. [CHIS]) and by the first author [Hsi21] for SO(3) x SO(4).

Let di/h be the Haar measure of H(A) giving H(R)K' volume 1. We then
proceed to show in Proposition that the evaluation of O at Q € Xt is given
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by the normalized period integral

5 L
t p=’ f 1 X Otz r
DL (P = & | g(h)ey 0 p 1 Jh| dirh,
() (pp(P) 1y (0)?v} (D))" () 22 b0
H(Q)\H(A)

where &f € mQ ® o is a suitable H(R)-invariant modular form on G x H.

1.8. An explicit Ichino-Tkeda formula. A key ingredient to evaluate the period
integral 2%, (®1) is the Ichino-ITkeda conjecture which has been first formulated for
orthogonal groups in [[T10]. Its unitary analogue was formulated for unitary groups
in [Harl4] and proved in [Zhaldl BPLZZ21, BPCZ22] (cf. Theorem [4.2). This
Ichino-Tkeda formula relates a square of this period integral to the product of the
central value L(%, T X 0) and local integrals.

To make this formula precise, we need to compute various local integrals for suit-
able test vectors. Thanks to , we can apply the local theory of newforms for
representations of general linear groups, which was developed in [JPSS81] [Mat13].
We will compute these integrals at p in Section [5] and at archimedean and rami-
fied places in Appendices and |Cl To remove Hypothesis , one needs to
compute the local integral for suitably chosen test vectors at inert primes.

A local key ingredient is the splitting lemma which has been proved in [LM14]
Zhald] (see Lemma [5.2)). This lemma relates the Ichino-Ikeda local integral to a
square of the JPSS integral at split primes. It is well-known that the JPSS integral
Z(s,Wy,, W,,) of essential vectors coincides with the L-factor L& (s, m; x o) when
o is unramified.

When N’ > 1, we need to compute the local integral when o is ramified. When
oy satisfies the condition (H3) in following the construction [Sch93] of p-adic

g

L-functions for GL3 x GLg, Section |6| will construct an operator U;%;, having the
following properties:

e the restl/riction of Uf;g, Wi, to H(Q;) has an appropriate Kj-type;

o Z(s,Uy, Wy, W,,) has a simple formula.
Furthermore, we replace the pair (7, 0) by a suitable twist (7 ® 9&170 ® pa) and
replace the pair (f,g) by another pair of Hida families (f,,g,). We apply the step
(i) to U%‘{, f,Xg,. With these local calculations we conclude that

Pp, (01)2 _ L(Gmexog)
((pwa(pﬂv)lC((poa()DUV))C’ L(Lﬂ-gvAd)L(lao’Q’aAd)’

where ¢ € mg and ¢, € o are highest weight essential vectors.
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NOTATION

Besides the standard symbols Z, Q, R, C, Z, and Q, we denote by R} and QF
the groups of strictly positive real and rational numbers, and by C! the group of
complex numbers of absolute value 1. Let A be the ring of adéles of Q. We write @
for the finite part of A. Put 7= Hq Zq C @ Given a place v of Q, we write Q, for
the completion of Q with respect to v. We shall regard Q, and Q) as subgroups
of A and A* in a natural way. We denote by the formal symbol oo the real place
of Q@ and do not use ¢, [ for the infinite place.

Define %, : Q, — C! by 9 (z) = e2™V=1* for z € R and by Y, (z) =P (~y)
for z € Q, with y € Z[p~'] such that y — x € Z,. Then 9 = [[, v, defines a
character of A/Q. We associate to m € Q the global additive character 1™ defined
by " (z) = ¢(mz) for z € A. For a € Q,; we define an additive character 1y of
Q, by ¥y (2) = ,(az) for z € Q.

Let dz, be the Haar measure on Q, self-dual with respect to the pairing (z,, 2,) —
1, (2,21). Note that qu dz, = 1 for each rational prime ¢ and that dz is the usual
Lebesgue measure on R. Let dz = Hv dz,. Then dz is the Haar measures on A
such that A/Q has volume 1. Let d*¢t = [[,d*¢, be the Haar measure on A%,
where d*¢, is the Haar measure on Q) normalized by qux d*t, =1if v =g < o0,

and d*t, = %
Let E be an imaginary quadratic field of discriminant —D g with the integer ring
t. We write eg/q =[], €g, /@, for the quadratic character of Q*\A* associated to

E. Set
]EZE@QA, EUZE(X)Q@U, tq:t@)zzq.

We denote by z +— z¢ the non-trivial automorphism of E. We write 'z € M,, ,,(E)
for the transpose of a matrix z = (x;;) € M, »(F) and put

z¢ = (27;) € My n(E).

Let X7, be the set of prime numbers which are ramified in E.

Once and for all we fix an odd rational prime p that is split in . Fix an algebraic
closure Q of Q. We fix an embedding ¢, : Q < C and an isomorphism tp : C>C,p,
where C,, is the completion of an algebraic closure of Q,. Given an algebraic number
field L, we regard L as a subfield in C (resp. Cp) via e (resp. ¢p 0 too). Let ord,
be the p-adic valuation on C, normalized so that ord,p = 1. We write p for the
prime ideal of v above p that corresponds to the restriction of ¢j 0 Lo to E.

2. HIDA FAMILIES ON DEFINITE UNITARY GROUPS

2.1. Unitary groups. We let the base field be the rational field Q. This as-
sumption simplifies the notation and reduces technicality. We denote by T,, the
subgroup of diagonal matrices in GL,,, by B, the subgroup of upper triangular
matrices in GL,, and by N,, the subgroup of upper unitriangular matrices in GL,,.
We write Resg/oGLy, for the general linear group over an imaginary quadratic field
FE, regarded as an algebraic group over Q by restricting scalars. We fix a rational
diagonal positive definite matrix T' € GL,(Z)) of size n. Define a Hermitian form
(, )r on W= E" by (u,v)r = wuTv for u,v € W. Let G = U(T) be the unitary
group associated with the Hermitian form 7. Namely, G is the algebraic group
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defined by
G ={g € ResgqGLy, | '¢°Tg =T}.

Let [ be a split prime, i.e., [t = [[, E; ~ F; ® Fy and t; ~ v @ t;. The projection
(g1, 92) > g1 gives an isomorphism o : G(Q;) = GL,,(Ey). Fix a maximal compact
subgroup K = [[ K, of G(Q) such that 4(K;) = GL,(x|) for every split prime L.
Define open subgroups of GL,,(t;) by

K§ () = {(gij) € GLn(t1) | gny € ¥ for j =1,2,...,n — 1},
K (1) = {(g45) € K (%) | gun — 1 € 7).

Fix a positive integer N whose prime factors are split in £ and which is not
divisible by p. We take an ideal 91 of v such that t/9 ~ Z/NZ. Let

Ko() = {(94) € K | ulgy) € K5 (Nw) for [|NY,
K1(9) = {(g4) € K | ulg;) € K{™ (Nv) for I[N}

be open compact subgroups of G (@)

2.2. Classical modular forms on U(n). For each positive integer ¢ we define
open subgroups of GLy,(t,) by

I (1) = {(gij) € GLn(ty) | 955 € P09 for i > j},
I (") = {(g5) € T (0) | gus — 1 € pt for i = 1,2,...,n}

and open compact subgroups of G(@) by

Ko@) = {(g) € Ko () | 1(9,) € 5" ()},
K1) = {(9) € K1(00) | (9,) € T ()},
where the open compact subgroups Ko(9) and Ky (91) of G(@) are defined in

Definition 2.1. Let k& = (k1,k2,...,k,) € Z™ be an n-tuple of integers such
that k1 < ky < --- < k,,. For a commutative ring A of characteristic 0 we write
EE(A) for an A-module on which GL,,(A) acts as the irreducible representation

: GL,(A) — GL(Lg(A)) with the lowest weight k with respect to the Borel

bubgroup of the upper triangular matrices. If a = diag(ay,as,...,a,) € T, then

we write ak := aklak2 ak» for simplicity.

We define an embedding L : G(R) < GL,(C) b

N
L(g) = VTgVT VT =

It is important to note that
15 (9°) = 4 (9)

We define a representation of py oo of G(R) on Lg(C) by pg.oo(9) = pr(tX ().
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Definition 2.2. We call an £;(C)-valued function f on G(A) a vector-valued
modular form on G of weight k and level p*O if it satisfies

f(vgusou) = p&oo(uoo)_lf(g)

for v € G(Q), g € G(@), Uso € G(R), u € K1(p*N). The space AZ (p'N) consists
of vector-valued modular forms on G(A) of weight k and level P'N. We say that
[ € AZ (p*N) is Q-rational if the restriction of f to G(Q) takes values in L (100 (Q)).

Given g € G(A) and a function F on G(Q)\G(A), we define another function
r(g)F on G(Q\G(A) by
[r(9)F1(h) = F(hg).
Namely, r(g)F is the right translation of F by g. For a character x of Ko(p*I1)
whose restriction to K1 (pN) is trivial we set

AL (0" x) = {f € AF (") [ r(w)f = x(u)~"f for u € Ko(p*O)}.
Put k¥ = (=kp,..., —kz, —k1). Fix a GL,,(Q)-invariant perfect pairing
f& : EEV (Q) ® EE(Q) — Q.

Let <7 (G) denotes the space of scalar valued modular forms on G. We associate to
f e AZ(p"N) and v € Lv(Q) a scalar valued modular form f, € o7 (G) defined by

folg) = te(v @ f(9)), g € G(A).
Given [’ € Ag\/ (p*MN) and u € L(Q), we define ,f’ € &7 (G) by

) = Lle(f'(9) @ u).

f'(g
A G(R)-equivariant map ,Ckv( ) — (G) is given by v — fy,. Let T be the
diagonal torus of G. If v, € L;v(C) is a hlghcst weight vector, then

For(gtoe) =t fu,(9)

for g € G(Q) and to € T(R).
Let dgx be the Haar measure on G(A) that gives G(R)K volume 1. We define
the Petersson pairing of ¢, ¢’ € &(G) b

(0. ¢" )k = / o(x)¢' (z) dicz.
GQ\G(A)

For any function F on G(Q)\G(A)/G(R)Ko(p*N) we have

r 1 3 F(2)
/ (a:) d;gx =

K : Ko(pM r ’
G(Q\G(A) [ o(p* )] []€CQN\GD)/Ko(pt) tlpeota

where [x] means the double coset G(Q)z/Co(p*91) and
Tpem . = G(Q) Nako(p' Mz~
We define a perfect pairing
(5 e = AR (P X ) x AF (p"0, x) —» C
by
s ar@ese)

ﬂrp[‘)'t,a:

(flv f)plm =
[2]€G@\G(Q) /Ko (p*9)
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The Schur orthogonality relation gives

lp(v@u)

(2.1) (wf's )k = 51, o) dim L,

(f/a f)pém‘

Definition 2.3. Let 7 be an irreducible automorphic representation of G(A) gen-
erated by fy, with a common Hecke eigenform f € Af(pz‘)"() of Hecke operators
away from Np. Let (A1, Az, ..., An) be the Harish-Chandra parameter of 7. Note
that \; = —k; + "T'H — 4. Assume that 7, is an irreducible principal series V' =
I(p, pr2s -« -5 pin) of GL,(Qp) with locally algebraic characters ¢ o p; : Q) — CJ.
Put a; = tp(pi(p)). We order p; so that ord,aq > ordyae > - -+ > ord,a,. We say
that 7 is p-ordinary with respect to ¢, if ord,c; = —A,—j41 for i = 1,2,...,n (cf.
Conjecture 4.1 of [CPR9]).

Definition 2.4. The operator U, on f € .Ag(pé‘ﬁ, X) is defined by
Upf = Z T(lp_l(UDn,p))fa

u=(ui,;)ENn(Qp)
Wi, ; €Ly [P’ "Ly for i<y

where
pnt 0 ... 00
0 P2 0 0
Dy = : :
0 0 p 0
0 0 0 1

Remark 2.5. Put

n . n
j_ntl i—1 n(n2-1) i1
aﬂ_pzll a;p 2 =p 12 IlolZ .
=1

i=1

The operator U, acts on the subspace V<" = {h € V| 7,(u)h = h for u € 4;} by
the same formula, where we put .4, = N, (Z,). If 7 is p-ordinary with respect to
tp, then ord,a; # ordya; for ¢ # j, and so by [Hid04, Theorem 5.3] and Proposition
below, the subspace

verd = {h e V" | Uph = oy, h}

is spanned by the vector h?rid defined in E (cf. [Hsilll, Remark 6.3], [Gerl9,
Lemma 5.4]).

Define an automorphism of GL,,(A) by ¢° = g1 Let ¥ : L;(A) ~ L;v(A) be
the isomorphism such that for u;,us € L(Q)
(22)  (pel(g”)wy)” = prv (g)ui, Uy (uf @ uy) = li(uy @ uy),
Remark 2.6. Let uy be the lowest weight vector in £4(Q) that satisfies £ (v ®
ug) = 1. Define
e € {£1} so that uz =€V}
In our future application, we will have

ep=(-1)""Mifn=2 g =1ifn=3

(see (). @), (T and 1),



FIVE-VARIABLE p-ADIC L-FUNCTIONS FOR U(3) x U(2) 13

Take &n = (&) € G(Q) so that (65 KCo(M)Ey)e = Ko(M). Define Epeqy =

~

(Epem,) € G(Q) by

(2.3) Epony = 13 (DbT): Eyimy =y for L # p.
Observe that
(2.4) (5,;;1160(19[9?)5,,@)“ = Ko(p'N).

Given f € Af(p'N, x), we define Lyv(C)-valued function f¢ on G(Q)\G(A) by
fe(g) = (f(g%)?. In view of , one can obtain 7,epm f € Agv (M, x~1) by
Toef = 1(§pem) £

It follows from that

ar (T ) (9) = Le((r(&pe) £(9))” © wp)
(2.5) = le(u} @ 7(E50y) F(9%)) = Erfur ((9Epem) )
2.3. p-adic modular forms on U(n). Having fixed the isomorphism 1, : G(Q,) =
GL,(Qp) with ¢,(K,) = GL,(Z,), we define a representation pi, of G(Qp) on
Lx(Cp) by

—1
L(g) = VT, (gVT pro(9) = piliy (9)-

We assume that pgp,(Kp) acts on Ly (Z,). By definition .I" is compatible with ¢Z,
in the sense that

for g € G(Q,) and v € G(Q).
Definition 2.7. Let A be a flat Z,-algebra. Let x be an A*-valued character
of Ko(p*M)/K1(p*N). The space Sg (p*M, x, A) of p-adic modular forms on G of

weight k, level p0N and nebentypus x over A consists of vector-valued functions
f:G(Q) — Li(A) such that for v € G(Q), g € G(Q) and u € Ko(p*N)

Flrgu) = x(u) ™ prp(up) ™' F9),

where we denote the p-component of u by u,.

We proceed to define the ordinary projector on the space of p-adic modular

~

forms. To begin with, given g € G(Q), we define a twisted action 74(g) on the
space of functions F : G(Q)\G(Q) — Lx(A) by

(2.6) [re(9)F1(h) = pr.p(gp) F (hg).
Define the Hecke operator U, on fe SE ("N, x, A) by
Uy f1(9):= >, r(y " (wD p)) f(9)
u=(u;, j)ENn,

i, j €Ly /P 'L, for i<y

~

= ZP&p(lp_l(UDn,p))f(gzp_l(“Dn,p))-

We introduce the normalization of the Hecke operator U, defined by
(2.7) U, = D;f, U, = p=(n=Dha—(n=Dka——hur 7
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Note that since k is the lowest weight, the normalized Uj,-operator preserves the
A-module Sg (p*N, x, A). If A is p-adically complete, then the ordinary projector

€ord = lim Z/{;"! converges to an idempotent in End 4 S (p‘N, x, A).
m—0o0 -

2.4. p-adic avatar of classical modular forms. We associate a function f:

G(Q\G(Q) — Li(T,) defined by

F(9) = pr.olgp) " en(f(9))
to a function f : G(Q)\G(A) — Li(C). Notice that

(2.8) (9)f = r(9)f, F(gto0) = proo(tioe) " 15 (0 (99) F(9)

~

for g € G(Q) and u € G(R).

If f e AZ(p"N,x), then fe S (p'N, x,C,), and f is called the p-adic avatar
of f. On the other hand, we will call f the adelic lift of f We define a perfect
pairing

(4 Dpemn : Sg (P X1, Cp) x SF (0, X, C,) = C,
by
!
7 Pyemn = > fk(fﬁ(lf) ® f(2)
[2]€G@\G@)/Ko(pt) P
By definition,

(2.9) (7' Dyeon = ta(F', Pyen).

