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Abstract. We construct a five-variable p-adic L-function attached to Hida

families on the definite unitary groups U(3) and U(2) by using the Ichino-

Ikeda formula. The interpolation formula fits into the conjectural shape of
p-adic L-functions predicted by Coates and Perrin-Riou.
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1. Introduction

The aim of this paper is to construct a five-variable p-adic L-function interpolat-
ing a square root of the algebraic part of central values of the L-series attached to
a pair of Hida families on the definite unitary groups U(3) and U(2). We establish
the explicit interpolation formulae, which completely comply with the conjectural
framework described in [CPR89, Coa89b, Coa89a].

Let E be an imaginary quadratic field. Throughout this paper we fix a prime
number p > 3 which splits in E and an embedding ιp : Q ↪→ Qp, where Qp is a
fixed algebraic closure of Qp.

1.1. Hida families on U(n) and the associated Galois representations. Fix
a finite extension F of Qp and denote its maximal compact subring by O. For each
positive integer n, let Tn ⊂ GLn be the diagonal torus. Let

Λn := OJTn(Zp)K = lim←−
m≥1

O [Tn(Z/pmZ)]
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be the completed group algebra, and In a local and normal Λn-algebra finite and
flat over Λn. We say that an O-algebra homomorphism Q : In → Qp is locally

algebraic if its restriction to Tn(Zp) is of the form Q(z1, . . . , zn) =
∏n
i=1 z

kQi
i εQi(zi)

with (kQ1 , . . . , kQn) ∈ Zn and characters εQi : Z×p → Q×p of finite order. We call
kQ = (kQ1 , . . . , kQn) ∈ Zn the weight of Q and εQ = (εQ1 , . . . , εQn) the finite part

of Q. Let XIn be the set of locally algebraic points in Spec In(Qp). We say that
Q ∈ XIn is dominant if kQ1 ≤ kQ2 ≤ · · · ≤ kQn , and Q is sufficiently regular

if kQ1
< kQ2

< · · · < kQn . Let X+
In

be the subset of locally algebraic points of

dominant weights and X++
In

the subset of points of sufficiently regular weights.
We denote the rings of adèles of Q and E by A and E. Let x 7→ xc be the

non-trivial automorphism of E. We write p for the prime ideal induced by the
restriction of ιp to E. Fix a positive definite Hermitian matrix T in Mn(E). For
g ∈ Mn(E) we define g‡ := T−1 tgcT . The definite unitary group U(n) associated
with T is the algebraic group defined over Q by setting

U(n)(R) = {g ∈ Mn(E ⊗Q R) | g‡g = 1n}

for any Q-algebra R.
We shall make use of Hida theory for definite unitary groups developed in [Ger19,

§2]. Let N be a positive integer only divisible by primes q 6= p split in E. Choose an
ideal N of the ring r of integers of E such that NN = Nr. This ideal N shall be re-
ferred to as the tame level. Hida theory produces a free Λn-module eordSU(n)(N,Λn)
of finite rank equipped with a faithful action of the universal ordinary Hecke algebra
T(n)(N) for the unitary group U(n) (See [Ger19, Definition 2.23]). The Λn-module
eordSU(n)(N,Λn) is referred to the space of ordinary Λn-adic forms, which roughly
speaking consists of p-adic families of p-ordinary modular forms on U(n) invari-
ant by the mirabolic subgroup of level N. An In-adic Hida family f on U(n) is
a non-zero Hecke eigenform in eordSU(n)(N, In) := eordSU(n)(N,Λn)⊗Λn In, which
induces a Λn-algebra homomorphism λf : T(n)(N)→ In.

Denote the absolute Galois group of a field L by ΓL and its cyclotomic character
by εcyc. Let m be the maximal ideal of In. To each In-adic Hida family f , one can
associate the residual semisimple Galois representation ρ̄f : ΓE → GLn(In/m) (see
[Ger19, Proposition 2.28]). If ρ̄f is absolutely irreducible, then we can further obtain
the Galois representation ρf : ΓE → GLn(In) unramified outside primes dividing
Np and primes l where U(n)(Ql) is ramified (see [Ger19, Proposition 2.29] for more
details). Denote by Vf the free In-module of rank n on which ΓE acts via ρf . For

each Q ∈ X+
In

, the specialization VQ(f) := Vf⊗In,QQp is the geometric p-adic Galois

representation associated with some automorphic representation πQ ' ⊗vπQ,v of

U(n)(A). Let Xtemp
f be the set of points Q ∈ X+

In
such that πQ is everywhere

tempered. Then the representation Vf is conjugate self-dual in the sense that

V ∨f ' V cf ⊗ εn−1
cyc .

Moreover, by the local description of p-adic Galois representations [Ger19, Corollary
2.33] at p combined with [TU99, Lemma 7.2], there exists a filtration {Fili(Vf |ΓEp

)}ni=1

of ΓEp
-stable lattices

{0} = Fil0(Vf |ΓEp
) ⊂ Fil1(Vf |ΓEp

) ⊂ · · · ⊂ Filn(Vf |ΓEp
) = Vf |ΓEp
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such that for every Q ∈ X+
In

, the specialization VQ(f)|ΓEp
is Hodge-Tate and each

graded piece

gri(VQ(f)|ΓEp
) := Fili(VQ(f)|ΓEp

)/Fili−1(VQ(f)|ΓEp
)

has Hodge-Tate weights −kQi − i+ 1 for 1 ≤ i ≤ n. Here the Hodge-Tate weight of
Qp(1) is 1 in our convention. Likewise there exists a filtration {Fili(Vf |ΓEp

)}ni=1 of

ΓEp
-stable lattices in Vf such that such that for every Q ∈ X+

In
, each graded piece

gri(VQ(f)|ΓEp
) = Fili(VQ(f)|ΓEp

)/Fili−1(VQ(f)|ΓEp
)

is Hodge-Tate of weight kQn−i+1
− i+ 1.

1.2. The algebraicity of central values. Let k = (k1, k2, . . . , kn) and k′ =
(k′1, k

′
2, . . . , k

′
n−1) be tuples of integers satisfying the following interlacing relation

(1.1) k1 ≤ −k′n−1 ≤ k2 ≤ · · · ≤ −k′2 ≤ kn−1 ≤ −k′1 ≤ kn.
Let π be an irreducible tempered automorphic representation of U(n)(A) such that
π∞ has highest weight −k, and σ an irreducible tempered automorphic represen-
tation of U(n− 1)(A) such that σ∞ has highest weight −k′.

The complete automorphic L-function for the product π × σ is defined by

L(s, π × σ) = LGL(s,BC(π)× BC(σ)),

where BC(π) (resp. BC(σ)) is the functorial lift of π (resp. σ) to an automorphic
representation of GLn(E) (resp. GLn−1(E)) (cf. [Lab11, Corollaire 5.3]). The L-
function in the right hand side has been defined by the Rankin-Selberg convolution
whose local and global analytic theories were established by Jacquet, Piatetski-
Shapiro and Shalika in [JPSS83]. Let L(s, σ,Ad) and L(s, π,Ad) be the complete
adjoint L-functions of σ and π, respectively. These are the Asai and twisted Asai
L-functions of BC(σ) and BC(π) (cf. Remark 4.1). The ratio

L
(

1
2 , π × σ

)
L(1, π,Ad)L(1, σ,Ad)

is indeed an algebraic number thanks to [GL21, Theorem C] and [Che23, Corollary
7.9]. Proposition 4.5 proves its refinement for central values by using Shimura’s
mass formula.

1.3. The period. To make our interpolation formula meaningful, we will give the
definition of periods for critical L-values associated with the Galois representation
Vf . We denote the conductor of πQ by NπQ . In this introductory section we use a

simplified period defined by

Ω(M)(VQ(f)) = [K : K0(NπQ)]2
κπQL(M)(1,πQ,Ad)E(πQ,p,Ad)BπQ,p

for a positive integer M , where

• 2
κπQ is the order of the S-group associated to the L-parameter of πQ;

• L(M)(1,πQ,Ad) is the partial adjoint L-series of πQ with the archimdean

factor but without Euler factors at primes dividing M ,
• BπQ,p is the normalized local norm of the essential Whittaker function at p

(see Proposition 6.4);
• E(πQ,p,Ad) is the modified Euler factor for the adjoint motive attached to

Q(f) defined in Definition 6.5.
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It is proved that the adjoint L-value L(M)(1,πQ,Ad) is roughly the Petersson norm

of the suitably normalized generic form on the quasi-split inner form of U(n) for
n ≤ 3 in a forthcoming work of Shih-Yu Chen. This period Ω(M)(VQ(f)) is canonical

in the sense that it only depends on M and the representation πQ associated with

the form Q(f).

1.4. The product L-series for U(3)×U(2). Fix positive rational numbers t1 and
t2. Let U(3) and U(2) be the definite unitary groups attached to T and T ′, where

T =

t1 1
t2

 , T ′ =

[
t1

t2

]
.

Let Σ−T be the finite set consisting of primes q such that U(2)(Qq) is compact. Let
N and N ′ be natural numbers that satisfy the following condition:

(splt) all the prime factors of NN ′ are split in E.

To simply the discussion of the introduction, we assume that

(odd) NN ′ is odd and 2 /∈ Σ−T .

Fix a decomposition Nr = NN and N ′r = N′N′. Let

f ∈ eordSU(3)(N, I3), g ∈ eordSU(2)(N′, I2)

be Hida families. We further assume that the residual Galois representations ρ̄f
and ρ̄g are both absolutely irreducible. Let Vf and Vg be the Galois representation
of ΓE associated with the Hida family f and g respectively. Consider the tensor
product representation Vfg := Vf ⊗ Vg of rank six over the five variable Iwasawa

algebra I3⊗̂OI2. Define the induced representation V of ΓQ by

V := Ind
ΓQ
ΓE

(Vfg ⊗ ε2
cyc).

For each prime number q we denote the Weil-Deligne group of Qq by WQq . For

each Q = (Q,Q′) ∈ X+
I3
× X+

I2
, let VQ be the specialization of V at Q and define

the complex L-series of the p-adic Galois representation VQ by the Euler product

L(VQ, s) =
∏
q

Lq(VQ, s)

of the local L-factors attached to WDq(VQ) ⊗Qp,ι
−1
p

C, where WDq(VQ) is the

Weil-Deligne representation of WQq over Qp associated to VQ. Putting

(λQ1
, λQ2

, λQ3
) = (−kQ1

+ 1,−kQ2
,−kQ3

− 1);

(µQ′1 , µQ′2) =

(
−kQ′1 +

1

2
,−kQ′2 −

1

2

)
,

we define the archimedean L-factor of VQ by

Γ(VQ, s) =
∏

i=1,2,3

∏
j=1,2

ΓC

(
s+

1

2
+ |λQi + µQ′j |

)
,

where ΓC(s) = 2(2π)−sΓ(s). We are interested in the algebraic part of the value of
L(VQ, s) at s = 0. Note that L(VQ, 0) are central values as V∨⊗ εcyc ' V is self-
dual. With the assumption (splt), the specializations of the Hecke eigensystems
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λQ(f) := Q ◦ λf and λQ′(g) := Q′ ◦ λg determine unique unitary automorphic

representations πQ and σQ′ of U(3)(A) and U(2)(A), and we have

Γ(VQ, s)L(VQ, s) = L

(
s+

1

2
,πQ × σQ′

)
.

Consider the set of critical points defined by

Xcrit
V = {(Q,Q′) ∈ Xtemp

f × Xtemp
g | kQ1

≤ −kQ′2 ≤ kQ2
≤ −kQ′1 ≤ kQ3

}.

For Q = (Q,Q′) ∈ Xcrit
V we view the algebraic number

Γ(VQ, 0)L(VQ, 0)

Ω(NN ′)(VQ(f))Ω(NN ′)(VQ′(g))
∼

L
(

1
2 ,πQ × σQ′

)
L(1,πQ,Ad)L(1,σQ′ ,Ad)

(mod Q×)

through the embedding ιp, as a p-adic number. The purpose of this paper is to
understand the p-adic behavior of this ratio when Q ∈ Xcrit

V varies.

1.5. The modified Euler factor at p. To introduce the modified Euler factor
at p, we prepare some notation. We consider the rank three ΓEp

-invariant and
ΓEp

-invariant subspaces of Vfg by

Fil+p Vfg = Fil1Vf |ΓEp
⊗ Vg|ΓEp

+ Fil2Vf |ΓEp
⊗ Fil1Vg|ΓEp

;

Fil+p Vfg = Fil1Vf |ΓEp̄
⊗ Vg|ΓEp̄

+ Fil2Vf |ΓEp̄
⊗ Fil1Vg|ΓEp̄

,

and define the six dimensional ΓQp -invariant subspace of V by

Fil+V =
(

Fil+p Vfg ⊕ Fil+p Vfg

)
⊗ ε2

cyc.

The pair (Fil+V,Xcrit
V ) satisfies the Panchishkin condition in [Gre94, p. 217] in

the sense that all the Hodge-Tate numbers of Fil+VQ are positive but none of the
Hodge-Tate numbers of VQ/Fil+VQ is positive for Q ∈ Xcrit

V .
Let ψ : A/Q → C× be the additive character with the archimedean component

ψ∞(x) = e2π
√
−1x and ψp : Qp → C× the local component of ψ at the prime

number p. Let dx be the self-dual Haar measure on Qp with respect to ψp. For
each p-adic representation V of ΓQp , recall that the γ-factor γ(V, s) is defined by

γ(V, s) =
ε(WDp(V ),ψp,dx)Lp(V

∨, 1− s)
Lp(V, s)

,

where ε(WDp(V ),ψp,dx) is the local constant defined in [Del73, §4]. The modified
Euler factor at p is defined by

E(Fil+VQ) =
1

γ
(

Fil+p VQ, 0
)
γ
(

Fil+p VQ, 0
)
Lp(VQ, 0)

.

1.6. Interpolation formulae. Let Frac(I3⊗̂OI2) stand for the total ring of frac-
tions of I3⊗̂OI2.

Theorem 1.1. We assume (odd) and (splt). Then there exists a unique ele-
ment Lp(V) ∈ Frac(I3⊗̂OI2) which does not have a pole at any critical point
Q = (Q,Q′) ∈ Xcrit

V and such that

Q(Lp(V)) =
Γ(VQ, 0)L(VQ, 0)

Ω(NN ′)(VQ(f))Ω(NN ′)(VQ′(g))
E(Fil+VQ).
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Remark 1.2. (1) We note that the global root number

ε

(
1

2
,πQ × σQ′

)
= +1 for (Q,Q′) ∈ Xcrit

V

for (Q,Q′) ∈ Xcrit
V by (splt), (A.3) and Remark C.2.

(2) It is important to note that X++
I3
⊂ Xtemp

f by the endoscopic classification

of cuspidal automorphic representations on U(3) (cf. [BC04, 3.2.3, p. 618])
combined with the Ramanujan conjecture [Car12, Theorem 1.2]. This ex-
plains in particular Xcrit

V contains the dense subset

{(Q,Q′) ∈ X++
I3
× X++

I2
| kQ1

≤ −kQ′2 ≤ kQ2
≤ −kQ′1 ≤ kQ3

}.
(3) Yifeng Liu [Liu] has recently constructed anticyclotomic p-adic L-functions

for automorphic representations of U(n) × U(n − 1) whose archimedean
component is the trivial representation. Despite our result is restricted to
U(3)×U(2), this paper works with automorphic representations of general
weights at archimedean components and indeed constructs several variable
square root p-adic L-functions attached to Hida families of modular forms
on unitary groups. We also provide more precise interpolation formulae
particularly at anticyclotomic characters which are either of infinite order
or unramified at p. Our result thus offers a refinement of Liu’s work in
the particular case n = 3. We expect to generalize our construction to
U(n)×U(n− 1) in the future.

(4) This paper mainly concerns the p-adic L-functions for the Rankin-Selberg
convolution BC(πQ)× BC(σQ′) in the balanced case in the sense that the

weights satisfy the interlacing relation (1.1). This is an analogue of theta
elements in [BD96] and p-adic triple product L-functions in the balanced
case ([GS20] and [Hsi21]). In a forthcoming joint work with Michael Harris,
we construct p-adic L-functions in the unbalanced case: the weights of
BC(πQ)× BC(σQ′) satisfy different interlacing relation

kQ1 ≤ −kQ′2 ≤ kQ2 < kQ3 ≤ −kQ′1 .
The method uses Hida families of modular forms on non-compact unitary
groups U(2, 1)×U(1, 1).

In Definition 2.19, we shall construct the Hecke-equivariant perfect pairing

BN : eordSU(n)(N, χ, In)× eordSU(n)(N, χ, In)→ In,

which interpolates the canonical bilinear pairing between automorphic forms on
definite unitary groups. Put

ηf = BN(f ,f) ∈ In.

The element ηf is expected to be related to the congruence number of f . More

precisely, we will construct a theta element Lf ,g ∈ I3⊗̂OI2 associated to a pair of
Hida families (f , g) on U(3)×U(2), and define

Lp(V) =
L 2
f ,g

ηfηg
.

Therefore, we actually construct the square root for the p-adic L-function for the
Galois representation V.

The proof of Theorem 1.1 is divided into two steps:
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(i) we construct Lf ,g via the p-adic interpolation of the period integrals of
modular forms on U(3)×U(2) along U(2) in Section 3;

(ii) we evaluate those period integrals via the Ikeda-Ichino conjecture explicitly
in Section 4.

The second step (ii) may have independent interest in some analytic aspects of the
Rankin-Selberg L-values for unitary groups. We begin with a brief outline of the
first step (i).

1.7. Construction of Lf ,g. We denote the finite adèle ring of Q by Q̂. Let
G = U(3) and H = U(2). For simplicity we suppose that

N ′ = 1, χ′ = 1.

We will specify suitable maximal compact subgroups K of G(Q̂) and K′ of H(Q̂)
(cf. Appendix B). Define open subgroups of K′ by

K′′(1) = K ∩ K′, K′′(p`) = K′′(1) ∩ ı′−1
p

({[
1 + p` ∗
p` 1 + p`

]})
for each positive integer `. We consider the finite sets

X` = G(Q)\G(Q̂)/K1(p`N), X ′` = H(Q)\H(Q̂)/K′′(p`), X` = X` ×X ′`.

Define ς(p) = (ς
(p)
l ) ∈ G(Q̂) by

ς =

1 0 0
0 0 1
0 1 0

 , ς
(p)
l =

{
ı−1
l (ς) if l splits in E and differs from p,

13 otherwise.

Since ι(K′′(1))ς(p) ⊂ ς(p)K1(N), we define the map (x) = ι(x)ς(p) induces a map

X ′0 → X0. In §3.2 we construct a collection of regularized diagonal cycles ∆†` of X`

that are compatible with respect to the projection maps X` → X`−1. We therefore
obtain the big diagonal cycle

∆†∞ = lim
←−`

∆†` ∈ lim
←−`

PicX` ⊗Z Zp.

We define an I3⊗̂I2-adic modular form on G×H by

F = f � g : lim
←−`

X` → I3⊗̂OI2

by F (x, x′) = f(x)g(x′). Then F naturally induces a map

F ∗ : lim
←−`

PicX` ⊗Z Zp → I3⊗̂OI2.

The element Lf ,g equals the theta element ΘF attached to F defined by

ΘF = F ∗(∆
†
∞) ∈ I3⊗̂OI2

up to some fudge factor (see (4.6)). This theta element is an analogue for U(2)×U(3)
of theta elements constructed by Bertolini and Darmon [BD96] for SO(2)× SO(3)
(cf. [CH18]) and by the first author [Hsi21] for SO(3)× SO(4).

Let dK′h be the Haar measure of H(A) giving H(R)K′ volume 1. We then
proceed to show in Proposition 3.4 that the evaluation of ΘF at Q ∈ Xcrit

V is given
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by the normalized period integral

P∗
K′(Φ

†) :=
p

5
2 `

(ρp(p)µp(p)2ν′p(p))
`

∫
H(Q)\H(A)

Φ†

(h)ı−1
p

 0 0 −p−`
0 p` 1
p2` p` 0

 , h

 dK′h,

where Φ† ∈ πQ ⊗ σQ′ is a suitable H(R)-invariant modular form on G×H.

1.8. An explicit Ichino-Ikeda formula. A key ingredient to evaluate the period
integral P∗

K′(Φ
†) is the Ichino-Ikeda conjecture which has been first formulated for

orthogonal groups in [II10]. Its unitary analogue was formulated for unitary groups
in [Har14] and proved in [Zha14, BPLZZ21, BPCZ22] (cf. Theorem 4.2). This
Ichino-Ikeda formula relates a square of this period integral to the product of the
central value L

(
1
2 , π × σ

)
and local integrals.

To make this formula precise, we need to compute various local integrals for suit-
able test vectors. Thanks to (splt), we can apply the local theory of newforms for
representations of general linear groups, which was developed in [JPSS81, Mat13].
We will compute these integrals at p in Section 5 and at archimedean and rami-
fied places in Appendices A, B and C. To remove Hypothesis (splt), one needs to
compute the local integral for suitably chosen test vectors at inert primes.

A local key ingredient is the splitting lemma which has been proved in [LM14,
Zha14] (see Lemma 5.2). This lemma relates the Ichino-Ikeda local integral to a
square of the JPSS integral at split primes. It is well-known that the JPSS integral
Z(s,Wπl ,Wσl) of essential vectors coincides with the L-factor LGL(s, πl×σl) when
σl is unramified.

When N ′ > 1, we need to compute the local integral when σl is ramified. When
σl satisfies the condition (H3) in §4.10, following the construction [Sch93] of p-adic

L-functions for GL3 × GL2, Section 6 will construct an operator U
χ′l
N′ having the

following properties:

• the restriction of U
χ′l
N′Wπl to H(Ql) has an appropriate K′l-type;

• Z(s,U
χ′l
N′Wπl ,Wσl) has a simple formula.

Furthermore, we replace the pair (π, σ) by a suitable twist (π ⊗ %−1
A , σ ⊗ %A) and

replace the pair (f , g) by another pair of Hida families (f%, g%). We apply the step

(i) to Uχ′

N′f% � g%. With these local calculations we conclude that

P∗
K′(Φ

†)2

(ϕπ, ϕπ∨)K(ϕσ, ϕσ∨)K′
≈

L
(

1
2 ,πQ × σQ′

)
L(1,πQ,Ad)L(1,σQ′ ,Ad)

,

where ϕπ ∈ πQ and ϕσ ∈ σQ′ are highest weight essential vectors.
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Notation

Besides the standard symbols Z, Q, R, C, Zq and Qq we denote by R×+ and Q×+
the groups of strictly positive real and rational numbers, and by C1 the group of

complex numbers of absolute value 1. Let A be the ring of adèles of Q. We write Q̂
for the finite part of A. Put Ẑ =

∏
q Zq ⊂ Q̂. Given a place v of Q, we write Qv for

the completion of Q with respect to v. We shall regard Qv and Q×v as subgroups
of A and A× in a natural way. We denote by the formal symbol ∞ the real place
of Q and do not use q, l for the infinite place.

Define ψv : Qv → C1 by ψ∞(z) = e2π
√
−1z for z ∈ R and by ψp(x) = ψ∞(−y)

for x ∈ Qp with y ∈ Z[p−1] such that y − x ∈ Zp. Then ψ =
∏
v ψv defines a

character of A/Q. We associate to m ∈ Q the global additive character ψm defined
by ψm(z) = ψ(mz) for z ∈ A. For a ∈ Qq we define an additive character ψaq of
Qq by ψaq (z) = ψq(az) for z ∈ Qq.

Let dzv be the Haar measure on Qv self-dual with respect to the pairing (zv, z
′
v) 7→

ψv(zvz
′
v). Note that

∫
Zq dzq = 1 for each rational prime q and that dz∞ is the usual

Lebesgue measure on R. Let dz =
∏
v dzv. Then dz is the Haar measures on A

such that A/Q has volume 1. Let d×t =
∏
v d×tv be the Haar measure on A×,

where d×tv is the Haar measure on Q×v normalized by
∫
Z×q d×tq = 1 if v = q <∞,

and d×t∞ = dt∞
|t∞| .

