CM CONGRUENCE AND TRIVIAL ZEROS OF THE KATZ
p-ADIC L-FUNCTIONS FOR CM FIELDS

ADEL BETINA AND MING-LUN HSIEH

Abstract. The aim of this paper is to investigate the trivial zeros of the Katz
p-adic L-functions by the CM congruence. We prove the existence of non-critical
trivial zeros of the Katz p-adic L-functions for general CM fields and establish a
first derivative formula of the cyclotomic p-adic L-functions at trivial zeros under
some Leopoldt hypothesis. The main novelty of the paper is the construction of an
explicit congruences between CM and non-CM Hida families of Hilbert cusp forms
through techniques from automorphic representation theory.

1. INTRODUCTION

1.1. Conjectures on trivial zeros of the Katz p-adic L-functions. Let F
be a totally real number field of degree d and absolute discriminant Ap. Let
K be a totally imaginary quadratic extension of F. Let p be a prime number.
Fix once and for all embeddings (o, : Q — C and lp : Q — Qp singling out a
decomposition subgroup of Gq := Gal(Q/Q) at p. Let ¢ € Gal(K/F') be the non-
trivial automorphism. We suppose throughout this paper the following ordinary
hypothesis on the CM field K:

(ord) Every prime factor of p in F' splits in K.

Let ¥ C Hom(K, C) be a p-ordinary CM-type of K, i.e.

e Y UYc=Hom(K,C) and XN Xc = 0;
e the set X, of p-adic places induced by elements in ¥ composed with ¢,¢}!
is disjoint from ¥,c.

The hypothesis assures the existence of p-ordinary CM-types and we fix one
such . Denote by K., for the compositum of all the Z,-extensions of K and
by Ky, for the maximal sub-extension of I~(oo unramified outside ,. In fact,
Gal(Kyx,/K) ~ Z;,HF"” and Gal(Ko./K) ~ ZgHMF’P, where 0, is the Leopoldt
defect for F' and p. Let W be a finite extension of the completion er of the
maximal unramified extension of Zj, in Q,. To each choice of p-ordinary CM type
> and a ray class character x of K valued in W, one can attach the Katz p-adic L-

function Lx(x) € W[Gal(K/K)] constructed by Katz [Kat78] and Hida—Tilouine
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[HT93]. This p-adic L-function Lx(x) is uniquely characterized by the following
interpolation property: there exists a complex period

Q= (QJ)UEE S (CX)E

and a p-adic period
Y = (Qpo)oes € W*)*

such that for every crystalline character ¢ : Gal(f(oo /K) — Q: of weight kX +
j(1 —c) for some integer k and j = Y j,o € Z[X] with either £ > 0 and j, > 0 or

oeD
k <1and j, +k > 1, we have
voLs() %08 1 To(kS+)Lan(0,xou)
) QE=+2i 24 /Ap  (V-1)k=H OFZ+2j
1.1
< ] (0= X0 () = xdoe (FTHNF ),
Pes,
where
o vy W[Gal(Ko/K)] — Q, is the unique W-algebras homomorphism such

that ng\Gal(lN(Qo/K) = ¢,

e ¢ is the grossencharacter of type Ay associated with ¢ such that ¢ (Q)
is the value of ¢ at the geometric Frobenius Frn at primes 9 1 p,

® Ln(s, XPxo) = D g XPoo(a)Na™* is the classical L-series of x¢o,, where a
runs over all integral ideals of K relatively prime to the conductor of x¢.

o T=c(P).
In the expression of ([L.1)), we have used the convention for £ = ) . .0 € Z[X],
and for x = (z,) € C*:
o =] 2% Tc© =[] 22m) ().
oey [4SP
Any element a € C is considered to be an element of C* via the diagonal embedding

a+ (a)gex.
For each positive integer m, denote by Q((,,) the m-th cyclotomic field. Let

Q(Gp~) = UpZ1Q(¢pn) and denote by ecye : Gal(Q((p~)/Q) = Z) be the usual
p-adic cyclotomic character. Let Qoo C Q((pe) be the cyclotomic Z,-extension of

Q. We view Gal(Q/Q) as a subgroup of Gal(Q((p~)/Q) via the isomorphism
Gal(Q(Cp"o)/Q) = Gal(Qm/Q) X Gal(Q(Cp)/Q)7 o= (U|vaJ|Q(Cp))' Let K;ro =
QoK be the cyclotomic Z,-extension of K and let (eqye) : Gal(Koo/K) — Z) be
the character defined by the composition

Ecyc

Gal(f(oo/K) — Gal(KL /K) — Gal(Quao/Q) — Gal(Q((p=)/Q) — Z).
We consider the cyclotomic Katz p-adic L-function defined by
Ly (s,x) = (€cye)” (Lx(X)), S E Zy.
Let us put
Sy = (B e, X =1);
re(x) = #50" — dimg H(K, x).

P
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In view of the interpolation formula , we expect that Lx(s,x) has a trivial
zero whenever rs(x) > 0. By analogy to a conjecture of Gross regarding the order
of vanishing of Deligne-Ribet p-adic L-functions, we have the following conjecture
regarding the order of the vanishing of Lx (s, x) at s = 0.

Conjecture 1. We always have
Ords:OLE(Sa X) = TE(X)'

Note that when K is an imaginary quadratic field, the implication rs(x) > 0 =
Lx(0,x) = 0 follows from the p-adic Kronecker limit formula, but in general it is
not clear if Lx (s, x) possesses a zero at s = 0 when 5 () > 0 since s = 0 is a not
a critical point for x and is outside the range of the interpolation of Lx (s, x).

We briefly recall the conjectural formula of the leading term of Lx(s, x) at the
trivial zero in [BS19]. First we prepare some crucial ingredients in the statement
of this formula. Following the notation in [Gro81], if X is an abelian group and R

is a ring, we denote the R-module R ®z X simply by RX. Let H := lerx be the
finite cyclic extension of K cut out by x and G := Gal(H/K). Let o}; the group of
units of H. Put

orrIx] = ex (Quo57) -

where e, is the usual idempotent
1 -1
eX = m Z X(T ) & T.

Let log,, : Q; — Qp denote the Iwasawa’s p-adic logarithm with logp(p) = 0. Let
Y g be the set of embeddings o : H — C extending those in ¥ and let G act on
Ypbyrt-c=cor lforT€Gand o € Xy. Let Yy s be the free abelian group
on Xy, regarded as a Z[G]-module with the the action of G-action on ¥ . Define
the p-adic regulator map

logy. , : H* — QPYHQ, logy, ,(7) = Z log,, (tp0(x))0.
ocEXy
We extend the map logy, , by linearity to the map logy, ,, : QPHX — QpYHZ of
Qp [G]-modules and obtain a map between the x-isotypic parts on the both sides

(1.2) logs, o [x] = Yrs[x] == e, (Q,Yr x).

Conjecture 2 (The X-Leopoldt conjecture for x). The map logs, , in (1.2) is
injective.

We remark that Conjecture [2]is a consequence of the well-known p-adic Schanuel
conjecture as explained in [HT94, Lemma 1.2.1]; the four exponential conjecture
implies Conjecture 2] when F is a real quadratic field. Fixing an isomorphism
t:C~ Qp such that 1ot = 1) : Q= Qp, the Dirichlet regulator map is defined
by

logs, o+ H* = Q,Virz, logs oo(2) = ) t(loglo(x)])o.
cEX Y
Suppose that y is not the trivial character 1. By Dirichlet’s units Theorem, the
induced map logs, o, : 057[x] = Yg,x[x] is an isomorphism of d-dimensional Q-
vector spaces. It follows that if Conjecture [2] holds, then the p-adic regulator map
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logy; , = 057 [x] ~ Yu,s[x] is also an isomorphism. Define the regulator %s(x) in Qp
by

5 (x) = det (logg , o logs L | Yarz[x]) -
It is clear that the X-Leopoldt conjecture for x is equivalent to the non-vanishing
of Z5(x). Following Buyukboduk and Sakamoto [BS19, Definition 5.2], we next
introduce the cyclotomic Z-invariant for x # 1 under the Y-Leopoldt conjecture.

X ~ . .
Let onp be the ¥,-units in 4 and put

We consider the space
U, := ker {OIX—I,ZP N — Q

If B is a prime ideal of the ring ox of integers of K, let ordy : K,ﬁ, — Z be

the normalized valuation map and logy := log,oNg, /q, : K% — Z, be the

cyclotomic p-adic logarithm, where N, /q, is the norm map from Ky to Q. For

each P € E;”, we choose a prime ‘B of H above PB. Then via the inclusion
X X X X _ S X

0 0, C H* C HﬁH = Kﬁ’ we can evaluate ord,p and loggy on o HE, and extend

by linearity to maps

@meziprr ordgy  __yirr

O,: Uy ——Q,";

ire loggy irr
L, .U, R vy
If x # 1 and the ¥-Leopoldt conjecture for x holds, the first map O, is an isomor-

phism; we can define the cyclotomic Z-invariant of y by
L= (=10 det (0, o Ly).

Note that the definition of £}, does not depend on the choice of the prime By
above B.

For any Z,-extension Kr of K with the Galois group I', we can also consider
the trivial zeros of the Katz p-adic L-function Lx(x)|r € W[I'] obtained by the
restriction of Lx(x) to I'. It is shown in [BS19, Theorem 1.1] that the leading
term formula of Lx(x)|r at the trivial zero can be obtained as a consequence of
several outstanding open conjectures in algebraic number theory, eg. Rubin-Stark
conjecture and the Reciprocity Conjecture. The following is the special case of this
conjectural leading term formula when K = KZ is the cyclotomic Z,-extension.

Conjecture 3. Assume the validity of the X-Leopoldt conjecture for x and x # 1.
Then we have ords—oLx:(s,x) > rs(x) and

tim 22020 (qyre00 g II a—x®)

s—0 8= (%) .
RUSHRAY

< [T = x(BHNBY) - Zs(x) - Lin (0, %),

RUSIS
where L (0,x) =t (lir% s’dLﬁn(s,X)) € 6; is the leading term of the L-series
5—
Lﬁn(sa X) :
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When K is an imaginary quadratic field (so rg(x) < 1), Conjecture 1] is equiva-
lent to the non-vanishing of the Z-invariant, which is known to be a consequence of
the four exponentials conjecture ([BD21], Prop. 1.11]), Conjecture holds thanks to
the Baker-Brumer Theorem and Conjecture [3|is proved in [BS19, Theorem 1.6] via
the Euler system of elliptic units. These conjectures are still wide open for general
CM fields.

1.2. Statement of the main results. The main goal of this article is to prove
the existence of the trivial zeros and provide some evidence towards Conjecture [I]
for general CM fields in the rank zero and one case under the Leopoldt hypotheses.
Our method does not reply on the existence of conjectural Rubin-Stark units and
conjectural reciprocity law. In the course of the proofs, we also obtain a leading
term formula of the anticyclotomic Katz p-adic L-functions.