To an L (C,)-valued function f on G(Q)\G(@) we associate an Lyv (Cp)-valued
function f° on G(Q)\G(@) defined by fc(g) = (f(gc))ﬁ. One easily sees that
f¢ = fe. We associate to f € ,Ag(pem, X) a p-adic modular form 7,9 f of weight
kY and level p‘N defined by
(210) TpZm‘]/c\Z: ’I"E\/ (fplsn)fc = Tplmf.

Here rjv is the twisted action in ([2.6).
Given f € Sg(pe‘ﬁ, X, Cp) and v € L;v(Q), we define a scalar valued function

fv on G(Q\G(Q) by
Fol9) = ta(v® f(g)), g€ GQ).

If v, € £;v(Q) is a highest weight vector invariant by ¢y ' (N, (Z,)), then fvﬁ is a
function on G(Q)\G(@)/z;l(Nn(Zp)), and

Foulgty) = x(t) " p(t5) "~ fus(9)
for g € G(Q) and 1p(tp) € Tr(Z)).

Definition 2.8. The Hecke operator U, on the space of functions on G((@)\G(@)/z;l (Nn(Zy))
is defined by

[UpFl(g) = Z f(gz;l(an,p)).
u=(ui,;)ENR(Qp)
Ui, j EZp/pjfin for i<j
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Remark 2.9. Observe that
(2.11) Upf = Uy, Uy Flv = Upfu,-

We verify the second relation. By definition

[Upﬁrﬁ] (9) = ZZﬁ(pﬁv,p(9p2;1<UDn,p))VE ® L;D(f(glp_l(UDn,p))))

=p~ (DR e (g 4 (99) Ve @ 6 ([Up£1(9))-

If 7 is a p-ordinary irreducible automorphic representation of G(A) with respect to
tp, then Proposition below gives an eigenform f € .Ag(pé‘ﬁ) of U, attached to

7 such that fvﬁ is an eigenform of U/, with the p-adic unit eigenvalue

ap = p- B DRI—(n=Dhke——knrg

2.5. Review of Hida theory for U(n). We define X (p’MN) as the finite set
XF (') = G@\GQ)/K1 (p')

for each positive integer ¢. Recall that O is the ring of the integers of a finite
extension F of Q,. Let O[XE(p'N)] = Drex¢ (peory Oz be the finitely generated

O-module spanned by divisors of X (p‘N). Put
XE (M) := lim X (p'N).
«—
We retain the notation from the introduction. Write z — [z]a, for the inclusion

of group-like elements T,,(Z,) — O[T,,(Z,)]* = A). Let R be a normal ring finite
flat over A, = O[T},(Zy)]. For Q = (Q1,Q2,...,Q,) € Xr we put

kQ = (le,sz, ey an), = max{l, C(EQl), C(EQ2), ey c(eQn)}
and define finite order characters of Ko(p’0) by
69(%) = €q, (tp1)eqs(tp2) - €q, (tpn),

where 1, (t,) = diag(tp,1,tp2,- . tpn) With tp; € Zy for i =1,2,...,n. Let pg be
the ideal of R corresponding to @ and R(Q) the image of R under Q. Let Pe(n) be

the ideal of A, generated by [t]’iﬂ — 1 for t € T,,(Zy). Let A, act on O[XE(p*N)]
by

[ta,z i =x-1," (), t€Tn(Zp).

Definition 2.10. Put A = (¢/M)*. For d € A the diamond operator o4 acts on
the module O[XE (p'N)] by

()}

(0
where d = (d;) € [T~ Z° is alift of d.

Thus O[XE (p*N)] is a finitely generated A, [A]-module.
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Definition 2.11. The module O[X{ (p*M)] is equipped with the operator U,, de-
fined by

p" ™t p"Pure ... pPuia-2  PULa—1 Ul,n
0 p'? coo pluzm—2  puz 1 U2,
Uz = Z - : : . :2 : : 7
ug, €Ly /PI T Ly 0 0 s p PUn—2n—-1 Un—2n
0 0 ... 0 P Un—1n
0 0 0 0 1

where we define the action of g € GL,,(Q,) on z € XF(p'N) by = - g = a2, ' (9).
The limit

. 1
€ord = lim U™
m—00

converges to an idempotent in Endy, O[XE (p*MN)].

Definition 2.12. A A, -adic modular form on G of tame level M is a continuous
function f : X (p>MN) — A,, which satisfies

Fl@-a, () = F(@)[ty ), t € T(Zy).

Let S¢(91,A,,) be the space of A,-adic modular forms on G of tame level M.

Recall that f is continuous if for any mi, ms > 0, there exists sufficiently large ¢
such that the function f (mod (annl),p’”?)) : XE(peN) — An/(P,(ﬁ),pWZ) factors
through X (p*M).

The A,-module SF(M, A,,) is equipped with the natural actions of Hecke and
diamond operators given by

Upf () = f(Upx), oqf(x) = f(oaz).
The ordinary projector egq = Ai_rpool/l;”! converges in Endy, S¢(91,A,). For a
character y : A — O* we put
SCM, x,An) = {f €S, A,) | oaf = x(d) " f for d € A}.
For a normal ring R finite flat over A,, we set
SE(M,R) =S (M, A,) @4, R,
SE(M, x, R) =SE(M, x,An) ®a, R.

Theorem 2.13. Put Ny = >, A X(d)og € O[A]. Let Py be the ideal of R[A]
generated by {x(d)oq — 1}aca. Suppose that p > 3.

(1) e0raSY (M, X, R) is a free R-module, and the norm map
Ny @ €oraSE (M, R) /Py =~ €0raSY (M, x, R)

18 an isomorphism.
(2) For every Q € f{fz we have a Hecke equivariant isomorphism

6ordSG(qtv e R) ORr R/@Q = eordslfg(pzma X€Q> R(Q))

where f is the unique p-adic modular form such that

QUf (@) = (g (VT) " F@)vs, ().
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Remark 2.14. Put f' = py,(VT) "' f. Then

7 igu) = (xe@) (@) () P le), P = VT FQlun,

for v € G(Q), g € G(@) and u € Ko(p'N).

Proof. This is essentially proved in [Gerl9] by adapting the arguments in [Hid8§]
in the case of GL(2) to the case of unitary groups (cf. [Hsi2Il Theorem 4.2]).
For any abelian group A, let So(c, A) be the space of A-valued functions on the
finite set X (pN). Let ¥ord(N) := li_n>15 limg | eoraSo(a, p~P0/O) be the discrete
Ay-module. Note that ¥°*4() is nothing but the space Sg'¢, ,(U(1°), K/O) in
[Gerld, p. 1358]. Let

Vord() = lim eora O[XT (p*9N)]

be the Pontryagin dual of #°'4(9). Then we have
SY(M, A,,) = Homy, (VOrYN), A,,).

Therefore part (1) follows from [Gerl19, Lemma 2.6, Proposition 2.20], and part (2)
is proved in [Gerl9, Proposition 2.22, Lemma 2.25]. O

Definition 2.15 (Hida families). A non-zero R-adic modular form f € e;.q4S% (M, x, R)
is an R-adic Hida family if f, is a simultaneous eigenform of Hecke operators away

from Np for Q € X%. Let X = {Q € %?mp | Q(f) # 0} be a Zariski dense subset
of the rigid generic fiber of SpfR.

Lemma 2.16. Assume that the space of automorphic forms on G has multiplicity
one. If f € exaSC(M, X, R) is a R-adic Hida family, then Q(f) generates an
irreducible p-ordinary automorphic representation of G(A) for Q € Z{’f

Proof. Let m ~ ®! m, be an irreducible constituent of the automorphic represen-
tation generated by Q(f). If [ and Np are coprime, then 7 is determined by the
Hecke eigenvalues of Q(f). Thus 7 belongs to the A-packet associated to these
eigenvalues. Moreover, mq is uniquely determined for each prime factor g of NV
by the assumption on N as the associated local A-packet is a singleton for each
split prime. Therefore the equivalence class 7 is determined by Q(f). Thus Q(f)

generates an irreducible representation of G(A) by the multiplicity one for G. O

If f is a Hida family, then Q(f) is an eigenform of the operator U, with unit
eigenvalue ag o by Remarks and for @ € X', and we denote by mq the
automorphic representation of G(A) associated to f,, which is p-ordinary with
respect to ¢y,.

2.6. A pairing on the space of ordinary R-adic modular forms. In this
subsection, we do the p-adic interpolation of the bilinear pairing. We first introduce
the regularized diagonal cycles for U(n) x U(n).

Define the finite sets

X, = X5 (p'N), Xy =& x &,

~

for each positive integer £. Given z,y € G(Q), we write [(z,y)] € X, for the double
coset represented by (z,y). The following definition makes sense in view of (2.4)).



18 MING-LUN HSIEH AND SHUNSUKE YAMANA

Definition 2.17. Let ¢, € Z,[X,] be the twisted diagonal cycle defined by
Qe = Z [(@, (@Epem))]-
[z]eX,
The element &, is defined in (2.3). Note that (v&,em)S = 2, (T f (2, Dy )71,

The homomorphism
Nega,e: Zp[Xeya] — Zp[X]
is induced by the projection X, — X.

Lemma 2.18. For ¢ > 1 we have
Not1,0(Qeg1) = (1 ® Up) 04

Proof. Fix a complete set Sy of representatives for Z,/ pZZp. Denote the unipotent
radical of the Borel subgroup opposite to B,, by N, . Put

’Lp(E@) = {(p(i_j)fvij)e Nn_ (Qp) | V5 € Sifj for 7 > ]}

Then X, is a complete set of representatives for Ko(p*MN)/Ko(p**M). We may
assume that I'eqy , = t* for every 2 € G(Q) (see the proof of Lemma 4.4 of [Hsi21]).
Then Xy, consists of elements represented by xk with x € X, and k € X,. Since

o1 (€75 Fekyron)) = (D () D)~
= {u € Nn(Qp) | U5 € Sj,i for i < j},

we get the distribution property stated above. O

Define the regularized diagonal cycle by OZ =(1® Up_é)eordoé. Lemma m
says that NHM(O;[H) = 0. We can therefore define
Ot = 1im ¢F € lim Z,[X,)].
—0 «—

Definition 2.19. Let f,g € ¢0;:aS%(M, x, R). We define an R-adic modular form
on G x G by

F=fNg:GQ\GQ) x GQ\G@Q — R
by F(z,y) = f(z)g(y). Then F naturally induces a A,-linear map

F.: lim O[X,] = R.
Define an R-bilinear pairing
Bo : €0:aSY(M, X, R) X €0:aS (M, x, R) = R
by
By (f,9) = F.(0L) € R.
The following result generalizes [Hsi21l, Lemma 4.4].

Proposition 2.20. For each Q € %;g and sufficiently large £ we have

Q(B‘ﬁ(.f’g)) = Ekg . (TP[D’I[Up_ZgQ]v fQ)p["ﬁ'
Here ey, € {£1} is the sign defined in Remark .



FIVE-VARIABLE p-ADIC L-FUNCTIONS FOR U(3) x U(2) 19

Proof. We shall adapt the the proof of [Hsi21, Lemma 4.4]. To lighten notation,
we put

wE:ﬁtX7 E:k y ,‘ﬁ}:(n—l)kQ1+(n_2)kQ2+'+an71,
0 =R(Q), .]/C\: fgv 9= 9o € eorng(pemaxega 0).

We first claim that the value (7,1:[U, 191, f)pzm is independent of any sufficiently
large integer [. To see the claim, we note that if [ is sufficiently large, then 'y , =

t* for every = € G(@), and by (2.10)
wE(Tp"‘H‘ﬂ[up_l_lg]v f)pl‘*'“)'I

= > o pErram ) (U G (@E110)))” ® f(2))

[x] €X141

= >0 > tlor (o) (U A (20€p100)))” @ pip(v) 7 ()
[z]lex, veEX,

-~

= > > bllpep((Wpioy) 5 (Dup)) Uy Gl (206m) 4 (D))’ © f()).

[z]lex, veEXD,
By (2.12), we see that the last inner sum is

> (P (Erom ity (WD ) Uy 151 (26m) 2 (uDnp))” @ f())

u=(ui;)ENp
uij €S54 for i<y

=0 (o1 p (E51om) [Uplhy '~ (2€10)))” @ F(2)).
Since Upl,,” L= p" by 1} we conclude that

-~ o~

(Tpl+19’t[up_l_1/g\]7 f)p“rl‘)'t = pH(Tp“ﬁ[up_l./g\L f)p“ﬂ'
This proves the claim.
Recall that Q(f) = \/T_E]?vﬁ and Q(g) = \/T_Eﬁvk by Theorem m (2). For
an arbitrarily large integer m there exists a sufficiently larger integer [ > m such
that

(213)  QBu(f.9)=T7% > (U, "0 )((260)) fu, ()  (mod p™O).
[z]eX;

Take a basis Byv = {v;} of L;v(Q) which consists of weight vectors and contains
the highest weight vector vi. Let By = {u;} be a basis of £;(Q) dual to Byv with
uy in Remark [2.6]. Then we can write

U;lii = Z[u;l?ﬂw U

K2

If [ is sufficiently larger than m, then
pE(D'ln,p)[Up_l/g\] = Z[up_l/g\]vz : p_mlpE(DiL,p)ui

= U, 'Glv, - up  (mod p™ L (0)).
It therefore follows that
(Tl U3 Py = @((p@,p(éﬁzm,p)[Up_lﬁ]((wﬁpzm)c))%f(w))

[x]eXx;
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=75 3 0,750, (@) () @ F@)) (mod p0).
[I]EX[

In the last equality, we have used pyp(E5igy ) = pe(T~1D} ) and 1’ Combin-
ing (2.13) and Remark we find that

(e (U5 80, Py = (iU '), Py = €1, @B (f,9))  (mod p™O)
for arbitrarily large m, from which the formula follows. ]

Definition 2.21. Let f € e,,qS®(M, x, R) be an R-adic Hida family. We define
ng € R by

ng =Bu(f, f)

Proposition 2.22. Suppose that f is an eigenvector of the Uy-operator with the
eigenvalue oy € R*. Put

g = p(n71)kQ1+(n—2)kQ2+---+an71Q(af).
For Q € .’f% and ¢ > 0, we have
Qng) = I : Ko0'Tong ozt (£, Fong ) dim L.
Here the modular form f‘\,/kg is defined by ‘\,/kg(g) = kag((gfpem)c).
Proof. If ¢ is sufficiently large, then Proposition [2.20] gives
ko Qny) = (Tpem[Uy “Fols £ Q)pm
= 1 (T [Uy  F1, Fpem) = Oy to(Tpesn f f)pem)

by (2.9), (2.10)), and Remark We can rewrite this identity as
k0 Q0ng) = K+ Koo' Mgty (g (). fuvg ) dim Ly
= [ Ko(p'M)azheng pl(,  fuug ) dim Lig
by @1) and (25). 0

3. REGULARIZED DIAGONAL CYCLES AND THETA ELEMENTS
3.1. Definite unitary groups in two and three variables. We can let
t1 0 0
=10 1 ol, T’:[tol to}
0 0 t 2

by multiplying T by an appropriate constant with positive t; € Z,). We view
H =U(T") as a subgroup of G = U(T) via the embedding

a b a 0 b
([ d] ): 01 0
c 0 d
We will frequently add ’ to the notation for various objects to indicate that they

are attached to H. Fix normal rings I, I,, I, 11, I finite flat over A = O[Z]. Put

R =1,00L,801;, R =TI|®0l.
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The finite set X consists of non-split rational primes ¢ at which (, )7+ does not
split, i.e., ¢ € X if and only if g, /g, (—detT) = —1. For simplicity we assume
that if ¢ € X7, then ¢ is odd and oy is the trivial representation of the compact
unitary group H(Qy).

If ¢ ¢ Y7, then G(Q,) and H(Qq) are quasi split, and kg, Kf, are their special
good maximal bounded subgroups in the sense of §1.1 of [Cas80]. When ¢ € X7 N
2%, we define maximal compact subgroups by

Kq=G(Qq) N GL3(tq)3 ’C; = H(Qy),
assuming that t;,; € Z;. For each ¢ € X \ X% we take maximal compact
subgroups

Kq = G(Qq) N GL(Ly), Kq = H(Qy),
where L, is a maximal integral lattice of the Hermitian space (W ® Qq,¢( , )r)
which contains es := (0,1,0) and such that ¢ - (e2, L) = t4 (see for details).
We take ;= (§m) € G(Q) and &y = (S ;) € H(Q) defined by

-1
N1
it Q 2 T) if 1|,
Emi = 1
13 otherwise,
-1
N 0
)1 T | ifI|N,
1, otherwise.

We define ¢(P) = (¢ (p)) € G(Q) where

¢ = (1) 8 (1) (p) 1(§) if [ splits in E and differs from p,
N 01 0 ’ 13 otherwise.