Let E be an imaginary quadratic field of discriminant −DE with the integer ring
r. We write εE/Q =

∏
v εEv/Qv for the quadratic character of Q×\A× associated to

E. Set

E = E ⊗Q A, Ev = E ⊗Q Qv, rq = r⊗Z Zq.

We denote by x 7→ xc the non-trivial automorphism of E. We write tx ∈ Mn,m(E)
for the transpose of a matrix x = (xij) ∈ Mm,n(E) and put

xc = (xcij) ∈ Mm,n(E).

Let Σr
E be the set of prime numbers which are ramified in E.

Once and for all we fix an odd rational prime p that is split in r. Fix an algebraic
closure Q of Q. We fix an embedding ι∞ : Q ↪→ C and an isomorphism ιp : C ' Cp,
where Cp is the completion of an algebraic closure of Qp. Given an algebraic number
field L, we regard L as a subfield in C (resp. Cp) via ι∞ (resp. ιp ◦ ι∞). Let ordp
be the p-adic valuation on Cp normalized so that ordpp = 1. We write p for the
prime ideal of r above p that corresponds to the restriction of ιp ◦ ι∞ to E.

2. Hida families on definite unitary groups

2.1. Unitary groups. We let the base field be the rational field Q. This as-
sumption simplifies the notation and reduces technicality. We denote by Tn the
subgroup of diagonal matrices in GLn, by Bn the subgroup of upper triangular
matrices in GLn and by Nn the subgroup of upper unitriangular matrices in GLn.
We write ResE/QGLn for the general linear group over an imaginary quadratic field
E, regarded as an algebraic group over Q by restricting scalars. We fix a rational
diagonal positive definite matrix T ∈ GLn(Z(p)) of size n. Define a Hermitian form
( , )T on W = En by (u, v)T = tucTv for u, v ∈ W . Let G = U(T ) be the unitary
group associated with the Hermitian form T . Namely, G is the algebraic group
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defined by

G = {g ∈ ResE/QGLn | tgcTg = T}.

Let l be a split prime, i.e., lr = l̄l, El ' El ⊕El̄ and rl ' rl ⊕ r̄l. The projection

(g1, g2) 7→ g1 gives an isomorphism ıl : G(Ql)
∼→ GLn(El). Fix a maximal compact

subgroup K =
∏
q Kq of G(Q̂) such that ıl(Kl) = GLn(rl) for every split prime l.

Define open subgroups of GLn(rl) by

K(n)
0 (lk) = {(gij) ∈ GLn(rl) | gnj ∈ lk for j = 1, 2, . . . , n− 1},

K(n)
1 (lk) = {(gij) ∈ K(n)

0 (lk) | gnn − 1 ∈ lk}.

Fix a positive integer N whose prime factors are split in E and which is not
divisible by p. We take an ideal N of r such that r/N ' Z/NZ. Let

K0(N) = {(gq) ∈ K | ıl(gl) ∈ K
(n)
0 (Nrl) for l|N},

K1(N) = {(gq) ∈ K | ıl(gl) ∈ K
(n)
1 (Nrl) for l|N}

be open compact subgroups of G(Q̂).

2.2. Classical modular forms on U(n). For each positive integer ` we define
open subgroups of GLn(rp) by

I(n)
0 (p`) = {(gij) ∈ GLn(rp) | gij ∈ p`(i−j) for i > j},

I(n)
1 (p`) = {(gij) ∈ I(n)

0 (p`) | gii − 1 ∈ p` for i = 1, 2, . . . , n}

and open compact subgroups of G(Q̂) by

K0(p`N) = {(gq) ∈ K0(N) | ıp(gp) ∈ I
(n)
0 (p`)},

K1(p`N) = {(gq) ∈ K1(N) | ıp(gp) ∈ I
(n)
1 (p`)},

where the open compact subgroups K0(N) and K1(N) of G(Q̂) are defined in §2.1.

Definition 2.1. Let k = (k1, k2, . . . , kn) ∈ Zn be an n-tuple of integers such
that k1 ≤ k2 ≤ · · · ≤ kn. For a commutative ring A of characteristic 0 we write
Lk(A) for an A-module on which GLn(A) acts as the irreducible representation
ρk : GLn(A) → GL(Lk(A)) with the lowest weight k with respect to the Borel
subgroup of the upper triangular matrices. If a = diag(a1, a2, . . . , an) ∈ Tn, then

we write ak := ak1
1 a

k2
2 . . . aknn for simplicity.

We define an embedding ιT∞ : G(R) ↪→ GLn(C) by

ιT∞(g) =
√
Tg
√
T
−1
,

√
T =


√
t1

. . . √
tn

 .
It is important to note that

ιT∞(gc) = tιT∞(g)−1.

We define a representation of ρk,∞ of G(R) on Lk(C) by ρk,∞(g) = ρk(ιT∞(g)).
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Definition 2.2. We call an Lk(C)-valued function f on G(A) a vector-valued

modular form on G of weight k and level p`N if it satisfies

f(γgu∞u) = ρk,∞(u∞)−1f(g)

for γ ∈ G(Q), g ∈ G(Q̂), u∞ ∈ G(R), u ∈ K1(p`N). The space AGk (p`N) consists

of vector-valued modular forms on G(A) of weight k and level p`N. We say that

f ∈ AGk (p`N) is Q-rational if the restriction of f to G(Q̂) takes values in Lk(ι∞(Q)).

Given g ∈ G(A) and a function F on G(Q)\G(A), we define another function
r(g)F on G(Q)\G(A) by

[r(g)F ](h) = F(hg).

Namely, r(g)F is the right translation of F by g. For a character χ of K0(p`N)
whose restriction to K1(p`N) is trivial we set

AGk (p`N, χ) = {f ∈ AGk (p`N) | r(u)f = χ(u)−1f for u ∈ K0(p`N)}.

Put k∨ = (−kn, . . . ,−k2,−k1). Fix a GLn(Q)-invariant perfect pairing

`k : Lk∨(Q)⊗ Lk(Q)→ Q.

Let A (G) denotes the space of scalar valued modular forms on G. We associate to
f ∈ AGk (p`N) and v ∈ Lk∨(Q) a scalar valued modular form fv ∈ A (G) defined by

fv(g) = `k(v ⊗ f(g)), g ∈ G(A).

Given f ′ ∈ AGk∨(p`N) and u ∈ Lk(Q), we define uf
′ ∈ A (G) by

uf
′(g) = `k(f ′(g)⊗ u).

A G(R)-equivariant map Lk∨(C) → A (G) is given by v 7→ fv. Let T be the
diagonal torus of G. If vk ∈ Lk∨(C) is a highest weight vector, then

fvk(gt∞) = t−k∞ · fvk(g)

for g ∈ G(Q̂) and t∞ ∈ T (R).
Let dKx be the Haar measure on G(A) that gives G(R)K volume 1. We define

the Petersson pairing of ϕ,ϕ′ ∈ A (G) by

(ϕ,ϕ′)K =

∫
G(Q)\G(A)

ϕ(x)ϕ′(x) dKx.

For any function F on G(Q)\G(A)/G(R)K0(p`N) we have∫
G(Q)\G(A)

F(x) dKx =
1

[K : K0(p`N)]

∑
[x]∈G(Q)\G(Q̂)/K0(p`N)

F(x)

]Γp`N,x
,

where [x] means the double coset G(Q)xK0(p`N) and

Γp`N,x = G(Q) ∩ xK0(p`N)x−1.

We define a perfect pairing

( , )p`N : AGk∨(p`N, χ−1)×AGk (p`N, χ)→ C

by

(f ′, f)p`N =
∑

[x]∈G(Q)\G(Q̂)/K0(p`N)

`k(f ′(x)⊗ f(x))

]Γp`N,x
.



12 MING-LUN HSIEH AND SHUNSUKE YAMANA

The Schur orthogonality relation gives

(2.1) (uf
′, fv)K =

`k(v ⊗ u)

[K : K0(p`N)] dimLk
(f ′, f)p`N.

Definition 2.3. Let π be an irreducible automorphic representation of G(A) gen-
erated by fvk with a common Hecke eigenform f ∈ AGk (p`N) of Hecke operators

away from Np. Let (λ1, λ2, . . . , λn) be the Harish-Chandra parameter of π∞. Note
that λi = −ki + n+1

2 − i. Assume that πp is an irreducible principal series V =
I(µ1, µ2, . . . , µn) of GLn(Qp) with locally algebraic characters ιp ◦ µi : Q×p → C×p .
Put αi = ιp(µi(p)). We order µi so that ordpα1 ≥ ordpα2 ≥ · · · ≥ ordpαn. We say
that π is p-ordinary with respect to ιp if ordpαi = −λn−i+1 for i = 1, 2, . . . , n (cf.
Conjecture 4.1 of [CPR89]).

Definition 2.4. The operator Up on f ∈ AGk (p`N, χ) is defined by

Upf =
∑

u=(ui,j)∈Nn(Qp)

ui,j∈Zp/pj−iZp for i<j

r(ı−1
p (uDn,p))f,

where

Dn,p =


pn−1 0 . . . 0 0

0 pn−2 . . . 0 0
...

...
. . .

...
...

0 0 . . . p 0
0 0 . . . 0 1

 .
Remark 2.5. Put

απp =

n∏
i=1

(
αip

i−n+1
2

)i−1

= p
n(n2−1)

12

n∏
i=1

αi−1
i .

The operator Up acts on the subspace V Nn = {h ∈ V | πp(u)h = h for u ∈ Nn} by
the same formula, where we put Nn = Nn(Zp). If π is p-ordinary with respect to
ιp, then ordpαi 6= ordpαj for i 6= j, and so by [Hid04, Theorem 5.3] and Proposition
5.4 below, the subspace

V ord = {h ∈ V Nn | Uph = απph}

is spanned by the vector hord
πp defined in §5.3 (cf. [Hsi11, Remark 6.3], [Ger19,

Lemma 5.4]).

Define an automorphism of GLn(A) by gϑ = tg−1. Let ϑ : Lk(A) ' Lk∨(A) be
the isomorphism such that for u1,u2 ∈ Lk(Q)

(ρk(gϑ)u1)ϑ = ρk∨(g)uϑ1 , `k(uϑ1 ⊗ u2) = `k(uϑ2 ⊗ u1),(2.2)

Remark 2.6. Let uk be the lowest weight vector in Lk(Q) that satisfies `k(vk ⊗
uk) = 1. Define

εk ∈ {±1} so that uϑk = εkvk.

In our future application, we will have

εk = (−1)k1−k2 if n = 2; εk = 1 if n = 3

(see (3.1), (3.2), §A.2 and §A.4).
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Take ξN = (ξN,v) ∈ G(Q̂) so that (ξ−1
N K0(N)ξN)c = K0(N). Define ξp`N =

(ξp`N,l) ∈ G(Q̂) by

(2.3) ξp`N,p = ı−1
p (D−`n,pT ); ξp`N,l = ξN,l for l 6= p.

Observe that

(2.4) (ξ−1
p`N
K0(p`N)ξp`N)c = K0(p`N).

Given f ∈ AGk (p`N, χ), we define Lk∨(C)-valued function f c on G(Q)\G(A) by

f c(g) = (f(gc))ϑ. In view of (2.4), one can obtain τp`Nf ∈ AGk∨(p`N, χ−1) by

τp`Nf := r(ξp`N)f c.

It follows from (2.2) that

uk(τp`Nf)(g) = `k((r(ξcp`N)f(gc))ϑ ⊗ uk)

= `k(uϑk ⊗ r(ξcp`N)f(gc)) = εkfvk((gξp`N)c).(2.5)

2.3. p-adic modular forms on U(n). Having fixed the isomorphism ıp : G(Qp)
∼→

GLn(Qp) with ιp(Kp) = GLn(Zp), we define a representation ρk,p of G(Qp) on
Lk(Cp) by

ιTp (g) =
√
T ıp(g)

√
T
−1
, ρk,p(g) = ρk(ιTp (g)).

We assume that ρk,p(Kp) acts on Lk(Zp). By definition ιTp is compatible with ιT∞
in the sense that

ιTp (gc) = ιTp (g)ϑ, ιTp (γ) = ιT∞(γ)

for g ∈ G(Qp) and γ ∈ G(Q).

Definition 2.7. Let A be a flat Zp-algebra. Let χ be an A×-valued character
of K0(p`N)/K1(p`N). The space SGk (p`N, χ,A) of p-adic modular forms on G of

weight k, level p`N and nebentypus χ over A consists of vector-valued functions

f̂ : G(Q̂)→ Lk(A) such that for γ ∈ G(Q), g ∈ G(Q̂) and u ∈ K0(p`N)

f̂(γgu) = χ(u)−1ρk,p(up)
−1f̂(g),

where we denote the p-component of u by up.

We proceed to define the ordinary projector on the space of p-adic modular

forms. To begin with, given g ∈ G(Q̂), we define a twisted action rk(g) on the

space of functions F : G(Q)\G(Q̂)→ Lk(A) by

(2.6) [rk(g)F ](h) = ρk,p(gp)F(hg).

Define the Hecke operator Up on f̂ ∈ SGk (p`N, χ,A) by

[Upf̂ ](g):=
∑

u=(ui,j)∈Nn
ui,j∈Zp/pj−iZp for i<j

rk(ı−1
p (uDn,p))f̂(g)

=
∑
u

ρk,p(ı
−1
p (uDn,p))f̂(gı−1

p (uDn,p)).

We introduce the normalization of the Hecke operator Up defined by

(2.7) Up = D−kn,p · Up = p−(n−1)k1−(n−2)k2−···−kn−1 · Up.
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Note that since k is the lowest weight, the normalized Up-operator preserves the
A-module SGk (p`N, χ,A). If A is p-adically complete, then the ordinary projector

eord = lim
m→∞

Um!
p converges to an idempotent in EndASk(p`N, χ,A).

2.4. p-adic avatar of classical modular forms. We associate a function f̂ :

G(Q)\G(Q̂)→ Lk(Cp) defined by

f̂(g) = ρk,p(gp)
−1ιp(f(g))

to a function f : G(Q)\G(A)→ Lk(C). Notice that

r̂(g)f = rk(g)f̂ , f(gu∞) = ρk,∞(u∞)−1ι−1
p (ρk,p(gp)f̂(g))(2.8)

for g ∈ G(Q̂) and u∞ ∈ G(R).

If f ∈ AGk (pnN, χ), then f̂ ∈ SGk (p`N, χ,Cp), and f̂ is called the p-adic avatar

of f . On the other hand, we will call f the adèlic lift of f̂ . We define a perfect
pairing

( , )p`N : SGk∨(p`N, χ−1,Cp)× SGk (p`N, χ,Cp)→ Cp
by

(f̂ ′, f̂)p`N =
∑

[x]∈G(Q)\G(Q̂)/K0(p`N)

`k(f̂ ′(x)⊗ f̂(x))

]Γp`N,x
.

By definition,

(2.9) (f̂ ′, f̂)p`N = ιp((f
′, f)p`N).

To an Lk(Cp)-valued function f on G(Q)\G(Q̂) we associate an Lk∨(Cp)-valued

function f̂ c on G(Q)\G(Q̂) defined by f̂ c(g) = (f̂(gc))ϑ. One easily sees that

f̂ c = f̂ c. We associate to f ∈ AGk (p`N, χ) a p-adic modular form τp`Nf̂ of weight

k∨ and level p`N defined by

(2.10) τp`Nf̂ := rk∨(ξp`N)f̂ c = τ̂p`Nf.

Here rk∨ is the twisted action in (2.6).

Given f̂ ∈ SGk (p`N, χ,Cp) and v ∈ Lk∨(Q), we define a scalar valued function

f̂v on G(Q)\G(Q̂) by

f̂v(g) = `k(v ⊗ f̂(g)), g ∈ G(Q̂).

If vk ∈ Lk∨(Q) is a highest weight vector invariant by ι−1
p (Nn(Zp)), then f̂vk is a

function on G(Q)\G(Q̂)/ı−1
p (Nn(Zp)), and

f̂vk(gtp) = χ(tp)
−1ıp(tp)

−kf̂vk(g)

for g ∈ G(Q̂) and ıp(tp) ∈ Tn(Z×p ).

Definition 2.8. The Hecke operator Up on the space of functions onG(Q)\G(Q̂)/ı−1
p (Nn(Zp))

is defined by

[UpF ](g) =
∑

u=(ui,j)∈Nn(Qp)

ui,j∈Zp/pj−iZp for i<j

F(gı−1
p (uDn,p)).
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Remark 2.9. Observe that

Ûpf = Upf̂ , [Upf̂ ]vk = Upf̂vk .(2.11)

We verify the second relation. By definition

[Upf̂vk ](g) =
∑
u

`k(ρk∨,p(gpı
−1
p (uDn,p))vk ⊗ ιp(f(gı−1

p (uDn,p))))

= p−(n−1)k1−(n−2)k2−···−kn−1`k(ρk∨,p(gp)vk ⊗ ιp([Upf ](g))).

If π is a p-ordinary irreducible automorphic representation of G(A) with respect to
ιp, then Proposition 5.4 below gives an eigenform f ∈ AGk (p`N) of Up attached to

π such that f̂vk is an eigenform of Up with the p-adic unit eigenvalue

αf = p−(n−1)k1−(n−2)k2−···−kn−1απp .

2.5. Review of Hida theory for U(n). We define XG
1 (p`N) as the finite set

XG
1 (p`N) = G(Q)\G(Q̂)/K1(p`N)

for each positive integer `. Recall that O is the ring of the integers of a finite
extension F of Qp. Let O[XG

1 (p`N)] = ⊕x∈XG1 (p`N)Ox be the finitely generated

O-module spanned by divisors of XG
1 (p`N). Put

XG
1 (p∞N) := lim

←−`
XG

1 (p`N).

We retain the notation from the introduction. Write z 7→ [z]Λn for the inclusion
of group-like elements Tn(Zp)→ OJTn(Zp)K× = Λ×n . Let R be a normal ring finite
flat over Λn = OJTn(Zp)K. For Q = (Q1, Q2, . . . , Qn) ∈ XR we put

kQ = (kQ1
, kQ2

, . . . , kQn), ` = max{1, c(εQ1
), c(εQ2

), . . . , c(εQn)}

and define finite order characters of K0(p`N) by

εQ(tp) = εQ1
(tp,1)εQ2

(tp,2) · · · εQn(tp,n),

where ıp(tp) = diag(tp,1, tp,2, . . . , tp,n) with tp,i ∈ Z×p for i = 1, 2, . . . , n. Let ℘Q be

the ideal of R corresponding to Q and R(Q) the image of R under Q. Let P
(n)
` be

the ideal of Λn generated by [t]p
`

Λn
− 1 for t ∈ Tn(Zp). Let Λn act on O[XG

1 (p`N)]
by

[t]Λnx := x · ı−1
p (t), t ∈ Tn(Zp).

Definition 2.10. Put ∆ = (r/N)×. For d ∈ ∆ the diamond operator σd acts on
the module O[XG

1 (p`N)] by

σdx := x
∏
l|N

ı−1
l

([
1n−1

d̃l

])
,

where d̃ = (d̃l) ∈
∏
l|N Z×l is a lift of d.

Thus O[XG
1 (p`N)] is a finitely generated Λn[∆]-module.
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Definition 2.11. The module O[XG
1 (p`N)] is equipped with the operator Up de-

fined by

Upx =
∑

ui,j∈Zp/pj−iZp

x ·



pn−1 pn−2u1,2 . . . p2u1,n−2 pu1,n−1 u1,n

0 pn−2 . . . p2u2,n−2 pu2,n−1 u2,n

...
...

. . .
...

...
...

0 0 . . . p2 pun−2,n−1 un−2,n

0 0 . . . 0 p un−1,n

0 0 . . . 0 0 1


,

where we define the action of g ∈ GLn(Qp) on x ∈ XG
1 (p`N) by x · g = xı−1

p (g).
The limit

eord = lim
m→∞

Up
m!

converges to an idempotent in EndΛnO[XG
1 (p`N)].

Definition 2.12. A Λn-adic modular form on G of tame level N is a continuous
function f : XG

1 (p∞N)→ Λn which satisfies

f(x · ı−1
p (t)) = f(x)[t]−1

Λn
, t ∈ Tn(Zp).

Let SG(N,Λn) be the space of Λn-adic modular forms on G of tame level N.
Recall that f is continuous if for any m1,m2 > 0, there exists sufficiently large `

such that the function f (mod (P
(n)
m1 , p

m2)) : XG
1 (p∞N) → Λn/(P

(n)
m1 , p

m2) factors
through XG

1 (p`N).

The Λn-module SG(N,Λn) is equipped with the natural actions of Hecke and
diamond operators given by

Upf(x) = f(Upx), σdf(x) = f(σdx).

The ordinary projector eord = lim
m→∞

Um!
p converges in EndΛnSG(N,Λn). For a

character χ : ∆→ O× we put

SG(N, χ,Λn) = {f ∈ SG(N,Λn) | σdf = χ(d)−1f for d ∈ ∆}.
For a normal ring R finite flat over Λn we set

SG(N,R) = SG(N,Λn)⊗Λn R,
SG(N, χ,R) = SG(N, χ,Λn)⊗Λn R.

Theorem 2.13. Put Nχ =
∑
d∈∆ χ(d)σd ∈ O[∆]. Let Pχ be the ideal of R[∆]

generated by {χ(d)σd − 1}d∈∆. Suppose that p > 3.

(1) eordSG(N, χ,R) is a free R-module, and the norm map

Nχ : eordSG(N,R)/Pχ ' eordSG(N, χ,R)

is an isomorphism.
(2) For every Q ∈ X+

R we have a Hecke equivariant isomorphism

eordSG(N, χ,R)⊗R R/℘Q ' eordSGkQ(p`N, χεQ,R(Q))

f (mod ℘Q) 7→ fQ,

where fQ is the unique p-adic modular form such that

Q(f(x)) = (ρkQ(
√
T )−1fQ)vkQ (x).
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Remark 2.14. Put f̂ ′ = ρkQ(
√
T )−1fQ. Then

f̂ ′(γgu) = (χεQ)(u)−1ρk(ıp(up))
−1f̂ ′(g), f̂ ′vkQ

=
√
T
−kQ

(fQ)vkQ

for γ ∈ G(Q), g ∈ G(Q̂) and u ∈ K0(p`N).

Proof. This is essentially proved in [Ger19] by adapting the arguments in [Hid88]
in the case of GL(2) to the case of unitary groups (cf. [Hsi21, Theorem 4.2]).
For any abelian group A, let S0(α,A) be the space of A-valued functions on the
finite set XG

1 (pαN). Let V ord(N) := lim−→β
lim−→α

eordS0(α, p−βO/O) be the discrete

Λn-module. Note that V ord(N) is nothing but the space Sord
0,{χv}(U(l∞),K/O) in

[Ger19, p. 1358]. Let

V ord(N) = lim←−
α

eordO[XG
1 (pαN)]

be the Pontryagin dual of V ord(N). Then we have

SG(N,Λn) = HomΛn(V ord(N),Λn).

Therefore part (1) follows from [Ger19, Lemma 2.6, Proposition 2.20], and part (2)
is proved in [Ger19, Proposition 2.22, Lemma 2.25]. �

Definition 2.15 (Hida families). A non-zeroR-adic modular form f ∈ eordSG(N, χ,R)
is an R-adic Hida family if fQ is a simultaneous eigenform of Hecke operators away

from Np for Q ∈ X+
R. Let X′f = {Q ∈ Xtemp

f | Q(f) 6= 0} be a Zariski dense subset
of the rigid generic fiber of SpfR.

Lemma 2.16. Assume that the space of automorphic forms on G has multiplicity
one. If f ∈ eordSG(N, χ,R) is a R-adic Hida family, then Q(f) generates an
irreducible p-ordinary automorphic representation of G(A) for Q ∈ X′f .