Let hg/p be the relative class number of K/F and © g, be the relative different
of K/F. For simplicity, it is assumed throughout this introduction that (x, K, p)
satisfies the following technical conditions.

(H1) The prime p does not divide 6Arhg/;

(H2) X is of prime-to-p order and is unramified at primes dividing p® g/ p.

Note that these assumptions are satisfied by all but finitely primes p once (x, K) is
fixed. Our first result gives a sufficient and necessary condition for the existence of
the trivial zero, i.e. Conjecture[I]in the rank zero case under the following Leopoldt
hypothesis.

Hypothesis (L). The Leopoldt conjecture for F' and the 3-Leopoldt conjecture for
x both hold.

These Leopoldt conjectures are wide open in general. To the best of the authors’
knowledge, this conjecture is only known when H is an abelian extension of an
imaginary quadratic field where p splits. Nevertheless, when F' is a real quadratic
field where p is split and x # x¢, then we prove there exists a p-ordinary CM-type
3 such that the 3-Leopoldt conjecture for x holds by Roy’s strong six exponential
theorem (see §.77). Our results are unconditional in these cases.

Theorem A. Suppose that Hypothesis (L) is valid. Then we have
ords—oLx(s,x) = 0 if and only if r=(x) = 0.

We say x is anticyclotomic if x(coc) = x(o7!) for 0 € Gal(K/K). If yx is
further assumed to be anticyclotomic, it was shown in [BDE2I] that Lx(0,x) # 0
if ro(x) = 0 under Hypothesis (L). Our second result relates the rank one case
of Conjecture [1| to the non-vanishing of the .Z-invariant .%, for anticyclotomic
characters .

Theorem B. In addition to the validity of Hypothesis (L), we assume further that
X 1S a non-trivial anticyclotomic character. Then we have

ords=oLx(s,x) =1 if and only if rs(x) =1 and &, # 0.
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1.3. The method. Although our results are mainly concerned with the first de-
rivative of the cyclotomic p-adic L-function, the method crucially relies on the
use of certain two-variable p-adic L-function, which we describe as follows. De-
note by ¥ : G% — G for the transfer map and fix a p-adic character ey :

Gal(Ky,/K) — Q; such that e5 o ¥ induces the p-adic cyclotomic character of
Gal(F/F). Let ey denote the conjugate character e, and define the analytic
function Lx(—,—,x) : Zi — Qp by

(1.3) Lx(st,x) : = e3e5 (Ln(x)),  (s,t) € Z3.
We prove the following result in Theorem [£.9] and Proposition [6.6}

Theorem 1.1. There exists an analytic function L£3(s,x) on Z, — {0} such that
£2(8a07X) = ‘CE(&X) H (1 - X(@)E%(Frf))

RUSHI
Moreover, the following statements hold:

(i) If the Leopoldt conjecture for F holds, then L%(s,x) is analytic at s = 0
if x is non-trivial, and has a simple pole at s = 0 if x = 1 is the trivial
character.

(i) If Hypothesis (L) is valid, then £5(0,x) # 0 for x # 1.

By definition, we have L£x(s,s,x) = Lx(s,x) for s in a sufficiently small neigh-
borhood of 0, and hence Theorem [A] directly follows from Theorem We shall
call £¥(s,x) the improved p-adic L-function for y in the sequel. The proof of
Theorem [I.1] is briefly outlined as follows. Recall that the Katz p-adic L-function
Ls(x) for CM fields is obtained by the evaluation of Katz’s Eisenstein measure at
CM points. To construct this improved p-adic L-function, we modify the Katz’s
p-adic Eisenstein measure and construct a nice ordinary p-adic Eisenstein measure;
then obtain the improved p-adic L-function £%(s, x) by evaluating this p-adic or-
dinary Eisenstein measure at CM points. The interpolation formula of £3 (s, x) is
proved via an explicit calculation of the toric period integral of Eisenstein series
(Proposition [4.1)), and then the relation between Lx(x) and L (s, x) can be scen
immediately from the interpolation formula. The analyticity of £(s, x) is deter-
mined by that of the constant term of our ordinary p-adic Eisenstein series, which
is essentially the Deligne-Ribet p-adic L-function L, (1 — s, Xll) with x4 := xo ¥.
We thus need the Leopoldt conjecture for F' to conclude the analyticity of £3 (s, x)
at s = 0 in some special cases (See Proposition . To see the non-vanishing of
L£%(0, x), we first observe that the X-Leopoldt conjecture is equivalent to the van-
ishing of the Bloch-Kato Selmer group H%Q)J)(K7 X), consisting classes in H' (K, x)
unramified outside ¥, (Lemma . On the other hand, we deduce a one-sided
divisibility in the main conjecture for the improved p-adic L-function £3 (s, x) from
|[Hsil4al, which in turn implies that ££(0, x) # 0 if H%@’f)(K, x) = {0}. This allows
us to conclude the non-vanishing of £%(0, x) under the Hypothesis (L).

In general the value £ (0, x) is expected to be always nonzero whenever y is non-
trivial. When K is an imaginary quadratic field, £ (s, x) is nothing but the p-adic
L-function L} (s, x) introduced in [CH23. §3.3], and the value £5,(0, x) equals the
p-adic logarithm of Robert’s units by the p-adic Kronecker limit formula (cf. [dS87,
Theorem 5.2, page 88|, [CH23|, (3.5)]). In this case, the non-vanishing of £%(0, x)
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follows from the Baker-Brumer Theorem. Since the generalization of Katz’ p-adic
Kronecker limit formula to CM fields is not available yet, the value £%(0, x) remains
very mysterious. Nonetheless, Conjecture [3| leads us to propose the following

Conjecture 4. If x # 1, then we have
L50,) = Zs(x) T[] (1= x(BINB) - L, (0, x)-

PeXy

Now we turn to the rank one case of Conjecture [I] for anticyclotomic characters.
We prove the following first derivative formula of Lx(s, x) in Corollary Com-
bined with the non-vanishing of £%(0, x) in Theorem this formula yields our
Theorem [Bl

Theorem 1.2. Let x be a non-trivial anticyclotomic character. Suppose that the
Hypothesis (L) holds. If rs(x) > 0 and By € 7, then Lx(0,x) = 0, and

Ly (s,x)

S

=2 L5000 [ @—x@®).
‘436217\{‘131}

When rs(x) > 1, Theorem amounts to the statement L4 (0,x) = 0. Our
proof of Theorem is a vast generalization of the method in [CH23|. One of the
key ingredients is to establish a leading term formula of the anticyclotomic p-adic
L-function Lx(s,—s,X), whose proof relies on (i) a refinement of the method of
Hida and Tillouine [HT93] to produce non-trivial CM congruence by the p-adic
Rankin-Selberg convolution, and (ii) the clever argument in [?, [DKVIS| of relating
the leading term of the Up-eigenvalues of A-adic generalized Hecke eigenforms to
the Z-invariants. Let us sketch the idea of the proof. First note that since x is
anticyclotomic, we can choose a ray class character ¢ such that ¢!~¢ = . For a well-
chosen such character ¢, we generalize the explicit CM congruence among elliptic
modular forms in [CH23| to the Hilbert case and construct an explicit ordinary
W][X]-adic Hilbert cusp forms .7 in the sense of [Wil88, §1.2] such that

e J7 is a generalized Hecke eigenform modulo X! with r = rg(x);
o s (mod X7") is congruent to the Hida family 64 of CM forms associated
with ¢°.

We emphasize that the construction of W[X]-adic modular form J# represents
one of the technical novelties of this paper. We realize 7 as a nice linear combina-
tion of theta series and a particularly tailored Eisenstein series, and compute the
spectral decomposition of J# by the Rankin-Selberg method. This special Eisen-
stein series is different from those used in the literature, and its construction as well
as the relevant calculation of Rankin-Selberg convolution can be best approached
through representation theory. Therefore we decide to use the language of automor-
phic representation, which allows us to localize the difficulty in the computational
of Rankin-Selberg convolution.

After an involved calculation in the Rankin-Selberg convolution (Proposition,
we further find an explicit relation between U,-eigenvalues of ¢ and the following
product of p-adic L-functions

»CE(Sv _SaX) . CF,p(l - S)
L£3,(s, x) L3(s,1)

s=0
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where (g (s) is the p-adic Dekekind zeta function for F'. We prove a special case
of the p-adic Kronecker limit formula

L%(s,1)
Crp(l —s)ls=0
in Proposition and then apply the method of [DKV18] to show in Theorem
that

=274 hi/r

ords—oLx (s, —s,Xx) > rs(x)
and prove the following leading term formula of Lx (s, —s,x) at s =0

=22 L5000 [ a-x®),

PED,\Tirr
where Z2¢ is the anticyclotomic Z-invariant (See Definition [2.2). We thus deduce
in Corollary the first derivative formula of Lx (s, x) from the equation

LE(87X) —9. £2(8701X) . £2(87_57X)
S s=0 B S s=0 S
as well as the relation between the L-invariants £, and Z7°.
This paper is organized as follows. In we recall the general definition of .£-
invariants along any Z,-extension of K. In §3| we review necessary background in
the theory of Hilbert modular forms and Hilbert modular varieties. In §4 we con-
struct a family of special Eisenstein series Ej indexed by certain Hecke characters
A of K via the adelic approach described in [Jac72, §19] and prove a Damerell’s
formula in Theorem 2] The desired p-adic Eisenstein measure is constructed in
Proposition In we apply the p-adic Rankin-Selberg method to construct
the A-adic form 47 in Definition and state in Proposition the explicit for-
mula of the Rankin-Selberg convolution. In §6] we make use of the elegant ideas in
[IDKV1S] to give a relation between the U),-eigenvalues of generalized Hecke eigen-
forms and the .Z-invariant in Proposition [6.1] and prove the leading term formula
of Lx(s,—s,x). Finally in §7| we complete the proof of Proposition In the Ap-
pendix, we explain the connection between p-adic transcendental conjectures and
the X-Leopoldt conjecture.

LE (57 -, X)
STE(X)

s=0

s=0

Acknowledgements. The first named author (A.B.) would like to thank D. Benois,
H. Darmon, M. Dimitrov, M. Kakde, A. Maksoud, A. Pozzi, S.C Shih and J.
Vonk for numerous stimulating discussions. The second author (M.H.) thanks K.
Buyukboduk for helpful comments on an early version of the manuscript.

Notation and conventions. Let Q,(1) denote the Gq representation of dimen-
sion 1 on which G'q acts by the p-adic cyclotomic character. We follow the geometric
convention: the Hodge-Tate weight of Q,(1) is —1.

If L is a local or global field of characteristic zero, let oy, be the ring of integers
of L. Let G, denote the absolute Galois group of L and let Cf, := L* if L is local
and Cp, be the idele class group A} /L* if L is global. Let recy, : C, — G“Lb be the
geometrically normalized reciprocity law homomorphism.