3.2. Twisted diagonal cycles for U(3) x U(2). The embedding ¢’ : GL2(Q;) —

GL3(Qy) is defined by ¢/(g) = [g J . For each prime factor [ of NN’ we fix an open

compact subgroup _#; of G(Q;) which contains the subgroup Zl_l(L/(IC(()Z)(N,‘C[))).

Put
o=@ < [ k. x I 2

g¢ipN N’ NN’
We will specify a natural number N = M? whose prime factors split in E in
Fix an ideal 91" of ¢ such that v/M ~ Z/N"7Z. We define K{(M") with respect to

=[], K- Define an open compact subgroup Koy (p*N) of H(Q) by
Ko (0"R") = {(ln) € Ky(O") | 19(hy) € T (p"). By € K for g € 7},
where IC” =K, N K. We consider the projective systems of the finite sets
X, =GOQ\GQ)/T,  Xi=HQ\H@Q)/Ky@'N'), X, =X, x Xj.
Consider the finitely generated O-module O[X/] equipped with the operator U, :=
Up ® U, and the ordinary projector e, 4 := e 4 ® eora. Given x € G(@) and
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~

' € H(Q), we write [(z,2")] € X, for the double coset represented by (z,z’). We
define the embedding

7 H@Q) = G(Q), ga') = u(a’)s.
Set
p2€ pf 0 0 1
Te=1," 0 p' 1] | €G@Q), m=u" <[—p[ O}) € H(Qp).
0O 0 1

For z € Q, we put n(z) = Z;fl ([(1) ﬂ) € H(Qp) and

_ a b
e ={[0 o] ez¥en| o0},
Definition 3.1. Let A, € Z,[X,] be the twisted diagonal cycle defined by
1
A=) T > 10@n() e 2,

[elex; * 62" zez,/pZ,
where IfL, = H(Q) N 2'Kf; (pN")a’~!.  Since L(K"(1))sP) c <P, (M), this
definition makes sense in view of the fact that for each v € Z; (p®) there is z €
Z,/p*Z, such that Y, (2, " (yn(2)))Y, € zp_l(Ifg) (p9)).
3.3. Regularized diagonal cycles for U(3) x U(2). The homomorphism

Ney1e: Zp[Xega] = Zp[X]
is induced by the projection X1 — Xy.
Lemma 3.2 (Distribution property). For £ > 1 we have
Niy1,0(Argr) = UpAg.

Proof. The proof is similar to [Hsi2ll, Lemma 4.7]. Let Sy be a complete set of
representatives for Z,/ pKZp. Since £ > 1,

v 1+ pfu 0 1 0
= 0 1+ pl| [pb 1

is a complete set of representatives for K, (p*N”) /Ko (p*H1N”). By an argument
similar to the proof of [Hsi2l, Lemma 4.4], we may assume that '}, = {1} for

~

every 2’ € H(Q). Then X, consists of elements represented by ='k" with 2’ € X7
and k' € ¥,. Given b, z € Z,, we put

u,v,b € Sl}

z 1 1 —plbw
w=-——7, §=—, t=——7—,
1+ ploz 1+ ptbz 1 — plot

Then

r =1+ p‘b(st —w).

20+2 pE+1t w

/—1 1 0 T _ -1 b 0 /+1
A o1 n(z) ) Yoy =1, P S|z | s
0 0 1

T 0 0
Yo,z = —p**lhs 1 —pbs 0 c Ifg) (pe).
pSEJrQb p2€+1b 14 pébz
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Since s,t,7 € 1+ p*Z,, we find that Nyiq 0(Aps1) equals

Z Z Z J@'n(z 4+ p*21))Yogr, 2'e41)]

[I ]GXéJrl z€S5p 21 €S2

Z Z Z Z (@'k'n(z + p*21))Yopr, @'k 1041))]

[2']€X ) k€L 2€852¢ 21€S2

=222 X

[z']€X] z€S2¢ 21€S52 u,v,b€S1

P22 (L 4+ plu) 2+ phe

a(z’) | 0 P L+p'v | 2’ [g 11)]
0 0 1
P’ pu oz
Z Z Z Z 1eUy) | |san)Le [0 p v, ,2'n
[z']€X] 2€S2¢ 21€52 u,vEST 0 0 1
=U,A,
by Definition [2.11 O

Definition 3.3. Define the regularized diagonal cycle by Az = U;eem.dAe.
Since N€+1,€(A€+1) A by Lemman we can define
Al = lim A] € lim Z,[X,)].
«—Y «—2

3.4. Theta elements. Let X’ be a Dirichlet character of (v/9")* of conductor M.
Recall that a character of Kj() is associated to x’ by

a b ,
L d} = X' (d)
(cf. Definition . Take a divisor I of N such that v/M ~ Z/MZ.

Let f € e0:aSE(M, x, R) and g € e:aST (M, X/, R') be Hida families. Recall that
Wy = [(1) (1)] We define the tame twisting operator Ug{, on an R-adic modular
form U%%/,f on G by

! ey — : W
EFOEND SN SR U Ry (2] LA P} |

i,§€(Z/MZ)* yEL/ M2
1 & Y_

S VL
IMigy =10 1 1,
0 O 1

where we write Ay @ GL3(Q) < [[;)5; GL3(Qi) for the diagonal embedding and
define the action of g = (g:) € [];5; GL3(Qi) on z € G(@) b,

zog=z]]un (9.

M

Proposition 6.7 below shows that for u € K (912)

r(e(w)U% f = x(u)UYS f.
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We hereafter assume the following hypothesis:
(HY) the square of the conductor 9 of x’ is divisible by V.
We construct the regularized diagonal cycle Af_ by letting M = M2. Put G =
G x H. We define an R&®R’-adic modular form on G by
F=U}fRg:GQ)\GQ) —» RER

by

F(z,2") = Uy, f(x)g(2').
Then F' naturally induces a A3 X As-linear map

F, :lim O[X,] - R&R/.

—/

The theta element O g attached to the product F' is then defined by the evaluation
of F, at the regularized diagonal cycle, namely,

OF = F.(Al) e RER'.
3.5. Period integrals. The set X' consists of pairs (Q, Q’) with

Q= (Q1,Q2,Qs) € X, Q' =(Q), Q) € Xy
such that
/{in < —kQIZ < kQ2 < —k'Qfl < st'
Fix @ = (Q,Q") € X, We denote the automorphic representation of G(A)
associated to Q(f) by mg and the automorphic representation of H(A) attached
to Q'(g) by o¢. We here abbreviate

T =g, o=0g, II=r®oa0, ki = ko, k;:kQ}
fori=1,2,3 and j = 1,2. Put
a=kq — ko, b=ky —kyq, n=ky+kj, I = —kb— k.
We use the notation in to note that
oo = PrY = Nb.a @ (det)F2, Too = Phy), ™ O(—kj,—ky)-

Take highest weight vectors

(3.1) Vi = xl{yg € Too, Vg = Xf_”“’_l € 0so

Then the lowest weight dual vectors are

(3.2) u, = ylay ey, Uy, = (—Y{)e =l e gV
(see Remark .
Let f € AL (p*0, x) and g € AF(p"9V, X') be the adelic lifts of

f=1q € 85,0 xeq, R(Q)),
9=19¢ €S, (0", X'eq, R'(Q))
(see (2.8)). Recall that f and g are eigenforms of the operators U, and U, with
eigenvalues a,, and a,, by [Hid04, Theorem 5.3] and Proposition below. Define
U, f by replacing f with f in the definition of UY, f. Clearly,
/);,\
m/

QUYL F) = VT (U v,
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Define the vector-valued modular form F : G(A) — I1 by
F(z,2') = US f(z) ® g(a') (x € G(A), 2’ € H(A)).
Define a scalar-valued modular form @ : G(A) x H(A) — C by
Br(2,0') = by _(WH_ @ F(z,2')),

where ng € II_ is an H(R)-invariant vector defined in Proposition 1l
shows that

Sr(2t(tog), T'oo) = Pr(z, 2')
for us € H(R). Define t, € G(Q,) by

0 0 —p*
tp=1," 0o pt 1
p2€ pf 0

We consider the following period integral
P (D) :/ &(h,h)dih
H(F)\H(A)
for scalar-valued modular forms @ on G x H.
Proposition 3.4. Let Q € X{'*. Then
—1)k2—k1 Prer ((6pc PP
Q) = T s icpomey LTI, T )

Cp(l)Cp@) (pf‘r)aﬂpaap)f e\

for sufficiently large £.
Proof. The proof is similar to that of [Hsi21l, Proposition 4.9] (cf. [CHI8| Lemma

4.4]). Recall that Q(f) = \/T_I@kaQ and Q'(g) = \/T’_kgﬁka, are eigenforms
of the operators U, and U,, with unit cigenvalues o s and a,. Thus

QF) = QUYL HNQ() = VT VT (U}, sy B,

is an eigenform of U, with unit eigenvalue

—2ky —ky—k

’
QF = Qf0g =p Lo, Qg

by Remark Let F = U?j{,f ® ¢ be a p-adic modular form on G. Then
QF)(,a') =t (e3ys Xi " @ L (VT VT') ' Fla,a))

~ ~

for z € G(Q) and 2’ € H(Q). Recall that I, = py, ® pr,,, -
By definition we have B

Q<@F) = Q(‘F)(U;éeordAé)
=ap’ Y Y QF)(a'n(2))Te,a'r)

[']€X] 2€Ly /p** Ly
for sufficiently large ¢, we see that a%Q(OF) equals

Yoo >t @XM e L (VT VT TR (g(a'n(2)) Yo, 2/ 7).

[¢']€ X} 2€2y /p* Ly
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Since , R
F(z,a") = 0, (I (v (), 1 (2)) F(,2'))

by , we see that for z € G(Q) and 2’ € H(Q)
Dp(x,a') =Ly (Wi @1, (T () (), 08 () F(,2))
Proposition shows that for 2’ € H(Q,), g € G(Q,) and h € H(Q))
.. (Wi ® F(y(z')g, 2'h))
=l (Wi @ I (i) (Ux})), 1 (23) " F(5(")g, 2'h)
=1, (s (Mo ((VTY), VTYWT @ 1Y (1 (1(9)), 5 () F (32" )g, 2'h)))
=1, (U (T (1, (9), 7 (R) "W T @ ILL(VT,VT) T F(3(a') g, 2'h))).

Let g = ¢(n(2))Y, and h = 74. Observe that

L[t -1 1=z [0 01 1 (z—1p* -1 1
wlg b)) == 10 p° || 0 1 0l==1| »*° p° 0f,

p 0 0 p2€ _pé 0 0 p _p?»f 0 0

00 —p 1 [p* p* 2 0 0 —p*
1w((h)tg)=10 1 0 0 pt 1l=]0 p* 1

1 0 0 0 0 1 p?t pt oz

Recall that
b—1 a—n
H _ T T3 Xo Yo L,n
Wi = det {Xz YJ det L/?) —m] oYy  (mod Tp 4 (Q)).
Since
(I1,$2,$3)Zp(g_lb(h
(Y1, 92, y3)1p ((1(h) " 1g)) =

we see that

) = p 2 (w1(2 — D)p* + 20p® — 239 wop” — 21, 11),
1

(—yap~ " ys + y2p’, yaz + vap’ + y1p®),

oo (1, (1(0(2)) T ), 1 (7)) T W

b—1
_ 1 det z1(2 — 1)p’ + z9p® — 233 14
p200=D) X, Y,
X2 Yr2 a—mn
x det _
L/gz + o0’ +y1ip* ysp f]

y p_2w<x2p€ _ x1)l(y3 + y2p£)n det(g—lb<h))—k2a

from which we find the following congruence relation
1N —£ —
(p*P 90 T (0, (9 (0(2)) Yo) 0y (7))~ W

(_xl)byézX;)—l—i-a—n (HlOd ps)
if £ is sufficiently larger than s. We conclude that
'\ —£
(PR ) T (U, (Wi, @ F(3(2'n(2)) Yo, 2'72)))
=l ((—21) g X577 @ ML (VT V') T F()(a'n(2)) Yo, '70).
Substituting this expression, we see that

(p2k1+k2+kiaF)€Q(@F)
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oo Y #r(@ ()T’

[+')€X] 2€2y /DLy
DK K 2] S / (A (2)) Yo, hre) dis .
serme, JH@\H®)

Observe that

/ B (u(hn(2)) Yo, hre) dyrh
H(Q)\H(A)

=/ @F(L(h)'rg, hn(—Z)Tg) d;crh = g}g/(ﬂp(rbﬁ)@p).
H(Q\H(
Since [Kj, : Kf] = ¢+ 1 for ¢ € X, \ X' by Lemma 3.14 of [Shi0S], we have
(K" Ky (")) = p* (1 = p~)(1 = p K" K5 0*)] [T (@+1).
€2 \¥g

Since ¢(1, )Y, = t, we obtain the stated formula. O

4. THE CENTRAL VALUE FORMULAE

4.1. The Ichino-Ikeda formula. Let G be the unitary group of the Hermitian
form (, )y on W = E™. Let H be the unitary group of a subspace W’ of W of
dimension n — 1 on which (, )7 is non-degenerate. We view H as a subgroup of
G. Let m ~ ®/ m, be an irreducible cuspidal automorphic representation of G(A)
and o0 ~ ®! o, an irreducible cuspidal automorphic representation of H(A). Set

G=GxH, II=r®o, I, = 1, ® 0.
We define the complete L-series associated to m and o by
L(s,m x o) = L% (s,BC(r) x BC(0)),

where BC(7) (resp. BC(0)) is the functorial lift of 7 (resp. o) to an automorphic
representation of GL,(E) (resp. GL,_1(E)) (see [Lablll Corollaire 5.3]). The
right hand side is the L-factor defined by Jacquet, Piatetski-Shapiro and Shalika in
[JPSS83|. Let L(s,m, Ad) denote the complete adjoint L-series for m. Assume that
both m and ¢ are tempered. Put

L(1 7T><O'
j(”X“)*L(mAd) L(1, 0, Ad) HL“E/@
L v v “
L(my X 0y) = (2777 XU)

L(i, € ,
L(1,7,,Ad)L (17aﬂ,Ad)£[1 (4, €5, /0.,)

) s

Remark 4.1. If n is even, then L(s, 7, Ad) = L(s,BC(n), As) is the Asai L-series
for BC() while if n is odd, then L(s, 7, Ad) = L(s,BC(w), As™) is the twisted Asai
L-series by Proposition 7.4 of [GGP12].

We define the Petersson pairing by

(@) = / (g, W)® (g, h) g
G(Q)\G(A)
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for cusp forms @ and @’ on G, where dg and d"h are the Tamagawa measures on
G(A) and H(A). Given a cusp form @ on G, we consider the integral

P (@) = / B((h, b)) d"h.
H(Q\H(A)

Fix a local perfect pairing
(Do M, @11 = C.

If 11, is tempered, then the integral

HOW W2) = [ (11,(hs ) Wi, Wa), d,
H(Qyv)

is convergent for W; € I1, and Wy € I,/ by Proposition 2.1 of [Harl4]. The local

Haar measure dh, is defined so that a maximal compact subgroup K. of H(Q,),

which we will specify later for n = 3, has volume 1. Let Cg be the ratio between

the Tamagawa measure and the product measure of local measures. Namely C'y is

defined so that d"h = Cy [], dh,.

Ichino and Ikeda [II10] have refined the global Gross-Prasad conjecture and pre-
dicted an explicit relation between the central value and the period for orthogonal
groups. The analogue of the Ichino-Ikeda conjecture for unitary groups was formu-
lated in [HarT4] and proved by [BPLZZ21] in the stable case and by [BPCZ22] in
the endoscopic case.

Theorem 4.2 ([Zhal4l [BPLZZ21,[BPCZ22]). Let IT be an irreducible tempered cus-
pidal automorphic representation of G(A). If ® = @, W, € Il and & = @, W/ €
ITV are factorizable, then
202 (P) _ CH.Z(W X 0) H I(W,, W)
(D, 9" gentns L L(my X 0p) (W, W)’

where 2%~ (resp. 2%7 ) is the order of the component group associated to the L-
parameter of w (resp. o).

Roughly speaking, this theorem tells us that the product of global period inte-
grals is a product of the Rakin-Selberg central value (7w x o) and the local zeta
integrals I(W,, W!). Therefore, by Proposition the task of obtaining the in-
terpolation formula of © g boils down to (i) choices of test vectors W,, and W/ and
(ii) the explicit evaluation of I(W,, W!). The purpose of this section is to carry
out the step (i) and give the explicit formula of the relevant local zeta integrals
I(W,, W!). The details of the step (ii) are left to and Appendices.