Proof. Let π ' ⊗′vπv be an irreducible constituent of the automorphic represen-
tation generated by Q(f). If l and Np are coprime, then πl is determined by the
Hecke eigenvalues of Q(f). Thus π belongs to the A-packet associated to these
eigenvalues. Moreover, πq is uniquely determined for each prime factor q of N
by the assumption on N as the associated local A-packet is a singleton for each
split prime. Therefore the equivalence class π is determined by Q(f). Thus Q(f)
generates an irreducible representation of G(A) by the multiplicity one for G. �

If f is a Hida family, then Q(f) is an eigenform of the operator Up with unit
eigenvalue αfQ by Remarks 2.5 and 2.9 for Q ∈ X′f , and we denote by πQ the

automorphic representation of G(A) associated to fQ, which is p-ordinary with

respect to ιp.

2.6. A pairing on the space of ordinary R-adic modular forms. In this
subsection, we do the p-adic interpolation of the bilinear pairing. We first introduce
the regularized diagonal cycles for U(n)×U(n).

Define the finite sets

X` = XG
0 (p`N), X` = X` ×X`

for each positive integer `. Given x, y ∈ G(Q̂), we write [(x, y)] ∈ X` for the double
coset represented by (x, y). The following definition makes sense in view of (2.4).
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Definition 2.17. Let ♦` ∈ Zp[X`] be the twisted diagonal cycle defined by

♦` =
∑

[x]∈X`

[(x, (xξp`N)c)].

The element ξp`N is defined in (2.3). Note that (xξp`N)cp = ı−1
p (T−1 tıp(xpD

−`
n,p)
−1).

The homomorphism

N`+1,` : Zp[X`+1]→ Zp[X`]
is induced by the projection X`+1 → X`.

Lemma 2.18. For ` ≥ 1 we have

N`+1,`(♦`+1) = (1⊗ Up)♦`.

Proof. Fix a complete set S` of representatives for Zp/p`Zp. Denote the unipotent
radical of the Borel subgroup opposite to Bn by N−n . Put

ıp(Σ`) :=
{(
p(i−j)`vij

)
∈ N−n (Qp)

∣∣ vij ∈ Si−j for i > j
}
.

Then Σ` is a complete set of representatives for K0(p`N)/K0(p`+1N). We may

assume that Γp`N,x = r× for every x ∈ G(Q̂) (see the proof of Lemma 4.4 of [Hsi21]).
Then X`+1 consists of elements represented by xk with x ∈ X` and k ∈ Σ`. Since

(2.12)
ıp((ξ−1

p`N,p
Σ`ξp`N,p)

c) = t(D`
n,pıp(Σ`)D

−`
n,p)
−1

= {u ∈ Nn(Qp) | uij ∈ Sj−i for i < j
}
,

we get the distribution property stated above. �

Define the regularized diagonal cycle by ♦†` = (1 ⊗ Up−`)eord♦`. Lemma 2.18

says that N`+1,`(♦
†
`+1) = ♦†`. We can therefore define

♦†∞ = lim
←−`
♦†` ∈ lim

←−`
Zp[X`].

Definition 2.19. Let f , g ∈ eordSG(N, χ,R). We define an R-adic modular form
on G×G by

F = f � g : G(Q)\G(Q̂)×G(Q)\G(Q̂)→ R
by F(x, y) = f(x)g(y). Then F naturally induces a Λn-linear map

F∗ : lim
←−`
O[X`]→ R.

Define an R-bilinear pairing

BN : eordSG(N, χ,R)× eordSG(N, χ,R)→ R

by

BN(f , g) = F∗(♦†∞) ∈ R.

The following result generalizes [Hsi21, Lemma 4.4].

Proposition 2.20. For each Q ∈ X+
R and sufficiently large ` we have

Q(BN(f , g)) = εkQ · (τp`N[U−`p gQ],fQ)p`N.

Here εkQ ∈ {±1} is the sign defined in Remark 2.6.
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Proof. We shall adapt the the proof of [Hsi21, Lemma 4.4]. To lighten notation,
we put

wE = ]r×, k = kQ, κ = (n− 1)kQ1
+ (n− 2)kQ2

+ · · ·+ kQn−1
,

O = R(Q), f̂ = fQ, ĝ = gQ ∈ eordSGk (peN, χεQ,O).

We first claim that the value (τplN[U−lp ĝ], f̂)plN is independent of any sufficiently
large integer l. To see the claim, we note that if l is sufficiently large, then ΓplN,x =

r× for every x ∈ G(Q̂), and by (2.10)

wE(τpl+1N[U−l−1
p ĝ], f̂)pl+1N

=
∑

[x]∈Xl+1

`k(ρk∨,p(ξpl+1N,p)([U−l−1
p ĝ]((xξpl+1N)c))ϑ ⊗ f̂(x))

=
∑

[x]∈Xl

∑
v∈Σl

`k(ρk∨,p(ξpl+1N,p)([U−l−1
p ĝ]((xvξpl+1N)c))ϑ ⊗ ρk,p(v)−1f̂(x))

=
∑

[x]∈Xl

∑
v∈Σl

`k((ρk,p((vξplN,p)
cı−1

p (Dn,p))[U−l−1
p ĝ]((xvξplN)cı−1

p (Dn,p)))
ϑ ⊗ f̂(x)).

By (2.12), we see that the last inner sum is∑
u=(uij)∈Nn

uij∈Sj−i for i<j

`k((ρk,p(ξ
c
plN,pı

−1
p (uDn,p))[U−l−1

p ĝ]((xξplN)cı−1
p (uDn,p)))

ϑ ⊗ f̂(x))

=`k((ρk,p(ξ
c
plN,p)[UpU

−l−1
p ĝ]((xξplN)c))ϑ ⊗ f̂(x)).

Since UpU−1
p = pκ by (2.7), we conclude that

(τpl+1N[U−l−1
p ĝ], f̂)pl+1N = pκ(τplN[U−lp ĝ], f̂)plN.

This proves the claim.

Recall that Q(f) =
√
T
−k
f̂vk and Q(g) =

√
T
−k
ĝvk by Theorem 2.13 (2). For

an arbitrarily large integer m there exists a sufficiently larger integer l � m such
that

(2.13) Q(BN(f , g)) ≡ T−k
∑

[x]∈Xl

[Up
−lĝvk ]((xξplN)c)f̂vk(x) (mod pmO).

Take a basis Bk∨ = {vi} of Lk∨(Q) which consists of weight vectors and contains
the highest weight vector vk. Let Bk = {ui} be a basis of Lk(Q) dual to Bk∨ with
uk in Remark 2.6.. Then we can write

U−lp ĝ =
∑
i

[U−lp ĝ]vi · ui.

If l is sufficiently larger than m, then

ρk(Dl
n,p)[U

−l
p ĝ] =

∑
i

[U−lp ĝ]vi · p−κlρk(Dl
n,p)ui

≡ [U−lp ĝ]vk · uk (mod pmLk(O)).

It therefore follows that

(τplN[U−lp ĝ], f̂)plN =
∑

[x]∈Xl

`k
((
ρk,p(ξ

c
plN,p)[U

−l
p ĝ]((xξplN)c)

)ϑ⊗f̂(x)
)
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≡T−k
∑

[x]∈Xl

[Up
−lĝvk ]((xξplN)c)`k(uϑk ⊗ f̂(x)) (mod pmO).

In the last equality, we have used ρk,p(ξ
c
plN,p) = ρk(T−1Dl

n,p) and (2.11). Combin-

ing (2.13) and Remark 2.6, we find that

(τp`N[U−`p ĝ], f̂)p`N = (τplN[U−lp ĝ], f̂)plN ≡ εkQQ(BN(f , g)) (mod pmO)

for arbitrarily large m, from which the formula follows. �

Definition 2.21. Let f ∈ eordSG(N, χ,R) be an R-adic Hida family. We define
ηf ∈ R by

ηf = BN(f ,f).

Proposition 2.22. Suppose that f is an eigenvector of the Up-operator with the
eigenvalue αf ∈ R×. Put

απQ = p(n−1)kQ1
+(n−2)kQ2

+···+kQn−1Q(αf ).

For Q ∈ X+
R and `� 0, we have

Q(ηf ) = [K : K0(p`NπQ)]α−`πQιp((f
∨
vkQ

, fvkQ )K) dimLkQ .

Here the modular form f∨vkQ
is defined by f∨vkQ

(g) = fvkQ ((gξp`N)c).

Proof. If ` is sufficiently large, then Proposition 2.20 gives

εkQQ(ηf ) = (τp`N[U−`p fQ],fQ)p`N

= ιp((τp`N[U−`p f ], f)p`N) = α−`πQιp((τp`Nf, f)p`N)

by (2.9), (2.10), (2.11) and Remark 2.9. We can rewrite this identity as

εkQQ(ηf ) = [K : K0(p`N)]α−`πQιp((ukQ (τp`Nf), fvkQ )K) dimLkQ
= [K : K0(p`N)]α−`πQεkQιp((f

∨
vkQ

, fvkQ )K) dimLkQ

by (2.1) and (2.5). �

3. Regularized diagonal cycles and theta elements

3.1. Definite unitary groups in two and three variables. We can let

T =

t1 0 0
0 1 0
0 0 t2

 , T ′ =

[
t1 0
0 t2

]
by multiplying T by an appropriate constant with positive ti ∈ Z(p). We view
H = U(T ′) as a subgroup of G = U(T ) via the embedding

ι

([
a b
c d

])
=

a 0 b
0 1 0
c 0 d

 .
We will frequently add ′ to the notation for various objects to indicate that they
are attached to H. Fix normal rings I1, I2, I3, I

′
1, I
′
2 finite flat over Λ = OJZ×p K. Put

R = I1⊗̂OI2⊗̂OI3, R′ = I′1⊗̂OI′2.
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The finite set Σ−T consists of non-split rational primes q at which ( , )T ′ does not

split, i.e., q ∈ Σ−T if and only if εEq/Qq (−detT ) = −1. For simplicity we assume

that if q ∈ Σ−T , then q is odd and σq is the trivial representation of the compact
unitary group H(Qq).

If q /∈ Σ−T , then G(Qq) and H(Qq) are quasi split, and Kq,K′q are their special

good maximal bounded subgroups in the sense of §1.1 of [Cas80]. When q ∈ Σ−T ∩
Σr
E , we define maximal compact subgroups by

Kq = G(Qq) ∩GL3(rq), K′q = H(Qq),

assuming that t1, t2 ∈ Z×q . For each q ∈ Σ−T \ Σr
E we take maximal compact

subgroups

Kq = G(Qq) ∩GL(Lq), K′q = H(Qq),

where Lq is a maximal integral lattice of the Hermitian space (W ⊗ Qq, q( , )T )
which contains e2 := t(0, 1, 0) and such that q · (e2, Lq)T = rq (see §C.1 for details).

We take ξN = (ξN,l) ∈ G(Q̂) and ξ′N′ = (ξ′N′,l) ∈ H(Q̂) defined by

ξN,l =

ı
−1
l

([
N12

1

]−1

T

)
if l|N ,

13 otherwise,

ξ′N′,l =

ı
′−1
l

([
N ′ 0

0 1

]−1

T ′

)
if l|N ′,

12 otherwise.

We define ς(p) = (ς
(p)
l ) ∈ G(Q̂), where

ς =

1 0 0
0 0 1
0 1 0

 , ς
(p)
l =

{
ı−1
l (ς) if l splits in E and differs from p,

13 otherwise.

3.2. Twisted diagonal cycles for U(3)× U(2). The embedding ι′ : GL2(Ql) ↪→

GL3(Ql) is defined by ι′(g) =

[
g

1

]
. For each prime factor l of NN ′ we fix an open

compact subgroup Jl of G(Ql) which contains the subgroup ı−1
l (ι′(K(2)

0 (N ′rl))).
Put

J` = ı−1
p (I(3)

1 (p`))×
∏

q-pNN ′
Kq ×

∏
l|NN ′

Jl.

We will specify a natural number N ′′ = M2 whose prime factors split in E in §3.4.
Fix an ideal N′′ of r such that r/N′′ ' Z/N ′′Z. We define K′0(N′′) with respect to

K′ =
∏
q K′q. Define an open compact subgroup K′01(p`N′′) of H(Q̂) by

K′01(p`N′′) = {(hl) ∈ K′0(N′′) | ıp(hp) ∈ I
(2)
1 (p`), hq ∈ K′′q for q ∈ Σ−T },

where K′′q = Kq ∩ K′q. We consider the projective systems of the finite sets

X` = G(Q)\G(Q̂)/J`, X ′` = H(Q)\H(Q̂)/K′01(p`N′′), X` = X` ×X ′`.
Consider the finitely generated O-module O[X`] equipped with the operator Up :=

Up ⊗ Up and the ordinary projector eord := eord ⊗ eord. Given x ∈ G(Q̂) and
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x′ ∈ H(Q̂), we write [(x, x′)] ∈ X` for the double coset represented by (x, x′). We
define the embedding

 : H(Q̂) ↪→ G(Q̂), (x′) = ι(x′)ς(p).

Set

Υ` = ı−1
p

p2` p` 0
0 p` 1
0 0 1

 ∈ G(Qp), τ` = ı′−1
p

([
0 1
−p` 0

])
∈ H(Qp).

For z ∈ Qp we put n(z) = ı′−1
p

([
1 z
0 1

])
∈ H(Qp) and

I−1 (p`) =

{[
a b
c d

]
∈ I(2)

1 (p`)

∣∣∣∣ b = 0

}
.

Definition 3.1. Let ∆` ∈ Zp[X`] be the twisted diagonal cycle defined by

∆` =
∑

[x′]∈X′`

1

]ΓH`,x′

∑
z∈Zp/p2`Zp

[((x′n(z))Υ`, x
′τ`)],

where ΓH`,x′ := H(Q) ∩ x′K′01(p`N′′)x′−1. Since ι(K′′(1))ς(p) ⊂ ς(p)K1(N), this

definition makes sense in view of the fact that for each γ ∈ I−1 (p`) there is z ∈
Zp/p2`Zp such that Υ−1

` ι(ı−1
p (γn(z)))Υ` ∈ ı

−1
p (I(3)

1 (p`)).

3.3. Regularized diagonal cycles for U(3)×U(2). The homomorphism

N`+1,` : Zp[X`+1]→ Zp[X`]

is induced by the projection X`+1 → X`.

Lemma 3.2 (Distribution property). For ` ≥ 1 we have

N`+1,`(∆`+1) = Up∆`.

Proof. The proof is similar to [Hsi21, Lemma 4.7]. Let S` be a complete set of
representatives for Zp/p`Zp. Since ` ≥ 1,

Σ` :=

{[
1 + p`u 0

0 1 + p`v

] [
1 0
p`b 1

] ∣∣∣∣ u, v, b ∈ S1

}
is a complete set of representatives for K′01(p`N′′)/K′01(p`+1N′′). By an argument
similar to the proof of [Hsi21, Lemma 4.4], we may assume that ΓH`,x′ = {1} for

every x′ ∈ H(Q̂). Then X ′`+1 consists of elements represented by x′k′ with x′ ∈ X ′`
and k′ ∈ Σ`. Given b, z ∈ Zp, we put

w =
z

1 + p`bz
, s =

1

1 + p`bz
, t =

1− p`bw
1− p`bt

, r = 1 + p`b(st− w).

Then

ι

(
ı′−1
p

([
1 0
p`b 1

])
n(z)

)
Υ`+1 = ı−1

p

p2`+2 p`+1t w
0 p`+1 s
0 0 1

 γb,z
 ,

γb,z =

 r 0 0
−p2`+1bs 1− p`bs 0
p3`+2b p2`+1b 1 + p`bz

 ∈ I(3)
1 (p`).
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Since s, t, r ∈ 1 + p`Zp, we find that N`+1,`(∆`+1) equals∑
[x′]∈X′`+1

∑
z∈S2`

∑
z1∈S2

[((x′n(z + p2`z1))Υ`+1, x
′τ`+1)]

=
∑

[x′]∈X′`

∑
k′∈Σ`

∑
z∈S2`

∑
z1∈S2

[((x′k′n(z + p2`z1))Υ`+1, x
′k′τ`+1)]

=
∑

[x′]∈X′`

∑
z∈S2`

∑
z1∈S2

∑
u,v,b∈S1(x′)

p2`+2 p`+1(1 + p`u) z + p2`z1

0 p`+1 1 + p`v
0 0 1

 , x′τ` [p b
0 1

]
=
∑

[x′]∈X′`

∑
z∈S2`

∑
z1∈S2

∑
u,v∈S1

(1⊗ U ′p)

(x′n(z))Υ`

p2 pu z1

0 p v
0 0 1

 , x′τ`


=Up∆`

by Definition 2.11. �

Definition 3.3. Define the regularized diagonal cycle by ∆†` = U−`p eord∆`.

Since N`+1,`(∆
†
`+1) = ∆†` by Lemma 3.2, we can define

∆†∞ = lim
←−`

∆†` ∈ lim
←−`

Zp[X`].

3.4. Theta elements. Let χ′ be a Dirichlet character of (r/N′)× of conductor M .
Recall that a character of K′0(N′) is associated to χ′ by[

a b
c d

]
7→ χ′(d)

(cf. Definition 2.10). Take a divisor M of N′ such that r/M ' Z/MZ.
Let f ∈ eordSG(N, χ,R) and g ∈ eordSH(N′, χ′,R′) be Hida families. Recall that

w2 =

[
0 1
1 0

]
. We define the tame twisting operator Uχ′

N′ on an R-adic modular

form Uχ′

N′f on G by

Uχ′

N′f(x) =
∑

i,j∈(Z/MZ)×

∑
y∈Z/M2Z

χ′(ij)−1f

(
x ·
[
ξ′N′w2

1

]
∆M (gM,i,j,y)

)
,

gM,i,j,y =

1 i
M

y
M2

0 1 j
M

0 0 1

 ,
where we write ∆M : GL3(Q) ↪→

∏
l|M GL3(Ql) for the diagonal embedding and

define the action of g = (gl) ∈
∏
l|M GL3(Ql) on x ∈ G(Q̂) by

x · g = x
∏
l|M

ı−1
l (gl).

Proposition 6.7 below shows that for u ∈ K′0(M2)

r(ι(u))Uχ′

N′f = χ(u)Uχ′

N′f .
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We hereafter assume the following hypothesis:

(H ′3) the square of the conductor M of χ′ is divisible by N′.

We construct the regularized diagonal cycle ∆†∞ by letting N′′ = M2. Put G =
G×H. We define an R⊗̂R′-adic modular form on G by

F = Uχ′

N′f � g : G(Q)\G(Q̂)→ R⊗̂R′

by

F (x, x′) = Uχ′

N′f(x)g(x′).

Then F naturally induces a Λ3 � Λ2-linear map

F ∗ : lim
←−`
O[X`]→ R⊗̂R′.

The theta element ΘF attached to the product F is then defined by the evaluation
of F ∗ at the regularized diagonal cycle, namely,

ΘF = F ∗(∆
†
∞) ∈ R⊗̂R′.

3.5. Period integrals. The set Xcrit
V consists of pairs (Q,Q′) with

Q = (Q1, Q2, Q3) ∈ Xtemp
f , Q′ = (Q′1, Q

′
2) ∈ Xtemp

g

such that
kQ1
≤ −kQ′2 ≤ kQ2

≤ −kQ′1 ≤ kQ3
.

Fix Q = (Q,Q′) ∈ Xcrit
V . We denote the automorphic representation of G(A)

associated to Q(f) by πQ and the automorphic representation of H(A) attached

to Q′(g) by σQ′ . We here abbreviate

π = πQ, σ = σQ′ , Π = π ⊗ σ, ki = kQi , k′j = kQ′j

for i = 1, 2, 3 and j = 1, 2. Put

a = k3 − k2, b = k2 − k1, n = k3 + k′1, l = −k′2 − k1.

We use the notation in §A.6 to note that

π∞ = ρk∨Q ' Hb,a ⊗ (det)−k2 , σ∞ = ρk∨
Q′
' %(−k′1,−k′2).

Take highest weight vectors

vkQ = xb1y
a
3 ∈ π∞, vkQ′ = Xa−n+b−l

1 ∈ σ∞.(3.1)

Then the lowest weight dual vectors are

ukQ = y′b1 x
′a
3 ∈ π∨∞, ukQ′ = (−Y ′1)a−n+b−l ∈ σ∨∞(3.2)

(see Remark 2.6).
Let f ∈ AGk (p`N, χ) and g ∈ AHk′(p`N′, χ′) be the adèlic lifts of

f̂ = fQ ∈ SGkQ(p`N, χεQ,R(Q)),

ĝ = gQ′ ∈ SHkQ′ (p
`N′, χ′εQ′ ,R′(Q′))

(see (2.8)). Recall that f and g are eigenforms of the operators Up and U ′p with
eigenvalues απp and ασp by [Hid04, Theorem 5.3] and Proposition 5.4 below. Define

Uχ′

N′f by replacing f with f in the definition of Uχ′

N′f . Clearly,

Q(Uχ′

N′f) =
√
T
−kQ

(Ûχ′

N′f)vkQ .
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Define the vector-valued modular form F : G(A)→ Π∨∞ by

F (x, x′) = Uχ′

N′f(x)⊗ g(x′) (x ∈ G(A), x′ ∈ H(A)).

Define a scalar-valued modular form ΦF : G(A)×H(A)→ C by

ΦF (x, x′) = `Π∞(WH
Π∞ ⊗ F (x, x′)),

where WH
Π∞
∈ Π∞ is an H(R)-invariant vector defined in §A.6. Proposition A.6(4)

shows that

ΦF (xι(u∞), x′u∞) = ΦF (x, x′)

for u∞ ∈ H(R). Define t` ∈ G(Qp) by

t` = ı−1
p

 0 0 −p−`
0 p` 1
p2` p` 0

 .

We consider the following period integral

PK′(Φ) =

∫
H(F )\H(A)

Φ(h, h) dK′h

for scalar-valued modular forms Φ on G×H.

Proposition 3.4. Let Q ∈ Xcrit
V . Then

Q(ΘF ) =
(−1)k2−k1

ζp(1)ζp(2)
[K′ : K′0(M2)]

PK′(π(t`ς
(p))ΦF )

(p−5απpασp)`

∏
q∈Σ−T \ΣrE

(q + 1)

for sufficiently large `.

Proof. The proof is similar to that of [Hsi21, Proposition 4.9] (cf. [CH18, Lemma

4.4]). Recall that Q(f) =
√
T
−kQ

f̂vkQ and Q′(g) =
√
T ′
−kQ′ ĝvk

Q′
are eigenforms

of the operators Up and U ′p with unit eigenvalues αf and αg. Thus

Q(F ) = Q(Uχ′

N′f)�Q′(g) =
√
T
−kQ√

T ′
−kQ′

(Ûχ′

N′f)vkQ � gvkQ′

is an eigenform of Up with unit eigenvalue

αF = αfαg = p−2k1−k2−k
′
1απpασp

by Remark 2.9. Let F̂ = Ûχ′

N′f ⊗ ĝ be a p-adic modular form on G. Then

Q(F )(x, x′) = `Π∞(xb1y
a
3X

a−n+b−l
1 ⊗Π∨∞(

√
T ,
√
T ′)−1F̂ (x, x′))

for x ∈ G(Q̂) and x′ ∈ H(Q̂). Recall that Π∨∞ = ρkQ ⊗ ρkQ′ .
By definition we have

Q(ΘF ) = Q(F )(U−`p eord∆`)

= α−`F
∑

[x′]∈X′`

∑
z∈Zp/p2`Zp

Q(F )((x′n(z))Υ`, x
′τ`)

for sufficiently large `, we see that α`FQ(ΘF ) equals∑
[x′]∈X′`

∑
z∈Zp/p2`Zp

`Π∞(xb1y
a
3X

a−n+b−l
1 ⊗Π∨∞(

√
T ,
√
T ′)−1F̂ ((x′n(z))Υ`, x

′τ`))).
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Since
F (x, x′) = ι−1

p (Π∨∞(ιTp (xp), ι
T ′

p (x′p))F̂ (x, x′))

by (2.8), we see that for x ∈ G(Q̂) and x′ ∈ H(Q̂)

ΦF (x, x′) = `Π∞(WH
Π∞ ⊗ ι

−1
p (Π∨∞(ιTp (xp), ι

T ′

p (x′p))F̂ (x, x′)))

Proposition A.6(4) shows that for x′ ∈ H(Qp), g ∈ G(Qp) and h ∈ H(Qp)

`Π∞(WH
Π∞ ⊗ F ((x′)g, x′h))

=`Π∞(WH
Π∞ ⊗Π

∨
∞(ιTp (ι(x′p)), ι

T ′

p (x′p))
−1F ((x′)g, x′h))

=ι−1
p (`Π∞(Π∞(ι(

√
T ′),
√
T ′)WH

Π∞ ⊗Π
∨
∞(ιTp (ι(g)), ιT

′

p (h))F̂ ((x′)g, x′h)))

=ι−1
p (`Π∞(Π∞(ıp(g), ı′p(h))−1WH

Π∞ ⊗Π
∨
∞(
√
T ,
√
T ′)−1F̂ ((x′)g, x′h))).