Let L be a number field. If q is a prime ideal of oy, (resp. v is a place of L),
let Lq (resp. L,) be the completion of L at q (resp. v). Then rec, : Ly — G“Ll;
sends a uniformizer wy of oz, to the corresponding geometric Frobenius Fry. If S
is a finite set of prime ideals of oy, let L(S) be the maximal algebraic extension of
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L unramified outside S and let G, g = Gal(L(S)/L). For a fractional ideal a of a
global field L, we let Frq :=[] a Fry® if a has the prime ideal factorization Hq q"a.

For any finite extension of global (or local) fields E/L, we let Ng,1, : E — L be
the norm map and let 0 C 0g denotes the absolute different ideal of F.

2. THE £-INVARIANTS

2.1. The X-Leopoldt conjecture. Let S,(K) be the set of primes of K lying
above p. Recall that ¥ C Hom(K, C) is a fixed CM type and ¥, C Sp(K) is the
subset of primes induced by ¢3! o2 (one has S,(K) =%, [[%,).

If A is a continuous Gk-module, then for any subgroup £ C H'(K,, A) =
BuwipH' (Ky, A), we let H' (K, A) be the Selmer group of A with the local condition
L defined by

H! (K, A)

HL(K, A) =ker { H (K. A HY(I,, A
L(7 ) er (? )—>H (w7 )X L:

wip
For P € S,(K), let Hj(Ky, A) = H'(Kyp, A) and Hi(Ky, A) = {0}. Denote by
H}(Kgg, A) be the finite part of H'(Kg, A) in the sense of Bloch and Kato. Put
Lop= [] Hi(Kyp, A) @ H(Kg, A) for a,b e {0, f,0} .
PeXp
We set
H%mb) (K7 A) = H}:mb (K7 A)

Let E be a finite extension of Q, and x : Gxg — E* be a non-trivial ray class
character of K. Set H be the finite extension of K cut out by y and C' = Gal(H/K).
The Kummer map gives rise to an isomorphism

(2.1) orr[x] = H%f,f)(Ka x (1),
where 07;[x] is the x-isotypic component
oglxl:=={z € Foy |1®g(z) =x(9)®1-x for all g € Gal(H/K)}.
Let
(22) st — g e, | \(F) = 1)

be the set of irregular primes for x in ¥,. Let d := [F: Q] and rg(x) = #Eip”. By
Dirichlet’s units Theorem and a standard calculation of local Galois cohomology
groups, it is not difficult to see that

dimp H{; ) (K, x'(1)) = d + rs(x),
dimg H%jf) (Ka Xﬁl(l)) = Z dimpg H}‘(Kwa Xﬁl(l)) = da

weL,
dimpg H%o,(z)) (K,x (1)) < rs(x) + dim H(lo’f)(K, xH(1)).
Note that by definition, the subspace H{, , (K, x~*(1)) is actually the kernel of the
p-adic regulator map

logsy. ,, : H%f’f)(K,X_l(l)) ~oylx] = EYny, z~ Z logp(Lpa(x))o;
ocEX
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therefore the X-Leopoldt conjecture (Conjecture [2) can be rephrased as
Hig, ) (K, x~'(1)) = {0} .

Lemma 2.1. The X-Leopoldt conjecture for x is equivalent to

(X-Leo) H{y (K, x) =ker ¢ H'(K,x) = @ H'(Ia,x) p ={0}.
NeT,

PROOF.  Since H%f f)(K7 X) = {0} by the finiteness of the class numbers, by the
Poitou-Tate exact sequence we have

0— H%O,f)(K>X_1(1)) - H%f,f)(K7X_1(1)) - @ H}(Kwax_l(l)) - H%(Z),f)(K7 x)¥ =0,

wEX,

where VV = Hompg(V, E) for a E-vector space V. We thus find that dimg H%(Z),f) (K,x) =

dimp Hf, ¢ (K, x"*(1)); the assertion follows. [ ]

2.2. The Z-invariants. We recall the general definition of .Z-invariants for CM
fields following [BS19) Definition 5.2]. The validity of the Y-Leopoldt conjecture
for x is assumed in this subsection. So we have dimp H%O,Q))(K’ x 1)) = re(x)
and the decomposition

H{ g (K, X7 (1)) = Hig g (K, X' (1)) @D Hiy ) (5, x 7' (1)

We shall define the Z-invariant for x to be certain p-adic regulator of the cohomol-
ogy group Hi, g (K,x~"(1)). For every B € S,(K), let (, )y : H' (Kp,x'(1)) x
H'(Ky, x) = E be the local Tate pairing. For 9 € X), X|GK$ = 1, and we denote

by ordyy € H' (K, x) = Hom(K%, E) the usual B-adic valuation. Let Xy be the
free abelian group generated by P with 3 € E;” and write EXE;prr =F Qg Xziprr.
0,: H%O,@)(K,X_l(l)) = EXsie,  Op(z) = Z (locgz(), 0rd§>§$.
Pezir

Note that H}(Kg, x (1)) = H' (Kg,x (1)) if Q ¢ X}", so the X-Leopodlt con-
jecture implies that O, is injective and hence an isomorphism. On the other hand,
for each ¢ € H'(K, E) = Hom(Gg, E), we put

LY Hiy o) (K, x 7' (1) = EXgye, Lé(x) = > (locg(), locgs())55B-
Pexirr

Definition 2.2. The Z-invariant .,?)g’ associated with the ray class character y
along the additive homomorphism ¢ : Gx — Qp is defined by

— T -1 )
LY = (—1)0 det(Ly 0 O, ' EX i)

By definition, the cyclotomic .Z-invariant .2, := ffcyc with £°¥¢ = log, o (€cyc)-
We define the anticyclotomic Z-invariant £32¢ by

L0 = Xfac, 02 :=log,, 0612_C :Gg — Qp.



CM CONGRUENCE AND TRIVIAL ZEROS OF THE KATZ p-ADIC L-FUNCTIONS 11

3. REVIEW OF HILBERT MODULAR VARIETIES AND HILBERT MODULAR FORMS

We will use the following notation frequently. If M is an finitely generated
abelian group, denote by M the profinite completion of M. If F is a number field,
denote by o the ring of integers of F. Let E= 0£®zQ be the group of finite ideles.
Ifa e EX, the fractional ideal of E generated by a is defined to be aog := adpNE,
and if a is an integral ideal of E, let Na := #(Og/a) be the norm of a.

3.1. Hilbert Shimura varieties. Let F' be a totally real field and let 0 = op.
Recall that a Hilbert-Blumenthal abelian variety by o (or a HBAV for short) over
a scheme S is an abelian scheme A over S of relative dimension d and equipped
with an embedding of rings ¢ : 0 — Endg(A) such that Lie(A) is an 0 ® Og-module
locally free of rank 1.

Let ¢ be a fractional ideal of F' and let ¢ be the set of totally positive elements
in ¢. The dual abelian scheme A*,g of A has a canonical HBAV structure. Let
Pa := Hom, (A, A®)sym be the rank 1 projective o-module of symmetric o-linear
homorphisms and PX C P4 be the positive cone of polarizations. A c-polarization
of A is an o-linear map A : ¢ — P4 sending ¢ to 73:{ such that the morphism

ANAR, e~ AY) 2@ar Ma)z.
is an isomorphism of abelian schemes.

Let N be a positive integer and let {y = e be a fixed primitive N-th root
of unity. Suppose that N > 4 is coprime to p and the fractional ideal ¢ is coprime to
pN. Consider the moduli functor & y p» over Z[ﬁ, (n] classifying HBAV with ¢-
polarizations and level I'(N) NT'; (p™)-structures. More precisely, for a basis scheme
S over Z[ﬁv Cn]s Eenpn (S) is the set of isomorphism classes of the quadruple
(A, N, 1,mN, Jp) /s, Where

e A a HBAV over S and A is a ¢-polarization of A.
ey (0®z N7'Z/Z) © (05" @z pun) ~ A[N] is an o-linear isomorphism
' D;l ®z ppn ;s — A[p"] is an o-linear closed immersion of group schemes
over S.
The functor &y~ is represented by a quasi-projective and smooth scheme (¢, N, p™)
of relative dimension [F : Q] over Z[ﬁ,@v] (IRap78], [Cha90] and [DP94]). We
put
M(c, N,p>) = Lm M(c, N,p").
(¢, N,p™) fm (¢, N,p")

3.2. Complex uniformizaton. Now we recall the complex analytic structure of
M(c, N,p")(C). Let Hr C F ®q C be the upper half plane defined by

Op={r=2+V-lye FoC|lze FOR, yc (F®R),}.

To each © = (74, 9:) € HF X GLg(ﬁ), we associate the quadruple (Az, Az, ng(;p),jx)
over C as follows: Let V = Fe; @ Fey be the two-dimensional vector space over F
with the symplectic pairing

(ae1 + bez, cer 4 dez) = Trp/q(be — ad).
Let GLy(F) act on V from the right via

(wer+yea) (&) = (oa-t yodes + (ab + yaa
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For 7 € §F, define the o-linear isomorphism q, : V®q R = F ® C by
dr(vey +yes) =27 +y, (z,y€ F®R).
Let L be the lattice oe; @ 0}162. For g € GLQ(F\), put
L, := (L®zZ)g ' nV.
Given (7o, 92) € Hp x GLy(F), we define the complex torus
Ay (C) = (F®C)/Ly, Lo =ar,(Lg,)

Let ¢, be the fractional ideal det g,0 generated by det g,. For a € ¢,, the pairing
Eo(z,w) := Trp/q(alm(Zw)/Im 7, ) defines a Riemann form on F® C if a € (cz)4-
Therefore A, (C) carries a structure of HBAV A, over C with the o-action induced
by q,,. For a € ¢, let A\;(a): A, — AL be the isogeny induced by E,(—,—), and
the map A, : @ — A;(a) induces a c,-polarization X : (¢, (¢z)4) = (Pa,, P} ).
Define the level I'(N) N Ty (p™)-structures by

e (0@ NT'Z/Z) @ (05" © pn) =~ Ay [N],
a b

(a® Nt (N) — (Nelgfl + Neggfl) (mod L,),

Jo 0t @ ppn = Ag[p"], a® Gpn a/p"egggl (mod Ly).

This way (Az, Az, Ma, o) is @ HBAV with c,-polarization A, and I'(N) N1 (p™)-
structures, and the isomorphism class [(Az, Az, , 7z, Jz)] gives rise to a point in
M(c,, N,p")(C).

Fix an idele ¢ € F®N)* guch that co = ¢ and put

GLy(F)© = {g € GLy(F) | detg = c}.

For any open-compact subgroup in GL, (ﬁ ), consider the complex Hilbert modular
variety Sh(c,U),c defined by

Sh(c,U)(C) := SLa(F)\$r x GLy(F)© /(U N SLy(F)).
For any positive integer n, put
Un(p") = {g = (Z Z) € GLy(0) | a,d € 1 +p"No, c € ¢p"p, b e NﬁFl} )
Assume N is large enough such that
(3.1) Un(1) is neat and det(Un (1)) Nof C (Un(1) No™)>.
With the above condition, we see that the map
(3.2)  Hr x GLy(F)© — M(c, N,p")(C), 2= (T2, 9x) = [(Ass Ae s )]
induces an isomorphism
Sh(e,Un(p"))(C) = M(c, N, p")(C).