4.2. Shimura’s mass formula. We now assume that 7' is positive definite. Fix
an open compact subgroup K = Hq K4 of G(@) The space &7 (G) of automorphic
forms on G consists of left G(Q)-invariant, right G(R)K-finite functions on G(A).
We normalize the Haar measure dho, by f H(R) dhs = 1. Actually, it is more
suitable for our later application to use the Haar measure dx-h = [], dh,, which
gives the maximal compact subgroup H(R)KX’ volume 1. We similarly define the
Haar measure dxg and choose the constants C'y and Cg so that

d™h = CHd/C/h, dTg = CGdICg~
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We normalize the period integrals by

(@, 8 )i = / B(g, )P (g, h) dicg dicr,
G(Q\G(A)

7o@) - | &((h, ) dirh
H(Q)\H(A)

for @,9" € o/ (G). We rewrite the formula in Theorem {4.2| as

@;@(@)@,@(@') 7T><O' H W W;)
L(my

(dja gzj/)’C></C’ B Q%m0 X U'U)<<W’U7W’/U>>’U .

When /C, is the stabilizer of a maximal lattice, Shimura [Shi97] has explicitly com-
puted the mass

2 1 n
G” X qE@neken L HL”_“E/@HA

gEG\G@)/K =1

(see Propositions 4.4 and 4.5 of [GHYO01]), where Le¢(s, ej};/@) is the non-complete
Dirichlet L-series associated to the Dirichlet character eiE /o Observe that

7n<n+1) a
(41) G ‘=T CGHLf Z GE/Q vV DE' QX,

i=1

where Dpg is the absolute value of the discriminant of E, and a = 0 if n = 0,3

(mod 4) and @ = 1 if n = 1,2 (mod 4). When we replace K, by another open

compact subgroup of G(Q,), we have only to multiply A; by a rational constant.
We hereafter suppose that

(Hz) Hom g (r) (I, C) # {0}
Remark 4.3. The relation is equivalent to (Hz) by [Hel7, Theorem 1.1].
Namely, there are H(R)-invariant vectors WX € IT_ and W' € I1.. Then
HWE W) = (Wi Wi o
It follows from that

L(l,ﬂ'oo,Ad)L(l,O'omAd) n(nt1)
Coo 1= T
L (5771'00 X UOO)

€ Q*.

Corollary 4.4. Assume that T is positive definite. Let IT be an irreducible tem-
pered cuspial automorphic representation of G(A) whose archimedean part IT.
satisfies (Hz). Let & = /W, € IT and &' = @, W/ € IV be factorizable. If
W_ =WZ and W = W' then

P @)P() _ e, L(3,7x0) H (W, W)
(D, D) cxicr 27nte ° [(1,7,Ad)L(1, 0, Ad) Z(m % ol)«Wl,Wz»l'

The product in the right-hand side is taken over all rational primes [ and is
actually a finite product by Theorem 2.12 of [Har14].
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4.3. Rationality of central values. We assume that tempered automorphic rep-
resentations of G(A) occur in &7 (G) with multiplicity one. This can be seen from
Theorems 1.7.1 and 1.6.1(6) of [KMSW]. The proofs for these theorems are still
work in progress. For n = 3 the endoscopic classification was completed for all
inner forms in [Rog90], and hence our results are unconditional at least for n = 3.

We write Aut(C) for the group of automorphisms of C. Let 7 € Aut(C). For
a complex representation II of a group G on the space Vjy of II, let "Il be the
representation of G defined by 7II1(g) = t o II(g) ot~ !, where t : Vi — V7 is a
7-linear isomorphism. Note that the isomorphism class of "II is independent of
the choice of t. Given ¢ € @ (G), we define "p € & (G) by "o(g) = 7(¢(g)) for
g € G(A). The representation "1 is realized in the space {7p | ¢ € 7} by the
multiplicity one for unitary groups. Similarly, "o is an automorphic representation

of H(A).

Proposition 4.5. Suppose that every irreducible tempered automorphic represen-
tation of G(A) occurs in the decomposition of the space &/ (G) with multiplicity
one. Let m and o be irreducible tempered automorphic representations of definite
unitary groups G(A) and H(A). If Hompyq,) (T, ® 0y, C) # {0} for all v, then for
every T € Aut(C)

7( L(i,mx0) ) B L(,77 x o)
VD L(1,7,Ad)L(1, 0, Ad) VD L(1,7w,Ad)L(1, 70, Ad)’
where a =0 ifn=0,3 (mod 4) anda=1 ifn=1,2 (mod 4).
Proof. Tt is evident that

7(D, P )icxxcr) = ("B, P ) icxcr s (P (P)) = P (D)

(cf. ) We take k and k' so that moo ~ L4v(C) and 0o ~ Lpv(C). It is
easy to see that 7 is spanned by f, with v € £;v(Q) and Q-rational £ (C)-valued
modular forms f defined in Definition 2.2 (see [Gro99]). One may therefore assume
that modular forms @ and &' are Q-rational, namely, they have values in Q. Then
(D, iexkcr, Pro(P) and Py (P') are algebraic numbers.

Given a matrix coefficient ¢, of II;, we define the matrix coefficient "¢; of "II; by
"u(g1) = 7(¢u(qr)) for g € G(Qu). Put

#1(9) = <<Hl(gz)wzawf>>l'

Since Homy (q,)(I1;,C) # {0} if and only if I is not zero on II; ® II)’ by Théoréme
14.3.1 of [BP16], the assumption allows us to choose & = @, W, and &' = @, W/,
so that

I(¢n) :=TI(W;, W) #0

for all rational primes [. If we write

(I(9)®, & )exrr = (WE, W) o [T dulan)s
l

then ("T1(9)"®,"® )i xier = (WL W) TT, u(g1) for g = (1) € G(Q). One can
easily show that 7(I(¢;)) = I("¢;) (cf. the proofs of [Grol8| Theorem A] and [Liul
Lemma 2.6]). Since 7(&Z(m,01)) = £ ("m,70;) by [Liul, Lemma 2.4], we get

(o LGrxo) N PeDPe (@) 2t £ ) o)
L(1,7,Ad)L(1,0, Ad) (P, P exer > T(Va) 1(7¢1)

l
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B YeL(3, ™7 x o)
7(ve)L(1,m, Ad)L(1, 0, Ad)’
applying 7 to the formula in Corollary The proof is complete by (4.1]). O

4.4. An outer involution. To relate the central value to the square of the period,
we introduce an involution of automorphic forms on unitary groups. Since 7' has
entries in Q, we can define an outer automorphism of G by

c. g gc _ T—l tg_lT.

Take &n = (€m,v) € G(Q) so that

(€x' KCo(M)em)° = Ko(N).

For a function on ¢ on G(A), we define a function ¢° : G(A) — C by ¢°(g) = ¢(g°).

Let m ~ ®/m, be an irreducible automorphic representation of G(A) such that
mq admits a K4-invariant vector for every non-split prime g. For each split prime
[ we denote the conductor of m; by ¢(m;) in the sense of . Let N, =[], 1¢(™)
be the conductor of 7 and N =[], 1(m) the tame conductor of 7. Fix ideals N,
and N of v such that t/N,; ~ Z/N,Z and t/N ~ Z/NZ.

Let 7 ~ ®/m/ denote the contragredient representation of . We define
representations 7¢ of G(A) and 7¢ of G(Q,) as the twists 7°(g) = 7(g°) and
7<(g,) = 7(g5) by ¢ for g € G(A) and g, € G(Q,). It is well-known that m ~ 7§
(see IMVWS&T]). Since

¢°(gh) = ¢((gh)%) = (x°(h)¢)(9),

and 7V ~ 7° we have {p | ¢ € 7} = {¢° | ¢ € 7} by the global multiplicity
one for unitary groups ([Rog90, Theorem 13.3.1]), where the automorphic form
@ is defined by B(g9) = ¢(g9). Let v = ®,p, € T be a highest weight essential
vector with respect to Ko(My), namely, poo is a highest weight vector, ¢, is a Kg4-
invariant vector for inert primes ¢, and ¢; is an essential vector for split primes [
(see Definition [6.1)). Then 7" (&m, )¢S € m¥ is a lowest weight essential vector with
respect to Ko(91;) up to scalar by Proposition

Assume that H¢ = H. Similarly we associate ¢¢ € &/ (H), ¢¢ € &/(G) and
the automorphic representation ¢¢ ~ ®!o¢ to automorphic forms ¢ € &/ (H),
@ € /(@) and an automorphic representation o ~ ®! o, of H(A).

4.5. A factorization of the dual representation. Define the longest Weyl ele-
ment w,, € GL,,(F) by

wy, = 1, Wy = |:w ) 1:| (n Z 2)

Let [ be a split rational prime. We view m; as a representation of GL,(Q;) via 1.
We identify 7; with its Whittaker model #4, (7) with respect to v, and identify
m) with its Whittaker model le—l(ﬂ'v) with respect to 1, '. Let Wy, € m be
the normalized essential Whittaker vector with respect to ¢;, and Wrv € w) the

normalized essential Whittaker vector with respect to 1,bl_1. For W € m; we define
weem) by

We(g) =m (T )W(g) = W(wy 'g~'T),
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where W (g) = W (wy 'g~1). It is important to note that
™ (R)We(g) = W(gh) = W((gh)°) = (nf (h)W)"(g).

When ¢ remains a prime in v, we fix Ky-invariant vectors W € m, and W,rqv €
m, . Fix a highest weight vector W _ € 7o and a lowest weight vector Wy € 7%,
Let ©: 7 ~ m be the G(Q,)-equivariant isomorphism determined by W¢ =W, .
for inert places v.

To apply Corollaryto @' = ¢, we need explicate the factorization of $¢. Fix
isomorphisms 7 ~ ®] , and 77 ~ ®! 7, so that
Por =@, W, , pr = ®,Wy

Tr’U

Using this factorization 7V ~ ®’ 7Y, we define a cusp form p,v € ¥ by

Prv = ®:;W7rq\j
Lemma 4.6. If ¢ = @, W, € 7 is factorizable and if W,, = Wy for all non-split
places v, then ¢° = &, WE.
Proof. Define a finite set &, = {v | W, # Wr, }. For v € &, there are ¢,; € C
and g, ; € G(Q,) such that

Wu:qu'frv; Z/{ _chz vgvz

We have ¢ = @ues U, - or. Put V, =3 ¢, 7/ (g, ;). Then

SDC = ®U€6¢Vv : 30‘11:1' = (®U€6¢VUW7$U) ® (®;)¢C Wﬂ,,)
Lemma follows from the observation that V,W¢ = (U, Wy, )¢ = Wy. O
Let 0 >~ ®/ 0, be an irreducible automorphic representation of H(A) such that o,
admits K;—invariant vector for every non-split prime ¢. Put N' =[], 2p 1o We
take an ideal M of v such that /M ~ Z/N'Z. Define an open compact subgroup
Ko(p*) of H(Q) and take &), € H(A) in a similar way. Let ¢, € o be a highest

weight essential vector with respect to K((91). Fix the factorizations ¢ ~ ®/ 0,
and 0V ~ ®! g such that

90 = ® WUU (p(CT = ®2}W£U

Using the factorization, we define a cusp form pov € 0¥ by pov = @ Wov.
For each place v we put

W, =W, @ Wy, € I, Wiy = Way @ Woy € I1)
and define the G(Q, )-equivariant isomorphism ¢ : II¢ ~ IT) by
(WeoW')e=W-e W'
Put

A (W, Wi
AW, Wiy ) o

Since & (P°) = H(P), one can deduce the following formula from Lemma and
Corollary

QSHZQOw@SDJa éﬂ\/ :(Pﬂ'v®§00\/a Ioo:
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Corollary 4.7. Let II be an irreducible tempered cuspial automorphic represen-
tation of G(A) such that I1, is unramified for all non-split rational primes ¢ and
whose archimedean part Il satisfies (Hz). If & = @, W,, € II is factorizable and
W_ = W then

P (9)? gle L(3.mxo0) I(W,, W)
I82

= I .
(¢H7@HV)’C><K' 2%n o OoL(l,’IT,Ad)L(l,O’,Ad) T X Ul)«WH“WHlV»l

4.6. Local integrals at oo, Y, and Y,.. From now on we suppose that G and
H are definite unitary groups in three and two variables. We retain the notation

in Proposition [A77] below gives
Io = (—1)F17%2272(dim 7o ) (dim 0's0 ).
If ¢ ¢ X7, if ¢ and pNN' are coprime, and if W, = W, is spherical, then since
W¢ =W, we have
q
I(anwg) = "S/ﬂ(ﬂ-q X O'q)<<WanWH;/>>q

by Theorem 2.12 of [Har14] and Proposition below (cf. Remark [5.3).
When ¢ € X, we let W, = Wﬂq be a spherical spherical vector. Recall that
04 is the trivial representation of H(Qq). Put

(W, W¢)

=11 :
£ Wi , Wpv
q€xy (ﬂ-q X Jq)<< 1, Hq >>q
Proposition shows that
(42) I, = H L(l,EEq/Qq)Q.
qEX\XT,

Since A4 is either % or 1 according as q is ramified in F or not, we have
_ =395+t
FYG - DE 2 E7

where tg is the number of prime numbers which are ramified in F.
For each split prime [ we put

Bm = <W7717W7rlv>l» Bm = <Wal7WalV>;7

G(3) B, G(2)

B’Tr T VY T TOT. /1 - V) o
bOLSE (1w xom?) LG (1,0, xa)) 7"

(cf. (5.3)), where W, € o is the normalized essential Whittaker vector with respect

to, ", Wyv € o) the normalized essential Whittaker vector with respect to 4,
and the local pairings (, ), and (, )] are constructed by (5.1). To avoid possible
confusion, we recall that

L(s,m, Ad) = LC%(s,m, x 7)), L(s,0,,Ad) = LC%(s,0, x 0)’).

We regard 7 and o; as representations of unitary groups in the left hand side
and representations of general linear groups in the right hand side. We denote the
Petersson pairings with respect to dig and divh by (, ) and (, )ir.
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Corollary 4.8. Assumption being as in Corollary if W =W and if W, =
W, is a spherical vector unless pN N " is divisible by I, then

P (D)
(s v )k diM Too + (P, Pov )i dim Uoo
1 c
:(_1)19/1716/2 23+t I L ( e G H Wl’wl)
2"“+"°DSE L(1,7,Ad)L 1 o, Ad) L(m % O’l)BmBgl

l[pNN’

4.7. An application of the splitting lemma. Fix a split rational prime [. We
regard m and o; as representations of general linear groups via ¢; and 2;. Put
G(s) = (1 —17*)7L. Then the splitting lemma stated in gives

1 1
I, Wi W 0 W) = (02 5 mlomi w7 ) 2 3.m W W),
where

1 0
s= |0 1
0 0

— = O O

We regard H(Q,) as a subgroup of G(Q,) via the embedding ¢ while we use the

embedding ¢/ : GL2(Q,) — GL3(Q,) defined by ¢/(g) = {g J to define the JPSS

T/—l
integral. Since ¢T~! = [ 1] ¢, we have
1 1 ~ —~
2o W W) = 2 (3o T (i)
1 —

1 1
= ’YGL <2,7Tl X Ula¢l>Z<277Tl(§)Wla Wl/>

by the invariance and the functional equation ([5.2)) of the JPSS integrals. We can
rewrite the identity above as
IW, @ W/, Wfe W)  F (W, W)
f(ﬂ‘l X Ug)BmBal - BmBgl ’

where

1 Z(4,m(W, Wy)?
f(m@WlI)ZVGL(277TlXUl7¢l) (QL(ll() ! l) .

3, ><Ul)

Definition 4.9. Put

Pet(m) = 27 L(1,7,Ad) [ [ Bn,: Pet(0) =27 L(1,0,Ad) [] B,
lpN lipN’
Ner = (@m <)07rV)IC dim Toos Ne, = (QDm <PUV)IC/ dim Oco-

Since we can replace pN (resp. pN’) by pNN’ in the definition of Pet(rw) (resp.
Pet(o) by (5.3] ., we can rewrite Corollary E 4.8 in the following way:
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Corollary 4.10. Assumption being as in Corollary @ we have

(D)2 o 2%%tE L3 mx
P ( ) _ (71)k17k2 - I T a' H ﬂ Wl
NN Dy, Pet( )Pet(c lI N

4.8. The local integral at a ramified split prime [. Let [ # p be a rational
prime that is split in . We write w,, for the central character of o;, which is
viewed as a character of Q;° via ¢(. Observe that

IW, @ W) = eCL (1,7rz X Jl,lﬂl) <Z(1 (s WVI,WI,)) .

2 LGL( 7Tl><0’l)

If o; is unramified, then Théoreme on p. 208 of [JPSS81| gives
(4.3) Z(8,Wa,Wo,) = L (s, x 07).