Let g = ι(n(z))Υ` and h = τ`. Observe that

ıp(g−1ι(h)) =
1

p2`

1 −1 1− z
0 p` −p`
0 0 p2`

 0 0 1
0 1 0
−p` 0 0

 =
1

p2`

(z − 1)p` −1 1
p2` p` 0
−p3` 0 0

 ,
ıp(ι(h)−1g) =

0 0 −p−`
0 1 0
1 0 0

p2` p` z
0 p` 1
0 0 1

 =

 0 0 −p−`
0 p` 1
p2` p` z

 .
Recall that

WH
Π ≡ det

[
x1 x3

X2 Y2

]b−l
det

[
X2 Y2

y3 −y1

]a−n
xl2y

n
2 (mod Tb,a(Q)).

Since

(x1, x2, x3)ıp(g−1ι(h)) = p−2`(x1(z − 1)p` + x2p
2` − x3p

3`, x2p
` − x1, x1),

(y1, y2, y3)ıp( t(ι(h)−1g)) = (−y3p
−`, y3 + y2p

`, y3z + y2p
` + y1p

2`),

we see that

Π∞(ıp(ι(n(z))Υ`), ı
′
p(τ`))

−1WH
Π∞

=
1

p2`(b−l) det

[
x1(z − 1)p` + x2p

2` − x3p
3` x1

X2 Y2

]b−l
× det

[
X2 Y2

y3z + y2p
` + y1p

2` y3p
−`

]a−n
× p−2l`(x2p

` − x1)l(y3 + y2p
`)n det(g−1ι(h))−k2 ,

from which we find the following congruence relation(
p2k1+k2+k′1

)−`
Π∞(ıp((n(z))Υ`), ı

′
p(τ`))

−1WH
Π∞

≡(−x1)bya3X
b−l+a−n
2 (mod ps)

if ` is sufficiently larger than s. We conclude that(
p2k1+k2+k′1

)−`
ιp(`Π∞(WH

Π∞ ⊗ F ((x′n(z))Υ`, x
′τ`)))

=`Π∞((−x1)bya3X
b−l+a−n
2 ⊗Π∨∞(

√
T ,
√
T ′)−1F̂ ((x′n(z))Υ`, x

′τ`)).

Substituting this expression, we see that(
p2k1+k2+k′1αF

)`Q(ΘF )
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=(−1)b
∑

[x′]∈X′`

∑
z∈Zp/p2`Zp

ΦF ((x′n(z))Υ`, x
′τ`)

=(−1)b[K′ : K′01(p`M2)]
∑

z∈Zp/p2`Zp

∫
H(Q)\H(A)

ΦF ((hn(z))Υ`, hτ`) dK′h.

Observe that∫
H(Q)\H(A)

ΦF (ι(hn(z))Υ`, hτ`) dK′h

=

∫
H(Q)\H(A)

ΦF (ι(h)Υ`, hn(−z)τ`) dK′h = PK′(Πp(Υ`, τ`)ΦF ).

Since [K′q : K′′q ] = q + 1 for q ∈ Σ−T \Σr
E by Lemma 3.14 of [Shi08], we have

[K′ : K′01(p`M2)] = p3`(1− p−2)(1− p−1)[K′ : K′0(M2)]
∏

q∈Σ−T \ΣrE

(q + 1).

Since ι(τ−1
` )Υ` = t`, we obtain the stated formula. �

4. The central value formulae

4.1. The Ichino-Ikeda formula. Let G be the unitary group of the Hermitian
form ( , )T on W = En. Let H be the unitary group of a subspace W ′ of W of
dimension n − 1 on which ( , )T is non-degenerate. We view H as a subgroup of
G. Let π ' ⊗′vπv be an irreducible cuspidal automorphic representation of G(A)
and σ ' ⊗′vσv an irreducible cuspidal automorphic representation of H(A). Set

G = G×H, Π = π ⊗ σ, Πv = πv ⊗ σv.

We define the complete L-series associated to π and σ by

L(s, π × σ) = LGL(s,BC(π)× BC(σ)),

where BC(π) (resp. BC(σ)) is the functorial lift of π (resp. σ) to an automorphic
representation of GLn(E) (resp. GLn−1(E)) (see [Lab11, Corollaire 5.3]). The
right hand side is the L-factor defined by Jacquet, Piatetski-Shapiro and Shalika in
[JPSS83]. Let L(s, π,Ad) denote the complete adjoint L-series for π. Assume that
both π and σ are tempered. Put

L (π × σ) =
L
(

1
2 , π × σ

)
L(1, π,Ad)L(1, σ,Ad)

n∏
i=1

L(i, εiE/Q),

L (πv × σv) =
L
(

1
2 , πv × σv

)
L(1, πv,Ad)L(1, σv,Ad)

n∏
i=1

L(i, εiEv/Qv ).

Remark 4.1. If n is even, then L(s, π,Ad) = L(s,BC(π),As) is the Asai L-series
for BC(π) while if n is odd, then L(s, π,Ad) = L(s,BC(π),As−) is the twisted Asai
L-series by Proposition 7.4 of [GGP12].

We define the Petersson pairing by

(Φ,Φ′) =

∫
G(Q)\G(A)

Φ(g, h)Φ′(g, h) dτg dτh



28 MING-LUN HSIEH AND SHUNSUKE YAMANA

for cusp forms Φ and Φ′ on G, where dτg and dτh are the Tamagawa measures on
G(A) and H(A). Given a cusp form Φ on G, we consider the integral

P(Φ) =

∫
H(Q)\H(A)

Φ((h, h)) dτh.

Fix a local perfect pairing

〈〈 , 〉〉v : Πv ⊗Π∨v → C.

If Πv is tempered, then the integral

I(W1,W2) =

∫
H(Qv)

〈〈Πv((hv, hv))W1,W2〉〉v dhv

is convergent for W1 ∈ Πv and W2 ∈ Π∨v by Proposition 2.1 of [Har14]. The local
Haar measure dhv is defined so that a maximal compact subgroup K′v of H(Qv),
which we will specify later for n = 3, has volume 1. Let CH be the ratio between
the Tamagawa measure and the product measure of local measures. Namely CH is
defined so that dτh = CH

∏
v dhv.

Ichino and Ikeda [II10] have refined the global Gross-Prasad conjecture and pre-
dicted an explicit relation between the central value and the period for orthogonal
groups. The analogue of the Ichino-Ikeda conjecture for unitary groups was formu-
lated in [Har14] and proved by [BPLZZ21] in the stable case and by [BPCZ22] in
the endoscopic case.

Theorem 4.2 ([Zha14, BPLZZ21, BPCZ22]). Let Π be an irreducible tempered cus-
pidal automorphic representation of G(A). If Φ = ⊗′vWv ∈ Π and Φ′ = ⊗′vW′

v ∈
Π∨ are factorizable, then

P(Φ)P(Φ′)

(Φ,Φ′)
= CH

L (π × σ)

2κπ+κσ

∏
v

I(Wv,W
′
v)

L (πv × σv)〈〈Wv,W
′
v〉〉v

,

where 2κπ (resp. 2κσ) is the order of the component group associated to the L-
parameter of π (resp. σ).

Roughly speaking, this theorem tells us that the product of global period inte-
grals is a product of the Rakin-Selberg central value L (π × σ) and the local zeta
integrals I(Wv,W

′
v). Therefore, by Proposition 3.4 the task of obtaining the in-

terpolation formula of ΘF boils down to (i) choices of test vectors Wv and W′
v and

(ii) the explicit evaluation of I(Wv,W
′
v). The purpose of this section is to carry

out the step (i) and give the explicit formula of the relevant local zeta integrals
I(Wv,W

′
v). The details of the step (ii) are left to §5, §6 and Appendices.

4.2. Shimura’s mass formula. We now assume that T is positive definite. Fix

an open compact subgroup K =
∏
q Kq of G(Q̂). The space A (G) of automorphic

forms on G consists of left G(Q)-invariant, right G(R)K-finite functions on G(A).
We normalize the Haar measure dh∞ by

∫
H(R)

dh∞ = 1. Actually, it is more

suitable for our later application to use the Haar measure dK′h =
∏
v dhv, which

gives the maximal compact subgroup H(R)K′ volume 1. We similarly define the
Haar measure dKg and choose the constants CH and CG so that

dτh = CHdK′h, dτg = CGdKg.
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We normalize the period integrals by

(Φ,Φ′)K×K′ =

∫
G(Q)\G(A)

Φ(g, h)Φ′(g, h) dKg dK′h,

PK′(Φ) =

∫
H(Q)\H(A)

Φ((h, h)) dK′h

for Φ,Φ′ ∈ A (G). We rewrite the formula in Theorem 4.2 as

PK′(Φ)PK′(Φ′)

(Φ,Φ′)K×K′
= CG

L (π × σ)

2κπ+κσ

∏
v

I(Wv,W
′
v)

L (πv × σv)〈〈Wv,W
′
v〉〉v

.

When Kq is the stabilizer of a maximal lattice, Shimura [Shi97] has explicitly com-
puted the mass

2

CG
=

∑
g∈G(Q)\G(Q̂)/K

1

](G(Q) ∩ gKg−1)
= 21−n

n∏
i=1

Lf (1− i, εiE/Q)
∏
v

λv

(see Propositions 4.4 and 4.5 of [GHY01]), where Lf (s, ε
i
E/Q) is the non-complete

Dirichlet L-series associated to the Dirichlet character εiE/Q. Observe that

(4.1) γG := π−
n(n+1)

2 CG

n∏
i=1

Lf (i, ε
i
E/Q) ∈

√
DE

a
Q×,

where DE is the absolute value of the discriminant of E, and a = 0 if n ≡ 0, 3
(mod 4) and a = 1 if n ≡ 1, 2 (mod 4). When we replace Kq by another open
compact subgroup of G(Qq), we have only to multiply λq by a rational constant.

We hereafter suppose that

(H2) HomH(R)(Π∞,C) 6= {0}.

Remark 4.3. The relation (1.1) is equivalent to (H2) by [He17, Theorem 1.1].

Namely, there are H(R)-invariant vectors WH
∞ ∈ Π∞ and WH′

∞ ∈ Π∨∞. Then

I(WH
∞,W

H′

∞ ) = 〈〈WH
∞,W

H′
∞ 〉〉∞.

It follows from (A.1) that

c∞ :=
L(1, π∞,Ad)L(1, σ∞,Ad)

L
(

1
2 , π∞ × σ∞

) π
n(n+1)

2 ∈ Q×.

Corollary 4.4. Assume that T is positive definite. Let Π be an irreducible tem-
pered cuspial automorphic representation of G(A) whose archimedean part Π∞
satisfies (H2). Let Φ = ⊗′vWv ∈ Π and Φ′ = ⊗′vW′

v ∈ Π∨ be factorizable. If
W∞ = WH

∞ and W′
∞ = WH′

∞ , then

PK′(Φ)PK′(Φ′)

(Φ,Φ′)K×K′
=

γG
2κπ+κσ

c∞
L
(

1
2 , π × σ

)
L(1, π,Ad)L(1, σ,Ad)

∏
l

I(Wl,W
′
l)

L (πl × σl)〈〈Wl,W
′
l〉〉l

.

The product in the right-hand side is taken over all rational primes l and is
actually a finite product by Theorem 2.12 of [Har14].
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4.3. Rationality of central values. We assume that tempered automorphic rep-
resentations of G(A) occur in A (G) with multiplicity one. This can be seen from
Theorems 1.7.1 and 1.6.1(6) of [KMSW]. The proofs for these theorems are still
work in progress. For n = 3 the endoscopic classification was completed for all
inner forms in [Rog90], and hence our results are unconditional at least for n = 3.

We write Aut(C) for the group of automorphisms of C. Let τ ∈ Aut(C). For
a complex representation Π of a group G on the space VΠ of Π, let τΠ be the
representation of G defined by τΠ(g) = t ◦ Π(g) ◦ t−1, where t : VΠ → VΠ is a
τ -linear isomorphism. Note that the isomorphism class of τΠ is independent of
the choice of t. Given ϕ ∈ A (G), we define τϕ ∈ A (G) by τϕ(g) = τ(ϕ(g)) for
g ∈ G(A). The representation τπ is realized in the space {τϕ | ϕ ∈ π} by the
multiplicity one for unitary groups. Similarly, τσ is an automorphic representation
of H(A).

Proposition 4.5. Suppose that every irreducible tempered automorphic represen-
tation of G(A) occurs in the decomposition of the space A (G) with multiplicity
one. Let π and σ be irreducible tempered automorphic representations of definite
unitary groups G(A) and H(A). If HomH(Qv)(πv ⊗ σv,C) 6= {0} for all v, then for
every τ ∈ Aut(C)

τ

(
L
(

1
2 , π × σ

)
√
DE

a
L(1, π,Ad)L(1, σ,Ad)

)
=

L
(

1
2 ,
τπ × τσ

)
√
DE

a
L(1, τπ,Ad)L(1, τσ,Ad)

,

where a = 0 if n ≡ 0, 3 (mod 4) and a = 1 if n ≡ 1, 2 (mod 4).

Proof. It is evident that

τ((Φ,Φ′)K×K′) = (τΦ, τΦ′)K×K′ , τ(PK′(Φ)) = PK′(
τΦ)

(cf. (2.1)). We take k and k′ so that π∞ ' Lk∨(C) and σ∞ ' Lk′∨(C). It is

easy to see that π is spanned by fv with v ∈ Lk∨(Q) and Q-rational Lk(C)-valued
modular forms f defined in Definition 2.2 (see [Gro99]). One may therefore assume
that modular forms Φ and Φ′ are Q-rational, namely, they have values in Q. Then
(Φ,Φ′)K×K′ , PK′(Φ) and PK′(Φ′) are algebraic numbers.

Given a matrix coefficient φl of Πl, we define the matrix coefficient τφl of τΠl by
τφl(gl) = τ(φl(gl)) for gl ∈ G(Ql). Put

φl(g) = 〈〈Πl(gl)Wl,W
′
l〉〉l.

Since HomH(Ql)(Πl,C) 6= {0} if and only if I is not zero on Πl ⊗Π∨l by Théorème
14.3.1 of [BP16], the assumption allows us to choose Φ = ⊗vWv and Φ′ = ⊗vW′

v

so that
I(φl) := I(Wl,W

′
l) 6= 0

for all rational primes l. If we write

(Π(g)Φ,Φ′)K×K′ = 〈〈WH
∞,W

H′
∞ 〉〉∞

∏
l

φl(gl),

then (τΠ(g)τΦ, τΦ′)K×K′ = 〈〈WH
∞,W

H′
∞ 〉〉∞

∏
l
τφl(gl) for g = (gl) ∈ G(Q̂). One can

easily show that τ(I(φl)) = I(τφl) (cf. the proofs of [Gro18, Theorem A] and [Liu,
Lemma 2.6]). Since τ(L (πl, σl)) = L (τπl,

τσl) by [Liu, Lemma 2.4], we get

τ

(
L
(

1
2 , π × σ

)
L(1, π,Ad)L(1, σ,Ad)

)
=

PK′(τΦ)PK′(τΦ′)

(τΦ, τΦ′)K×K′
c−1
∞

2κπ+κσ

τ(γG)

∏
l

L (τπl,
τσl)

τϕΠl(1)

I(τφl)
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=
γGL

(
1
2 ,
τπ × τσ

)
τ(γG)L(1, τπ,Ad)L(1, τσ,Ad)

,

applying τ to the formula in Corollary 4.4. The proof is complete by (4.1). �

4.4. An outer involution. To relate the central value to the square of the period,
we introduce an involution of automorphic forms on unitary groups. Since T has
entries in Q, we can define an outer automorphism of G by

c : g 7→ gc = T−1 tg−1T.

Take ξN = (ξN,v) ∈ G(Q̂) so that

(ξ−1
N K0(N)ξN)c = K0(N).

For a function on ϕ on G(A), we define a function ϕc : G(A)→ C by ϕc(g) = ϕ(gc).
Let π ' ⊗′vπv be an irreducible automorphic representation of G(A) such that

πq admits a Kq-invariant vector for every non-split prime q. For each split prime

l we denote the conductor of πl by c(πl) in the sense of (6.1). Let Nπ =
∏
l l
c(πl)

be the conductor of π and N =
∏
l 6=p l

c(πl) the tame conductor of π. Fix ideals Nπ

and N of r such that r/Nπ ' Z/NπZ and r/N ' Z/NZ.
Let π∨ ' ⊗′vπ∨v denote the contragredient representation of π. We define

representations πc of G(A) and πcv of G(Qv) as the twists πc(g) = π(gc) and
πcv(gv) = π(gcv) by c for g ∈ G(A) and gv ∈ G(Qv). It is well-known that π∨v ' πcv
(see [MVW87]). Since

ϕc(gh) = ϕ((gh)c) = (πc(h)ϕ)c(g),

and π∨ ' πc, we have {ϕ | ϕ ∈ π} = {ϕc | ϕ ∈ π} by the global multiplicity
one for unitary groups ([Rog90, Theorem 13.3.1]), where the automorphic form

ϕ is defined by ϕ(g) = ϕ(g). Let ϕπ = ⊗vϕv ∈ π be a highest weight essential
vector with respect to K0(Nπ), namely, ϕ∞ is a highest weight vector, ϕq is a Kq-
invariant vector for inert primes q, and ϕl is an essential vector for split primes l
(see Definition 6.1). Then π∨(ξNπ )ϕcπ ∈ π∨ is a lowest weight essential vector with
respect to K0(Nπ) up to scalar by Proposition 6.2.

Assume that Hc = H. Similarly we associate ϕc ∈ A (H), Φc ∈ A (G) and
the automorphic representation σc ' ⊗′vσcv to automorphic forms ϕ ∈ A (H),
Φ ∈ A (G) and an automorphic representation σ ' ⊗′vσv of H(A).

4.5. A factorization of the dual representation. Define the longest Weyl ele-
ment wn ∈ GLn(F ) by

w1 = 1, wn =

[
1

wn−1

]
(n ≥ 2).

Let l be a split rational prime. We view πl as a representation of GLn(Ql) via ıl.
We identify πl with its Whittaker model Wψl(π) with respect to ψl and identify

π∨l with its Whittaker model Wψ−1
l

(π∨) with respect to ψ−1
l . Let Wπl

∈ πl be

the normalized essential Whittaker vector with respect to ψl, and Wπ∨l
∈ π∨l the

normalized essential Whittaker vector with respect to ψ−1
l . For W ∈ πl we define

W c ∈ π∨l by

W c(g) = π∨l (T−1)W̃ (g) = W (wn
tg−1T ),
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where W̃ (g) = W (wn
tg−1). It is important to note that

π∨l (h)W c(g) = W c(gh) = W ((gh)c) = (πcl (h)W )c(g).

When q remains a prime in r, we fix Kq-invariant vectors Wπq ∈ πq and Wπ∨q
∈

π∨q . Fix a highest weight vector Wπ∞ ∈ π∞ and a lowest weight vector Wπ∨∞
∈ π∨∞.

Let c : πcv ' π∨v be the G(Qv)-equivariant isomorphism determined by W c
πv = Wπ∨v

for inert places v.
To apply Corollary 4.4 to Φ′ = Φc, we need explicate the factorization of Φc. Fix

isomorphisms π ' ⊗′vπv and π∨ ' ⊗′vπ∨v so that

ϕπ = ⊗′vWπv , ϕcπ = ⊗′vW c
πv .

Using this factorization π∨ ' ⊗′vπ∨v , we define a cusp form ϕπ∨ ∈ π∨ by

ϕπ∨ = ⊗′vWπ∨v
.

Lemma 4.6. If ϕ = ⊗′vWv ∈ π is factorizable and if Wv = Wπv for all non-split
places v, then ϕc = ⊗′vW c

v .

Proof. Define a finite set Sϕ = {v | Wv 6= Wπv}. For v ∈ Sϕ there are cv,i ∈ C
and gv,i ∈ G(Qv) such that

Wv = UvWπv , Uv =
∑
i

cv,iπv(g
c
v,i).

We have ϕ = ⊗v∈SϕUv · ϕπ. Put Vv =
∑
i cv,iπ

∨
v (gv,i). Then

ϕc = ⊗v∈SϕVv · ϕcπ = (⊗v∈SϕVvW c
πv )⊗ (⊗′v/∈SϕW

c
πv ).

Lemma 4.6 follows from the observation that VvW c
πv = (UvWπv )c = W c

v . �

Let σ ' ⊗′vσv be an irreducible automorphic representation of H(A) such that σq
admits K′q-invariant vector for every non-split prime q. Put N ′ =

∏
l 6=p l

c(σl). We

take an ideal N′ of r such that r/N′ ' Z/N ′Z. Define an open compact subgroup

K′0(p`N′) of H(Q̂) and take ξ′N′ ∈ H(A) in a similar way. Let ϕσ ∈ σ be a highest
weight essential vector with respect to K′0(N′). Fix the factorizations σ ' ⊗′vσv
and σ∨ ' ⊗′vσ∨v such that

ϕσ = ⊗′vWσv , ϕcσ = ⊗′vW c
σv .

Using the factorization, we define a cusp form ϕσ∨ ∈ σ∨ by ϕσ∨ = ⊗′vWσ∨v
.

For each place v we put

WΠv = Wπv ⊗Wσv ∈ Πv, WΠ∨v
= Wπ∨v

⊗Wσ∨v
∈ Π∨v

and define the G(Qv)-equivariant isomorphism c : Πc
v ' Π∨v by

(W ⊗W ′)c = W c ⊗W ′c.

Put

ΦΠ = ϕπ ⊗ ϕσ, ΦΠ∨ = ϕπ∨ ⊗ ϕσ∨ , I∞ = c∞
I(WH

∞,W
Hc
∞ )

〈〈WΠ∞ ,WΠ∨∞
〉〉∞

.

Since P(Φc) = P(Φ), one can deduce the following formula from Lemma 4.6 and
Corollary 4.4.
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Corollary 4.7. Let Π be an irreducible tempered cuspial automorphic represen-
tation of G(A) such that Πq is unramified for all non-split rational primes q and
whose archimedean part Π∞ satisfies (H2). If Φ = ⊗′vWv ∈ Π is factorizable and
W∞ = WH

∞, then

PK′(Φ)2

(ΦΠ , ΦΠ∨)K×K′
=

γG
2κπ+κσ

I∞
L
(

1
2 , π × σ

)
L(1, π,Ad)L(1, σ,Ad)

∏
l

I(Wl,W
c
l )

L (πl × σl)〈〈WΠl ,WΠ∨l
〉〉l
.

4.6. Local integrals at ∞, Σr
E and Σ−T . From now on we suppose that G and

H are definite unitary groups in three and two variables. We retain the notation
in §3.2. Proposition A.7 below gives

I∞ = (−1)k
′
1−k

′
22−2(dimπ∞)(dimσ∞).

If q /∈ Σ−T , if q and pNN ′ are coprime, and if Wq = WΠq
is spherical, then since

Wc
q = WΠ∨q

, we have

I(Wq,W
c
q) = L (πq × σq)〈〈WΠq ,WΠ∨q

〉〉q

by Theorem 2.12 of [Har14] and Proposition B.2 below (cf. Remark 5.3).
When q ∈ Σ−T , we let Wq = Wπq be a spherical spherical vector. Recall that

σq is the trivial representation of H(Qq). Put

I− =
∏
q∈Σ−T

I(Wq,W
c
q)

L (πq × σq)〈〈WΠq ,WΠ∨q
〉〉q
.