3.3. Hilbert modular forms.
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Geometric modular forms. Let k be an integer. Let Ry be a Z[ﬁ, (n]-algebra.
Let Mg(c, N,p™; Rg) be the space of geometric Hilbert modular forms of weight kX
and level I'(N)NI'y (p™) defined over Ry. Recall that an element f € My (¢, N,p"; Ry)
is a rule f which assigns a c¢-polarized quadruple (A, A, 7, j) of HBAV over a Ry-
algebra R together with an (0 ® R)-basis w of HO(A,Q}L‘/R) (or equivalently an
isomorphism w* : Lie(4,) ~ 0;' ® R) an element f(A, \,7,j,w) € R such that

(M1) the value f(A, A, 7, j,w) only depends on the isomorphism class of (A, A, n, j,w),

(M2) f(A,Nn,j,a " w) =a* - f(A, X\ n, j;w) for any a € (0 ® R)*,

(M3) if u: R — R’ is a homomorphism of Ry-algebras, then

f((A7 )\’ n?j’ w) XR R/) = u(f(A’ A? T]’ j7 w))'
We put
M(c, N; Ro) = lim My (¢, N, p"; Ro).

We briefly recall the g-expansions of geometric modular forms. If R is any ring
and M is a lattice in F', let R[M4] be the ring of all formal series

Z agq®, ap € R.
BeM,U{0}

We fix a set C = {ll, . ,Z[F:Q]} consisting of [F' : Q]-linearly independent Q-linear

forms I; : F' — Qsuch that [;(Fy) C Q4. Define M¢, = {z € M | l;(x) >0, l; € C}.

Denote by R[M,C] the ring of all formal series 3 5 /. apg®. Tt is clear that
+

R[M,] C R[M,C] for any choice of C. Let

R((M,C)) = RIM,CI[U™"), U={d"|5eMy}.

Let (a,b) be a pair of fractional ideals of F such that ¢ = ab=!. To any geomet-
ric modular form f € My(c, N; Ry), we can associate a power series fl(q,6)(q) €
Ry((ab,C)) obtained by evaluating f at the Tate HBAV Tateq p(g) together with a
canonical differential over Z[(n]((ab,C)) (cf. [Kat78, 1.1 and (1.2.12)] and [Gor02,
Chap 5, §2]). This power series f|(,p) is called the g-expansion of f at the cusp

(a,b).
Classical modular forms. Define the automorphy factor by

(3.3) J:GLy(F®R) x Hr — (F® C)*, J((i Z))::c7'+d.

For any idele ¢ € F* and an open-compact subgroup U C GLs (ﬁ), we let My(c,U)
denote the space of classical modular forms of weight £3 and level U, which consists
of holomorphic functions f : H x GLQ(F)(C) — C such that

(3.4) f(a(r, 9)u) = J(a, T)* f(1,9) for a € SLy(F); uw € U N SLQ(ﬁ).
Letting ¢ be the idele such that ¢ € F(PN)X with co = ¢, we put
My (¢, N,p"; C) = My(c,Un(p™)).

Give a pair of prime-to-pN fractional ideals (a,b) with ab=! = ¢, choose a,b €
F(®PN)X with a0 = a and bo = b. Each f € M(c,N,p"”;C) admits the Fourier
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expansion

b_l O ™/ — r T

f(, < 0 a)) =cf)+ > cpf)erV IO,
BE(N~1ab)+

where Tr = Trp/q : F® C — C. The g-expansion of f at the cusp (a,b) is defined

to be the power series

flap(@=cof)+ Y csf)d’ € CUN"ab)4].
E(N=Tab)+

If Ry is a Z[ﬁ, (n]-algebra in C, let
Mk(caNapn;RO) = {f € Mk(caNapn; C) | f‘(o,c*l)(Q) € RO[[(Nilcil)-i—H} .

We put
My (¢, N; Ro) = lim My, (¢, N, p"; Ro).

By [Rap78, Lemme 6.12] (or [Kat78, (1.6.3)]) and the g-expansion principle (¢f. [Rap78|,
Theoreme 6.7] and [Kat78, (1.2.16)]), we have the isomorphism

(35) Mk(ch;RO) ng(caN;RO)a foan(x) = f(Am??m,jvaWv 71w2n).
Here w?" is given by the canonical isomorphism Lie(4,) 5 F® C =0,' ® C.

3.4. The Igusa tower and p-adic modular forms. Let Ry be a p-adic Z[ﬁ, (N
algebra, i.e. Ry is a Z[ﬁ, (n]-algebra and Ry = @Ro/}?mR@ The Igusa tower
Ig(c, N) /R, is the formal scheme

_>(—

n

Ig(c, N) /g, := im lim M (e, N, p") /Ry /pm Ro -

We let ﬁord(c, N) be the ordinary locus (i.e., the locus where the Hasse invariant
is invertible) of the formal completion of M(c, N, p°) /z,, along the special fiber. The
natural projection 7 : Ig(c, N)/z, — ﬁord(c, N) given by forgetting the I'; (p*°)-
level structure is Galois with group (o ® Z)*.

The space V (¢, N, Ry) of p-adic modular forms of tame level I'(N) is defined
to be the ring of formal functions on the Igusa tower Ig(c, N). In other words,
V(c, N, Ry) is the ring of global sections of the structure sheaf of the formal scmee
Ig(c, N)/R,- To any p-adic modular form f € V (¢, N, Ry) and (a, b) fractional ideals
with ab~! = ¢, one can also associate a power series f |(a,6) in the p-adic completion

— —

Ro((ab,C)) by evaluating at the Tate HBAV Tateq (q) over Ro((ab,C)).

Let R be a p-adic Rg-algebra containing the Galois closure of o0 in Qp. For any
point & = [(Az, Az, Ma,Jz)] € Ig(c, N)(R), the I'1(p>°)-level structure j, induces
a canonical isomorphism j, : D;l ® @m /R — 2:,3 of formal groups, which in turn
produces the isomorphism (j,)« : 95' ® R = Lie(A,) of (0® R)-modules by passage
to Lie algebras. Define
(3.6) mar(r) = (Ju); ' ¢ Lie(A,) 30, @R
to be the inverse of (j,). (¢f. [Kat78, (1.10.11)]).

If f e My(c,N; Rp) is a geometric modular form of level I'; (p™°), we define the
p-avatar f € V(c, N; Ry) is defined as follows for any z € Ig(c, N)(R), define

(3.7) f(@) == f(a, mr(x))
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which preserves the g-expansions (¢f. [Kat78, Theorem (1.10.15)]).

3.5. CM points. Let K be a totally imaginary quadratic extension of F. Let
x/Fr = Ng/p(Dg/r) be the relative discriminant of K/F. Suppose that N is
prime to g /p. Decompose Nox = MTN~, where N* is a product of primes split
in K and 91~ is a product of primes inert in K. By the approximation theorem,
we can choose ¥ € K such that

(d1) ¥ = =9 and Imo(9) > 0 for all o € %,

(d2) c(og) == 0;1(2190}}1/1,) is prime to pNog/F-

Consider the isomorphism gy : V' = K defined by gy(ae; + bes) = a) + b. Define
the embedding ¢ : K < My(F) by

4w+m:<2_?ﬂ.

Note that
(3.8) q9((0,1)e(a)) = @ and gg(z)a = gg(xi(a)) for a € K and z € V.
The CM type X gives the isomorphism
is: K&RS3 F®C~C”
a€ K (0(a))ses.

Let qyy, :==ixno0qy: V@qR 5 F ® C with ¥s = ig(¥) € HF.

For a finite non-split place v of K/F, let {1,0,} be an o,-basis of ox,. We
further fix a decomposition N+ = FF. with (§,F.) = 1 and § C F. If v | pNT with
w | X,F, le. we X, orw|F, then we have ox, = 0,e,, & 0ye, where e, and ew
are the idempotents of o, corresponding to w and W respectively. Then {e,,, ew}
is an o0,-basis of o0k, . In this case, we let ¥,, € F,, such that 9 = —J ez + Vyew.
We shall also fix a finite idele dp = (dp,) € F such that dpo = 0p. By condition
(d2), we choose

29 . _ .

dp, = o ifv|og/p,dp, =20, if v | N and  dp, = =20, if w | X,5.
Now we make a particular choice of a local basis {e1 v, €2, } of K, over F), for each
finite place v of F' such that ox, = 0,e1,, @ 0} €2 4.

o If utpN, {e1,,€2,} is taken to be {¥,1} for all but finitely many v.
o If v | 9™ is non-split, let {e1,, €2} = {Bv,dp, - 1}.
o If v | pNTt, let {e1,0, €20} = {ew, dr, - €} With w | £,5.

Let ¢, be the element in GLy(F,) defined by

(3.9) @(eis, ) = €iw-

In view of our choices of dp,, one verifies that

detg, =1 < <q51(€2’v),q51(617v)> =1 for v | pN.

In addition, the matrix representation of ¢, according to {e,es} for v | pT is
given by

dr, 1 _9, 1
(3.10) o=\ -d, _1|= ( 1w %) if v =ww and w | X,3.

209 4 20 4 284,




16 A. BETINA AND M.-L. HSIEH

Let h be the set of finite places of F', and put ¢p = [],cp, So- By definition, we have
(3.11) w(Z©2) ") =0k
Definition 3.1. Let 2 be a fractional ideal of K coprime to p/N and put
c(A) = c(ox)N(2A).
Define the CM point
(3.12) () = (U, tla)en)] = [(Aa, A, nar, )] € M(e(A), N)(C),

where a € KPN)* is an idele with aog = 2. By the theory of CM abelian varieties,
the triple (As(, A, ) is defined over a number field L ([Shi98|, 18.6, 21.1]), which
in turn descends to a triple the triple (Ag, Ag(, 7o) defined over Op, by a theorem of
Serre-Tate. On the other hand, since the CM type X is p-ordinary with respect to
tp, the reduction Ay ®0, ., F is an ordinary abelian variety (cf. [Kat78| 5.1.27]),
and hence the I'y (p°°)-level structure jg descends to a I'1(p®)-level structure over
Z;‘r. We conclude that the CM point z(2() can be descended to a W-point x(2)
in the Igusa tower Ig(N,c(A))(W) for some finite extension W of 2;” (IKat78|
5.1.19-20]).