Put ¢, = 1; (). We see that

1
‘](Trl(gl)Wm ® Waz) = EGL (27717 X Ul7¢l) = fm,m'

If 0; is ramified, then we put f; = c(w,,) and define U Wy, € #y, (m;) by
L g
U We = ) > weli)m | |0 | Way,
i,5€(Zy 1N T % yez, /12h17, 0 O 1
Uyl Wy = m( (G 1w2) ) U271 W,
Proposition [6.8 below shows that if ¢(0;) < 2¢(wy, ), then
Belenduwg, ()*@)e (3, 01,1)
5 .
5(%3 Woy 17[)l) [GLQ (Zl) : ’CE)Q)(IQC(WUZ)ZI)]

—_

Z(s, Ugit W, Wy,) =

™

Put

f = 5GL(1 m X 07, > ZGC(%Z)wol (Z)%(%l) (270l7¢l)

T ,op ) ) l 9
o 2 5(%,wm,'¢l) LCGL(1,m x o)
It follows that

)_ fﬂ'lﬂl
[oa] -

(4.4) I (7, (s)Ugit W, .
1I\51) Y [GLQ(ZI) :IC(()Q) (lQC(wUL)Zl>]2

™

4.9. The local integral at p and the modified p-factor. Assume that = and
o are an irreducible p-ordinary automorphic representations with respect to ¢y,
namely, 7, is the irreducible generic constituent of a principal series I(vp, pp, ,up)
and o, is the irreducible generic constituent of I (,u;, 1/1’)), where v, p,,, Hy; ,up7

are @X—valued smooth characters of Q,;, such that

N _ _ k1 !
PR m), P pp(0), P TR () pTReT R (), p TR (p)

are p-units with respect to ¢,.

Definition 4.11. Define the modified p-factor £(m,, 0,) by

1 1 1 1
g(ﬂ'pao'p) L( 7Tp X Up>’7<2aﬂpl/,/p¢p)’Y<27PpV;»¢p)7<27HpN;aﬂ/’p>
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1 1 1 1 1 1 -
X ’7(27 (Vpl/zl)) 17¢p 1)’7(23 (ppﬂ;ln) 1a¢p 1>7<27 (l/pﬂ’;) 1,% 1)-
Let Wfr’;d € m, and Wg;d € o0, the normalized p-ordinary Whittaker functions
in (5.5). These are eigenvectors of the U,-operators with specified eigenvalues (see

Proposition Remarks and below). Put

am, = P p(0)1p(P)°, g, = P21, (p).
Then
U,W = ax, W, UpWord = a,, W
by Proposition Define an element t, € G(Q,) by
0 0 —pf
te=2" |0 p* 1
P2 pt 0
If ¢ is sufficiently large, then Proposition below gives
2
4 (captaay) st ew

_ VGL(%’WP X Up’¢p)
L(5.mp % 00) (V3 s )7 (5 2y )1 (3 it 9y))°
_ 7(%’prz/)’ipp)'y(%’pp“;’wp)'y(%’Vp'“;ﬂtpp)
_L(%vﬂp X UP)’Y(%’NPV{?’¢p)7(%’ppyilﬂ"’bp)ry(%’ﬂp“;”pp)
=(pp¥p) (—1)E(mp, 0p)
in view of the multiplicativity and functional equation of the gamma factor.

4.10. An explicit central value formula. We say that an irreducible represen-
tation of G(Q,) (resp. H(Q,)) is unramified if it admits a non-zero IC, (resp. K})
invariant vector. Let m ~ ®/ m, be an irreducible tempered automorphic represen-
tation of G(A) and o ~ ®/ 7, that of H(A) satisfying the following conditions:

(Hyp) if ¢ € X7, then g is odd and o, is the trivial representation;

(Hy) mq is unramified for every non-split rational prime g;

04 is unramified for every non-split rational prime ¢ ¢ X7 ;
(Hz) moo and oo, are discrete series such that

HOHlH(R)(TFOO & Ooo, (C) 75 {0},
(H3) ¢(01) < 2¢(w,,) for every split rational prime [ # p;
(H4) m, is a generic constituent of a principal series I(vp, pp, tp);
oy is a generic constituent of a principal series I(u,v,,).
Recall that N = [],_, 1°7) and N’ = [l 1°90) | where we set ¢(m;) = c(o;) =0
for non-split rational primes . Put M = H” N 1°a1) | Take a divisor M of M such

that t/9 ~ Z/MZ. Let &' € IT be an ordinary H(R)-invariant essential vector.
Define Uy @' € IT by

Usr o' = W o (W @ W) @(Rq4pn Wiz, ) ® (@18 Ugy! Wee, @ Woy,).

Recall the element <?) € G(Q) defined in §3.1l We combine Corollary and
(4.4), (4.5) to obtain the following formula.
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Proposition 4.12. Notations and assumptions being as above, if { is sufficiently
large, then

% (w(tgg(P))U“;tidiT)>2

(pf‘r)awpo‘ap)z

1 Cp(l) /. / 2
Ny (Cp@) e Ko (0]

B L(%,ﬂ' X cr)
~ Pet(m)Pet (o)

ok , 923+te
e e
E IINN’

4.11. Statement of the main result.

Definition 4.13 (p-modified period). Let f € eq;:qSY (M, x, R) be a Hida family.
Letting p1, 2, . . ., i, be chosen for ™Q as in Definition we define the modified
adjoint p-factor £(mq,p, Ad) = E(mgp, Ad,9,) as in Definition for Q € .’{;%
The subset )¢ consists of @ € X} such that Q(f) is new outside p. For @ € Y
we define the p-modified period by

Qfy g = [ : Ko(Tg )Pt (mQ)E (g p, Ad)

= [K: Ko(Mrg )12 L(1, wg, Ad)E (g p, Ad) ] Breg.is
N - n UpN
and define the Gross period by

)
Qo)

P90 = Qi)

Let
f €eoaSM X, R); g€ eoaST(OM, X, R)
be Hida families. For Q € %’f and Q’ € Xy, let mq and o be the automorphic
representations of G(A) and H(A) associated with Q(f) and Q'(g) respectively.
Choose v,,, pp, [, Hy, Y, for mg , and og,p asin We define the modified
p-factor by
5(F11+VQ) = 5(71'@4,, O'Q,p).

Theorem 4.14. Assume that g is odd whenever H(Qq) is compact. Let M be the
conductor of x'. Suppose that

(H%) M? is divisible by N'.

Then there exists a unique element L5 g € Frac(R®oR') such that

I'0,V,5)L(0,V
02y = T OVILO Vo) gy
Qo5 (g)

for @=(Q,Q") € X¥"" N (Vs x Vyg)-

Remark 4.15. The denominator of .Z% 4 is simply a product of explicit local L-
factors. For each prime factor [ of N’ let Py, », € R®R' be an element such that
QPr,0,) = LGL(%,WQJ X O'Q/)l)fl for Q = (Q,Q’) € }C;i X %7'2,. It follows from
the definition (4.6 that

Lfg- H Pri o, € ROR'.
1IN’
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4.12. Proof of Theorem This subsection supposes that NN’ is odd. Let
M be an odd integer divisibly only by split primes. Fix a primitive character o
of (t/9M)* such that x’'o~2 has conductor M. We extend g to an automorphic
character s = [[, 0, of U(1)(A).

Since Q’'(g) has tame level 9 for Q' € %74%/, there exists a positive integer A
such that if m > A and M is divisible by N, then o ¢’ ® oa has tame conductor

M? (cf. Remark|6.9] and (6-1)) and (a7q/1 ® 1)y is trivial for all prime factors [ of
N’ and Q’ € X5,. We enlarge M so that T ® le has tame conductor M?> and

(g, ® gl_l)u is trivial for all prime factors [ of N and @ € %}g
Fix (QO,Q:)) € X¢'. Let
Z ! —_
fo € coraSiy, (POM* R, x0%), g € CoraSiy, (04 M% R, X'077)

be p-ordinary newforms associated to 7Q,® g&l and TQ B0, Theorem allows
us to lift f, and g, to Hida families

.fg € eordSG(mnga ng)a gg € eordSH(th;R/7X/972)'
For our choice of ¢ we see that g, satisfies (H3), and

Vs, = Xs,, Q7. = [Ko() : Ko(M)IQNN) (Vg 4)),

Vg, = Xg,. QTQ,(QQ) = [KC6 () : Kp (M) N (Vg g))-

Theorem applied to f, and g, shows that
(0, V5)L(0,V ,
02,4, = POV IOV ) gy
Q(f,) Q' (g,)

for 0 =(Q,Q") € Xy N (X, x Xg,). Therefore

2

&z
Ly(V) = [ICo(9) = Ko ()] [KCh (V) - icacm?)]ﬁ € Frac(RBoR').

satisfies the interpolation formula in Theorem for Qp € X¢* N (X £, X 359,_,)-
Since this interpolation formula determines L,(V), it holds for all Q € X',

4.13. Proof of Theorem Recall the theta element © p defined in §I.7]
Proposition 4.16. Notations and assumptions being as in Theorem[{.1], we have

L(3,mg x o¢) 93+t5 )2
G)'QOF) = ———5——EFII Vo)X (1) =5 fraoq
P Qg(f)ﬂg’(g) D% llz\?JIv' QUTQ 1

fO'f' Q = (Q,Ql) c .’fcr,ig, where DT = qux;\ZTE q.

Proof. Let m = mg and 0 = o¢. Hypotheses (Hp) and (H;) hold by (splt), (H>)
holds by Remark and (Hj) holds by [Gerl9, Lemma 5.4]. Thanks to Remark

, we can apply Proposition to Q(f) and Q'(g). If £ is sufficiently large,
then Proposition [3.4] yields

(b PP )\
Cp<1)4Q(®F)2 _ (Cp(l) [IC/ . IC{)(EmQ)} P ( (tg§ )é )) H (q_|_ 1)

2 S, ay )t
Cp() (p » p) GETI\ST,
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L(%,T( X 0)

’ ’ 23+tEI*D2 H ’fﬂ' a
— A" ) (9 ki —k) "V(—1 £ T 11NN 1,01
77% "780(7 Pet(w)Pet(J) ( ) (ppl/p)( ) (TrP’ OP)

Dg gezy\zp L €m,/0,)*
We can let the stabilization of ¢, be kaQ. Then Proposition Remark W and
Corollary [6.6] below give -

Q(nyr) (K /Co(pzm)]a;j(szmekg, kag)lc

N (s ¥ )k
(K < Ko(p! )]y BY,
B,

= [K: Ko(Mr)]E (mp, Ad)pp(—1)

Since 1 = w,(—1) = (—1)"e1 Faz (1pvp)(=1)x'(=1), we have

Ql(’rlg) o /. / /
= K KO, ey Ad)pty (<)
®o
=[K": IC/O(mU)]g(O'IhAd)V;(—l)X’(—l)(—l)kQ&7kQ’2.
The stated interpolation formula follows from . O

Lemma 4.17. For each prime factorl of NN’ there is an element \/fr, o, € ROR'
such that for Q = (Q,Q") € Xg™

Q(fr100)* = fra.ioq.

Proof. We denote the I-primary part of x’ by xj. Recall that if [|N’, then

6c(x) —de(x)) (1 2
Fro .00, = (PODX (D~ e (5, 00 0, %1) GL (1 TQL X OOy 1/”)
Q.1LOQ! 1 _ 4 2 » Y, AR :
T e(exg ) L9 (5. x 0gr) 2
If [ f N, then frq 00, = eCL (1, g1 x 0 1,1;). One can construct elements

o1y Emoy € (ROR)X and Py, o, € ROR' such that
1 1
Qeo,) = 8(2,0@,1, ¢z>v Qem,00) = F <2, Q1 X UQ’Jﬂ/Jz),

1
Q(Pﬂ' N ) =
1,01 LGL(%,WQJ X O-Q'J)

for Q = (Q,Q") € X¢™* as in the proof of Proposition 6.11 of [Hsi21]. O
Define the fudge factor /fr.o € ROR' by

Vine = H Vime

IINN’

We can prove Theorem by defining the theta element £, € Frac(’R@R’)

attached to f and g by
1)2D "(-1)D
" 4, = SWDeVV T
2

2 DT\/ fﬂ',cr

in view of Proposition [4.16]
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5. THE CALCULATION OF THE LOCAL ZETA INTEGRAL AT THE p-ADIC CASE

5.1. The JPSS integrals. Let F' be a finite extension of Q, which contains the
integer ring o having a single prime ideal p. We denote the order of the residue
field o/p by ¢q. The absolute value ar = |- | on F is normalized via || = ¢~ ! for
any generator w of p, where ¢ denotes the order of the residue field o/p.

Let B,, = T, N,, be the Borel subgroup of GL,,, where T;, is the group of diagonal
matrices in GL, (F) and N,, is the group of upper triangular unipotent matrices in
GL,(F). Let w, be the longest Weyl element in GL,,(F).

Fix an additive character @ : FF — C* which is trivial on o and non-trivial on
p~ 1. We write S(F) for the space of locally constant compactly supported functions
on F. The Fourier transform of ¢ € S(F) is defined by

o) Z/F¢($)1/J(—xy) dz.

The measure dz is chosen so that (;AS(JC) = ¢(—x).

Let 7 be an irreducible admissible generic representation of GLy, 1 (F'). We write
Wy (m) for the Whittaker model of m with respect to an arbitrarily fixed additive
character @ of F'. One can define an invariant perfect pairing

(,): Wp(m) @ Hya(n¥) = C
by

() (T

where dg be the Haar measure on GL,,(F) giving GL,,(0) volume 1. Given W €
Wy (1), we define W € #y,—1(7") by

W(g) = W(wmi1g™").

Let n be a positive integer which is equal or less than m. Put [ = m—n. Let o be
an irreducible admissible generic representation of GL,, (F') whose central character
is w,. We associate to Whittaker functions W € #(7) and W’ € #,,-1(0) the
local zeta integrals

Z(s,W,W’):/ W({h ) Dw'(h)|deth|5’¥ldh,
N, \GL, (F) I+1

h

Z(S,WWN/’):/ / wle 1 W (h)| det h*~ 5" dadh,
N\GL, (F) i (7) 1

which converge absolutely for s > 0, where dh is the Haar measure on GL,,(F')
giving GL, (o) volume 1.

We write LGL (s, mx0), €9 (s, mx 0, 1) and v (s, mx 0, 1) for the L, epsilon and
gamma factors associated to m and o. These local factors are studied extensively
in [JPSS83]. The gamma factor is defined as the proportionality constant of the
functional equation

(52)  Z(1— 5,7 (Wamp10)W, W) = wo(—1)"y (5,7 % 0,90) Z(s, W, W)
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(see Theorem in §2.7 of [JPSS83]), where

1,
wm+1,n == w 1 .
m—n

Remark 5.1. When we view 7 and o are representations of unitary groups over the
split quadratic algebra F & F,
L(s,m x o) = L% (s,m x o)L (s, 7 x o).
When n =1 and y is a character of F'*, we will write
L(s,m®x) = L (s, 7 x x),

e(s,m @ x, %) = (s, x x, ),

(s, m @ x,) =7 (s, % x, ).
These local factors are studied extensively also in [GJ72].

5.2. The splitting lemma. Let 7 and ¢ be irreducible admissible tempered rep-
resentations of GLy,41(F) and GL,,(F') respectively. We consider the integral

J(WlaWQ’WlleZI):/GL (F)<7T(|:h 1:| >W1’W2><U(h)W1/7W2I>Idhv

which is convergent for
Wy 67/¢(7T), W, EWw—l(ﬂ'v), Wll EWw—l(U), WQ/ Eyﬂw(o'v)_

The following result is called a splitting lemma and was proved by Wei Zhang in
Proposition 4.10 of [Zhal4] by using the work of Lapid and Mao [LM14]. It is worth
noting that Proposition 4.10 of [Zhal4] uses unnormalized local Haar measures (cf.
§2.1 of [Zhal4]) while we here use normalized ones.