Proposition C.1 shows that

(4.2) I− =
∏

q∈Σ−T \ΣrE

L(1, εEq/Qq )
2.

Since λq is either 1
2 or 1 according as q is ramified in E or not, we have

γG = D−3
E 25+tE ,

where tE is the number of prime numbers which are ramified in E.
For each split prime l we put

Bπl = 〈Wπl
,Wπ∨l

〉l, Bσl = 〈Wσl
,Wσ∨l

〉′l,

Bπl =
ζl(3)

LGL(1, πl × π∨l )
Bπl , Bσl =

ζl(2)

LGL(1, σl × σ∨l )
Bσl

(cf. (5.3)), where Wσl
∈ σl is the normalized essential Whittaker vector with respect

to ψ−1
l , Wσ∨l

∈ σ∨l the normalized essential Whittaker vector with respect to ψl,

and the local pairings 〈 , 〉l and 〈 , 〉′l are constructed by (5.1). To avoid possible
confusion, we recall that

L(s, πl,Ad) = LGL(s, πl × π∨l ), L(s, σl,Ad) = LGL(s, σl × σ∨l ).

We regard πl and σl as representations of unitary groups in the left hand side
and representations of general linear groups in the right hand side. We denote the
Petersson pairings with respect to dKg and dK′h by ( , )K and ( , )K′ .
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Corollary 4.8. Assumption being as in Corollary 4.4, if W∞ = WH
∞ and if Wl =

WΠl
is a spherical vector unless pNN ′ is divisible by l, then

PK′(Φ)2

(ϕπ, ϕπ∨)K dimπ∞ · (ϕσ, ϕσ∨)K′ dimσ∞

=(−1)k
′
1−k

′
2

23+tE

2κπ+κσD3
E

I−
L
(

1
2 , π × σ

)
L(1, π,Ad)L(1, σ,Ad)

∏
l|pNN ′

I(Wl,W
c
l )

L (πl × σl)BπlBσl
.

4.7. An application of the splitting lemma. Fix a split rational prime l. We
regard πl and σl as representations of general linear groups via ıl and ı′l. Put
ζl(s) = (1− l−s)−1. Then the splitting lemma stated in §5.2 gives

I(Wl ⊗W ′l ,W c
l ⊗W ′cl ) = ζl(1)Z

(
1

2
, πl(ς)Wl,W

′
l

)
Z

(
1

2
, π∨l (ς)W c

l ,W
′c
l

)
,

where

ς =

1 0 0
0 0 1
0 1 0

 .
We regard H(Qp) as a subgroup of G(Qp) via the embedding ι while we use the

embedding ι′ : GL2(Qp) ↪→ GL3(Qp) defined by ι′(g) =

[
g

1

]
to define the JPSS

integral. Since ςT−1 =

[
T ′−1

1

]
ς, we have

Z

(
1

2
, π∨l (ς)W c

l ,W
′c
l

)
= Z

(
1

2
, π∨l (ςT−1)W̃l, σ

∨
l (T ′−1)W̃ ′l

)
= Z

(
1

2
, π∨l (ς)W̃l, W̃ ′l

)
= γGL

(
1

2
, πl × σl,ψl

)
Z

(
1

2
, πl(ς)Wl,W

′
l

)
by the invariance and the functional equation (5.2) of the JPSS integrals. We can
rewrite the identity above as

I(Wl ⊗W ′l ,W c
l ⊗W ′cl )

L (πl × σl)BπlBσl
=

I (Wl ⊗W ′l )
BπlBσl

,

where

I (Wl ⊗W ′l ) = γGL

(
1

2
, πl × σl,ψl

)
Z
(

1
2 , πl(ς)Wl,W

′
l

)2
L
(

1
2 , πl × σl

) .

Definition 4.9. Put

Pet(π) = 2κπL(1, π,Ad)
∏
l|pN

Bπl ; Pet(σ) = 2κσL(1, σ,Ad)
∏
l|pN ′

Bσl ,

ηϕπ = (ϕπ, ϕπ∨)K dimπ∞; ηϕσ = (ϕσ, ϕσ∨)K′ dimσ∞.

Since we can replace pN (resp. pN ′) by pNN ′ in the definition of Pet(π) (resp.
Pet(σ) by (5.3), we can rewrite Corollary 4.8 in the following way:
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Corollary 4.10. Assumption being as in Corollary 4.8, we have

PK′(Φ)2

ηϕπηϕσ
= (−1)k

′
1−k

′
2

23+tE

D3
E

I−
L
(

1
2 , π × σ

)
Pet(π)Pet(σ)

∏
l|pNN ′

I (Wl).

4.8. The local integral at a ramified split prime l. Let l 6= p be a rational
prime that is split in E. We write ωσl for the central character of σl, which is
viewed as a character of Q×l via ıl. Observe that

I (Wl ⊗W ′l ) = εGL

(
1

2
, πl × σl,ψl

)(
Z
(

1
2 , πl(ς)Wl,W

′
l

)
LGL

(
1
2 , πl × σl

) )2

.

If σl is unramified, then Théoremè on p. 208 of [JPSS81] gives

(4.3) Z(s,Wπl
,Wσl) = LGL(s, πl × σl).

Put ςl = ı−1
l (ς). We see that

I (πl(ςl)Wπl
⊗Wσl

) = εGL

(
1

2
, πl × σl,ψl

)
=: fπl,σl .

If σl is ramified, then we put fl = c(ωσl) and define UωσlWπl ∈ Wψl(πl) by

UωσlWπl =
∑

i,j∈(Zl/lflZl)×

∑
y∈Zl/l2flZl

ωσl(ij)πl

1 i
lfl

y
l2fl

0 1 j
lfl

0 0 1

Wπl ,

U
ωσl
N′ Wπl = πl(ι

′(ξ′N′,lw2))UωσlWπl .

Proposition 6.8 below shows that if c(σl) ≤ 2c(ωσl), then

Z(s,U
ωσl
N′ Wπl

,Wσl) =
l3c(ωσl )ωσl(l)

2c(ωσl )ε
(

1
2 , σl,ψl

)
ε
(

1
2 , ωσl ,ψl

)2
[GL2(Zl) : K(2)

0 (l2c(ωσl )Zl)]
.

Put

fπl,σl = εGL

(
1

2
, πl × σl,ψl

)
l6c(ωσl )ωσl(l)

4c(ωσl )ε
(

1
2 , σl,ψl

)2
ε
(

1
2 , ωσl ,ψl

)4
LGL

(
1
2 , πl × σl

)2 .
It follows that

(4.4) I (πl(ςl)U
ωσl
N′ Wπl

,Wσl) =
fπl,σl

[GL2(Zl) : K(2)
0 (l2c(ωσl )Zl)]2

.

4.9. The local integral at p and the modified p-factor. Assume that π and
σ are an irreducible p-ordinary automorphic representations with respect to ιp,
namely, πp is the irreducible generic constituent of a principal series I(νp, ρp, µp),
and σp is the irreducible generic constituent of I(µ′p, ν

′
p), where νp, ρp, µp; µ

′
p, ν

′
p

are Q×-valued smooth characters of Q×p , such that

p−k3−1νp(p), p−k2ρp(p), p−k1+1µp(p); p−k
′
2− 1

2µ′p(p), p−k
′
1+ 1

2 ν′p(p)

are p-units with respect to ιp.

Definition 4.11. Define the modified p-factor E(πp, σp) by

E(πp, σp)
−1 =L

(
1

2
, πp × σp

)
γ

(
1

2
, µpν

′
p,ψp

)
γ

(
1

2
, ρpν

′
p,ψp

)
γ

(
1

2
, µpµ

′
p,ψp

)
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× γ
(

1

2
, (νpν

′
p)
−1,ψ−1

p

)
γ

(
1

2
, (ρpµ

′
p)
−1,ψ−1

p

)
γ

(
1

2
, (νpµ

′
p)
−1,ψ−1

p

)
.

Let W ord
πp ∈ πp and W ord

σp ∈ σp the normalized p-ordinary Whittaker functions

in (5.5). These are eigenvectors of the Up-operators with specified eigenvalues (see
Proposition 5.4, Remarks 2.5 and 2.9 below). Put

απp = p2ρp(p)µp(p)
2, ασp = p1/2ν′p(p).

Then

UpW
ord
πp = απpW

ord
πp , UpW

ord
σp = ασpW

ord
σp

by Proposition 5.4. Define an element t` ∈ G(Qp) by

t` = ı−1
p

 0 0 −p−`
0 p` 1
p2` p` 0

 .

If ` is sufficiently large, then Proposition 5.10 below gives(
ζp(1)

ζp(2)(p−5απpασp)`

)2

I (πp(t`)W
ord
πp ⊗W

ord
σp )(4.5)

=
γGL

(
1
2 , πp × σp,ψp

)
L
(

1
2 , πp × σp

)(
γ
(

1
2 , µpν

′
p,ψp

)
γ
(

1
2 , ρpν

′
p,ψp

)
γ
(

1
2 , µpµ

′
p,ψp

))2
=

γ
(

1
2 , νpν

′
p,ψp

)
γ
(

1
2 , ρpµ

′
p,ψp

)
γ
(

1
2 , νpµ

′
p,ψp

)
L
(

1
2 , πp × σp

)
γ
(

1
2 , µpν

′
p,ψp

)
γ
(

1
2 , ρpν

′
p,ψp

)
γ
(

1
2 , µpµ

′
p,ψp

)
=(ρpν

′
p)(−1)E(πp, σp)

in view of the multiplicativity and functional equation of the gamma factor.

4.10. An explicit central value formula. We say that an irreducible represen-
tation of G(Qq) (resp. H(Qq)) is unramified if it admits a non-zero Kq (resp. K′q)
invariant vector. Let π ' ⊗′vπv be an irreducible tempered automorphic represen-
tation of G(A) and σ ' ⊗′vσv that of H(A) satisfying the following conditions:

(H0) if q ∈ Σ−T , then q is odd and σq is the trivial representation;
(H1) πq is unramified for every non-split rational prime q;

σq is unramified for every non-split rational prime q /∈ Σ−T ;
(H2) π∞ and σ∞ are discrete series such that

HomH(R)(π∞ ⊗ σ∞,C) 6= {0};
(H3) c(σl) ≤ 2c(ωσl) for every split rational prime l 6= p;
(H4) πp is a generic constituent of a principal series I(νp, ρp, µp);

σp is a generic constituent of a principal series I(µ′p, ν
′
p).

Recall that N =
∏
l 6=p l

c(πl) and N ′ =
∏
l 6=p l

c(σl), where we set c(πl) = c(σl) = 0

for non-split rational primes l. Put M =
∏
l|N ′ l

c(ωσl ). Take a divisor M of N′ such

that r/M ' Z/MZ. Let Φ† ∈ Π be an ordinary H(R)-invariant essential vector.
Define Uωσ

N′Φ
† ∈ Π by

Uωσ
N′Φ

† = WH
∞ ⊗

(
W ord
πp ⊗W

ord
σp

)
⊗
(
⊗q-pN ′WΠq

)
⊗
(
⊗l|N ′U

ωσl
N′ Wπl ⊗Wσl

)
.

Recall the element ς(p) ∈ G(Q̂) defined in §3.1. We combine Corollary 4.10 and
(4.4), (4.5) to obtain the following formula.
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Proposition 4.12. Notations and assumptions being as above, if ` is sufficiently
large, then

1

ηϕπηϕσ

(
ζp(1)

ζp(2)
[K′ : K′0(M2)]

PK′(π(t`ς
(p))Uωσ

N′Φ
†)

(p−5απpασp)`

)2

=
L
(

1
2 , π × σ

)
Pet(π)Pet(σ)

(−1)k
′
1−k

′
2(ρpν

′
p)(−1)E(πp, σp)

23+tE

D3
E

I−
∏
l|NN ′

fπl,σl .

4.11. Statement of the main result.

Definition 4.13 (p-modified period). Let f ∈ eordSU(n)(N, χ,R) be a Hida family.
Letting µ1, µ2, . . . , µn be chosen for πQ as in Definition 2.3, we define the modified

adjoint p-factor E(πQ,p,Ad) = E(πQ,p,Ad,ψp) as in Definition 6.5 for Q ∈ X+
R.

The subset Yf consists of Q ∈ X′f such that Q(f) is new outside p. For Q ∈ Yf
we define the p-modified period by

Ω†Q(f) = [K : K0(NπQ)]Pet(πQ)E(πQ,p,Ad)

= [K : K0(NπQ)]2
κπQL(1,πQ,Ad)E(πQ,p,Ad)

∏
l|pN

BπQ,l ,

and define the Gross period by

ΩQ(f) =
Ω†Q(f)

Q(ηf )
.

Let

f ∈ eordSG(N, χ,R); g ∈ eordSH(N′, χ′,R′)
be Hida families. For Q ∈ X′f and Q′ ∈ X′g, let πQ and σQ′ be the automorphic

representations of G(A) and H(A) associated with Q(f) and Q′(g) respectively.
Choose νp, ρp, µp; µ

′
p, ν

′
p for πQ,p and σQ′,p as in §4.9. We define the modified

p-factor by

E(Fil+VQ) = E(πQ,p,σQ,p).

Theorem 4.14. Assume that q is odd whenever H(Qq) is compact. Let M be the
conductor of χ′. Suppose that

(H ′3) M2 is divisible by N ′.

Then there exists a unique element Lf ,g ∈ Frac(R⊗̂OR′) such that

Q(Lf ,g)2 =
Γ(0,VQ)L(0,VQ)

ΩQ(f)ΩQ′(g)
E(Fil+VQ)

for Q = (Q,Q′) ∈ Xcrit
V ∩ (Yf ×Yg).

Remark 4.15. The denominator of Lf ,g is simply a product of explicit local L-

factors. For each prime factor l of N ′ let Pπl,σl ∈ R⊗̂R′ be an element such that

Q(Pπl,σl) = LGL
(

1
2 ,πQ,l × σQ′,l

)−1
for Q = (Q,Q′) ∈ X+

R × X+
R′ . It follows from

the definition (4.6) that

Lf ,g ·
∏
l|N ′

Pπl,σl ∈ R⊗̂R′.
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4.12. Proof of Theorem 1.1. This subsection supposes that NN ′ is odd. Let
M be an odd integer divisibly only by split primes. Fix a primitive character %
of (r/M)× such that χ′%−2 has conductor M . We extend % to an automorphic
character %A =

∏
v %v of U(1)(A).

Since Q′(g) has tame level N′ for Q′ ∈ X+
R′ , there exists a positive integer A

such that if m ≥ A and M is divisible by N ′m, then σQ′ ⊗ %A has tame conductor

M2 (cf. Remark 6.9 and (6.1)) and (σQ′,l ⊗ %l)u is trivial for all prime factors l of

N ′ and Q′ ∈ X+
R′ . We enlarge M so that πQ ⊗ %

−1
A has tame conductor M3 and

(πQ,l ⊗ %
−1
l )u is trivial for all prime factors l of N and Q ∈ X+

R.

Fix (Q
0
, Q′

0
) ∈ Xcrit

V . Let

f% ∈ eordSGkQ
0
(p`QM3,R, χ%3), g% ∈ eordSHkQ′0

(p
`Q′M2,R′, χ′%−2)

be p-ordinary newforms associated to πQ
0
⊗%−1

A and σQ′
0
⊗%A. Theorem 2.13 allows

us to lift f% and g% to Hida families

f% ∈ eordSG(M3,R, χ%3), g% ∈ eordSH(M2,R′, χ′%−2).

For our choice of % we see that g% satisfies (H ′3), and

Yf% = Xf% , Ω†Q(f%) = [K0(N) : K0(M3)]Ω(NN ′)(VQ(f)),

Yg% = Xg% , Ω†Q′(g%) = [K′0(N′) : K′0(M2)]Ω(NN ′)(VQ′(g)).

Theorem 4.14 applied to f% and g% shows that

Q(Lf%,g%)
2 =

Γ(0,VQ)L(0,VQ)

ΩQ(f%)ΩQ′(g%)
E(Fil+VQ)

for Q = (Q,Q′) ∈ Xcrit
V ∩ (Xf% × Xg%). Therefore

Lp(V) = [K0(N) : K0(M3)][K′0(N′) : K′0(M2)]
L 2
f%,g%

ηf%ηg%
∈ Frac(R⊗̂OR′).

satisfies the interpolation formula in Theorem 1.1 for Q0 ∈ Xcrit
V ∩ (Xf% × Xg%).

Since this interpolation formula determines Lp(V), it holds for all Q ∈ Xcrit
V .

4.13. Proof of Theorem 4.14. Recall the theta element ΘF defined in §1.7.

Proposition 4.16. Notations and assumptions being as in Theorem 4.14, we have

ζp(1)4Q(ΘF )2 =
L
(

1
2 ,πQ × σQ′

)
ΩQ(f)ΩQ′(g)

E(Fil+VQ)χ′(−1)
23+tED2

T

D3
E

∏
l|NN ′

fπQ,l,σQ′,l

for Q = (Q,Q′) ∈ Xcrit
f ,g, where DT =

∏
q∈Σ−T \ΣrE

q.

Proof. Let π = πQ and σ = σQ′ . Hypotheses (H0) and (H1) hold by (splt), (H2)

holds by Remark 4.3, and (H4) holds by [Ger19, Lemma 5.4]. Thanks to Remark
1.2(2), we can apply Proposition 4.12 to Q(f) and Q′(g). If ` is sufficiently large,
then Proposition 3.4 yields

ζp(1)4Q(ΘF )2 =

(
ζp(1)

ζp(2)
[K′ : K′0(M2)]

PK′(π(t`ς
(p))ΦF )

(p−5απpασp)`

)2 ∏
q∈Σ−T \ΣrE

(q + 1)
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= ηϕπηϕσ
L
(

1
2 , π × σ

)
Pet(π)Pet(σ)

(−1)k
′
1−k

′
2(ρpν

′
p)(−1)E(πp, σp)

23+tEI−D
2
T

∏
l|NN ′ fπl,σl

D3
E

∏
q∈Σ−T \ΣrE

L(1, εEq/Qq )
2
.

We can let the stabilization of ϕπ be fvkQ . Then Proposition 2.22, Remark 2.6 and

Corollary 6.6 below give

Q(ηf )

ηϕπ
=

[K : K0(p`N)]α−`πp (τp`NfvkQ , fvkQ )K

(ϕπ, ϕ
∨
π )K

=
[K : K0(p`N)]α−`πpB

[`]

πord
p

Bπp
= [K : K0(Nπ)]E(πp,Ad)ρp(−1)

Since 1 = ωσ(−1) = (−1)
kQ′1
−kQ′2 (µ′pν

′
p)(−1)χ′(−1), we have

Q′(ηg)

ηϕσ
= [K′ : K′0(Nσ)]E(σp,Ad)µ′p(−1)

= [K′ : K′0(Nσ)]E(σp,Ad)ν′p(−1)χ′(−1)(−1)
kQ′1
−kQ′2 .

The stated interpolation formula follows from (4.2). �

Lemma 4.17. For each prime factor l of NN ′ there is an element
√
fπl,σl ∈ R⊗̂R′

such that for Q = (Q,Q′) ∈ Xcrit
V

Q(
√

fπl,σl)
2 = fπQ,l,σQ′,l .

Proof. We denote the l-primary part of χ′ by χ′l. Recall that if l|N ′, then

fπQ,l,σQ′,l =
l6c(χ

′
l)χ′l(l)

−4c(χ′l)ε
(

1
2 ,σQ′,l,ψl

)2
ε
(

1
2 , χ
−1
l ,ψl

)4
LGL

(
1
2 ,πQ,l × σQ′,l

)2 εGL

(
1

2
,πQ,l × σQ′,l,ψl

)
.

If l - N ′, then fπQ,l,σQ′,l = εGL
(

1
2 ,πQ,l × σQ′,l,ψl

)
. One can construct elements

εσl , επl,σl ∈ (R⊗̂R′)× and Pπl,σl ∈ R⊗̂R′ such that

Q(εσl) = ε

(
1

2
,σQ′,l,ψl

)
, Q(επl,σl) = εGL

(
1

2
,πQ,l × σQ′,l,ψl

)
,

Q(Pπl,σl) =
1

LGL
(

1
2 ,πQ,l × σQ′,l

)
for Q = (Q,Q′) ∈ Xcrit

V as in the proof of Proposition 6.11 of [Hsi21]. �

Define the fudge factor
√
fπ,σ ∈ R⊗̂R′ by√

fπ,σ =
∏
l|NN ′

√
fπl,σl .

We can prove Theorem 1.1 by defining the theta element Lf ,g ∈ Frac(R⊗̂R′)
attached to f and g by

(4.6) Lf ,g =
ζp(1)2DE

√
χ′(−1)DE

2
3+tE

2 DT

√
fπ,σ

ΘF

in view of Proposition 4.16.
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5. The calculation of the local zeta integral at the p-adic case

5.1. The JPSS integrals. Let F be a finite extension of Qp which contains the
integer ring o having a single prime ideal p. We denote the order of the residue
field o/p by q. The absolute value αF = | · | on F is normalized via |$| = q−1 for
any generator $ of p, where q denotes the order of the residue field o/p.

Let Bn = TnNn be the Borel subgroup of GLn, where Tn is the group of diagonal
matrices in GLn(F ) and Nn is the group of upper triangular unipotent matrices in
GLn(F ). Let wn be the longest Weyl element in GLn(F ).

Fix an additive character ψ : F → C× which is trivial on o and non-trivial on
p−1. We write S(F ) for the space of locally constant compactly supported functions
on F . The Fourier transform of φ ∈ S(F ) is defined by

φ̂(y) =

∫
F

φ(x)ψ(−xy) dx.

The measure dx is chosen so that
̂̂
φ(x) = φ(−x).

Let π be an irreducible admissible generic representation of GLm+1(F ). We write
Wψ(π) for the Whittaker model of π with respect to an arbitrarily fixed additive
character ψ of F . One can define an invariant perfect pairing

〈 , 〉 : Wψ(π)⊗Wψ−1(π∨)→ C

by

(5.1) 〈W1,W2〉 =

∫
Nm\GLm(F )

W1

([
g

1

])
W2

([
g

1

])
dg.

where dg be the Haar measure on GLm(F ) giving GLm(o) volume 1. Given W ∈
Wψ(π), we define W̃ ∈ Wψ−1(π∨) by

W̃ (g) = W (wm+1
tg−1).

Let n be a positive integer which is equal or less than m. Put l = m−n. Let σ be
an irreducible admissible generic representation of GLn(F ) whose central character
is ωσ. We associate to Whittaker functions W ∈ Wψ(π) and W ′ ∈ Wψ−1(σ) the
local zeta integrals

Z(s,W,W ′) =

∫
Nn\GLn(F )

W

([
h

1l+1

])
W ′(h)|deth|s−

l+1
2 dh,

Z̃(s, W̃ , W̃ ′) =

∫
Nn\GLn(F )

∫
Ml,n(F )

W̃

hx 1l
1

 W̃ ′(h)|deth|s−
l+1
2 dxdh,

which converge absolutely for <s � 0, where dh is the Haar measure on GLn(F )
giving GLn(o) volume 1.

We write LGL(s, π×σ), εGL(s, π×σ,ψ) and γGL(s, π×σ,ψ) for the L, epsilon and
gamma factors associated to π and σ. These local factors are studied extensively
in [JPSS83]. The gamma factor is defined as the proportionality constant of the
functional equation

(5.2) Z(1− s, π∨(wm+1,n)W̃ , W̃ ′) = ωσ(−1)mγGL(s, π × σ,ψ)Z̃(s,W,W ′)
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(see Theorem in §2.7 of [JPSS83]), where

wm+1,n =

[
1n

wm−n+1

]
.

Remark 5.1. When we view π and σ are representations of unitary groups over the
split quadratic algebra F ⊕ F ,

L(s, π × σ) = LGL(s, π × σ)LGL(s, π∨ × σ∨).