4. EISENSTEIN SERIES AND THE IMPROVED KATZ p-ADIC L-FUNCTIONS

4.1. Notation and convention. Denote by ¥ = [[¢q, : Aq/Q — C* the
unique additive character with g (x) = exp(2my/—1x) and by I'la, =1IIllq, :
AG5/Q* — Ry the absolute value so that || is the usual absolute value on R.
Let £ be a number field. Let 0g be the different of £/Q and Agp = Ng,q(0g) be
the absolute discriminant of E. Let 9y := g o Trg/q : Ar — C*. Denote by
'lay = I'lag °Ne/q : A = Ry. If a € A is an idele and v is a place of E,
denote by a, € E) the component of a at v. If « € E* and S is a finite set of

places of E, denote by (a)s € AJ the idele whose v-component is « if v € S and 1
ifoegs.

L-functions and epsilon factors. If x : Cp — C* is an idele class character (or
Hecke character) of L* unramified outside S. If v is a place of E, let x, : E)¢ — C*
be the local component of x at v. Let L(s,x.) and (s, xv) = &(s, X0, ¥g,) be
the local L-factor and local epsilon factor of x, in [Tat79, 3.1]. Let L(s,x) =
II, L(s,xv) be the complete L-function of x and e(s,x) := [], (s, xv) be the
global epsilon factor [Tat79, 3.5.1-2]. Denote by Lgn(s, x) := [, <00 L(S, Xv) be the
L-function without archimedean factors. If x = 1 is the trivial character of CJ,
then we put

(e, (s) = L(s,1u);  (p(s) = L(s,1).

In particular,

Cr(s) =Tr(s) = W_%F(i), Cc(s) =Tc(s) =2(2m)~°T(s).

and (q(2) = 7/6 with this definition.
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Measures. Let v be a place of E. If v is non-archimedean, let dz, be the self-
dual Haar measure on og, with respect to the additive character v , i.e. dz,

is the measure such that vol(og,,dz,) = |DE\]%EU. If v is a real place, then dz,
is the Lebesgue measure. If v is a complex place, then dz, is twice the Lebesgue
measure. Let d*x, be the Haar measure on E. defined by d*z,, = (g, (1) |z, \;311 dx,
(so vol(og ,dx)) = |0E|%v) The product measure dz =[], dz, is the Tamagawa
measure on Ag. Denote by S(E,) the space of Bruhat-Schwartz functions on E,.
For ¢ € S(E,), the Fourier transform peS (E,) is defined by

60 = [ o), (o) da,
B
If x : B, — C* is a continuous character, the Tate integral Z (¢, x, s) is defined by

Zooxs) = [ o)) oy, 4o, (5€©)

Characters. We fix an isomorphism ¢, : C ~ Qp once and for all. Let Ig be the
set of all embeddings F — C. Each k € Z[Ig| shall be regarded as a character
k:(E®@R)* — C* and (E® Q)" — Q, via t,. If y is a p-adic character
of Gg.s, we say x is locally algebraic of weight k € Z[Ig] if x(recg(z)) = 2*
for all z € (F ® Q)™ sufficiently close to 1. We shall also view x as an idele
class character via recp and still denote by x if there is no fear for confusion. In
particular, a primitive ray class character xy modulo ¢ shall be identified with an
idele class character x of E of conductor ¢. If x : Cp — C* is an idele class
character of F' of level n, we put

(4.1) X(sO0g) := x(s) for s € EMX,
Therefore,

x(q) := x(Frq) = xq(wq) for g & S.
To an idele class character x : Cg — C* of infinity type k € Z[Ig], i.e. Xoo(oo) =

ak_, we can associate a p-adic idele class character Y : Cp — Z; defined by
(4.2) X(a) = x(a)ip(azl)ay.

We call X the p-adic avatar of x. The p-adic character X factors through recg :
Crp — G%, and hence gives rise to a locally algebraic p-adic Galois character
X:Gp—Q, of weight k.

Let w : Gal(Q({p)/Q) — C* be the character such that ¢, o w is the p-adic
Teichmiiller character. Let wg = w|qai( E(¢,)/E)- Viewed as an idele class character,
we have wg = woNg/q.

4.2. Generalities on Eisenstein series. Let F' be a totally real number field as
before. Denote by h the set of finite places of F. We shall identify ¥ with the
set of infinite places of F. We recall a well-known construction of adelic Eisenstein
series on GLy(Ap) in [Jac72, §19] (¢f. [Bum97, p. 351]). Let (x1,x2) be a pair
of Hecke characters of F'*, i.e. quasi-characters of AX\F*. For each place v,
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let I(x1,0,X2,0;8) be the space of smooth (and SO2(R)-finite if v is archimedean)
functions f : GLy(F,) — C such that

a b
f((O d> 9) = xi(a)xz(d ’d
Here |-|, = ||, Let B be the upper triangular subgroup of GL2. Define the adelic
Eisenstein series Ea(—, f) : GL2(F)\ GL2(AFp) — C associated with f by

(4.3) Eal(g, f) == > f(vg), g€ GLa(AF),
YEB(F)\ GLa (F)

s+2
f(g)-

provided the sum is convergent. For f = ®f, € I(x1,x2;$) := QLI(X1.0, X2,0} )
and 8 € F*, define the local Whittaker function Wg(—, f,,) : GL2(F,) — C by

0 -1 1 x,
Wﬁ(gva fo) = /Fv fv((l 0 ) <O xl ) gv)'lva(_Bl"v)dzv-
The global Whittaker function is defined by

WB 9, f Hwﬁ gvva)

Then we have Fourier expansion
(4.4) Ea(g.f) = f(9) + M[f(g9)+ D Wpslg. [),
BEFX

where M f(g) is obtained by the analytic continuation of the intertwining integral

0 -1 1 =z
s = [ 5] 3 (6 7)o ae Gratan)
Ar
(¢f. [Bum97, (7.15)]).
4.3. The construction of adelic Eisenstein series. Let € be an integral ideal
of K such that
Decompose € = €t¢~, where €T = FF. is a product of split primes in K/F such

that (§,5.) =1 and § C §¢, and € is a product of inert primes in K/F. Let A be
a Hecke character of K of inﬁnity type kX, namely

H o(2)* for z € K*.
ceX
Let €y be the conductor of A. We assume that
G =¢ J] P
PeTp

In particular, A is unramified at primes in ip.
For each place v of F, we introduce some special Bruhat-Schwartz functions
Py, € S(F?) as follows:

(1) If v | oo, then @y ,(z,y) = 27%(z + V=Ty)kem@ ")
(2) If v { p€C is a finite place, let @y ,(z,y) = I,, (a:)]IOE (y).

(3) For v | €~ non-split in K, let
O o(2,y) = Lox (zer, +yez)Awer, +yez) !
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(4) If v | p€* with v = ww and w | £,§, then
Py w(7,y) = pu(®)w(y),
where ¢, (y) = I,x (y) Aw(y) and

(2) = I, (x) if wtge,
Lx (z)A5' (x)  if W | e

w

w

Let Ay := )\|A; be a Hecke character of . Define the function fs, , s : GL2(F,) —
C by

(4.5) fos...5(9) = |det g[, /F . D5,0((0, t0)g) A (o) [to]2” ¥ty

Let fo, s = ®ufo,,s € [(1,A]";s — 3) and define the Eisenstein series
Exs: GLy(F)\GLa(Ap) = C,  Exs(9) = Ea(9, fa,.s)-

The analytic properties and the functional equation of this Eisenstein series have
been studied in [Jac72l §19]. By the choice of our sections, we have

E/\,s(aguooz) = E)\,s(g)(](uom V _1)7162/\-7-1(2)7
a € GLy(F), us € SO2(F®R), z € A.
Here J is the automorphy factor in ([3.3)).

(4.6)

4.4. The evaluation of Eisenstein series at CM points. Let N be a sufficiently
large power of Ny ,q(€) so that the section fg, , is invariant by Uy (p") for some

~

n > 0. Define the classical Eisenstein series Ey : §r x GLy(F) — C by
Yy x
EA(7,9n) =Ex s <(0 1) ,9h> (rT=2+V-1y).
s=0
Let ¢ be an integral ideal of F' with (¢,pN) =1 and c € F®N)* with co = ¢. From
(4.6), we have
(47) E,\,c = E)‘|S7JF><GL2(ﬁ)(C) S Mk(C,N; C)

We shall deduce an explicit Damerell’s formula for Ey ¢, which relates the CM
values of Fisenstein series to Hecke L-values for CM fields. We begin with the
period integral of adelic Eisenstein series. Let

Imo(9) 0
S0 = (< mg( ) 1))0@ € GLy(F ®QR); <= 6o X sn € GLa(Ap).

Define the toric period integral of Eisenstein series by
Cn (Bxs) = / Byn(1(2)0) )"z,
KXAR\AL

where d*Z is the quotient measure d*z/d*¢.

Proposition 4.1.

_1\kZ9s
fie (Br) = o) YT o) TT a-a N g0 [ 2250

RUSIIA LIF
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Proor. By [Hsil2, page 1530]

Ciex (Brs) = [ ler (fan s o),
where px (fa, ,.s: Av) is the local zeta integral

Cex (Fan s Ae) = / Fon o n (2D Aol(2)d7

K JFS
—det(s)} [ Baal(0. il (2) 2313 0
KX

In what follows, we fix a place v and write z for z,. For v | oo,

2T [e’e)
EKUx(ﬁpM,S,)\U):|det(§v)|i277_1(2_1\/—1)k/ / 20+8) =772 1% 40

0 0

=[det(s,)[y - (V=1 - 2°Tc(k +5).

If v { p€€, it follows from (B.8) and (3.11) that @, ,((0,1)c(2)cy) = Loy, (2), so we
have

b (s o) =)l [ Tow, (00 (2) |31 472

1
=|det(<y)l; L(s, M) P, -
If v | €, then

1
b (o) = Wet(s)ls [ Ty () [o215 472 = lden(s,) 5 oL,

If v | p€* with v = ww and w | FL,, then
Cex (fas s Av) = 1det(So)[g Adw(=20) - Z(Bw, Aw, 8)Z (¢, A, 5)
L(s, \y)

L(1 — 5, \a")e(s, Aw)

In the last equality, we have used the local functional equation of the Tate integrals.
Now the proposition follows from the above calculations of local zeta integrals. W

= [det(su) [} Aw(29)

1
- L(s, M) - |det (), Pk, -

Let Cly := CI(K)/CI(F) and let h™ := #(Clg). We fix a set {2;,...,2A,-} of

representatives for ideals 21; prime to p€€og /p. Let
Q= [0y : Wojg],
where W is the torsion subgroup of K*. Note that Q =1 or 2.

Corollary 4.2 (Damerell’s formula). Let {z(2),...2(2,-)} be the CM points
defined in Definition[3.1. Then have

S B (@(2:)A2A)

[2;]eCly
X . X0/ TTVES .
J"g;ﬁ%\g) £0,0) JT (1= AEHNFHap20) - ] ;(z%i))

RUSHIN L£IF
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PROOF. By definition, z(2;) = [(¥s, t(a;)n)], where a; € KPO* is an idele with
a0 =2A;. Let Ug := (K @ R)%og . There is an canonical isomorphism
K*ASN\AY Uk ~Clg, a— aok.
We have
D> B @@))AR) = > B s(t(ai)s)Mai)|s=o
[Ai]eCly [a:]€ KX AF\AL Uk
#(Clk)
vol(K* AF\AF,d*z)’
We have vol(K*Aj\A,d*z) = 2L(1,7k,r). From the classical formulae

:gK>< (E)\,s) |s:0 .