Lemma 5.2. Notation being as above, we have
m—1
! !/ ]‘ ! 1 ! 3
T(Wy, Wo, Wi, W) = Z| 5, Wi, W1 ) Z( 5. Wa, W3 IT ¢e ().
i=1

Remark 5.3. (1) Assume that 7 and o are unramified and that 4 is trivial
on o but non-trivial on p~!. Let W, € #4 () be the normalized essential
vector defined by W, (k) =1 for k € GL,,+1(0). Define W,v, W, and W,v
similarly. Then
Z(s,Wx,Wo) = L (s,7 x 0),

L (1,7 x 7V)

5.3 W, W) =
(53) < > Cr(m+1)
by [Zhal4l (3.3)]. Lemma [5.2 reproves the formula
J(WTMWTK‘\/7WO'7WO'V) L(%vﬂxg)nltl F(Z)

(W, Wi ) (W, Wou)  LOL(L, 7 x 7v)LL(1, 0 x o)

(cf. Remark [5.1]), which was proved in Theorem 2.12 of [Har14].
(2) Proposition 5.1 of [Hsi2]] is a triple product analogue of this lemma (cf.
Proposition 3.8 of [CHIS]).
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5.3. Ordinary vectors of representations of GL,(F). We write Ig for the
characteristic function of a subset S. For a compact subgroup I" of GL,,(F') and a
representation (m, V') of GL,(F') we let

P—{veV|n(y)v=vforyeTl}

be the space of I'-invariant vectors in V.
Let p1, pto, ..., un be characters of F*. The space V of m = I(u1,p2,. .., fin)
consists of functions h : GL, (F) — C which satisfy

n

h(tug) = h(g)pn(t)"/? HN pu(t) = [T 16"

i=1

for t = diag[ty,t2,...,tn] € Ty, u € N, and g € GL,,(F).
We define a function h°*® on B,w,N, by

hSH (tuwyv) = Ly, (v)pa () Hu (t:)

for t = diag[ty, ta,...,ts] € T, and u,v € N,,, where I 4. denotes the characteristic
function of 4, = N, N GL,(0). Since B,w,N, is the cell of the longest Weyl
element w,, in the Bruhat decomposition of GL,,(F'), we can extend h2"d by zero to
an element of V' (cf. [Car79, (B), p. 138]), which we call an ordinary vector. Define
the operator U, on V4 by

Uph = Z m(uDy, )k,
u=(ui,;)ENn
u; j€a/p? 7" for i<y

where
w1 0 0 0
0 w2 0 O
Dn,w =
0 0 w 0
0 0 0 1

Proposition 5.4.

o —1
hord hord H (}Lz 17%) )

Proof. Let g € GL,,(F) be such that [U,h2"4](g) # 0. There exists u € .4;, such that
h?fd(gan’w) # 0. We have guD,, € BywpAp. Since D, A, D Lc, we
get g € Byw,.A;,. By the characterization of ho*? we see that hfrrd is an elgenvector
of U, with eigenvalue [U,h2™](w,,). By definition we know that [U,h2"](wy,) equals

> b wpuDy o) = b (wn Do),

ui,j€0/pit

from which we obtain the formula for the eigenvalue. ([l
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5.4. An inductive property. Fix an additive character 1 of F' which is trivial
on o but non-trivial on p~!. Define the additive character of N,, by

’l/J(u) = '(p(’u,l,z +ug 3+ -+ un_lm)
for v = (u;;) € N,. For an irreducible admissible generic representation o of
GL,,(F) we write #4 (o) for the Whittaker model of o with respect to .

Let 7 be the irreducible generic constituent of I(u1, o, ..., u,). For h € V we
define W, (h) € #y () by

(5.4) Woplg.h) = / h(w,ug)pa) du

Nn
for g € GL,(F). Put

5.5 Weord = W, (k) e,_1 = (0,0,...,0,1) € F"~1,
™ P

Define J,,(y) = Ion (') for column vectors y. Let 7’ be the irreducible generic
constituent of I(ug, i3, ..., n) and 7" that of I(py, g2, .-, fn—1)-

Lemma 5.5. If n > 2, then for g € GL,_1(F)

W;grdqg ) — | det g|P W (g) I (en-19),

1 1 . _
W;:fd([ , )=|detg| F W (9T (et g~ ),

—_
5L

Proof. Put

[ 1 1,1 =z
’UJ(nle) = 1,”71 :| s u(m) = |: 1 1:|

for x € F*~ 1. Since

[1 b’wn_lv] w<nl,1)u(y)=[1 b} w, [v vﬂ

for b € B,,_1 and v € N,,_1, the section h‘,’r’“d satisfies

or 1 — 35 J,0r
(| weswu) = et 10001

for g € GL,,—1(F) and y € F"~!. Since

[ [ e

for u € N,,_1 and y € F"~! and since d(gy) = | det g| dy, we get

([ )
_ /F / N lh‘:fd<wn {u 1] ) {g 1]>¢W(y“)dydu

/ / g (un wg)ﬂonﬂ(gfly)tb(u)ib(en—ly) dudy
Fr=1JN, 4

| det g|2
=|detg|§/
N

n—1

=|det g2 Wy, (g, h%) Tyn1 (g len—1)

KO (w1 ug) () du / It (4)Blen_199) dy

Fn—1
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as claimed. The second formula can be proved in the same way. (]

5.5. The pairing. Let o be an irreducible admissible generic unitary represen-
tation of GL,(F). Given W € #y(0), we define W € #y-1(c) by W(g) =
W (wy, 'g~1). Let 7 be an irreducible generic unitary constituent of I(ju1, pi2, .. ., fin)-
Put

n(n271)
Huz E

75 (p°) = {(9:5) € GL,(0) | gij € p0~9 for i > j},

¢ Cr(n) . 0 \Tprord
B‘Erc]wd = m(wﬁ d77rv(Dn,€w)W7r d>'

The following formula generalizes Lemma 2.8 of [Hsi21].

Proposition 5.6. If 7w is unitary and ¢ is sufficiently large, then

g0 _  e@" g | S,
T L1 X 7Y)[GLy (o) s I (p)] 1 V(Lo )

The proof of Proposition consists of several steps. Let B, = w, B,w;' be
the group of lower triangular matrices in GL,,(F"). We denote the unipotent radical

of B, by N, . Since there is nothing to prove if n = 1, we suppose that n > 2. Put

m=n-—1, A, =w tD?

Lemma 5.7. Let W € #y(0) and b € B,,. If{ is sufficiently large, then W<[bAm 1] )

P A T —1m1—1
byt t) [ty 1)

where g has size m — 1. Notice that e,;,b = (%, t). Since

0 unless (en,b) € o™
Proof. We write

1,1 1 x 1 X

-1t m m t,

Ty 1 z | = z+ 2
1 1 1

for x,y € F™ 1 and z € F, we have

w (P2 ] 25 C) ]) =t s (P2 )

\ 1

If ¢ is sufficiently large, then the left hand side is W ( {bAm 1] ) for all z € o™ ~1
and z € o, which implies that % € 0™ ' and ¢ € o. O

Lemma 5.8. If ¢ is sufficiently large, then Blfc],rd = Ym lil% Fr(8), where
s—

/ / W“dq ])Hunm )t 1% dtdo.
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Proof. Put W = V/V\;’;l. We define the function %, (s) by the integral

200~ [ unm e ([ (5] )
N \GL, (F) 1 1

for fts > 0. Then B;ﬂrd = lirr%) PBr(s). We write
5—
s+ ord gAm
Bals) = [det gl EW N (9) Ty (c100) W ) ag
N \GL, (F)

_ / | det g|8+%hgﬁd(wmg)Jm(emg)W(FAm 1}) dg,
GL,, (F)

using Lemma and substituting the integral expression (5.4)) of Word.
Since [GLy,(0) : T] = ¢™MmD/2y-1 where Z,, is the Iwahori subgroup of
GL,,,(0), we see the following integral formula from (2) on p. 240 of [Wal03]:

(5.6) /G LT = /N ) /T m /N Ftgn () dudiar

for an integrable function F on GL,,(F). It follows that
Pa(s) _ / / | det t|5+5hfﬁd(wmt)q]]m(emvt)w<{vtAm ])m(ﬂdtdv.
Tm N, JT,, 1

The right hand side coincides with .#(s) by Lemmal[5.7] O

Lemma 5.9. Ifn > 2, then
n—1

Z, _ —(n—l)f(s-&—%) . \n—1 +1)Fn Mi<_1) )

Here we understand that .1 (s) =1 when n = 2.
Proof. By the definition of the JPSS integral we have

Fuls) = / ) /T Z(s+ 1, W ) [ pmsa i) a1 %~ a'
m—1 m—1

i=2

where t' = diag[to, ..., t,], and Wy € #y-1(7") is defined by
o 1

Wi (g) =Werd | g y Dy

n,w
1
for ¥’ € B,,_,. The functional equation (5.2) gives

~ Z(— ) W? i
Z(s+ 1, Wi, 1) = ()" 2L Sﬂ(wf’l) vty )
Y(s+ 1,7V @ p,, P )

w(wn,nﬁf?({a 1m] )
m(e [ )

Since
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iy
:Word
ord —1I
:Wﬂ' wmt |:b/ 1:| Dfn’w
mes| (aTo det b/ |2 —— AN m
)| ALY W (") Jrte=m

by Lemma [5.5] we have
Z(_Suﬂ(wn,l)WNbUM;l)

det v/ 3~ / m
= / un<w’“>M W;:«/d({bAml J)L(awmfnaw-?da
F><

detD‘Z
/
() g (o >|detb'| W“d(f’ Bt J)ms).

We therefore get

b A
ord
Z(s+1 Wb/ﬂ)zumequ Wd 1D Cr(s+1)
T grelee) [T 7 Loty i)

by the multiplicativity of the gamma factor. Substituting this expression, we get
the inductive formula for .7, (s). O

We are now ready to prove Proposition [5.60 We have
s 1 n—1
Lg}(s) — CF( + g H

n(n—1)~¢

qf (s+2£1) ic; Y 5+1 My Nyw)’

applying Lemma inductively. Since
n(n271)e 1

[GL,(0) : I ()] = ¢ 5 Uy,

we immediately deduce the declared formula from Lemma ([l

5.6. The JPSS zeta integral. Let 7 be an irreducible unitary generic constituent
of the principal series I(v, p, u) and o that of I(y/,v’). The matrix ¢ is defined in

§3.1]
Proposition 5.10. Put

0 0 —w
W =Wy (hy'®), Wt =Wy (h2Y), t=|0 = 1
w? @ 0

If £ is sufficiently large, then

1 +£¢r(2) (¢ *p(w) (@) (w))"
7 -, W;—)rd7W§rd) _ )
(2 mlste) Cr(y (5, /s )y (5, oV )Y (5, ', )
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The proof of Proposition relies on the following lemmas.

Lemma 5.11. Put

1
Wb:ﬂ' 1 tg W;rd.
b
If £ is sufficiently large, then
v .
Z (s, m(ste)Werd, word :F—/ Z(1 — s, Wy, v/~ 1)/ (b)[b]*~ 1 db.
(s, m(ste) )= e | 20— s W

Proof. Put W = 7(t,)Werd. We get

1 1
o= (] [ o
GL2(F)

substituting the integral expression (E of Word, Put u(y) = Ll) J fory € F.

Then CF&gZ(sm(g)VV, Weord) equals

a 1/2
b dxdadd
Jrow oo L[ o
FX2xF2 1 a 10|
by the integration formula 1) Since
0 y 1 -y —y 0
¢! {u(y) 1] sty = O 1 0|tyg=ty wﬂy 1+ wzy 0],
0 0 1 w3ty  —wy 1
if ¢ is sufficiently large, then 7 (g [ } ) W =W for y € 0. We get

CF(l) ord
0 Z(s,m(s)W, W)

a
:/ w x|b s | /' (0) (a)|ab]* ! dzdadb
FX2xF 1

:/ Z (s, 7(s) W, o/ )it (b)|b]*~ b,
FX

where
1 1
Wy=m|s¢ b s|W=n 1 ty | word,
1 b

The stated formula follows from the functional equation ([5.2)
Z(s,m()Wp, V') = (5,7 @V, )" Z(1 — 5, Wi,/ 1),
We here follow the convention in Remark [5.1] O

Now we need the following formula:
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Lemma 5.12. Put ® =1, ... Then for a,b € F*

law’|®(aw?)

W (|| ) = st

Proof. Observe that

v(—awt)

Wb(g) = Wy(wsg™) = W | w3 fg~? 1 ty

It follows that

([ ])

Since
1 y 2] [bw*
0 1 =z 0 ’
0 0 1 0
we have
— a
()
b 0 0|1 b emu-s
:/ R fws | 0 wt 0 0 1 aw Y(z +y) dedydz
e 0 0 Zllo o "I
p(u(b™) S AP
= R lws [0 1 =g | —/———— dadydz
v(—aw?)|abw3| Jps o o 3 P(awlz + by)
_p(@)ul 2£|b£\ y)®(x)p(awle — by) dzd
(—a ()¢ (awtx — by) dedy
from which one can complete the proof of Lemma [5.12 (]

We are now ready to prove Proposition For ¢ € S(F) and a character y of
F* we define Tate’s local integral by

/ o(a)x(a)|al’ da.

Substituting this expression in Lemma [5.12] we get

w ~ awt|®(aw? a
201 = 5,0/ = ple v (- [ E I gyt
V(')

— p(") (b ] B(~b) 2(1- 5,8, (/) ").

v(—1)g*
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We conclude that g?ggv(s, 7@V, ) Z(s, 7(c)W, W) equals
V'(=") / 20\111 % / -1
YO ) (BB (—b) ! (b) b5 db
e W Ol
=Z(1-s, D, () Y p(@) (vpp ) (= 1)V () g~ u(w?) Z (s, D, ).
If ¢ is sufficiently large, then since ® = I e,
Z(]' -5, (/I\)v (Vl/)il) = 7(1 -5 (Vyl)ilv fd])il(l/l/,)(_l)qiéa
Z(s,®, (') ™1) = (s, (')~ 9) " () (= 1)g ™"
by the functional equation (see Theorem 3.3 of [GJ72]). We conclude that

1 o V(1) s p(@) (@) ()
Z | 5, m(te) WS, W | = — / 1 N—1 1 / ’
2 7(§7W®V7¢)’Y(§7(VV) 7¢)7(§wu’:u’a¢)
One can deduce the stated formula from the multiplicativity of the gamma factor
and the functional equation (%, v/, ¥)y(5, (1)1, 4)= (v/)(-1). O

Z(1—5,®, (w/) " )p(w")

6. RAMIFIED COMPUTATIONS: THE SPLIT CASE

6.1. Essential vectors. We choose a non-trivial additive character ¥ of F' so that
the maximal fractional ideal on which it is trivial is 0. Let m be an irreducible
admissible generic representation of GL,,11(F). Given an open compact subgroup
I of GL;41(F) and its character X : I' — C*, we put

Wy (m, T, X) ={W € #y(n) | m(y)W = X ()W for v € T'}.
& ")

Assume that m > 1. For a positive integer ¢ the subgroup K consists

of matrices of the form

E ?} (A€ GLn(0), B o™, Ce (p)", de o).

When ¢ = 0, we set K(()m+1)(p£) = GL,41(0). Given a character w of (0/p%)*, we
define the characters w* : IC((JmH)(pZ) — C* and w': IC(()2) (pf) — C* by

A Do (Y

We write w, for the central character of 7. Let ¢(m) denote the exponent of the
conductor of 7, i.e., the epsilon factor of 7 is of the form

1 1
(6.1) els+=,me | = q_c(”)sa —,m .
2 2
Théoreme on p. 211 of [JPSS81] says that

dim 7%, (71', IC(()m+1) (pc(“)) , wfr): 1.

Theorem 3.1 of [Mat13] enables us to normalize a basis vector of this one-dimensional
space in the following way:

Definition 6.1 (essential vectors). There exists a unique vector
We € Wy (W,IC(()mH) (pc(”)),wﬁ)

which satisfies W (1,,41) = 1. This vector W, is called a normalized essential
Whittaker vector of 7w with respect to .
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6.2. The Atkin-Lehner operator.

Proposition 6.2. Let w be an irreducible admissible generic representation of

-t
GLyy1(F). Put l = c(m) and &y = {w Olm (1)] Let Wrv be the essential
vector of ™V with respect to p~*. Then wv(fm’g)wﬂ =e(3, 7771/1)mW7rv.
Proof. One can immediately see that

Wv(fm,Z)W‘n € W'l/)*1(’/7—\/7’C((]m—i_l)(pe)a("fL )

Vv

t 671 A B é— — tA %
mt | ]| Smt tBot d |
Thus ﬂv(fm/)ww = c¢W,v with ¢ € C*.

To determine ¢, we take an irreducible unramified principal series 0 = aj X
- x aj of GL,,(F). Recall the functional equation

0 s 1
VGL(SJXMP)/ w([g 1])Wa(g>|detg‘ 2dg
N \GLi (F)

= 0 1y
2/ W([‘g 1DW0(9)|det9|2 dg
Ny \GL,, (F)

m(1—2s 0 e 15
—ua (gm0 [ 2 eno ([ 5]) Watalaerali—ag
N, \GL,, (F)

from

for every W € Wy (m). Letting W = W, we get

A (s, % 0, ) L(s, 7 X 0) = we(w) g 29/2cL(1 — 5,7V x V)

by (4.3)). Since
1 1 m
€GL (277T X U,¢>ZWU(W)Z€<2,7T,’I/)> 3

we obtain the relation by (6.1)). O

Let m = 2. Thus = is an irreducible admissible generic representation of GL3(F')
and o that of GLa(F'). Put

0= c(m), n = c(o), T, = w3§£}7 T = w2§i}l.

Let W, (resp. W,v) be the essential vector of ¢V (resp. o) with respect to 1 (resp.
1) defined in Definition We rewrite Proposition [6.2]in the following manner.