When n = 1 and χ is a character of F×, we will write

L(s, π ⊗ χ) = LGL(s, π × χ),

ε(s, π ⊗ χ,ψ) = εGL(s, π × χ,ψ),

γ(s, π ⊗ χ,ψ) = γGL(s, π × χ,ψ).

These local factors are studied extensively also in [GJ72].

5.2. The splitting lemma. Let π and σ be irreducible admissible tempered rep-
resentations of GLm+1(F ) and GLm(F ) respectively. We consider the integral

J(W1,W2,W
′
1,W

′
2) =

∫
GLm(F )

〈
π

([
h

1

])
W1,W2

〉
〈σ(h)W ′1,W

′
2〉′ dh,

which is convergent for

W1 ∈ Wψ(π), W2 ∈ Wψ−1(π∨), W ′1 ∈ Wψ−1(σ), W ′2 ∈ Wψ(σ∨).

The following result is called a splitting lemma and was proved by Wei Zhang in
Proposition 4.10 of [Zha14] by using the work of Lapid and Mao [LM14]. It is worth
noting that Proposition 4.10 of [Zha14] uses unnormalized local Haar measures (cf.
§2.1 of [Zha14]) while we here use normalized ones.

Lemma 5.2. Notation being as above, we have

J(W1,W2,W
′
1,W

′
2) = Z

(
1

2
,W1,W

′
1

)
Z

(
1

2
,W2,W

′
2

)m−1∏
i=1

ζF (i).

Remark 5.3. (1) Assume that π and σ are unramified and that ψ is trivial
on o but non-trivial on p−1. Let Wπ ∈ Wψ(π) be the normalized essential
vector defined by Wπ(k) = 1 for k ∈ GLm+1(o). Define Wπ∨ , Wσ and Wσ∨

similarly. Then

Z(s,Wπ,Wσ) = LGL(s, π × σ),

〈Wπ,Wπ∨〉 =
LGL(1, π × π∨)

ζF (m+ 1)
.(5.3)

by [Zha14, (3.3)]. Lemma 5.2 reproves the formula

J(Wπ,Wπ∨ ,Wσ,Wσ∨)

〈Wπ,Wπ∨〉〈Wσ,Wσ∨〉′
=

L
(

1
2 , π × σ

)∏m+1
i=1 ζF (i)

LGL(1, π × π∨)LGL(1, σ × σ∨)

(cf. Remark 5.1), which was proved in Theorem 2.12 of [Har14].
(2) Proposition 5.1 of [Hsi21] is a triple product analogue of this lemma (cf.

Proposition 3.8 of [CH18]).
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5.3. Ordinary vectors of representations of GLn(F ). We write IS for the
characteristic function of a subset S. For a compact subgroup Γ of GLn(F ) and a
representation (π, V ) of GLn(F ) we let

V Γ = {v ∈ V | π(γ)v = v for γ ∈ Γ}

be the space of Γ-invariant vectors in V .
Let µ1, µ2, . . . , µn be characters of F×. The space V of π = I(µ1, µ2, . . . , µn)

consists of functions h : GLn(F )→ C which satisfy

h(tug) = h(g)℘n(t)1/2
n∏
i=1

µi(ti), ℘n(t) =

n∏
i=1

|ti|n+1−2i

for t = diag[t1, t2, . . . , tn] ∈ Tn, u ∈ Nn and g ∈ GLn(F ).
We define a function hord on BnwnNn by

hord
π (tuwnv) = INn(v)℘n(t)1/2

n∏
i=1

µi(ti)

for t = diag[t1, t2, . . . , tn] ∈ Tn and u, v ∈ Nn, where INn
denotes the characteristic

function of Nn = Nn ∩ GLn(o). Since BnwnNn is the cell of the longest Weyl
element wn in the Bruhat decomposition of GLn(F ), we can extend hord

π by zero to
an element of V (cf. [Car79, (B), p. 138]), which we call an ordinary vector. Define
the operator Up on V Nn by

Uph =
∑

u=(ui,j)∈Nn

ui,j∈o/pj−i for i<j

π(uDn,$)h,

where

Dn,$ =


$n−1 0 . . . 0 0

0 $n−2 . . . 0 0
...

...
. . .

...
...

0 0 . . . $ 0
0 0 . . . 0 1

 .

Proposition 5.4.

Uph
ord
π = hord

π

n∏
i=1

(
µi($)qi−

n+1
2

)i−1

.

Proof. Let g ∈ GLn(F ) be such that [Uph
ord
π ](g) 6= 0. There exists u ∈ Nn such that

hord
π (guDn,$) 6= 0. We have guDn,$ ∈ BnwnNn. Since Dn,$NnD

−1
n,$ ⊂ Nn, we

get g ∈ BnwnNn. By the characterization of hord
π we see that hord

π is an eigenvector
of Up with eigenvalue [Uph

ord
π ](wn). By definition we know that [Uph

ord
π ](wn) equals∑

ui,j∈o/pj−i
hord
π (wnuDn,$) = hord

π (wnDn,$),

from which we obtain the formula for the eigenvalue. �
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5.4. An inductive property. Fix an additive character ψ of F which is trivial
on o but non-trivial on p−1. Define the additive character of Nn by

ψ(u) = ψ(u1,2 + u2,3 + · · ·+ un−1,n)

for u = (ui,j) ∈ Nn. For an irreducible admissible generic representation σ of
GLn(F ) we write Wψ(σ) for the Whittaker model of σ with respect to ψ.

Let π be the irreducible generic constituent of I(µ1, µ2, . . . , µn). For h ∈ V we
define Wψ(h) ∈ Wψ(π) by

(5.4) Wψ(g, h) =

∫
Nn

h(wnug)ψ(u) du

for g ∈ GLn(F ). Put

(5.5) W ord
π = Wψ(hord

π ), en−1 = (0, 0, . . . , 0, 1) ∈ Fn−1.

Define Jn(y) = Ion( ty) for column vectors y. Let π′ be the irreducible generic
constituent of I(µ2, µ3, . . . , µn) and π′′ that of I(µ1, µ2, . . . , µn−1).

Lemma 5.5. If n ≥ 2, then for g ∈ GLn−1(F )

W ord
π

([
g

1

])
= |det g| 12W ord

π′ (g)Jn−1(en−1g),

W ord
π

([
1

g

])
= |det g|− 1

2W ord
π′′ (g)Jn−1(en−1wn−1

tg−1).

Proof. Put

w(n−1,1) =

[
1

1n−1

]
, u(x) =

[
1n−1 x

1

]
for x ∈ Fn−1. Since[

1
bwn−1v

]
w(n−1,1)u(y) =

[
1

b

]
wn

[
v vy

1

]
for b ∈ Bn−1 and v ∈ Nn−1, the section hord

π satisfies

hord
π

([
1

g

]
w(n−1,1)u(y)

)
= |det g|− 1

2hord
π′ (g)Ion−1(y)

for g ∈ GLn−1(F ) and y ∈ Fn−1. Since

wn

[
u

1

]
u(y)

[
g

1

]
=

[
1

wn−1ug

]
w(n−1,1)u(g−1y)

for u ∈ Nn−1 and y ∈ Fn−1 and since d(gy) = |det g| dy, we get

Wψ

([
g

1

]
, hord
π

)
=

∫
Fn−1

∫
Nn−1

hord
π

(
wn

[
u

1

]
u(y)

[
g

1

])
ψ(u)ψ(yn−1) dydu

=

∫
Fn−1

∫
Nn−1

hord
π′ (wn−1ug)

|det g| 12
Ion−1(g−1y)ψ(u)ψ(en−1y) dudy

=|det g| 12
∫
Nn−1

hord
π′ (wn−1ug)ψ(u) du

∫
Fn−1

Ion−1(y)ψ(en−1gy) dy

=|det g| 12Wψ

(
g, hord

π′
)
Ion−1( tg ten−1)
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as claimed. The second formula can be proved in the same way. �

5.5. The pairing. Let σ be an irreducible admissible generic unitary represen-

tation of GLn(F ). Given W ∈ Wψ(σ), we define W̃ ∈ Wψ−1(σ∨) by W̃ (g) =

W (wn
tg−1). Let π be an irreducible generic unitary constituent of I(µ1, µ2, . . . , µn).

Put

απ= q
n(n2−1)

12

n∏
i=1

µi(p)
i−1,

I(n)
0 (p`) = {(gij) ∈ GLn(o) | gij ∈ p`(i−j) for i > j},

B[`]

πord =
ζF (n)

LGL(1, π × π∨)
〈W ord

π , π∨(D−`n,$)W̃ ord
π 〉.

The following formula generalizes Lemma 2.8 of [Hsi21].

Proposition 5.6. If π is unitary and ` is sufficiently large, then

B[`]

πord =
ζF (1)n

LGL(1, π × π∨)
· α`π

[GLn(o) : I
(n)
0 (p`)]

∏
i<j

µi(−1)

γ(1, µ−1
i µj ,ψ)

.

The proof of Proposition 5.6 consists of several steps. Let B−n = wnBnw
−1
n be

the group of lower triangular matrices in GLn(F ). We denote the unipotent radical
of B−n by N−n . Since there is nothing to prove if n = 1, we suppose that n ≥ 2. Put

m = n− 1, ∆m = $−`D−`m,$, γm =

m∏
i=1

ζF (i)

ζF (1)
.

Lemma 5.7. Let W ∈ Wψ(σ) and b ∈ B−m. If ` is sufficiently large, then W

([
b∆m

1

])
=

0 unless t(emb) ∈ om.

Proof. We write

b =

[
g
ty t

]
=

[
g

t

] [
1m−1

t−1 ty 1

]
,

where g has size m− 1. Notice that emb = ( ty, t). Since 1m−1

t−1 ty 1
1

 1m
x
z
1

 =

 1m
x

z +
tyx
t

1

 1m−1

t−1 ty 1
1


for x, y ∈ Fm−1 and z ∈ F , we have

W

[b∆m

1

] 1m ∆−1
m

(
x
z

)
1

 = ψ(tz + tyx)W

([
b∆m

1

])
.

If ` is sufficiently large, then the left hand side is W

([
b∆m

1

])
for all x ∈ om−1

and z ∈ o, which implies that ty ∈ om−1 and t ∈ o. �

Lemma 5.8. If ` is sufficiently large, then B
[`]

πord = γm lim
s→0

Fπ(s), where

Fπ(s) =

∫
N−m

∫
Tm

W̃ ord
π

([
vt∆m

1

]) m∏
i=1

µn+1−i(ti)|ti|s+1+m
2 −i dtdv.
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Proof. Put W = W̃ ord
π . We define the function Bπ(s) by the integral

Bπ(s) =

∫
Nm\GLm(F )

|det g|sW ord
π

([
g

1

])
W

([
g∆m

1

])
dg

for <s� 0. Then B
[`]

πord = lim
s→0

Bπ(s). We write

Bπ(s) =

∫
Nm\GLm(F )

|det g|s+ 1
2W ord

π′ (g)Jm(emg)W

([
g∆m

1

])
dg

=

∫
GLm(F )

|det g|s+ 1
2hord

π′ (wmg)Jm(emg)W

([
g∆m

1

])
dg,

using Lemma 5.5 and substituting the integral expression (5.4) of W ord
π′ .

Since [GLm(o) : Im] = qm(m−1)/2γ−1
m , where Im is the Iwahori subgroup of

GLm(o), we see the following integral formula from (2) on p. 240 of [Wal03]:

(5.6)

∫
GLm(F )

F(g) dg = γm

∫
N−m

∫
Tm

∫
Nm

F(vtu)℘m(t) dudtdv

for an integrable function F on GLm(F ). It follows that

Bπ(s)

γm
=

∫
N−m

∫
Tm

|det t|s+ 1
2hord

π′ (wmt)Jm(emvt)W

([
vt∆m

1

])
℘m(t)dtdv.

The right hand side coincides with F (s) by Lemma 5.7. �

Lemma 5.9. If n ≥ 2, then

Fπ(s) = q−(n−1)`
(
s+n

4

)
µn($`)n−1ζF (s+ 1)Fπ′′(s)

n−1∏
i=1

µi(−1)

γ(s+ 1, µ−1
i µn,ψ)

.

Here we understand that Fπ′′(s) = 1 when n = 2.

Proof. By the definition of the JPSS integral we have

Fπ(s) =

∫
N−m−1

∫
Tm−1

Z̃(s+ 1,Wv′t′ , µn)

m∏
i=2

µn+1−i(ti)|ti|s+1+m
2 −i dt′dv′,

where t′ = diag[t2, . . . , tn], and Wb′ ∈ Wψ−1(π∨) is defined by

Wb′(g) = W̃ ord
π

g
 1

b′

1

D−`n,$


for b′ ∈ B−m−1. The functional equation (5.2) gives

Z̃(s+ 1,Wb′ , µn) = µn(−1)m
Z(−s, π(wn,1)W̃b′ , µ

−1
n )

γ(s+ 1, π∨ ⊗ µn,ψ
−1)

.

Since

π(wn,1)W̃b′

([
a

1m

])
=Wb′

(
wn

[
a−1

wm

])
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=W̃ ord
π

wn [a−1

wm

] 1
b′

1

D−`n,$


=W ord
π

[a
wm

] 1
tb′−1

1

D`
n,$


=W ord

π

 a$m`

wm
t

[
b′

1

]−1

D`
m,$


=µn(a$m`)

∣∣∣∣ (a$m`)m det b′

detD`
m,$

∣∣∣∣ 1
2

W̃ ord
π′′

([
b′∆m−1

1

])
Io(a$m`)

by Lemma 5.5, we have

Z(−s, π(wn,1)W̃b′ , µ
−1
n )

=

∫
F×

µn($m`)

∣∣∣∣ (a$m`)m det b′

detD`
m,$

∣∣∣∣ 1
2

W̃ ord
π′′

([
b′∆m−1

1

])
Io(a$m`)|a|−s−m2 da

=µn($m`)q−m`
(
s+m+1

4

)
|det b′| 12 W̃ ord

π′′

([
b′∆m−1

1

])
ζF (−s).

We therefore get

Z̃(s+ 1,Wb′ , µn) =
µn(−ω`)m

qm`
(
s+m+1

4

) |det b′| 12
W̃ ord
π′′

([
b′∆m−1

1

])
∏m
i=1 γ(s+ 1, µ−1

i µn,ψ
−1)

ζF (s+ 1)

by the multiplicativity of the gamma factor. Substituting this expression, we get
the inductive formula for Fπ(s). �

We are now ready to prove Proposition 5.6. We have

Fπ(s) =
ζF (s+ 1)n−1

q
n(n−1)`

2

(
s+n+1

3

)α`π∏
i<j

µi(−1)

γ(s+ 1, µ−1
i µj ,ψ)

,

applying Lemma 5.9 inductively. Since

[GLn(o) : I
(n)
0 (p`)] = q

n(n2−1)
6 `γ−1

n ,

we immediately deduce the declared formula from Lemma 5.8. �

5.6. The JPSS zeta integral. Let π be an irreducible unitary generic constituent
of the principal series I(ν, ρ, µ) and σ that of I(µ′, ν′). The matrix ς is defined in
§3.1.

Proposition 5.10. Put

W ord
π = Wψ(hord

π ), W ord
σ = Wψ−1(hord

σ ), t` =

 0 0 −$−`
0 $` 1
$2` $` 0

 .
If ` is sufficiently large, then

Z

(
1

2
, π(ςt`)W

ord
π ,W ord

σ

)
=

±ζF (2)(q−5/2ρ($)µ($)2ν′($))`

ζF (1)γ
(

1
2 , µν

′,ψ
)
γ
(

1
2 , ρν

′,ψ
)
γ
(

1
2 , µµ

′,ψ
) .
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The proof of Proposition 5.10 relies on the following lemmas.

Lemma 5.11. Put

Wb = π

 1
1

b

 t`

W ord
π .

If ` is sufficiently large, then

Z(s, π(ςt`)W
ord
π ,W ord

σ ) =

ζF (2)
ζF (1)

γ(s, π ⊗ ν′,ψ)

∫
F×

Z(1− s, W̃b, ν
′−1)µ′(b)|b|s−1 db.

Proof. Put W = π(t`)W
ord
π . We get

Z(s, π(ς)W,W ord
σ ) =

∫
GL2(F )

W

([
g

1

]
ς

)
hord
σ

([
0 1
1 0

]
g

)
|det g|s− 1

2 dg,

substituting the integral expression (5.4) of W ord
σ . Put u(y) =

[
1 y
0 1

]
for y ∈ F .

Then ζF (1)
ζF (2)Z(s, π(ς)W,W ord

σ ) equals

∫
F×2×F 2

W

[ax b

]
u(y)

1

 ς
∣∣∣∣ ba

∣∣∣∣1/2µ′(b)ν′(a)Io(y)|ab|s− 1
2 dy

dxdadb

|b|

by the integration formula (5.6). Since

ς−1

[
u(y)

1

]
ςt` =

1 0 y
0 1 0
0 0 1

 t` = t`

1−$`y −y 0
$2`y 1 +$`y 0
−$3`y −$2`y 1

 ,
if ` is sufficiently large, then π

(
ς−1

[
u(y)

1

]
ς

)
W = W for y ∈ o. We get

ζF (1)

ζF (2)
Z(s, π(ς)W,W ord

σ )

=

∫
F×2×F

W

 a
x b

1

 ς
µ′(b)ν′(a)|ab|s−1 dxdadb

=

∫
F×

Z̃(s, π(ς)Wb, ν
′)µ′(b)|b|s−1db,

where

Wb = π

ς
 1

b
1

 ς
W = π

 1
1

b

 t`

W ord
π .

The stated formula follows from the functional equation (5.2)

Z̃(s, π(ς)Wb, ν
′) = γ(s, π ⊗ ν′,ψ)−1Z(1− s, W̃b, ν

′−1).

We here follow the convention in Remark 5.1. �

Now we need the following formula:
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Lemma 5.12. Put Φ = I1+p` . Then for a, b ∈ F×

W̃b

([
a

12

])
= ρ($`)µ(b$2`)|b|Φ̂(−b) |a$

`|Φ̂(a$`)

ν(−a$`)
.

Proof. Observe that

W̃b(g) = Wb(w3
tg−1) = W ord

π

w3
tg−1

 1
1

b

 t`

 .

It follows that

W̃b

([
a

12

])
=W ord

π

w3

 a−1

1
b

 0 0 −$−`
0 $` 1
$2` $` 0


=W ord

π

b$2` 0 0
0 $` 0
0 0 −(a$`)−1

1 $−` 0
0 1 $−`

0 0 1

 .

Since1 y z
0 1 x
0 0 1

b$2` 0 0
0 $` 0
0 0 −1

a$`

 =

b$2` 0 0
0 $` 0
0 0 −1

a$`

1 y
b$`

− z
ab$3`

0 1 − x
a$2`

0 0 1

 ,
we have

W̃b

([
a

12

])

=

∫
F 3

hord
π

w3

b$2` 0 0
0 $` 0
0 0 −1

a$`


1 y+b

b$`
a$`y−z
ab$3`

0 1 a$`−x
a$2`

0 0 1


ψ(x+ y) dxdydz

=
ρ($`)µ(b$2`)

ν(−a$`)|ab$3`|

∫
F 3

hord
π

w3

1 y+1
$`

z
0 1 1−x

$`

0 0 1

 |a2b2$4`|
ψ(a$`x+ by)

dxdydz

=
ρ($`)µ(b$2`)

ν(−a$`)
|ab$`|

∫
F 2

Φ(y)Φ(x)ψ(a$`x− by) dxdy

from which one can complete the proof of Lemma 5.12. �

We are now ready to prove Proposition 5.10. For φ ∈ S(F ) and a character χ of
F× we define Tate’s local integral by

Z(s, φ, χ) =

∫
F×

φ(a)χ(a)|a|s da.

Substituting this expression in Lemma 5.12, we get

Z(1− s, W̃b, ν
′−1) = ρ($`)µ(b$2`)|b|Φ̂(−b)

∫
F×

|a$`|Φ̂(a$`)

ν(−a$`)
ν′(a)−1 da

|a|s

= ρ($`)µ(b$2`)|b|Φ̂(−b) ν′($`)

ν(−1)q`s
Z(1− s, Φ̂, (νν′)−1).
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We conclude that ζF (1)
ζF (2)γ(s, π ⊗ ν′,ψ)Z(s, π(ς)W,W ord

σ ) equals

Z(1− s, Φ̂, (νν′)−1)ρ($`)
ν′($`)

ν(−1)q`s

∫
F×

µ(b$2`)|b|Φ̂(−b)µ′(b)|b|s−1 db

=Z(1− s, Φ̂, (νν′)−1)ρ($`)(νµµ′)(−1)ν′($`)q−`sµ($2`)Z(s, Φ̂, µµ′).

If ` is sufficiently large, then since Φ = I1+p` ,

Z(1− s, Φ̂, (νν′)−1) = γ(1− s, (νν′)−1,ψ)−1(νν′)(−1)q−`,

Z(s, Φ̂, (µµ′)−1) = γ(s, (µµ′)−1,ψ)−1(µµ′)(−1)q−`

by the functional equation (see Theorem 3.3 of [GJ72]). We conclude that

Z

(
1

2
, π(ςt`)W

ord
π ,W ord

σ

)
=

ν′(−1) ζF (2)
q5`/2ζF (1)

ρ($)`µ($)2`ν′($)`

γ
(

1
2 , π ⊗ ν′,ψ

)
γ
(

1
2 , (νν

′)−1,ψ
)
γ
(

1
2 , µµ

′,ψ
) .

One can deduce the stated formula from the multiplicativity of the gamma factor
and the functional equation γ

(
1
2 , νν

′,ψ
)
γ
(

1
2 , (νν

′)−1,ψ
)
= (νν′)(−1). �

6. Ramified computations: the split case

6.1. Essential vectors. We choose a non-trivial additive character ψ of F so that
the maximal fractional ideal on which it is trivial is o. Let π be an irreducible
admissible generic representation of GLm+1(F ). Given an open compact subgroup
Γ of GLm+1(F ) and its character X : Γ→ C×, we put

Wψ(π,Γ,X ) = {W ∈ Wψ(π) | π(γ)W = X (γ)W for γ ∈ Γ}.

Assume that m ≥ 1. For a positive integer ` the subgroup K(m+1)
0 (p`) consists

of matrices of the form[
A B
C d

]
(A ∈ GLm(o), B ∈ om, tC ∈ (p`)m, d ∈ o×).

When ` = 0, we set K(m+1)
0 (p`) = GLm+1(o). Given a character ω of (o/p`)×, we

define the characters ω↓ : K(m+1)
0 (p`)→ C× and ω↑ : K(2)

0 (p`)→ C× by

ω↓
([
A B
C d

])
= ω(d), ω↑

([
a b
c d

])
= ω(a).

We write ωπ for the central character of π. Let c(π) denote the exponent of the
conductor of π, i.e., the epsilon factor of π is of the form

(6.1) ε

(
s+

1

2
, π,ψ

)
= q−c(π)sε

(
1

2
, π,ψ

)
.

Théoremè on p. 211 of [JPSS81] says that

dim Wψ
(
π,K(m+1)

0

(
pc(π)

)
, ω↓π

)
= 1.

Theorem 3.1 of [Mat13] enables us to normalize a basis vector of this one-dimensional
space in the following way:

Definition 6.1 (essential vectors). There exists a unique vector

Wπ ∈ Wψ
(
π,K(m+1)

0

(
pc(π)

)
, ω↓π

)
which satisfies Wπ(1m+1) = 1. This vector Wπ is called a normalized essential
Whittaker vector of π with respect to ψ.
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6.2. The Atkin-Lehner operator.

Proposition 6.2. Let π be an irreducible admissible generic representation of

GLm+1(F ). Put ` = c(π) and ξm,` =

[
$−`1m 0

0 1

]
. Let Wπ∨ be the essential

vector of π∨ with respect to ψ−1. Then π∨(ξm,`)W̃π = ε
(

1
2 , π,ψ

)m
Wπ∨ .