_ 2hgp Ag 2UlilhK/F
4.8 #Cl, = ;o L(1,7 —_ =
( ) K Q ( K/F) AF [0?{ : 0;}
where hy,p = hi /hF is the relative class number, we obtain
wo) #(Cly) L #W) 2 [ofiof]
’ VOl(K*AF\AX,d*2) VAK  24/Ap Q 24/Ap~
The assertion follows from Proposition [4.1] and (4.9). [ |

4.5. The evaluation of p-adic Eisenstein series at CM points. We next
consider the CM values of p-adic Eisenstein series constructed from Ej . in (4.7).

Proposition 4.3. The g-expansion of Ey . at the cusp (o,¢™ ) is given by
E/\>c|(07571)(q) = CO(E)\’ C) + Z C,B(E)U C)qﬂ,
BE(N—1c—1),
where co(En, ¢) = fa,,s(1)]s=0 and

oo =057 T (e (5 1))

veh

s=0

PROOF. The is a standard argument. Let f = fg, 5. By (4.4), Ex(7, (S (1)>) is

given by the series

(6 2o (§ ) 2w (53 6 5) )

BeEFX

)

s=0

where 7 = z 4+ /—1y. Since E) is right invariant by Un(p"), we find that

Wp <(8 (1)> 7f) =0if 8 ¢ N~1c™! by the equation Wg( < ) =Y p(Bz)Ws(g, ).

By the factorization of Whittaker functions, we obtain

Wi (3 5) (5 0) 1) o = catmaaousreev=rmen TLws (% 0) ) oo

oEXD
For o € ¥, an elementary calculation shows that
—2mv/~10(B)yoz
Yo 0 byl=k e
W , s | |[s=0 = 21 /—dz
o (% 1) onen ) oo = rl 2T ot [ ST
= g(ﬁ)k—le—QWU(ﬂ)ngR+ (a(B))
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by Cauchy’s integration formula. We thus obtain

We ((g T) (8 (1)> 7f) ls=0 = CB(EA,C)(me/leT(ﬂT)HFJr (8)-

On the other hand, the constant term is given by

CQ(EA,C) = f<I>>\7s ((8 (1)>) |s:0 +Mf<I’A,s ((g (1))> ‘s:O

If v is infinite, then fs, , s[s=0 belongs to the irreducible sub-representation in the

_k
induced representation I(1,sgn*; £1) @ |det|” 2, and hence M fs, , s|s—0 = 0. We

thus obtain
c 0
Co(E)\,C) = f<1>>\,s (<0 1)> |s:0 = f@k,s(1)|s:O~

The assertion follows. ]
Define the fudge factor

or|2 HAv<—dF3>|aF|és<o,A+,v> 1 if 3. = ox,
L(Ov)‘Jr,v) 0 if gc 7é OK.

4.10) Fdg(A) =

(110) g = T -
v|3T

By definition, Fdg(A) = 1 if € = (1) is the unit ideal.

1
17 A+)U) v|€—

Lemma 4.4. We have
1 _ _ _
co(Ex, ¢) = Fdg(A) - o Lan(1, AT [T = As (b7 )Np ™).
plp

Proor. If §. # ok, then @, ,(0,%) = 0 and hence f3, , s(1) = 0 for v | 5. Now
we suppose that §. = 0x. A direct calculation shows that

27k /ZT°T (s + k)~ (+0) = 2-195(“T)* T (s + k) if v | oo,

L(2s,A) [or|2 if v § pei,
fq))\,vas(]‘) = -1 1 . _
Ay (dr,) [op | ifv|e,
1 . _
A o(=1)7(28, A1) oF|2 if v | p§T.
L(1—2s,A71) .
Here (25, A\ ) = ws@s, At,v) is the v-factor of Ay ,. We have

L(s, \p) =Tr(s+k+e)F Q. L (s, A1),

where e = 0 if k is even and € = 1 if k is odd. By the functional equation of L(s, Ay )
and £(0, A4 ,) = [0r|, 2 for v{ p€C, we find that co(Ey, ¢) = fa, s(1)]s=0 equals

(H f(I)A,v»S(]‘)) |s:0

€ d 1 _ 1
(Ve [ AelDRel M(dzh) rld e(0.A0)  L(25, A1) oo
2l (k +e€) L(1,A7)) L0, A+,0) e(0,A4)

vlpe vje-

DFdg(A) - Lan(1L,A7) [0 = A5 (0)Np ™)

QFR(]C + 6
v|oco plp

_ (\/jlk+frc( )FR(l—k+e ) (-
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Now by reflection and duplicate formula for Gamma functions, we see that
V=T Te(k)Tr(1 — k +¢) _
I'r(k+e) ’

Now the lemma follows. [ |

We write Ay = X+|-|k, where x4 is a ray class character of F' modulo €y N F.
Let F,, be the finite extension of F' cut out by x. We say A, is of type W if
F, . is contained in the cyclotomic Z,-extension F,, of F. Take any prime qo | p&
of o such that its Frobenious Frg, generates Gal(Fi/F). Let Hg, () be defined as
1— Ay (q0) =1 — x1(q0)Ngg ¥ # 0if € = (1) and A is of type W and Hgy,(\) = 1
otherwise. Note that Hy,()) is a non-zero algberiac number.

Corollary 4.5. We have
Hay(N) - Exclioe1) € Zip) [(N e 4]

In particular, Ey . descends to a geometric modular form Ey . in My(c, N;Z(p))®z

Q.

PrOOF. For g € F*, we put

agp)(EA,c) = H Wa(foy s (Cv 1>)

vtpoo

s=0

For each place v { p, we see that |DF|;% - fo,.,,s is the function ¢y s, defined
in [Hsil4b, §4.5]. The explicit formula of agp )(E x, ¢) can be easily deduced from

[Hsil4b, (4.9)], which in particular shows that ag’)(E,\, ¢) belongs to oy, for some
number field L unramified outside p. On the other hand, for each v | p,

Wi (fos.,.001) = A (B) 1815 Loy, (B).

Let Ay be the p-adic avatar of Ay. So XJr((ﬁ)p) = A ((B)p)BFE for B € F*.
Therefore, from Proposition [£.3] we deduce that
(4.11)

cs(Ex,¢) = a® (Ex, )AL ((B)p) - Np/q(8) ‘NF/Q(ﬁ)‘(;i Lo,oz,(B) € Z).

By Lemma we see that co(Ex, ¢) = fa, ,(1)]s=0 is give by a product of the
value L, (s, x7 ") of the Deligne-Ribet p-adic L-function at s = 1 — k and the Fudge
factor Fdg(\) € Z,). It is well-known that L,(1 — k,x;') € Z(,) if x4 is not of
type W and in general (1 —A;(q)) - Ly(1 —k,x') € Z;,) for any q away from the
conductor of x. It follows that the product Fdg(A)L,(1 — k,x;l) € Z(p) unless
€ = (1) and x4 is of type W, and hence Hq,(A) - co(En, ) € Z(y). [ |

We let ~

Exe:=Ex € Ve, N;W) Xz, Q,
be the p-adic avatar of Ey . defined in (3.7). Let (2, Q) € (0p @ W)* x (F ®
C)* be the canonical p-adic and complex period associated with the polarized CM

abelian variety (F ® C)/ix(0x) [HT94, (4.4 a,b)]. It will be convenient to use the
modified complex period defined by

(4.12) Q:=Q.(1®7) ! (~Imdyx) € (F® C)*.
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Proposition 4.6. We have

2/): 219 )\ 2,[9 ><: X
L A5 = ((Q)EP)H5(35A2)>'[;5¢AO*§]

Poqaeciy Lz
1 L(0, ) . .
x : L= AP )NPT).
—1\k 5> H (
(V=D Q= s
Proor. By [HT93l Theorem 1.2], we have
Ex et (2(A;)) 2my/—1)k= 27my/—1)F>
( Q);;g =4 Q’éoz) Ex e (2(2)) = (SY;OE)E/\(x(Qli))7
so we have
1 27‘&'\/7
g 2 AaE@) =TT S @m ).
Poeciy S [2;]eCly

Now ﬁhe assertion follows immediately from Corollary [.2] together with the equa-
tion A((29)x,) = A((20)s,)(29)"* and the definition of the modified period 2 in
@12). -

4.6. The improved Katz p-adic L-functions for CM fields. We let G (€)
denote the Galois group Gal(K (€p>)/K) of the ray class field K(€p>)/K mod-
ulo €p>°. Recall that Katz (¢ = (1)) and Hida-Tilouine (€ # (1)) constructed an
element Ly € W[G(€)], which is uniquely characterized by the following inter-
polation formula:

MLs) _[ox:op] (“1)F=(2m)h+

(4.13) QR 24y /AR Im(209)IQEET “A(29)s,)
x By(WLO M) [T = A),
e
where

e \: Goo(€) = WX is a locally algebraic character of weight kX 4 j(1 — ¢)
critical at 0, namely either £ > 0 and j € Z>g[X] or k <1 and kX +j €
Z>0[E]a

e E,()) is the modified Euler factor defined by

o= I LA
e L(s,)) is the complete Hecke L-function associated with A defined by
L(s,A\) :==Tc(s+ k% + j)Lan(s, \)
(cf. [HT93, Theorem II]). Put
029 = reci ((20)x,) € Goo(Q).

RUSYY

Let x be a ray class character of K of conductor €. We let
Ty : W[Goo(€)] = W[Goo(1)]
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be the homomorphism defined by v + x(7)[Y|x(p=)] and define the p-adic L-
function Lx(x) € W[G(1)] associated with the branch character x by
Lx(x) = my(Ls - [o29] ) € W[Goo (V)]
The interpolation formula (4.13)) can be rephrased as
PLs00) R0l 1 L)
QT ARy (o) T XV) Qkst2;
where U : Goo(1) — W™ is a locally algebraic character of weight kX + j(1 — ¢)
critical at 0 and 2 is the modified period in (4.12)). This form is in accordance with

the conjectural shape of the p-adic L-functions for motives [Coa89, Conjecture A].
Let I' := Gal(Kx,/K). Put

(4.14)

X8 = {v:T — W* | U is locally algebraic of weight k%, k > 2} .