Corollary 6.3. Notation being as above, we have

1 2 1
We(r,) = 6(2,7r,7,b> , Wy(rh) = 5(2,0,1/))

6.3. Computation of the pairing. Let m be an irreducible admissible generic
unitary representation of GL,,(F'). We write 7, for the unramified component of the
first nonzero spherical Bernstein-Zelevinsky derivative 7("~") of 7 (see Definition
1.3 of [Mat13] for the precise definition).
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Proposition 6.4. Let W, be the essential vector of m with respect to ¥ and Wrv
the essential vector of " with respect to ¥ ~'. If 7 is unitary, then

3 Cr(n) 1 if T is unramified,

= —aia - \Wr, Wrv) = n moxwY
LGL(1, 7 x 7TV)< ) {CF(L)GLL(E;S’X;VX) u) if ™ 1s ramified.

Proof. We may assume 7 to be ramified in view of Remark Put m=n—1.
Let t = diag[t1, ta,...,tm] € Tn. Put ¢’ = diag[ty,ta,...,t,] € T,. Corollary 3.2 of
[Mat13] gives

wo([F]) = we g =51 1]t

ifrzl,andWﬂ<r D HHOX Difr=0.1f 7 > 1, then

(W,T,W,Tv>:/ Wﬂ({t J)Wﬂvqt 1]>f[1|ti|2im1dt

/ Wi, (€)W (#)1a(t) T 1127 dt
=1

by the Iwasawa decomposition. The last integral equals
/ Wi, (9)Wy (9)La(erg)] det g dg = LE(L,m, x )
N \GL,(F) ) ‘

by Proposition 2.3 of [JS&1]. The case r = 0 is trivial. O

Definition 6.5. Suppose that 7 is a generic constituent of I(u1, o, - . ., ftrn), where
we order fi1, {42, . . ., fn, as in Definition 2.3} Put

1 .
1 — if ¢(m) =0,
— = LGL (1,7, x v(1, gy Y ) x C{n(}))c(w)

5(7'(', Ad, 'l/}) E J % if C( ) > 0.

Corollary 6.6. Notations and assumptions being as in Proposition [5.6] if ¢ is
sufficiently large, then

BV] | ot H
T = n T n g(ﬂ'aAd”lp) :ui(_
Br k(M (petm) - 1§ (p)]

Proof. Since

. (n) e(m)\] _ 1 if C(ﬂ') =0
[GL,,(0) : Ko™ (p°™)] = {q(n_l)c(ﬁ) Wi () > 0

the stated formula follows from Propositions [5.6] and [6.4] O

)

6.4. A depletion a la Schmidt. We consider the embedding

V' GLy(F) < GL3(F), V(g) = {9 1] .
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Let x be a character of F*. When x is ramified, the conductor ¢(x) of x is
defined as the smallest positive integer n such that y is trivial on 1 + p™. When y
is unramified, we set ¢(x) = 0. If ¢(x) > 1, then the Gauss sum is defined by

)= X e~ ).
a(o/pe0) x “

When ¢(y) = 0, we formally set g(x,1) = 1. The Gauss sum is related to the
epsilon factor in the following way:

a(x, %) = ¢/ 2y () "W (;»mb_l) -

Proposition 6.7 ([Sch93]). Let x be a character of 0*. Put f = c(x). Assume
that f > 0. Given W € W,p(ﬂ,lCéB) (p%),wk), we define UXW € #y(m) b

L 27 =
W= Y > xthr|lo 1 L||W
i.j€(0/pf)* y€o/p2f o 0 1

Then UXW possesses the following properties:
(i) 7/ (N)UXW = X1 (3) " UXW for v € K57 (p);
(if) UXW(/(h)) = 0 unless h € NglC(()Q)(pr);
(ifi) UXW (13) = ¢* x(@)* (3, x, ) "W (13).
Proof. The proof is the same as that of Lemma 2.3 of [Sch93]. However, we re-
produce the proof here for the reader’s convenience. Let v = Z Z] € IC(()Q) (p2/).
Observe that

a b 01 2 2] 1o ) fa- g by 0
¢ d o 1 Zrl=0 T & & v E el
0 0 1|10 o© 1 0 0 1 0 0 1
where y’ —ya(l——)—l—bjwf Since a( dwf) 0™, ¢’ runs over a full system
of representatives mod p?/ as y does (for fixed i,5). We get
1 ai Yy
w27
T)UW = Y Y« 0 1 4w
i,j€(o/pf)* y€o/p?/ 0 1
The right hand side is y(a) ~*UXW, which proves (i).

To prove (ii), we have only to prove UXW < <[ Om })) =0 and

w

UXW (L'([gmc wom})> £0=>m=n=0, cep?

by the Iwasawa decomposition. Since

. f+n - n .
o™ Y w Jjw wn+j
0 0 1 f w?2f iw™m wf

- ; 1 0 0
w™ 0 00 1 Ll=1lo0o 1 yw 0 @™ f 0|k,
0 0 1[0 o 0 0 1

1
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1
] 0
where k = <[w-f i]),we get
™ 0

- 2 T () ([0 o))

i,j€(o/pf)* yeo/p2f

The right hand side is zero as Z x(7) =0.

je(o/pl)x
Finally we let ¢ € 0 and assume that

(6.2) UXw <L/ ([gﬁc wom])) £0.

Since we can write

n

@ 0 01 & 1 2= i’;f
we w™ 0 0 1 # =10 1 wa + f 9n,m,i»
0 0 1f{ (0 O 1 0 0
where
n ci _ ci?
In,m,i = L/ “ Om 1= =7 wchi ’
7 0 w C 1 + 7
we get

o (v ([ 20 ;mD)

- Z Z ( Frm T t§y+3g:) W (gn,m,i)-

i,j€(o/pf)* yeco/p2f

Replacing j by j + @/, we find that m > 0 by (6.2). Since

(63 > (iZ7) 2= m=o.
j€(o/pf)>

we see that m = 0. Since Z 1&( 2f):Ounlesscepr,Weﬁndthatcepr.
w

y€o/p2f
We conclude that n = 0 again by (6.3]). We see that
3f v (o)2f
UXW (13) = ¢* g(x 1, 9)* W (13) = %W(liﬁ)
5(57 X5 ¢)
by letting n = m = ¢ = 0 in the formula above. [

6.5. The zeta integral of U“-W,. Let m be an irreducible admissible generic
representation of GL3(F) and o an irreducible admissible ramified generic repre-
sentation of GLqy(F').

Proposition 6.8. Notation being as above, if ¢(o) < 2¢(wy), then
P, (w)2c(w0)€(%’ o, U’)
2 .
5(%7W0,¢) [GLQ(O) : ]C(()Q) (p?c(wa))}

Z(s,7(1 (&1 e(oyw2) ) UL W, W) =
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Proof. Put f = c(wy), n = c¢(o) and W' = o(7])W,. The left hand side is
Z(s,U**W,_,W') by the invariance of the JPSS integral. Since o(u)W' = wl (u)W’

for u € IC(()Q) (p™). Proposition ii) gives
Z(s, U W, W) = / U< W, (/' (h))W'(h)| det h|*~ 2 dh.
K (021)
The right hand side is U W, (13) - W, (7,,)[GL2(0) : IC(()2) (p?/)]~! by Proposition
(i). Since W'(15) = W, (7)) = €(3,0,9) by Corollary the proof is complete
by Proposition iii). O
Remark 6.9. If f = c(x) is large enough, then
clo®x) =2/, e(s,0 @ X, %) = e(s, x, ¥)e(s,wox, ¥)
by stability of the epsilon factor (see [JS85 Proposition 2.2]).

APPENDIX A. ARCHIMEDEAN COMPUTATIONS

A.1. Local factors. For a positive integer n let
U(n) = {g € GL,(C) | '¢°g = 1,,}

be the compact unitary group. Let C' denote the group of complex numbers of
absolute value 1. Define the character € : C* — C! by g(z) = ﬁ We view it as a
character of any unitary group via composition with the determinant character.

Let Wg and W¢ be the Weil groups of R and C. Recall that T'g(s) = W’S/QI‘(%)
and I'c(s) = 2(2m)°I'(s). Fix tuples Ay > --- > A\, and py > -+ > p,—; of half
integers such that A\; — %H € Z and pj — 5 € Z. Let 7 be an irreducible represen-
tation of U(n) with Harish-Chandra parameter (A1,---,\,) and o an irreducible
representation of U(n — 1) with Harish-Chandra parameter (pq,--- , pn—1). The
L-parameters of m and o restricted to W = C* C Wy are given by

brlwe =M @@ e, bolwe =1 - @ et

The L-factors are given by

n n—1
L(s,mx o) = [ Tels + i+ m0),
i=1 j=1
L(S,?T,Ad) :F]R(S + l)n HF({:(S + )\7 - )\j),
i<j
L(s,0,Ad) =T'g(s +1)"* HFC(S + i — ).
1<j

One can easily compute the adjoint L-factors, combining Remark with [Pra92]
Lemma 7.1]. Theorem 1.1 of [HeI7] says that ¢¥ appears as a subrepresentation of
Tlu(n—1) if and only if

>\1>—,un,1>)\2>~-~>/\n,1>—u1>)\n

In this case it is easy to check that

2

L(l T X 0’) c n(n+1)
L(1,m,Ad)L(L,0,Ad) ~ "

(A1) Q*.
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A.2. Representations of U(2). For a commutative ring A of characteristic 0 and a

non-negative integer n we write L, (A) for the module of two variable homogeneous

polynomials of degree n over A. The group GL2(A) acts on this module L,,(A4) by
on(@)P(X,Y) =P((X,Y)a).

Define the pairing

by
(A2) Ly iy = {CDE) T iHii=n,
0 iti+j#n.
Put J = {_01 (ﬂ It is well-known that for @ € My(A4) and P,Q € L,(A)

Lr(on(@)P®Q) = L£,(P® Qn(JtaJ_l)Q)~

We view U(2) as a subgroup of GLy(C) and regard g,, as an irreducible represen-
tation of U(2) of dimension n+ 1. Note that g, is irreducible, has central character

€™, highest weight (n,0) and Harish-Chandra parameter (n + %, —%) For A € Z

we will write 9(n1ax) = 0n @ €. Let o be an irreducible representation of U(2) of
dimension n + 1. Then there is an integer A such that o ~ g(,, 4 ). We define the
perfect pairing ¢, : 0 ® 0¥ — C by
ly(o(h)P ® Q) = e(det h)* - £,,(0,(h)P ® Q)

for h € U(2) and P,Q € L, (C).

We identify the contragradient representation g(va b) of (a,b) with O(—b,—a) Define
the representation 97(9(1,1)) of GL2(A) by g?{hb) () = g(a,b)(ta’l) and an equivariant
isomorphism ¥ : g”ga by = g(va p by

PY(X,Y) = 0(ap)(J)P(X,Y) = P(-Y, X).
Define P,,, P/, € L,,(A) ® L,(A) by
P, = (XY, - Y1 Xp)", P, = (X1Y; =Y/ X)"

Since g, () ® on(a)P,, = (det a)"P,, for o € GL,,(C), this vector P,, spans the
line of ¢ ® ¢V fixed by the diagonal action of U(2). Set lygov = £y ® £yv, Wwhere
polynomials of X,Y; are paired with those of X/, Y/ for i = 1, 2.

Lemma A.1.
logov(Pn@PL) =n+1.

Proof. Since P, = 37" (1) (X1Y2)'(—Y1X2)" ™%, we have

=0 \ ¢
n n
PP, =3 (1) (7)o g v e Xy gy
i=0 j=0 J
and hence
n n 2 n —1 n —1
logov (P, @ PL) = (=1)" —1) 1) = 1
oo ®a®) =03 () (7)o () =

by (A.2). 0
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A.3. Representations of U(3). Fix a commutative integral domain A of char-

Y1 Y2 Y3
coefficients in A. Fix non-negative integers a,b. The submodule P, ;(A) of P(A)
consists of homogeneous polynomials of degree a in x1,z2,r3 and of degree b in
Y1,Y2,Yy3. The group GL3(A) acts on the module P, ,(A) by

p(g)P <z) =r <y§;g_1) ;

where x = (z1, 22, 23) and y = (y1,Y2,Y3).
We define a submodule 7 ;(A) of P, ,(A) by

Tap(A) = (x1y1 + 2292 + 23Y3) Pa—1,-1(A).

Since Tq5(A) is stable under the action of GL3(A), the group GL3(A) acts on the
quotient module $,4(A) = Pap(A)/Tap(A). If Ais a field, then H,4(A) is an
irreducible representation of GL3(A) with highest weight (a,0,—b) (cf. Chapter 7
of [HIM22]).

acteristic zero. Let P(A) be the set of polynomials in z = T2 56'3:| with

A.4. Contragradient representations. We define a bilinear form
lba : Poa(A) @ Pap(A) = A
by
wesr-ho(F ) 5 m)
ald! " \ 55, 5e; B Yy Y2 Y3
Note that

3 H47 nl'mz' .

n, m; g omli\_ ) =EL i, = m! and m, = nl,

lba Y, QT Y = a'd!
i=1 0 otherwise.

Lemma A.2. For P € Py(A), Q € Pyo(A) and g € GL3(A) we have
Ib,a(P(9)Q @ p(9)P) = 1p,a(Q © P).

Proof. Let h = (h;;) be the inverse matrix of g = (g;;). Put s; = Zle x;g;; and
3 , 3 . ) 3 )

ti = > i1 Yihj;. Then B%j =>1 hﬁa%i and 6% = gija%i‘ We therefore

see that

9 Rl
p(g)P (;) =P<i>7 r(9)Q (%”) =Q(§;}>
ox s
from which Lemma [A.2] follows. O

Put 5?7/@(14) ={Pc Payb(A) | AP = 0}, where
o 92 02
A= 0x10y1 * 0x20Ys + Ox30ys3
If A is a field, then since

S;JZ\J/,a(A) = {P € Pa,b(A) ‘ lb,a(Q & P) =0 for Q € n,a(A)}a
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the restriction of p to )y ,(A) is the contragredient representation of §, ,(A4). In
particular, ﬁg{a(A) is an irreducible representation of GL3(A) with highest weight
(a,0,—b). The linear form I , induces a perfect pairing

by 9p,0(4) @ 95, (4) = A.

Remark A.3. When we view $;,(C) as a representation of U(3), it is a theta

lift of the discrete series of U(1,1) with Harish-Chandra parameter (%% ”_Tl) (cf.

. ny Irreducible representation o 1s of the form ® e” wit
KV78]). Any irreducibl ion of U(3) is of the form $), ® e* with
0<a,beZand )\ € Z.

We define the isomorphism ? : Py ,(A) — P, 5(A) by
P’t9 T —p Y
Yy z)’
Lemma A.4. Py ;(Q) is a direct sum of $;,(Q) and T,,(Q).
Proof. Tt suffices to show that

95,0(Q) N Tap(Q) = {0}

Let f = Zafffn -x’liwéjxgky'llyémygn € 9 ,(Q) N 74,(Q). Since 7 € Th.a(Q), we
have l, o(f? ® f) = 0 by the definition of 9, ,(Q). Observe that

a(f? ® f) = (@)™ (a2, )ilj1kNmin],
which shows that f = 0. O

We endow the space 53},97(1 1= 9, , with the action 0% (g) = p(tg~1) of GL3(A).
Since (p?(g)P)? = p(g9)P?, we can define the equivariant isomorphism

790 .(Q) ~ ), (Q),

letting P be the unique polynomial Q € 9 ,(Q) such that @ — PY e Tab(Q) for
any lift P € Py o(Q) of P € $y.4.

A.5. The setting. Let V be a three dimensional positive definite Hermitian space
and V' C V a two dimensional subspace. We fix a basis of V' so that the embedding
t: GL(V') — GL(V) is given by
a 0 b
L {‘c‘ Z] — 10 1 0
c 0 d
Fix a triplet of integers A; > Ay > A3 and a pair g3 > po of half integers.
Let 7 be an irreducible representation of U(V) with Harish-Chandra parameter
(A1, A2, A3) and o an irreducible representation of U(V’) with Harish-Chandra pa-
rameter (1, u2). The highest weight of 7 is (—k1, —ka, —k3) := (A1 — 1, Ao, Az + 1)
while the highest weight of o is (—k}, —k5) := (11 — %, 2 + 3). Recall that

L(%,TFXCT) i

(1,7, AD)L(1, 0, Ad) EL(Z’ €c/m)-

g(ﬂ'XO’):L
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Recall that o¥ appears as a subrepresentation of mlucvry if and only if
(%) M > —pp >N > —p > A3 ek < —ky < ky < -k < ks.