Proof. One can immediately see that

π∨(ξm,`)W̃π ∈ Wψ−1(π∨,K(m+1)
0 (p`), ω↓π∨)

from

t

(
ξ−1
m,`

[
A B
C d

]
ξm,`

)
=

[
tA

tC
$`

tB$` d

]
.

Thus π∨(ξm,`)W̃π = cWπ∨ with c ∈ C×.
To determine c, we take an irreducible unramified principal series σ = αs1F ×

· · · ×αsmF of GLm(F ). Recall the functional equation

γGL(s, π × σ,ψ)

∫
Nm\GLm(F )

W

([
g 0
0 1

])
Wσ(g)|det g|s− 1

2 dg

=

∫
Nm\GLm(F )

W̃

([
g 0
0 1

])
W̃σ(g)|det g| 12−sdg

=ωσ($)`q`m(1−2s)/2

∫
Nm\GLm(F )

π∨(ξm,`)W̃

([
g 0
0 1

])
W̃σ(g)|det g| 12−s dg

for every W ∈ Wψ(π). Letting W = Wπ, we get

γGL(s, π × σ,ψ)L(s, π × σ) = ωσ($)`q`m(1−2s)/2cL(1− s, π∨ × σ∨)

by (4.3). Since

εGL

(
1

2
, π × σ,ψ

)
= ωσ($)`ε

(
1

2
, π,ψ

)m
,

we obtain the relation by (6.1). �

Let m = 2. Thus π is an irreducible admissible generic representation of GL3(F )
and σ that of GL2(F ). Put

` = c(π), n = c(σ), τ` = w3ξ
−1
2,` , τ ′n = w2ξ

−1
1,n.

Let Wσ (resp. Wσ∨) be the essential vector of σ∨ (resp. σ) with respect to ψ (resp.
ψ−1) defined in Definition 6.1. We rewrite Proposition 6.2 in the following manner.

Corollary 6.3. Notation being as above, we have

Wπ(τ`) = ε

(
1

2
, π,ψ

)2

, Wσ(τ ′n) = ε

(
1

2
, σ,ψ

)
.

6.3. Computation of the pairing. Let π be an irreducible admissible generic
unitary representation of GLn(F ). We write πu for the unramified component of the
first nonzero spherical Bernstein-Zelevinsky derivative π(n−r) of π (see Definition
1.3 of [Mat13] for the precise definition).
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Proposition 6.4. Let Wπ be the essential vector of π with respect to ψ and Wπ∨

the essential vector of π∨ with respect to ψ−1. If π is unitary, then

Bπ :=
ζF (n)

LGL(1, π × π∨)
〈Wπ,Wπ∨〉 =

{
1 if π is unramified,
ζF (n)LGL(1,πu×π

∨
u )

LGL(1,π×π∨) if π is ramified.

Proof. We may assume π to be ramified in view of Remark 5.1. Put m = n − 1.
Let t = diag[t1, t2, . . . , tm] ∈ Tm. Put t′ = diag[t1, t2, . . . , tr] ∈ Tr. Corollary 3.2 of
[Mat13] gives

Wπ

([
t

1

])
= Wπu(t′)|det t′|

m+1−r
2 Io(tr)

m∏
i=r+1

Io×(ti)

if r ≥ 1, and Wπ

([
t

1

])
=

m∏
i=1

Io×(ti) if r = 0. If r ≥ 1, then

〈Wπ,Wπ∨〉 =

∫
Tm

Wπ

([
t

1

])
Wπ∨

([
t

1

]) m∏
i=1

|ti|2i−m−1 dt

=

∫
Tr

Wπu
(t′)Wπ∨u

(t′)Io(tr)

r∏
i=1

|ti|2i−r dt

by the Iwasawa decomposition. The last integral equals∫
Nr\GLr(F )

Wπu
(g)Wπ∨u

(g)Io(erg)|det g|dg = LGL(1, πu × π∨u )

by Proposition 2.3 of [JS81]. The case r = 0 is trivial. �

Definition 6.5. Suppose that π is a generic constituent of I(µ1, µ2, . . . , µn), where
we order µ1, µ2, . . . , µn as in Definition 2.3. Put

1

E(π,Ad,ψ)
= LGL(1, πu × π∨u )

∏
i<j

γ(1, µ−1
i µj ,ψ)×

{
1

ζF (1)n if c(π) = 0,
q(n−1)c(π)

ζF (1)n−1 if c(π) > 0.

Corollary 6.6. Notations and assumptions being as in Proposition 5.6, if ` is
sufficiently large, then

B[`]

πord

Bπ
=

α`π

[K(n)
0 (pc(π)) : I

(n)
0 (p`)]

E(π,Ad,ψ)
∏
i<j

µi(−1).

Proof. Since

[GLn(o) : K(n)
0 (pc(π))] =

{
1 if c(π) = 0,

q(n−1)c(π) ζF (1)
ζF (n) if c(π) > 0,

the stated formula follows from Propositions 5.6 and 6.4. �

6.4. A depletion à la Schmidt. We consider the embedding

ι′ : GL2(F ) ↪→ GL3(F ), ι′(g) =

[
g

1

]
.
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Let χ be a character of F×. When χ is ramified, the conductor c(χ) of χ is
defined as the smallest positive integer n such that χ is trivial on 1 + pn. When χ
is unramified, we set c(χ) = 0. If c(χ) ≥ 1, then the Gauss sum is defined by

g(χ,ψ) =
∑

a∈(o/pc(χ))×

χ(a)−1ψ

(
− a

$c(χ)

)
.

When c(χ) = 0, we formally set g(χ,ψ) = 1. The Gauss sum is related to the
epsilon factor in the following way:

g(χ,ψ) = qc(χ)/2χ($)−c(χ)ε

(
1

2
, χ,ψ−1

)
.

Proposition 6.7 ([Sch93]). Let χ be a character of o×. Put f = c(χ). Assume

that f > 0. Given W ∈ Wψ(π,K(3)
0 (p`), ω↓π), we define UχW ∈ Wψ(π) by

UχW =
∑

i,j∈(o/pf )×

∑
y∈o/p2f

χ(ij)π

1 i
$f

y
$2f

0 1 j
$f

0 0 1

W.

Then UχW possesses the following properties:

(i) π(ι′(γ))UχW = χ↑(γ)−1UχW for γ ∈ K(2)
0 (p2f );

(ii) UχW (ι′(h)) = 0 unless h ∈ N2K(2)
0 (p2f );

(iii) UχW (13) = q3fχ($)2fε
(

1
2 , χ,ψ

)−2
W (13).

Proof. The proof is the same as that of Lemma 2.3 of [Sch93]. However, we re-

produce the proof here for the reader’s convenience. Let γ =

[
a b
c d

]
∈ K(2)

0 (p2f ).

Observe thata b 0
c d 0
0 0 1

1 i
$f

y
$2f

0 1 j
$f

0 0 1

 =

1 ai
d$f

y′

$2f

0 1 dj
$f

0 0 1

a− aci
d$f

b− aci2

d$2f 0
c d+ ci

$f
cy
$2f

0 0 1

 ,
where y′ = ya

(
1− ci

d$f

)
+ bj$f . Since a

(
1− ci

d$f

)
∈ o×, y′ runs over a full system

of representatives mod p2f as y does (for fixed i, j). We get

π(ι′(γ))UχW =
∑

i,j∈(o/pf )×

∑
y∈o/p2f

χ(ij)π

1 ai
d$f

y
$2f

0 1 dj
$f

0 0 1

W.

The right hand side is χ(a)−1UχW , which proves (i).

To prove (ii), we have only to prove UχW

(
ι′
([

0 $n

$m 0

]))
= 0 and

UχW

(
ι′
([

$n 0
$mc $m

]))
6= 0⇒ m = n = 0, c ∈ p2f

by the Iwasawa decomposition. Since 0 $n 0
$m 0 0

0 0 1

1 i
$f

y
$2f

0 1 j
$f

0 0 1

 =

1 $f+n

i$m
j$n

$f

0 1 y$m

$2f

0 0 1

$n+f 0 0
0 $m−f 0
0 0 1

 k,
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where k = ι′
([
−i−1 0
$f i

])
, we get

UχW

(
ι′
([

0 $n

$m 0

]))
=

∑
i,j∈(o/pf )×

∑
y∈o/p2f

χ(ij)ψ

(
$f+n

i$m
+
y$m

$2f

)
W

(
ι′
([
$n+f 0

0 $m−f

]))
.

The right hand side is zero as
∑

j∈(o/pf )×

χ(j) = 0.

Finally we let c ∈ o and assume that

(6.2) UχW

(
ι′
([

$n 0
$mc $m

]))
6= 0.

Since we can write $n 0 0
$mc $m 0

0 0 1

1 i
$f

y
$2f

0 1 j
$f

0 0 1

 =

1 i$n

$f+m
y$n

$2f

0 1 $mcy
$2f + $mj

$f

0 0 1

 gn,m,i,
where

gn,m,i = ι′
([
$n 0
0 $m

] [
1− ci

$f
− ci2

$2f

c 1 + ci
$f

])
,

we get

UχW

(
ι′
([

$n 0
$mc $m

]))
=

∑
i,j∈(o/pf )×

∑
y∈o/p2f

χ(ij)ψ

(
i$n

$f+m
+
$mcy

$2f
+ j

$m

$f

)
W (gn,m,i).

Replacing j by j +$f , we find that m ≥ 0 by (6.2). Since

(6.3)
∑

j∈(o/pf )×

χ(j)ψ

(
j
$m

$f

)
6= 0⇒ m = 0,

we see that m = 0. Since
∑

y∈o/p2f

ψ
( cy

$2f

)
= 0 unless c ∈ p2f , we find that c ∈ p2f .

We conclude that n = 0 again by (6.3). We see that

UχW (13) = q2fg(χ−1,ψ)2W (13) =
q3fχ($)2f

ε
(

1
2 , χ,ψ

)2W (13)

by letting n = m = c = 0 in the formula above. �

6.5. The zeta integral of UωσWπ. Let π be an irreducible admissible generic
representation of GL3(F ) and σ an irreducible admissible ramified generic repre-
sentation of GL2(F ).

Proposition 6.8. Notation being as above, if c(σ) ≤ 2c(ωσ), then

Z(s, π(ι′(ξ1,c(σ)w2))UωσWπ,Wσ) =
q3c(ωσ)ωσ($)2c(ωσ)ε

(
1
2 , σ,ψ

)
ε
(

1
2 , ωσ,ψ

)2
[GL2(o) : K(2)

0 (p2c(ωσ))]
.
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Proof. Put f = c(ωσ), n = c(σ) and W ′ = σ(τ ′n)Wσ. The left hand side is
Z(s,UωσWπ,W

′) by the invariance of the JPSS integral. Since σ(u)W ′ = ω↑σ(u)W ′

for u ∈ K(2)
0 (pn). Proposition 6.7(ii) gives

Z(s,UωσWπ,W
′) =

∫
K(2)

0 (p2f )

UωσWπ(ι′(h))W ′(h)|deth|s− 1
2 dh.

The right hand side is UωσWπ(13) ·Wσ(τ ′n)[GL2(o) : K(2)
0 (p2f )]−1 by Proposition

6.7(i). Since W ′(12) = Wσ(τ ′n) = ε
(

1
2 , σ,ψ

)
by Corollary 6.3, the proof is complete

by Proposition 6.7(iii). �

Remark 6.9. If f = c(χ) is large enough, then

c(σ ⊗ χ) = 2f, ε(s, σ ⊗ χ,ψ) = ε(s, χ,ψ)ε(s, ωσχ,ψ)

by stability of the epsilon factor (see [JS85, Proposition 2.2]).

Appendix A. Archimedean computations

A.1. Local factors. For a positive integer n let

U(n) = {g ∈ GLn(C) | tgcg = 1n}

be the compact unitary group. Let C1 denote the group of complex numbers of
absolute value 1. Define the character ε : C× → C1 by ε(x) = x

|x| . We view it as a

character of any unitary group via composition with the determinant character.
Let WR and WC be the Weil groups of R and C. Recall that ΓR(s) = π−s/2Γ

(
s
2

)
and ΓC(s) = 2(2π)−sΓ(s). Fix tuples λ1 > · · · > λn and µ1 > · · · > µn−1 of half
integers such that λi − n+1

2 ∈ Z and µj − n
2 ∈ Z. Let π be an irreducible represen-

tation of U(n) with Harish-Chandra parameter (λ1, · · · , λn) and σ an irreducible
representation of U(n − 1) with Harish-Chandra parameter (µ1, · · · , µn−1). The
L-parameters of π and σ restricted to WC = C× ⊂WR are given by

φπ|WC = ε2λ1 ⊕ · · · ⊕ ε2λn , φσ|WC = ε2µ1 ⊕ · · · ⊕ ε2µn−1 .

The L-factors are given by

L(s, π × σ) =

n∏
i=1

n−1∏
j=1

ΓC(s+ |λi + µj |),

L(s, π,Ad) =ΓR(s+ 1)n
∏
i<j

ΓC(s+ λi − λj),

L(s, σ,Ad) =ΓR(s+ 1)n−1
∏
i<j

ΓC(s+ µi − µj).

One can easily compute the adjoint L-factors, combining Remark 4.1 with [Pra92,
Lemma 7.1]. Theorem 1.1 of [He17] says that σ∨ appears as a subrepresentation of
π|U(n−1) if and only if

λ1 > −µn−1 > λ2 > · · · > λn−1 > −µ1 > λn

In this case it is easy to check that

(A.1)
L
(

1
2 , π × σ

)
L(1, π,Ad)L(1, σ,Ad)

∈ π
n(n+1)

2 Q×.
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A.2. Representations of U(2). For a commutative ring A of characteristic 0 and a
non-negative integer n we write Ln(A) for the module of two variable homogeneous
polynomials of degree n over A. The group GL2(A) acts on this module Ln(A) by

%n(α)P (X,Y ) = P ((X,Y )α).

Define the pairing

`n : Ln(Q)⊗ Ln(Q)→ Q
by

(A.2) `n(XiY n−i ⊗X ′jY ′n−j) =

{
(−1)i

(
n
i

)−1
if i+ j = n,

0 if i+ j 6= n.

Put J =

[
0 1
−1 0

]
. It is well-known that for α ∈ M2(A) and P,Q ∈ Ln(A)

`n(%n(α)P ⊗Q) = `n(P ⊗ %n(J tαJ−1)Q).

We view U(2) as a subgroup of GL2(C) and regard %n as an irreducible represen-
tation of U(2) of dimension n+1. Note that %n is irreducible, has central character
εn, highest weight (n, 0) and Harish-Chandra parameter

(
n + 1

2 ,−
1
2

)
. For λ ∈ Z

we will write %(n+λ,λ) = %n ⊗ ελ. Let σ be an irreducible representation of U(2) of
dimension n+ 1. Then there is an integer λ such that σ ' %(n+λ,λ). We define the
perfect pairing `σ : σ ⊗ σ∨ → C by

`σ(σ(h)P ⊗Q) = ε(deth)λ · `n(%n(h)P ⊗Q)

for h ∈ U(2) and P,Q ∈ Ln(C).
We identify the contragradient representation %∨(a,b) of %(a,b) with %(−b,−a). Define

the representation %ϑ(a,b) of GL2(A) by %ϑ(a,b)(α) = %(a,b)(
tα−1) and an equivariant

isomorphism ϑ : %ϑ(a,b) ' %
∨
(a,b) by

Pϑ(X,Y ) = %(a,b)(J)P (X,Y ) = P (−Y,X).

Define Pn,P
′
n ∈ Ln(A)⊗ Ln(A) by

Pn = (X1Y2 − Y1X2)n, P′n = (X ′1Y
′
2 − Y ′1X ′2)n.

Since %n(α) ⊗ %n(α)Pn = (detα)nPn for α ∈ GLn(C), this vector Pn spans the
line of σ ⊗ σ∨ fixed by the diagonal action of U(2). Set `σ⊗σ∨ = `σ ⊗ `σ∨ , where
polynomials of Xi, Yi are paired with those of X ′i, Y

′
i for i = 1, 2.

Lemma A.1.

`σ⊗σ∨(Pn ⊗P′n) = n+ 1.

Proof. Since Pn =
∑n
i=0

(
n
i

)
(X1Y2)i(−Y1X2)n−i, we have

Pn ⊗P′n =

n∑
i=0

n∑
j=0

(
n

i

)(
n

j

)
(−1)i+jXi

1Y
n−i
1 Xn−i

2 Y i2 ⊗X
′j
1 Y
′n−j
1 X ′n−j2 Y ′j2

and hence

`σ⊗σ∨(Pn ⊗P′n) = (−1)n
n∑
i=0

(
n

i

)2

(−1)i
(
n

i

)−1

(−1)n−i
(

n

n− i

)−1

= n+ 1

by (A.2). �
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A.3. Representations of U(3). Fix a commutative integral domain A of char-

acteristic zero. Let P(A) be the set of polynomials in z =

[
x1 x2 x3

y1 y2 y3

]
with

coefficients in A. Fix non-negative integers a, b. The submodule Pa,b(A) of P(A)
consists of homogeneous polynomials of degree a in x1, x2, x3 and of degree b in
y1, y2, y3. The group GL3(A) acts on the module Pa,b(A) by

ρ(g)P

(
x
y

)
= P

(
xg

y tg−1

)
,

where x = (x1, x2, x3) and y = (y1, y2, y3).
We define a submodule Ta,b(A) of Pa,b(A) by

Ta,b(A) = (x1y1 + x2y2 + x3y3)Pa−1,b−1(A).

Since Ta,b(A) is stable under the action of GL3(A), the group GL3(A) acts on the
quotient module Ha,b(A) = Pa,b(A)/Ta,b(A). If A is a field, then Ha,b(A) is an
irreducible representation of GL3(A) with highest weight (a, 0,−b) (cf. Chapter 7
of [HIM22]).

A.4. Contragradient representations. We define a bilinear form

lb,a : Pb,a(A)⊗ Pa,b(A)→ A

by

lb,a(Q⊗ P ) =
1

a!b!
Q

(
∂
∂y1

∂
∂y2

∂
∂y3

∂
∂x1

∂
∂x2

∂
∂x3

)
P

(
x1 x2 x3

y1 y2 y3

)
.

Note that

lb,a

( 3∏
i=1

x
ni
i y

mi
i ⊗ x

′
i
n′iy′i

m′i

)
=


∏3
i=1 ni!mi!

a!b!
if ni = m′i and mi = n′i,

0 otherwise.

Lemma A.2. For P ∈ Pa,b(A), Q ∈ Pb,a(A) and g ∈ GL3(A) we have

lb,a(ρ(g)Q⊗ ρ(g)P ) = lb,a(Q⊗ P ).

Proof. Let h = (hij) be the inverse matrix of g = (gij). Put sj =
∑3
i=1 xigij and

tj =
∑3
i=1 yihji. Then ∂

∂sj
=
∑3
i=1 hji

∂
∂xi

and ∂
∂tj

=
∑3
i=1 gij

∂
∂yi

. We therefore

see that

ρ(g)P

(
x
y

)
= P

(
s
t

)
, ρ(g)Q

( ∂
∂y
∂
∂x

)
= Q

(
∂
∂t
∂
∂s

)
from which Lemma A.2 follows. �

Put H∨b,a(A) = {P ∈ Pa,b(A) | ∆P = 0}, where

∆ =
∂2

∂x1∂y1
+

∂2

∂x2∂y2
+

∂2

∂x3∂y3
.

If A is a field, then since

H∨b,a(A) = {P ∈ Pa,b(A) | lb,a(Q⊗ P ) = 0 for Q ∈ Tb,a(A)},
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the restriction of ρ to H∨b,a(A) is the contragredient representation of Hb,a(A). In

particular, H∨b,a(A) is an irreducible representation of GL3(A) with highest weight

(a, 0,−b). The linear form lb,a induces a perfect pairing

lb,a : Hb,a(A)⊗ H∨b,a(A)→ A.

Remark A.3. When we view H∨b,a(C) as a representation of U(3), it is a theta

lift of the discrete series of U(1, 1) with Harish-Chandra parameter
(
a+3

2 ; b−1
2

)
(cf.

[KV78]). Any irreducible representation of U(3) is of the form H∨b,a ⊗ ελ with
0 ≤ a, b ∈ Z and λ ∈ Z.

We define the isomorphism ϑ : Pb,a(A)→ Pa,b(A) by

Pϑ
(
x
y

)
= P

(
y
x

)
.

Lemma A.4. Pa,b(Q) is a direct sum of H∨b,a(Q) and Ta,b(Q).

Proof. It suffices to show that

H∨b,a(Q) ∩ Ta,b(Q) = {0}.

Let f =
∑
aijklmn · x′1

i
x′2
j
x′3
k
y′1
l
y′2
m
y′3
n ∈ H∨b,a(Q) ∩ Ta,b(Q). Since fϑ ∈ Tb,a(Q), we

have lb,a(fϑ ⊗ f) = 0 by the definition of H∨b,a(Q). Observe that

lb,a(fϑ ⊗ f) = (a!b!)−1
∑

(aijklmn)2i!j!k!l!m!n!,

which shows that f = 0. �

We endow the space Hϑb,a := Hb,a with the action ρϑ(g) = ρ( tg−1) of GL3(A).

Since (ρϑ(g)P )ϑ = ρ(g)Pϑ, we can define the equivariant isomorphism

ϑ : Hϑb,a(Q) ' H∨b,a(Q),

letting Pϑ be the unique polynomial Q ∈ H∨b,a(Q) such that Q − P̃ϑ ∈ Ta,b(Q) for

any lift P̃ ∈ Pb,a(Q) of P ∈ Hb,a.

A.5. The setting. Let V be a three dimensional positive definite Hermitian space
and V ′ ⊂ V a two dimensional subspace. We fix a basis of V so that the embedding
ι : GL(V ′) ↪→ GL(V ) is given by

ι :

[
a b
c d

]
7→

a 0 b
0 1 0
c 0 d

 .
Fix a triplet of integers λ1 > λ2 > λ3 and a pair µ1 > µ2 of half integers.

Let π be an irreducible representation of U(V ) with Harish-Chandra parameter
(λ1, λ2, λ3) and σ an irreducible representation of U(V ′) with Harish-Chandra pa-
rameter (µ1, µ2). The highest weight of π is (−k1,−k2,−k3) := (λ1 − 1, λ2, λ3 + 1)
while the highest weight of σ is (−k′1,−k′2) :=

(
µ1 − 1

2 , µ2 + 1
2

)
. Recall that

L (π × σ) =
L
(

1
2 , π × σ

)
L(1, π,Ad)L(1, σ,Ad)

n∏
i=1

L(i, εiC/R).
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Recall that σ∨ appears as a subrepresentation of π|U(V ′) if and only if

(F) λ1 > −µ2 > λ2 > −µ1 > λ3 ⇔ k1 ≤ −k′2 ≤ k2 ≤ −k′1 ≤ k3.

We consider the additive character ψC
−2(x) = e2π(x̄−x) for x ∈ C. Since

ε

(
1

2
, ε2κ,ψC

−2

)
=

{
−1 if κ > 0,

1 if κ < 0

for κ ∈ 1
2Z \ Z, if (F) holds, then

(A.3) ε

(
1

2
, φπ ⊗ φσ,ψC

−2

)
=
∏
i,j

ε

(
1

2
, ε2(λi+µj),ψC

−2

)
= −1.

Put

a = k3 − k2, b = k2 − k1, n = k3 + k′1, l = −k1 − k′2.

If (F) holds, then σ ' %(a−n,l−b) ⊗ εk2 and

L (π × σ)

(2π)2n!l!
=

Γ(a+ b− l + 2)Γ(a− n+ b+ 2)Γ(a− n+ 1)Γ(b− l + 1)

2−1Γ(a+ b+ 3)Γ(a− n+ b− l + 2)Γ(a+ 2)Γ(b+ 2)
.