Eis

ve on I' wvalued in

Proposition 4.7. There exists a unique p-adic measure dp
V(N,¢; W) such that

/F P(0)duP3(0) = Hay(x) - Exave

for all U € X8,

Proor. This is shown by a standard argument. First we note that since x is
assumed to be unramified outside p, Hq,(xv) = 1 — x(q0)7(qo) if x4+ = 1 and
1 otherwise. The interpolation of the constant term U +— Hq, (xv) - co(Ey,,¢) is a
direct consequence of the existence of Deligne-Ribet p-adic L-function. For g € F*|
it is shown in [Hsil4bl (4.13)] that

Hyy () - cg(Ey,¢) = ij -X(aj) for b; € W,

J

a; € F®)x H 0y H K (A=xv).
o[pFF  vIeT

Here a; and b; depend on ¢ and 3 but do not rely on A. Therefore, there exists a
W-valued measure on I' interpolating S-th Fourier coefficient Hg, (xv) - cg(Eyw, ¢).
Since &y, = IE,Mc share the same g-expansion with Ej . at (0,¢™1), we thus obtain
a p-adic measure du#(q) on T' valued in the ring W[(N ¢~ !),] such that the

; X¢
Pi(q) at U € X' is the g-expansion of Hg,(xv) - Eyue. Since the set

X?!# is dense in the space of continuous functions on I', we deduce that the masure

dp%(q) descends to a unique measure dult valued in V(c, N; W) such that the
g-expansion of du¥'s at the cusp (o, ¢™!) is du'3(¢) from the irreducibility of the

Igusa tower Ig(V,c) due to Ribet. ]

value of du

Let 7 : G — G3> be the transfer map. Let ey : Gal(Ky,/K) — W* be a
p-adic character such that ex; 0 ¥|q, = (gqyc). Let es, (o) == ex(coc™1). Define
the two-variable p-adic L-functions.

Ls(s,t,x) = ehe (Lo(X),  (5,1) € Zp.
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Let 1 be the idele class character of K such that 121\ =eyx. For s € Z,, put

is % if@:(l) and x4 =1,
Exe(s) ::/F =(o )d,UE (o) - {11 ex (o) + .

otherwise.
Then Proposition [{.6] and ({.14) implies that
Z EX c(A; ) (Q’[Z))XESE(QlZ)

[2A;]eCly

(415) £2(8707X)

Hmezp(l —xe3(P)’

=C, - e5:(029 Frgl) .

where

2X 0219 Xe 2?9) =X
C, = €7z ..
X Q g (0, xe) 2

The following is a special case of p-adic Kronecker limit formula.

Proposition 4.8. Suppose that (F-Leo|) holds. If x is unramified everywhere and
X+ = 1, then we have
2Lx(s,0,x) _Jhrp i x=1,
Crp(L = 8) [Ipes, @ = X(PB)es(P)*) ls=0 (0 if x # 1.
PROOF. We have € = (1) since y is unramified everywhere. Put
2d
o =& .
X,C(S) X7C(S) CF,p(l . S)
Note that Fdg(A\) =1if € = (1) and hence & (8)]s=0 = 1 is the constant function
by a result of Colmez [Col88]. By (4.15)), we have
252 (0219) . QdLE (37 Oa X)

Z 5*,c(211-)(5)(33(%))5%(%))((%) = 0

[A;]eCly

Evaluating at s = 0 of the above equation, we find that

2 29Lx(s,0,x) {#(CIK) if x =1,
£, - = 2;) = .

@ Gl I hyen, 1A @2@ 2 ™ 70 it
It follows from the formula #(Cly) = 2hk/r/Q. |

Theorem 4.9. Suppose that (F-Leo) holds. If x # 1, then there exists a analytic
L-function LL(x) € Ak such that

Ls(5,0,x) = ex(L5(x) [ (1 - xex(P).
PED,
We call £3(s,x) = e%(LE(x)) the improved p-adic L-function.
ProoF. For any [2] € Clg, let dug, be the bounded p-adic measure on I' ob-

tained by evaluating dug ., at the CM point x(%). Namely, du,, , is character-
ized by the interpolation property

/F ex(0) iz, o (0) = Expr cqan (@),

Crp(l—s) prezp(l — x(Pex(P)*)
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Let £, o € Frac(Ag) be the corresponding element in the Iwasawa algebra of T'.
Then £, o € Ag unless x4 =1 and € = (1). (1 — [Frq,])Ly 2 € Ag in general.
Define

N (05,4 Frg]
(4.16) L£5(x) = 219 5] > Lo, x()[Fra] € Ax.
Cx [20,]€Cl 5

One verifies that £3()) satisfies the desired interpolation property by (4.15) and
that £3(x) € Ak if x # 1 by Proposition [4.8] |

5. p-ADIC RANKIN-SELBERG METHOD FOR HILBERT MODULAR FORMS

5.1. Hida families of Hilbert modular cusp forms. Let M (np, &) be the space
of parallel weight k£ > 1 Hilbert modular forms of level I'; (np) and Nebentypus &,
where n is a prime to p ideal of 0 and £ is a finite order idele class character modulo
np. We fix a set {¢;}i=1, . of the representatives of the narrow class group of F.
For f € My(n, &), we let

shy

D(s,f)= > C(a,f)Na
a: ideals of o
be the associated Dirichlet series and let C;(0, f) be the constant terms at the cusp
(0,¢; 1) (IShi78, (2.25)]). The value C(a,f) is called the a-th Fourier coefficient of
f.

Let Foo = F' Qoo be the cyclotomic Z,-extension of F and let A := W[Gal(F/F)]
be the Iwasawa algebra over W assoc1ated with F/F. We shall assume that p
is unramified in F' throughout. Let (ecyc) : Gal(Fo/F) — Z) be the p-adic
cyclotomic character given by the composition Gal(Foo/F) — Gal(Qo/Q) —

Gal(Q((p=)/Q) =~ s Z) and for any integer k, let vy : A — Z, be the natural

morphism induced by <scyc> : Gal(Fio/F') — Z). Let hy be the narrow class
number of F'. A A-adic modular form F of level N and Nebentypus £ is a collection
of elements

{C;(0,F),i=1,...,hy; C(a,F), a C o non-zero ideals} C A

such that for all but finitely many k > 1, there is a unique v (F) € Myy1(np, Ewh)
whose associated Dirichlet series is

D(s,v(F El/k Na™*

and whose constant terms are given by C;(0,v4(F)) = v4(Ci(0,F)). We denote
by M(n, §) the space of A-adic modular forms of level n and Nebentypus £ and by
S(n, &) the subspace of A-adic cusp forms. Namely, S(n, £) is the subspace of M(n, &)
consisting of F € M(n, §) with v (F) is always a cusp form for all but finitely many
k > 1. In particular, if 7 € S(n,¢), then C;(0, F) =0foralli=1,..., hy.

We have a natural action of the Hecke operators {7y, Ut} ginp,ijnp 00 S(n, §), which
are compatible with the Hecke action on Sk.i(np,éw%) under the specialization
S(n, &) — Si1(np, wh) along vy, For any integral ideal b and F € S(n, ¢), define
Vo F € S(nb, &) by C(a,VyF) = C(ab™1, F). Hida defined an ordinary projector
eord = TEHSO(HPIP Up)™ on S(n,&). The A-module S (n, &) = e°™4(S(n,&)) is the
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subspace of ordinary A-adic forms of tame level n and Nebentypus . For any finite
flat A-algebra R, we denote by

Sord(n, £, R) := S (n, &) @4 R

and let T(n,§, R) := R[T\, Uglynp,qnp C Endr (Sord (n, &, R)) be Hida’s big ordinary
cuspidal Hecke algebra acting faithfully on S°*d(n,¢, R). Hida’s control theorem
[Hid88] (see also [Wil88]) yields:

e S°rd(n, €) is a finite free A-module.

e The specialization vy : S°*4(n,§) — ngl (np, Ewh) := eora(Sk+1(np, Ewh))
is surjective.

e T(n,& A) is finite and flat over A.

5.2. Hida families of theta series. Let K be a totally imaginary quadratic exten-
sion of I as before and let 7/ : Cr — {£1} be the quadratic character associated
with K/F. To an idele class character ¢ : Cx — C* of infinity type kX and con-
ductor €, prime to p, we can associate a theta series 0y € Sk11(Ng/p(€y)0k/F,&)

with £ :=| - |K]; Y1 T p. The Fourier coefficients of 6, are given by

Claby)= Y @)

m;ideals of ok,
AA=a, (A,Cy)=1

The p-stabilized newform fop) associated with 6, is defined by

C(a,657)) = 3 P(RN).

2A: ideals of ok,
AA=a, (A,C;,3,)=1

In particular, if p is a prime above p, then

DN =\ . =
Cp, 05" = () if P ex, and pox = PP.
Let Ax = W[Gal(Ky,/K)] be the Iwasawa algebra associated with the Z-extension
Ky, /K. Then Ak is regarded as a A-algebra via the transfer map 7 : Gal(Flo /F) —
Gal(Kx,/K). Write o — [o] for the inclusion of group-like elements Gal(Kyx, /K) —
A%. Define the universal character ¥ : Gx — Ay by
(5.1) ¥(0) = [o]xs, ]
By definition, ¥ is unramifiedd outside ¥,. For any prime ideal Q ¢ ¥,,, we put
T () = ¥(Frg).

Let ¢ : Ck — W be a ray class character of conductor €, coprime to p. We define
the ordinary A g-adic cusp from 8, € S4(n, ¢ 7k p, Ax) withn = N/ p(€) 05/
by

C(a,8,) = > $(2) - ¥(Fry) € Ak.
2A: ideals of o,
AA=a, (A,C43,)=1

Let ¢ be the Hecke character of K such that {b\ = ey. By definition,

EZD or
(5.2) vi(89) = €5(05) = 1, (657,) €SP (0, oy pwh).
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It follows that 04 is a Ax-adic newform of tame conductor n in the sense of [Wil88]
Definition 1.5.1]. For each prime [ of 0, we have

Ti0, = C(1,04)0 if (Lpn) =1, Uy = C(1,04)0 if [ | pn,

where
(5.3)
O (L) + i/ p (NP (L) if (I,pn) = 1 and £ | log,
C(l,0y) =< ¢W(L) if log = £€ with [| pn and £ | X,€&4,

0 otherwise.

5.3. A A-adic form of Eisenstein series. Let (r,(s) be the Deligne-Ribet p-
adic L-function satisfying the interpolation property that for all positive integer
k,

(5.4) Crp(1—k) = | JT — wr@) Np*) | L(1 — k,wh).
plp

Let ¢ IV% € Frac A be the element in Iwasawa algebra such that

k
(€cye) (C}/«“p) = (rp(l = k).
Let qo { p be a prime of o such that Fry, generates the Galois Gal(Fu/F'). Put
Hy, =1—[Frg,] € A

For each integral ideal m of F with (m,p) = 1, we let £(m, 1) be the A-adic Eisenstein
series with the a-th Fourier coefficient given by

(5.5) C(a,E(m, 1)) = > Nb~[Fry] ™t € A,

m~—laCbCo, (p,b)=1
and the constant terms are given by
Ci(0,&(m, 1)) = 27U,

fori=1,...,hq. This way we see that Hy, - £(m,1) € M(m,w). Recall that if [ is
a prime factor of m, then Uy € End M(m, £) is defined by

C(a,UF) =C(la, F), Ci(0,UF) = Ci(0,F).
For any square-free divisor mg | m, we define

(5.6) E(mmp) = [ (1 = Ni~'t7)) £(m, 1).
[lmg
In particular,

(5.7) Ci(0,€(m,mp)) =27y T[T - N fori=1,... hy.