We consider the additive character <, (z) = €27(@=2) for 2 € C. Since

1 o0 C _ -1 if k>0,
) (2’5 ,¢_2> - {1 if 5 <0
for k € 17\ Z, if (%) holds, then
1 1 s
(A.3) € <2,¢W ® ¢g,¢§2> = HE <27€2(A1+#J)7¢(_32) - _1
%]

Put
a = ks — ko, b= ko — ki, n=ky+kj, I = —ky — k.
If (%) holds, then o ~ 9(4—pn,1—p) ® ek2 and
Lnxo) Tla+b—1+2)(a—n+b+2)T(a—n+1)I'(b—-1+1)

2r)2nlll 27 (a+b+3)(a—n+b—1+2)(a+2)T(b+2)

A.6. The U(V’)-invariant vector. We hereafter assume (%). Then the GLy(C)-
invariant subspace of m ® o is one-dimensional. We will construct a basis vector
of this U(V')-invariant line. Replacing 7 by 7 ® €*2 and o by 0 ® €72, we may
assume that kg = Ay = 0. Then

~ Vv ~ Vo~
™= 57)17,(17 ™ = Sjb,aa 0 = Q(a—n,l—b)s 0 = 0(b-Il,n—a)-

Put IT = 7® o and 1Y = ¥ ® 6. The maps constructed in and give
the equivariant isomorphism ?®? : [T ~ ITV.
We define WE € IT by

v x5]" X, Y|
H _ 1 T3 2 2 L, n
wh= e[ 52 e [X2 21 g mod 7a(@)

and define a polynomial Ppv in z1, 22, 3,1, Y2, Y3, X2, Yo by

min{n,l}
Pro= > (~1)"afVPyY oy
m=0
for 0 <n<aand0 <[ <b, where
POV = (2191 + 23y3) ™ (21Ya — 23X2)" " (11 X2 + y3Ya)" 7,

(m) <n>(l>F(m+1)F(an+b+2)F(a+bl+2)
m)\m/) T(a+b+2)T(a—n+b—I1+m+2)

min{n,l}
m=0

Proof. If n > [, then Vandermonde’s convolution gives

mi§’l}a(m)_ at+b+1 _1212 n a—n+b+1 _
m = l m [l—m B

m=0 m=0

—_

as claimed. The case n <[ can be proved in the same way. O
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Proposition A.6. (1) Ppv ey (Qe&L, . ,(Q)
(2) I1V(u(h),h)Pv =Ppv for h € GL(V').
(3) Wgﬂ@ﬂ =Ppv.
(4) I((h), YWH = WH for h e GL(V").

Proof. The polynomial P, ; is homogeneous of degree a in 1, x>, 3 and of degree
b in y1,y2,y3 and of degree a —n + b — [ in X5, Y5. Since

0’ 7 \pim (m-1)
95100 + 02200 P,/ =m(m+1l+a—n+b—0Py,

and since
m(m+1+afn+bfl)a%”v) = (nferl)(lferl)agnfl)

for m =1,2,...,min{l,n}, we prove (). Recall that GL(V") acts on

P=>"P; a7 €9 ,(Q® L, 4(Q
‘7.]‘

by
1 T3 ‘ T T3
7 ((h) ® 0(e.ay(M)Pij | |ys —yi| | = (deth) "= P ; [ 1 ys —yi| A
Xy Y Xy Y

for h € GL(V"). It follows that
™ (u(h) @ 0¥ (WP = P,
which proves . Since

P%"v) = (—22y2) " (21Yo — 23 X2)" " (11 X2 + y3Y2)"" (mod T 4(Q)),

we see that
Py = Za%nv) (1Ya — 23X2)" " (41 Xo + y3Y2)" " 2y
= (Zagg"v))wgﬂ@ﬂ (mod 7o5(Q)).
Now is a consequence of Lemma, One sees from . O

A.7. The restriction to U(V’). The branching law for the restriction of 7" to
U(V’) is well-known:

™ |uvn = Baeo Di=o O(a—n,—b+1)-
Hara and Namikawa [HN21] explicitly give a GL(V”)-equivariant map
Vit ﬁl\:,a = Q(a—n,—b+l)
by

1 8n+lP X1 0 Yi
P)(X1, Y1) = oy '
(VaaP) (X1, Y1) = axgayé([yl 0 XlD
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Define a GL(V')-equivariant map Vi : H4p — 0(b—i,n—a) S0 that the diagram

vn,l
f.)b,a — O(b—l,n—a)

'| d
5731\;/@ L o

a—n,—b+l1)

is commutative. Since the GL(V)-invariant pairing I, is the sum of appropri-
ate GL(V')-invariant pairings on GL(V’)-irreducible summands, we can define the
constants ¢, ; so that for all Q € 9, , ~m and P € .6,\)/@ ~ Vv

a b

lb,a(Q & P) = Z Z Cn,lgafn%»bfl(vn,lQ ® Vn,l-P)~

n=0 1=0
A.8. The Ichino-Ikeda integral. We will consider the integral
IPoQ) = [ (1), 1)P) = Q)dn
uv’)
for P € IT and Q € ITV, where we set £;7 = £, @ (.
Since V, /Ppv = aS;))VPa_nH,_l and since V, yPpv = 0 unless n’ = n and
" =1, Proposition m and Lemma show that
J(WH @ W= = j(P? [ o P )
= KU(P%7\/1®1971 X an)
—1o9—1
= Cpilosov (A P E0 " @ afl Pa pisi)
= ag)vcnylag)v (@a—n+b—-1+1).
We denote the dimensions of 7 and o by d(7) and d(o). Since
1
d(ﬂ):§(a+b+2)(a+1)(b+1), dlo)=a—n+b—-1+1,
we have
J(WH @ WHe?)
L(mx o)
d(m)d(o)alf c, ;a0 T(a +b+2)T(a—n +b— 1+ 2)T(a + HI(b+ 1)
All(2m) 2T (a+b— 1+ 2)(a—n+b+2)0(a—n+I(b—1+1)

7d(7r)d(a) a\ (b a(o)c a(o) Fla+b+2)T(a—n+b—1+2)
Toen? \n)\u) T (a4 b— 1+ 2)T(a—n+b+2)

A0 e

Let W, = Xf_”“’_l and W, = 2%y$ be highest weight vectors. Since
Wov = W2 = (=Y])e o=, Wy = WY = yfPale
(cf. (3.1) and (3.2))), we have
Lp(We @ W,) @ (Wav @ Wov)) = 1.

Now the following formula is a consequence of Proposition below.
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Proposition A.7.

Lmx o) IWEOWE) g dimd(o)
U (W @) © (W © W) C

A.9. Computation of c, ;. We will prove the following formula:

a\ (b db—
(n> (l>ag)vcn,l = (—=1)* el

Proof. Assume that n > [. Let gl(V') denote the Lie algebra of GL(V'). Put

Proposition A.8.

0 0 O 0O 0 O
E,=1|1 0 o, Es=10 0 0
0 0 O 0 -1 0
Then
0 0 0 0
(- 'E) = yéayi _xllﬁiar’g’ m(='E2) = x/“‘axg _y‘g’ﬁy’z'

Let o, = y}“a4” € 9., C P, , be the lowest weight vector. Put

_ (a—mn)!
n,0 —

t n, - _1a-mn yn ;b
al m(—"E1) Wo0 = Y1 Y2 T3 .

We define a vector @, ; € 9y, C P, , by Wy = 7(—"Ez)"w, . Observe that

l
_ o ’ 0 ’ 0 ja—n_yn ;b
Wnt = |\ Taz7 ~ Y377 | N Yo T3

2 61‘3 ayé
min{n,l
_ 2{: 4 l n!b! ra—n /n—ml_/l—m(_ /)ml‘/ b—l+m
m—o " (n—mlb— 1+ mi”t ¥ ’ B |

By the definition of ¢,,; we have
EH(’lI)leéa_n—i_b_l ® PHV)

— la— b—1
=cn logov (Vi n 1 Xo " @V, Prv)

0) o b1 Cn @S2 bl
®aHVpa—n+b—l): (=1) W

blyla—n-&-b—lXIa—n—i-b—l
=Cp, l£0®av 1 2
' b-=1)!
On the other hand, we have

b (U}n’lXéa_n+b_l [ PHV)

min{n,l}
= Y (U (@, X5 @ PR 2y
m=0

is the sum of the product of (—l)ma%nv) (7;) % and

a—n_yn—m _yl—m b—Il+m vra—n+b— m n—m_l—m
Ly ()l X T @ P )
_ | — |
a n).m!(b I+ m)!
al b!

=(-1)"(n-—m)l(l - m)!(
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over m=0,1,2,...,min{n,l}. It follows that

min{n,l}
a—n+b— 0 (bil)' m l m (G,*’I”L)!
(1) ey gyl = nz=o (~)™apg ()al (=)™ (1 = m)
1 —1 min{n,l} -1 -1
_fa b m) _[a b
() 0 3 e=0) Q)
by Lemma [A7F] O

APPENDIX B. LOCAL INTEGRALS AT NON-SPLIT PRIMES

Let E/F be a quadratic extension of non-archimedean local fields. Fix a prime
element w of the integer ring o of F'. The order of the residue field of o is denoted
by q. Put E~ = {x € E | 2¢ = —z}. We write | - |g for the normalized absolute
value of E. We denote by e the ramification index of E/F.

In this section we assume that H is quasi-split. Then we may view G and H as
unitary groups of Hermitian matrices

0 0 1 0 1
TOZ’LU3: 01 0 s Té:’IU22|:1 0:|
1.0 0

Fix unramified characters x, p of E*. Put 8 = x(wg), v = p(wg) and

o 0 1 b
o) =[5 ] CRIE
a 0 0 1 8 -84
m'(a,90) = |0 go 0 |, u(8,b)= (0 1 -8
0 0 at 0 0 1

fora € EX,bec E~, go € E' and 8 € E, where wg is a generator of the maximal
ideal of v. The space V, of the principal series 0 = I’(p) consists of functions
f': H— C which satisfy

1 (m! (@)u(b)h) = ple)lalf” f'(h)
for a € EX, b€ E~ and h € H. The space V, of the principal series 7 = I(x)
consists of functions f : G — C which satisfy
f(m'(a, go)u(B,b)g) = x(@)|el|s f(g)

forae E* g€ Gy, € E, be E~ and g € G.

Let K and K be special good maximal bounded subgroups of H and G in the
sense of §1.1 of [Cas80]. There exist f;, € V' and f,» € V such that f,,(k') =
fx(k) =1 for k' € K" and k € K. We consider the zonal spherical functions

L'(h) = (o(h) f5, fo-1)'s L(g) = (m(9)fx fx-1)
for h € H and g € G. We here normalize the local perfect pairings (, )’ and (, )
so that L'(k') = L(k) =1 for k¥’ € K and k € K. Put
l—q ' L-g B (1+g 28
1Y — =
Cl =2 e .




FIVE-VARIABLE p-ADIC L-FUNCTIONS FOR U(3) x U(2) 63

Proposition B.1.
L'(m'(wf)) = (1+¢7) g™ (C" (o)™ + C' (0~ ™),
L(m' (@, 1)) = (14¢*°) g 2™ (C)B™ + C(x H)B™™).

Proof. Let o be the positive root of H and « the positive root of G. In view of
(15) of [Cas80] we have

dor = Gy = q, Qorj2 =1, Qas2 = q" 7%,
g 0 wWE 0 0
a;:{o w‘l}’ a,=10 1 0
0 0 (wp)e

Then the c-function for V, (resp. Vy) is given by C’(p) (vesp. C(x)). The stated
formulas are special cases of the Macdonald formula (see Theorem 4.2 of [Cas80]).
t

We will compute the following integral
et = [ Lam)L @) dn.
H

Proposition B.2.

J(fx,f;) = %(m x o).

Proof. When e = 1, the formula is proved in [Harl4, Theorem 2.12]. Recall that
L(s,m x 0) = L(s, xp)L(s, xp™")L(s, x "' p)L(s,x™'p~ ) L(s, p)L(s,p™"),
L(Sa g, Ad) = CF(S)L(87 6E/F)L(S7 p|FX )L(S7 p_l‘FX )7
L(s,m, Ad) = Cp(s)L(s,ep/r)L(s, X)L(s,x ") L(s,€m/rx0)L(s, €p/rXo )

(cf. Remark 7 where o stands for the restriction of x to F'*. By the Cartan
decomposition we have

T(frr £1) ZL (@, 1)L (m/ (@) [K'm’ (wi)K' : K].

Since [K'm’(='f)K' : K'] = ¢*™/¢(1 4 ¢~1) if m > 0, Proposition gives

1 ’ —1
(CO0s™ + S (C o + S5
(fx’f)_1+1+q265z qm/e ’

Put x = ¢~ /2. If e = 2, then
(1—2®)A +y2)(1+ 7" 2)(1 - fa?)(1 — B~ 'a?)
(I+22)(1 = Byx)(1 = By~ a)(1 = f~1yz)(1 = B~y ta)
and (1+2%)(J(f,, f)) — 1) equals
1—22y72 1—2g2p71 Byx 1—2242 1—22871 By ta
=92 1-871 1-fyz 1-9* 1-p"1 1-py'2
1-— xz'y’2 1— 228 B*I'yx 1—2242 1—228 By g
-2 1-8 1-flya 1-92 1-8 1-p"1y"la
We can prove the wanted identity by a brute force calculation. [

Z(rxo)=
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APPENDIX C. RAMIFIED COMPUTATIONS: THE MINUS SIGN CASE

C.1. Maximal compact subgroups. In this section F is a quadratic extension of
a local field F' of odd residual characteristic. We write o (resp. t) for the maximal
compact subring of F' (resp. F) and denote by p (resp. q) its maximal ideal. Given a
Hermitian matrix T, we define the Hermitian form on W = E3 by (u,v)r = uTw,
where

tv 0 0
T=(0 1 0
0 0 ¢t

We denote its unitary group by G. Put
e1 = (1,0,0), es = %0,1,0), e3 = %0,0,1), W' = Ee, @ FEes.

Let H = {h € G | hea = e3} be the unitary group of W'.
Fix a generator w of p. We choose t1,ts in the following way:
(i) if E/F is unramified, then t; = —5= and t, = —1;
(ii) if £/F is ramified, then t;,t; € 0* and —t1to ¢ N, p(E™).
Note that T = [tol t()} is not split. The group H is compact.
2
We call an t-lattice L in W integral if (z,x) € o for every x € L and call L
maximal if it is maximal among the integral t-lattices. Take the maximal t-integral
lattice £ = te; @ te, @ teg in Case (ii). Clearly,

(62,62)T = 1, e € L‘,, {(.I,GQ)T | T € ﬁ} =T1.
Put
0 1 1 T
n=11 0 0f, L=Ln"te |z= 2|, x1, 20,25 €1
0 —w w T3

in Case (i). Then
0 0 1
helo 1 0| n= 2wl = 7.
1 00

Thus £ is a maximal v-integral lattice with respect to 7. Note that
(e2,€2) 7 = —21wm, es € L, {(z,e2)7 |z €L} =1
Let K ={g € G| gL = L} be a maximal compact subgroup of G.

C.2. The Ichino-Ikeda integral. Let x be an unramified character of E*. We
retain the notation in Appendix [B] We will compute the integral

J(f o 1y) = / L((h)) dh.
H
Proposition C.1.
g(ﬂ' X O’v)_lJ(fX7 lH) = L(l,GE/F)Q.
Remark C.2. Let Stg denote the Steinberg representation of GLo(E). We write

1g for the trivial representation of H. Fix a non-trivial additive character ¥ on
E. If x is unramified and unitary, then

L(s,I(x) x 1g) = L(s,Stg ® x)L(s,Stg ® X_l)L(s7 Stg),
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e(s,1(x) x 1y, ¥) = (5,5t ® x, ¥)e(s, Stp @ x 1, ¥)e(s, Stg, ¥).

In particular,

£(1/2,1(x) x 1g,®) = —1.

Proof. Since L(s, 1, Ad) = L(s,eg/p)Cr(s + 1), we have

L(?’a EE/F)
L(1,ep/r)L(1,e5/rx0) L(1, €5/rXq )

f(ﬂ'X]lH):

(see Remark and the proof of Proposition . In particular, we have £ (7 x
1y) =1 in Case (ii). Since H C K by Lemma 3.14 of [Shi08] applied with ¢ = 1,
wo=T,L=L,b=rtand h = es, there is nothing to compute in Case (ii).

Finally, we consider Case (i). Lemma 3.14 of [Shi08] applied with ¢ = —2¢,
wo=,L=Lb6=rtand h = ey shows that [H : HNK] =1+ ¢q. Moreover, its
proof shows that

Jholm) = —— 3 L(h) = ——(1+ gL(m! (=, 1))).

q+1 q+1

heH/HNK

Put 8 = x(w). Proposition gives

_CL0B+CONBT _ LBremyr)

L(m'(w, 1)) = B+B +q —q7?)
’ (14472 g ’
which completes our proof. O
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