A.6. The U(V ′)-invariant vector. We hereafter assume (F). Then the GL2(C)-
invariant subspace of π ⊗ σ is one-dimensional. We will construct a basis vector
of this U(V ′)-invariant line. Replacing π by π ⊗ εk2 and σ by σ ⊗ ε−k2 , we may
assume that k2 = λ2 = 0. Then

π ' Hb,a, π∨ ' H∨b,a, σ ' %(a−n,l−b), σ∨ ' %(b−l,n−a).

Put Π = π ⊗ σ and Πϑ = πϑ ⊗ σϑ. The maps constructed in §A.2 and §A.4 give
the equivariant isomorphism ϑ⊗ϑ : Πϑ ' Π∨.

We define WH
Π ∈ Π by

WH
Π ≡ det

[
x1 x3

X2 Y2

]b−l
det

[
X2 Y2

y3 −y1

]a−n
xl2y

n
2 (mod Tb,a(Q))

and define a polynomial PΠ∨ in x1, x2, x3, y1, y2, y3, X2, Y2 by

PΠ∨ =

min{n,l}∑
m=0

(−1)ma
(m)
Π∨P

(m)
Π∨ · x

n−m
2 yl−m2

for 0 ≤ n ≤ a and 0 ≤ l ≤ b, where

P
(m)
Π∨ = (x1y1 + x3y3)m(x1Y2 − x3X2)a−n(y1X2 + y3Y2)b−l,

a
(m)
Π∨ =

(
n

m

)(
l

m

)
Γ(m+ 1)Γ(a− n+ b+ 2)Γ(a+ b− l + 2)

Γ(a+ b+ 2)Γ(a− n+ b− l +m+ 2)
.

Lemma A.5.
min{n,l}∑
m=0

a
(m)
Π∨ = 1.

Proof. If n ≥ l, then Vandermonde’s convolution gives

min{n,l}∑
m=0

a
(m)
Π∨ =

(
a+ b+ 1

l

)−1 l∑
m=0

(
n

m

)(
a− n+ b+ 1

l −m

)
= 1

as claimed. The case n ≤ l can be proved in the same way. �
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Proposition A.6. (1) PΠ∨ ∈ H∨b,a(Q)⊗ La−n+b−l(Q).

(2) Π∨(ι(h), h)PΠ∨ = PΠ∨ for h ∈ GL(V ′).

(3) WHϑ⊗ϑ
Π = PΠ∨ .

(4) Π(ι(h), h)WH
Π = WH

Π for h ∈ GL(V ′).

Proof. The polynomial Pn,l is homogeneous of degree a in x1, x2, x3 and of degree
b in y1, y2, y3 and of degree a− n+ b− l in X2, Y2. Since(

∂2

∂x1∂y1
+

∂2

∂x3∂y3

)
P

(m)
Π∨ = m(m+ 1 + a− n+ b− l)P(m−1)

Π∨

and since

m(m+ 1 + a− n+ b− l)a(m)
Π∨ = (n−m+ 1)(l −m+ 1)a

(m−1)
Π∨

for m = 1, 2, . . . ,min{l, n}, we prove (1). Recall that GL(V ′) acts on

P =
∑
i,j

Pi,j · xn−i2 yl−j2 ∈ H∨b,a(Q)⊗ Lc−d(Q)

by

π∨(ι(h))⊗ %(c,d)(h)Pi,j

x1 x3

y3 −y1

X2 Y2

 = (deth)l−b−j+dPi,j

x1 x3

y3 −y1

X2 Y2

h


for h ∈ GL(V ′). It follows that

π∨(ι(h))⊗ σ∨(h)P
(m)
Π∨ = P

(m)
Π∨ ,

which proves (2). Since

P
(m)
Π∨ = (−x2y2)m(x1Y2 − x3X2)a−n(y1X2 + y3Y2)b−l (mod Ta,b(Q)),

we see that

PΠ∨ ≡
∑
m

a
(m)
Π∨ (x1Y2 − x3X2)a−n(y1X2 + y3Y2)b−lxn2y

l
2

≡
(∑

m

a
(m)
Π∨

)
WHϑ⊗ϑ

Π (mod Ta,b(Q)).

Now (3) is a consequence of Lemma A.5. One sees (4) from (3). �

A.7. The restriction to U(V ′). The branching law for the restriction of π∨ to
U(V ′) is well-known:

π∨|U(V ′) ' ⊕an=0 ⊕bl=0 %(a−n,−b+l).

Hara and Namikawa [HN21] explicitly give a GL(V ′)-equivariant map

∇n,l : H∨b,a → %(a−n,−b+l)

by

(∇n,lP )(X1, Y1) =
1

n!l!
· ∂

n+lP

∂xn2∂y
l
2

([
X1 0 Y1

−Y1 0 X1

])
.
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Define a GL(V ′)-equivariant map ∇n,l : Ha,b → %(b−l,n−a) so that the diagram

Hb,a
∇n,l−−−−→ %(b−l,n−a)

ϑ

y ϑ

y
H∨b,a

∇n,l−−−−→ %(a−n,−b+l)

is commutative. Since the GL(V )-invariant pairing lb,a is the sum of appropri-
ate GL(V ′)-invariant pairings on GL(V ′)-irreducible summands, we can define the
constants cn,l so that for all Q ∈ Hb,a ' π and P ∈ H∨b,a ' π∨

lb,a(Q⊗ P ) =

a∑
n=0

b∑
l=0

cn,l`a−n+b−l(∇n,lQ⊗∇n,lP ).

A.8. The Ichino-Ikeda integral. We will consider the integral

J(P⊗Q) =

∫
U(V ′)

`Π((Π(ι(h), h)P)⊗Q) dh

for P ∈ Π and Q ∈ Π∨, where we set `Π = `π ⊗ `σ.

Since ∇n,lPΠ∨ = a
(0)
Π∨Pa−n+b−l and since ∇n′,l′PΠ∨ = 0 unless n′ = n and

l′ = l, Proposition A.6 and Lemma A.1 show that

J(WH
Π ⊗WHϑ⊗ϑ

Π ) = J(Pϑ−1⊗ϑ−1

Π∨ ⊗PΠ∨)

= `Π(Pϑ−1⊗ϑ−1

Π∨ ⊗PΠ∨)

= cn,l`σ⊗σ∨(a
(0)
Π∨Pϑ−1⊗ϑ−1

a−n+b−l ⊗ a
(0)
Π∨Pa−n+b−l)

= a
(0)
Π∨cn,la

(0)
Π∨(a− n+ b− l + 1).

We denote the dimensions of π and σ by d(π) and d(σ). Since

d(π) =
1

2
(a+ b+ 2)(a+ 1)(b+ 1), d(σ) = a− n+ b− l + 1,

we have

J(WH
Π ⊗WHϑ⊗ϑ

Π )

L (π × σ)

=
d(π)d(σ)a

(0)
Π∨cn,la

(0)
Π∨Γ(a+ b+ 2)Γ(a− n+ b− l + 2)Γ(a+ 1)Γ(b+ 1)

n!l!(2π)2Γ(a+ b− l + 2)Γ(a− n+ b+ 2)Γ(a− n+ 1)Γ(b− l + 1)

=
d(π)d(σ)

(2π)2

(
a

n

)(
b

l

)
a

(0)
Π∨cn,la

(0)
Π∨

Γ(a+ b+ 2)Γ(a− n+ b− l + 2)

Γ(a+ b− l + 2)Γ(a− n+ b+ 2)

=
d(π)d(σ)

(2π)2

(
a

n

)(
b

l

)
a

(0)
Π∨cn,l.

Let Wσ = Xa−n+b−l
1 and Wπ = xb1y

a
3 be highest weight vectors. Since

Wσ∨ := Wϑ
σ = (−Y ′1)a−n+b−l, Wπ∨ := Wϑ

π = y′b1 x
′a
3

(cf. (3.1) and (3.2)), we have

`Π((Wπ ⊗Wσ)⊗ (Wπ∨ ⊗Wσ∨)) = 1.

Now the following formula is a consequence of Proposition A.8 below.
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Proposition A.7.

L (π × σ)−1J(WH
Π ⊗WHϑ⊗ϑ

Π )

`Π((Wπ ⊗Wσ)⊗ (Wπ∨ ⊗Wσ∨))
= (−1)k

′
1−k

′
2

d(π)d(σ)

(2π)2
.

A.9. Computation of cn,l. We will prove the following formula:

Proposition A.8. (
a

n

)(
b

l

)
a

(0)
Π∨cn,l = (−1)a−n+b−l.

Proof. Assume that n ≥ l. Let gl(V ) denote the Lie algebra of GL(V ). Put

E1 =

0 0 0
1 0 0
0 0 0

 , E2 =

0 0 0
0 0 0
0 −1 0

 .
Then

π(− tE1) = y′2
∂

∂y′1
− x′1

∂

∂x′2
, π(− tE2) = x′2

∂

∂x′3
− y′3

∂

∂y′2
.

Let w̄0,0 = y′1
a
x′3
b ∈ H∨a,b ⊂ Pb,a be the lowest weight vector. Put

w̄n,0 =
(a− n)!

a!
π(− tE1)nw̄0,0 = y′1

a−n
y′2
n
x′3
b
.

We define a vector w̄n,l ∈ H∨a,b ⊂ Pb,a by w̄n,l = π(− tE2)lw̄n,0. Observe that

w̄n,l =

(
x′2

∂

∂x′3
− y′3

∂

∂y′2

)l
y′1
a−n

y′2
n
x′3
b

=

min{n,l}∑
m=0

(
l

m

)
n!b!

(n−m)!(b− l +m)!
y′1
a−n

y′2
n−m

x′2
l−m

(−y′3)mx′3
b−l+m

.

By the definition of cn,l we have

`Π(w̄n,lX
′a−n+b−l
2 ⊗PΠ∨)

=cn,l`σ⊗σ∨(∇n,lw̄n,lX ′a−n+b−l
2 ⊗∇n,lPΠ∨)

=cn,l`σ⊗σ∨

(
b!Y ′a−n+b−l

1 X ′a−n+b−l
2

(b− l)!
⊗ a(0)

Π∨Pa−n+b−l

)
= (−1)a−n+b−l cn,la

(0)
Π∨b!

(b− l)!
.

On the other hand, we have

`Π(w̄n,lX
′a−n+b−l
2 ⊗PΠ∨)

=

min{n,l}∑
m=0

(−1)ma
(m)
Π∨ `Π(w̄n,lX

′a−n+b−l
2 ⊗P

(m)
Π∨ · x

n−m
2 yl−m2 )

is the sum of the product of (−1)ma
(m)
Π∨

(
l
m

)
n!b!

(n−m)!(b−l+m)! and

`Π(y′1
a−n

y′2
n−m

x′2
l−m

(−y′3)mx′3
b−l+m

X ′a−n+b−l
2 ⊗P

(m)
Π∨ · x

n−m
2 yl−m2 )

= (−1)m(n−m)!(l −m)!
(a− n)!

a!
m!

(b− l +m)!

b!
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over m = 0, 1, 2, . . . ,min{n, l}. It follows that

(−1)a−n+b−lcn,la
(0)
Π∨ =

(b− l)!
b!

min{n,l}∑
m=0

(−1)ma
(m)
Π∨

(
l

m

)
n!(−1)m(l −m)!

(a− n)!

a!
m!

=

(
a

n

)−1(
b

l

)−1 min{n,l}∑
m=0

a
(m)
Π∨ =

(
a

n

)−1(
b

l

)−1

by Lemma A.5. �

Appendix B. Local integrals at non-split primes

Let E/F be a quadratic extension of non-archimedean local fields. Fix a prime
element $ of the integer ring o of F . The order of the residue field of o is denoted
by q. Put E− = {x ∈ E | xc = −x}. We write | · |E for the normalized absolute
value of E. We denote by e the ramification index of E/F .

In this section we assume that H is quasi-split. Then we may view G and H as
unitary groups of Hermitian matrices

T0 = w3 =

0 0 1
0 1 0
1 0 0

 , T ′0 = w2 =

[
0 1
1 0

]
.

Fix unramified characters χ, ρ of E×. Put β = χ($E), γ = ρ($E) and

m′(α) =

[
α 0
0 ᾱ−1

]
, u(b) =

[
1 b
0 1

]
,

m′(α, g0) =

α 0 0
0 g0 0
0 0 ᾱ−1

 , u(β, b) =

1 β −ββ
c

2 + b
0 1 −β
0 0 1


for α ∈ E×, b ∈ E−, g0 ∈ E1 and β ∈ E, where $E is a generator of the maximal
ideal of r. The space V ′ρ of the principal series σ = I ′(ρ) consists of functions
f ′ : H → C which satisfy

f ′(m′(α)u(b)h) = ρ(α)|α|1/2E f ′(h)

for α ∈ E×, b ∈ E− and h ∈ H. The space Vχ of the principal series π = I(χ)
consists of functions f : G→ C which satisfy

f(m′(α, g0)u(β, b)g) = χ(α)|α|Ef(g)

for α ∈ E×, g0 ∈ G0, β ∈ E, b ∈ E− and g ∈ G.
Let K′ and K be special good maximal bounded subgroups of H and G in the

sense of §1.1 of [Cas80]. There exist f ′χ′ ∈ V ′ and fχ′ ∈ V such that f ′χ′(k
′) =

fχ(k) = 1 for k′ ∈ K′ and k ∈ K. We consider the zonal spherical functions

L′(h) = 〈σ(h)f ′ρ, f
′
ρ−1〉′, L(g) = 〈π(g)fχ, fχ−1〉

for h ∈ H and g ∈ G. We here normalize the local perfect pairings 〈 , 〉′ and 〈 , 〉
so that L′(k′) = L(k) = 1 for k′ ∈ K′ and k ∈ K. Put

C ′(ρ) =
1− q−1γ−e

1− γ−e
, C(χ) =

(1− q−2/eβ−1)(1 + qe−2β−1)

1− β−2
.
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Proposition B.1.

L′(m′($m
E )) = (1 + q−1)−1q−m/e(C ′(ρ)γm + C ′(ρ−1)γ−m),

L(m′($m
E , 1)) = (1 + q2e−5)−1q−2m/e(C(χ)βm + C(χ−1)β−m).

Proof. Let α′ be the positive root of H and α the positive root of G. In view of
(15) of [Cas80] we have

qα′ = qα = q, qα′/2 = 1, qα/2 = q4−2e,

a′α =

[
$ 0
0 $−1

]
, aα =

$E 0 0
0 1 0
0 0 ($−1

E )c

 .
Then the c-function for V ′ρ (resp. Vχ) is given by C ′(ρ) (resp. C(χ)). The stated
formulas are special cases of the Macdonald formula (see Theorem 4.2 of [Cas80]).

�

We will compute the following integral

J(fχ, f
′
ρ) =

∫
H

L(ι(h))L′(h) dh.

Proposition B.2.

J(fχ, f
′
ρ) = L (π × σ).

Proof. When e = 1, the formula is proved in [Har14, Theorem 2.12]. Recall that

L(s, π × σ) = L(s, χρ)L(s, χρ−1)L(s, χ−1ρ)L(s, χ−1ρ−1)L(s, ρ)L(s, ρ−1),

L(s, σ,Ad) = ζF (s)L(s, εE/F )L(s, ρ|F×)L(s, ρ−1|F×),

L(s, π,Ad) = ζE(s)L(s, εE/F )L(s, χ)L(s, χ−1)L(s, εE/Fχ0)L(s, εE/Fχ
−1
0 )

(cf. Remark 4.1), where χ0 stands for the restriction of χ to F×. By the Cartan
decomposition we have

J(fχ, f
′
ρ) =

∞∑
m=0

L(m′($m
E , 1))L′(m′($m

E ))[K′m′($m
E )K′ : K′].

Since [K′m′($m
E )K′ : K′] = q2m/e(1 + q−1) if m > 0, Proposition B.1 gives

J(fχ, f
′
ρ) = 1 +

1

1 + q2e−5

∞∑
m=1

(
C(χ)βm + C(χ−1)

βm

)(
C ′(ρ)γm + C′(ρ−1)

γm

)
qm/e

.

Put x = q−1/2. If e = 2, then

L (π × σ) =
(1− x2)(1 + γx)(1 + γ−1x)(1− βx2)(1− β−1x2)

(1 + x2)(1− βγx)(1− βγ−1x)(1− β−1γx)(1− β−1γ−1x)

and (1 + x2)(J(fχ, f
′
ρ)− 1) equals

1− x2γ−2

1− γ−2
· 1− x2β−1

1− β−1
· βγx

1− βγx
+

1− x2γ2

1− γ2
· 1− x2β−1

1− β−1
· βγ−1x

1− βγ−1x

+
1− x2γ−2

1− γ−2
· 1− x2β

1− β
· β−1γx

1− β−1γx
+

1− x2γ2

1− γ2
· 1− x2β

1− β
· β−1γ−1x

1− β−1γ−1x
.

We can prove the wanted identity by a brute force calculation. �
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Appendix C. Ramified computations: the minus sign case

C.1. Maximal compact subgroups. In this section E is a quadratic extension of
a local field F of odd residual characteristic. We write o (resp. r) for the maximal
compact subring of F (resp. E) and denote by p (resp. q) its maximal ideal. Given a
Hermitian matrix T , we define the Hermitian form on W = E3 by (u, v)T = tucTv,
where

T =

t1 0 0
0 1 0
0 0 t2

 .
We denote its unitary group by G. Put

e1 = t(1, 0, 0), e2 = t(0, 1, 0), e3 = t(0, 0, 1), W ′ = Ee1 ⊕ Ee3.

Let H = {h ∈ G | he2 = e2} be the unitary group of W ′.
Fix a generator $ of p. We choose t1, t2 in the following way:

(i) if E/F is unramified, then t1 = − 1
2$ and t2 = −1;

(ii) if E/F is ramified, then t1, t2 ∈ o× and −t1t2 /∈ NE/F (E×).

Note that T ′ =

[
t1 0
0 t2

]
is not split. The group H is compact.

We call an r-lattice L in W integral if (x, x) ∈ o for every x ∈ L and call L
maximal if it is maximal among the integral r-lattices. Take the maximal r-integral
lattice L = re1 ⊕ re2 ⊕ re3 in Case (ii). Clearly,

(e2, e2)T = 1, e2 ∈ L, {(x, e2)T | x ∈ L} = r.

Put

η =

0 1 1
1 0 0
0 −$ $

 , L =

η−1x

∣∣∣∣∣∣ x =

x1

x2

x3

 , x1, x2, x3 ∈ r


in Case (i). Then

tηc

0 0 1
0 1 0
1 0 0

 η = −2$T =: T .

Thus L is a maximal r-integral lattice with respect to T . Note that

(e2, e2)T = −2$, e2 ∈ L, {(x, e2)T | x ∈ L} = r.

Let K = {g ∈ G | gL = L} be a maximal compact subgroup of G.

C.2. The Ichino-Ikeda integral. Let χ be an unramified character of E×. We
retain the notation in Appendix B. We will compute the integral

J(fχ, 1H) =

∫
H

L(ι(h)) dh.

Proposition C.1.

L (π × σ∨)−1J(fχ, 1H) = L(1, εE/F )2.

Remark C.2. Let StE denote the Steinberg representation of GL2(E). We write
1lH for the trivial representation of H. Fix a non-trivial additive character Ψ on
E. If χ is unramified and unitary, then

L(s, I(χ)× 1lH) = L(s,StE ⊗ χ)L(s,StE ⊗ χ−1)L(s,StE),
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ε(s, I(χ)× 1lH ,Ψ) = ε(s,StE ⊗ χ,Ψ)ε(s,StE ⊗ χ−1,Ψ)ε(s,StE ,Ψ).

In particular,

ε(1/2, I(χ)× 1lH ,Ψ) = −1.

Proof. Since L(s, 1lH ,Ad) = L(s, εE/F )ζF (s+ 1), we have

L (π × 1lH) =
L(3, εE/F )

L(1, εE/F )L(1, εE/Fχ0)L(1, εE/Fχ
−1
0 )

(see Remark C.2 and the proof of Proposition B.2). In particular, we have L (π ×
1lH) = 1 in Case (ii). Since H ⊂ K by Lemma 3.14 of [Shi08] applied with q = 1,
ϕ0 = T , L = L, b = r and h = e2, there is nothing to compute in Case (ii).

Finally, we consider Case (i). Lemma 3.14 of [Shi08] applied with q = −2$,
ϕ0 = T , L = L, b = r and h = e2 shows that [H : H ∩ K] = 1 + q. Moreover, its
proof shows that

J(fχ, 1H) =
1

q + 1

∑
h∈H/H∩K

L(ι(h)) =
1

q + 1
(1 + qL(m′($, 1))).

Put β = χ($). Proposition B.1 gives

L(m′($, 1)) =
C(χ)β + C(χ−1)β−1

q2(1 + q−3)
=
L(3, εE/F )

q2
(β + β−1 + q−1 − q−2),

which completes our proof. �
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[Del73] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, Modular

functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp,

1972), Lecture Notes in Math., Vol. 349, Springer, Berlin-New York, 1973, pp. 501–
597.

[Ger19] D. Geraghty, Modularity lifting theorems for ordinary Galois representations, Math.

Ann. 373 (2019), no. 3-4, 1341–1427.
[GGP12] Wee Teck Gan, Benedict H. Gross, and Dipendra Prasad, Symplectic local root num-

bers, central critical L values, and restriction problems in the representation theory

of classical groups, no. 346, 2012, Sur les conjectures de Gross et Prasad. I, pp. 1–109.
MR 3202556

[GHY01] W.-T. Gan, J. P. Hanke, and J.-K. Yu, On an exact mass formula of Shimura, Duke
Math. J. 107 (2001), no. 1, 103–133.

[GJ72] R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in

Mathematics, Vol. 260, Springer-Verlag, Berlin-New York, 1972. MR 342495
[GL21] Harald Grobner and Jie Lin, Special values of L-functions and the refined Gan-Gross-

Prasad conjecture, Amer. J. Math. 143 (2021), no. 3, 859–937. MR 4270260

[Gre94] R. Greenberg, Iwasawa theory and p-adic deformations of motives, Motives (Seattle,
WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI,

1994, pp. 193–223.

[Gro99] Benedict H. Gross, Algebraic modular forms, Israel J. Math. 113 (1999), 61–93.
[Gro18] H. Grobner, Rationality results for the exterior and the symmetric square L-function

(with an appendix by Nadir Matringe), Math. Ann. 370 (2018), 1639–1679.

[GS20] Matthew Greenberg and Marco Adamo Seveso, Triple product p-adic L-functions for
balanced weights, Math. Ann. 376 (2020), no. 1-2, 103–176. MR 4055157

[Har14] R. N. Harris, The refined Gross-Prasad conjecture for unitary groups, Int. Math. Res.
Not. IMRN (2014), no. 2, 303–389.

[He17] Hongyu He, On the Gan-Gross-Prasad conjecture for U(p, q), Invent. Math. 209

(2017), no. 3, 837–884.
[Hid88] H. Hida, On p-adic hecke algebras for GL(2) over totally real fields, Annals of Math-

ematics 128 (1988), 295–384.

[Hid04] , p-adic automorphic forms on Shimura varieties, Springer Monographs in
Mathematics, Springer-Verlag, New York, 2004.

[HIM22] M. Hirano, T. Ishii, and T. Miyazaki, Archimedean zeta integrals for GL(3)×GL(2),

Mem. Amer. Math. Soc. 278 (2022), no. 1366, viii+122. MR 4426708
[HN21] T. Hara and K. Namikawa, A cohomological interpretation of archimedean zeta in-

tegrals for GL3 × GL2, Res. Number Theory 7 (2021), no. 4, Paper No. 68, 52.
MR 4336286

[Hsi11] M.-L. Hsieh, Ordinary p-adic Eisenstein series and p-adic L-functions for unitary

groups, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 3, 987–1059.
[Hsi21] , Hida families and p-adic triple product L-functions, Amer. J. Math. 143

(2021), no. 2, 411–532.

[II10] A. Ichino and T. Ikeda, On the periods of automorphic forms on special orthogonal
groups and the Gross-Prasad conjecture, Geom. Funct. Anal. 19 (2010), no. 5, 1378–

1425.
[JPSS81] H. Jacquet, I. I. Piatetski-Shapiro, and J. A. Shalika, Conducteur des représentations
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