[|m0
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5.4. The Rankin-Selberg convolution. We call a ray class character x anticy-
clotomic if x(coc) = x(o71), or equivalently y 0¥ = 1. When regarded as a Hecke
character, x is anticyclotomic if x| AL = 1. Let § be an integral ideal of 0. Let x be

a primitive anticyclotomic character of K modulo fox with value in W*. Suppose
that
(fvpaK/F) =1

There exists a ray class character ¢ unramified at pdg /- such that

xX=¢"°

(¢f. [Hid0G, Lemma 5.31]). We are allowed to take a twist by a character of the
form &§; 0Ny, with a ray class character §; of F'. We say a character n : K — C*
is minimal if the conductor of n is minimal among 71 - &§; o Nk, , where & runs
over ray class characters of F. Now we fix an auxiliary prime [y 1 pfAp of o which
is split in K. With the help of Lemma [5.1] below, we may assume ¢ satisfies the
following minimal condition

(min) ¢, is minimal for all v € h except for v = [
by replacing ¢ by ¢ - §1 o N, for a suitable ray class character &; of F'.

Lemma 5.1. Let S be a finite set of primes of 0. Let £ be a finite order character
of 0% = [I,es 0. For any prime | € S, there exists a finite order character
&:Cp — C* such that §|U§ = {g and & is unramified outside S U {l}.

ProOF. Let Up := (F ® R)* [[,cpn 0, and let Ug) ={x€Up |z =1} be a
closed subgroup of Up. We first extend £g to a character £ of U 1(;) so that & is
trivial on the v-component of Uf,[) for each v ¢ S. Since 0* N Uf,[) = {1}, we can
further extend £ to the product 0*U }‘) by requiring £|,x = 1. Since the product
o*U g) is a closed subgroup in Up, by Pontryagin duality £ can be further extended
to Up which is trivial on 0*. The image of Up has finite index in Cp = AL /F*, so
we can extend & to C'r and obtain desired idele class character of finite order. W

The conductor €, of ¢ can be written as €, = &lf* with (&,lp) = 1. The
minimal condition for ¢ implies that €, has a decomposition

¢ =¢re, (Co,pogyrl) = 1; (€4, €F) =1,

where €~ is only divisible by primes inert in K and €% is only divisible by primes
split in K. Put

(5.8) no=0g pct (€)' m=0x pctc [0 | n,
where ¢t = ¢+t Mo and ¢~ = €~ No. With the transfer map ¥ : A — A, we define
24¢r, (1
(5.9) G(m, 1) == ¥ C#” E(m, o) | .
CF,p
By definition, we have

C’Z(O,(](m, [0)) =1foralli=1,...,hy; C’(a,g(m, [0)) € Ap,
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where A p is the localization of Ak at the augmentation ideal P. Let 03 € S1(n, ¢+ 7x/F)
be the theta series of weight one defined by

(5.10) Cla,03) = > ).
(A,€sT5%)=1,
NRA=a

In particular, if p is a prime of o above p with pox = PP and P € ¥, then

o l@Y if P ¢ B,

Cp.og = 0F) RN

O(P) +o(PB) P e I

We shall consider the spectral decomposition of the product

eora(05 - G(m, Tp)) € S (n, ¢y 7p/p, Ap).

To be more precise, we denote for simplicity S for S°™4(n, ¢4+7p/p, Arc) and let K
be the field of fractions of Ag. Let K’ be a finite extension of K containing all
Fourier coefficients of normalized newforms in S°*4®,, K. Let S, be the subspace
of S ®a, K’ generated by

VoF | F a new form of level m in S®, K’ and mb | n, F # 04, 0 4
K ¢ Yo

and let Sz = S, NS ®x, K. Then it follows from the theory of newforms [WiI8S8|
Prop. 1.5.2] that we have a spectral decomposition (a direct sum as Hecke modules)

(5.11) S®@a, K:=K60;d K0, @ Si.

Note that n is the tame conductor of 84 and @4e, so Sg is the space interpolating
the orthogonal complement of the subspace spanned by classical specializations of
0, and 04 under the Petersson inner product.

Definition 5.2. Let C(¢, ¢°) and C(¢°, ¢) be the unique elements in K such that
(5.12) H = eora(05G(m, o)) — C(¢,¢°) - 8y — C(¢°, ¢) - Bye € Sk

Proposition 5.3. With the ray class character ¢ and the ideal m as above, we have

< . o1 24L5(5,0,1)Lx(s,0,x)
é?Z(C((b ’(b)) - <Nm>s hK/F A EE(S, s, X)CF,p(]. — S)
&5’ (%) .
Moy (= e (Frg) e, (- eprg)) )
where
B () — (L= NGB (201))( = NG e (8 1)) (1 - Nig 'xed (€5 1)1 = NG ey (B ).

(1= NIigh)2(1 = NI x(L0)eg (085 ))(1 = NIz X()eg, (€025 1))
In particular, C(¢°, ¢) and C(¢, ¢°) are both non-zero.

The proof of Proposition [5.3 will be given in §7]



32 A. BETINA AND M.-L. HSIEH

6. MODULAR CONSTRUCTION OF COHOMOLOGY CLASSES AND THE
APPLICATIONS TO p-ADIC L-FUNCTIONS

6.1. Ribet’s construction of cohomology classes. Let S* := SN (S®x, Ap).
Let T+ C Endy, (S*) be the image of the Hecke algebra T = T(n, ¢, 7x/q, Ax)
restricted to S*. The computation of [DKV18| §5| provides a general method to
compute the Z-invariant f;f of x along an additive homomorphism ¢ : Gk g — Qp
introduced in Definition [2.2] if one can construct an explicit Hecke eigensystem of
T valued in some artinian local ring W.

Fix a topological generator 7o € Gal(Kx,/K) ~ Z,. We have Ax = W[X] with
the variable

(6.1) X = ([v] = 1)/log,(ex(10)) € Ak.

Let S be a set of prime divisors of pn. For any finite extension L/F, denote by

G1,s the Galois group of the algebraic extension of L unramified outside primes

above S. Let r := rx(x). Suppose that r > 0. Let 2;,” ={P1,...,B,} and put

A:=Ap [Y,e1,60,...,6].

Forn>m >1,z € Ap, and b € Q,, let I, , . » be the ideal of A defined by
Limap =" Y(X =Y), X" —2Y™ X¢;,Yei,e2,e1...6, +bY™).

We consider the artinian local ring W = /NX/ I m,-» With the maximal ideal my, =

(X,Y,e;). The following proposition is extracted from [DKVIS8 §4 and §5] with

some modifications to our setting. Recall that ¥ : Gxx, — A% is the universal
character defined in (5.1).

Proposition 6.1. Let X\ : T+ — W be a surjective Ag-algebra homomorphism
with n > 0 such that for primes [ € S,

ANTY) = ¢(£) + ¢(L) (mod myy) if [= £ split in K,
AMTY) = 0(mod myy) if [ is inert in K,

and for p = PP with P € X,

AUp) = 6°¥(B) if B¢ 5,7,
AUp) = 0¥ (B,) (1 + ) if B="Pi € Ty

Suppose that there exists a character U Gg,s = W* and an element Z € (X,Y)
such that

(i) U =W+ Z (mod Zmy) for some additive character ) : Gg,s =W,
(ii) M(T7) = ¢¥(Fre) + ¢VU(Frg) for [ = £& split in K with [ € S.
If (X-Leo|) holds, then we have the equation
—bY" + ZE’ZT = 0(mod Z"my).

PrOOF. Let AT O Ap be the local ring of rigid analytic functions around X = 0,
i.e.

AT = {i an X" € Q,[X]

n=0

there exist ¢t > 0 such that lim |a,|t" = O} .
n—oo
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Let Tt = T+ ®x, AT be a finite Af-algebra. Let AT = /~\®AP Atand I = Imm’z’bjﬁ.
Let I = Ker A be the kernel of the map A : TT — ./N\T/I. Note that TT/T ~ KT/I is a
local ring. Let mpg be the maximal ideal of TT containing I and denote by R = TZmR)
the localization of Tt at mz. Then R is a finite flat Af-algebra. In addition, R
is reduced for n is the tame conductor of 6,. The theory of pseudo-characters
produces a continuous irreducible Galois representation py : Gps — GL3(R) such
that Tr p)(Fr() = Tt € R for any prime [ ¢ S and the assumption (ii) implies that

(6.2) Trpalag.s = @0 + ¢°0° (mod IR).

The fractional field Frac R is isomorphic to a product of fields

t
Frac R = HL%;,

i=1

and each field L, is a finite extension of AT and corresponds to a cuspidal Hida
family ;. For i = 1,...,¢, let m; : Frac R — L be the natural projection map.
Then pyz = prom : Gpg — GLao(Ly) is the Galois representation associated
with 7. We claim the restriction p | s is still irreducible. Otherwise .77 would
be the Hida family 64, of CM forms in Spec T for some ray class character ¢ # ¢

or ¢¢ whose specialization at some arithmetic point P’ above P agree with 0((1)2”),
which in turns suggests that ¢1 + ¢ = ¢ + ¢°, and ¢1 = ¢ or ¢°, a contradiction.
By [HT94, Theorem 6.12], for each p | p, the subspace Lif fixed by the inertia
group pz (I,) is one-dimensional over L. Let vy, be a basis. Since ¢ are
not Hida families of CM forms, the Galois representations p ;|G ¢ are irreducible.
Combining the 3-Leopoldt’s conjecture and ¢ # ¢°, we can apply the
argument [DKV18| Lemma 4.3] shows that there exists 0 € Gk g such that ¢(og) #
¢(copc) and vy p is not an eigenvector for all % and p. Choosing a basis {v1,v2}
consisting of eigenvectors of py(og) for the representation py, we may assume

1 O

(6.3) pa(og) = (0 Vz) , v1 = ¢(og) (mod mpg); e = P(cope) (mod mg).

The image px(R[Gk, s]) of the group ring R[Gk ] is of the form

(G sl) = () € M)

where R;; are ideals in R; this is a generalized matrix algebra in the sense of [BC09,
Theorem 1.4.4]. Note that R5 is a faithful R-module since p |G s is irreducible
for all i. Writing

pr(0) = (“(U) b(0)> for o € Gg.s,

it follows from (6.2]) and (6.3]) that
a(o) = ¢U(0) (mod I), d(c) = ¢¥(coc) (mod I); RisRs C IR.

For each p | p, the px(Ip)-fixed vector vy := (v ,p)i=1,..,+ is an eigenvector of
PA(Greyy) such that px(o)vy = ap(0)vy, where oy @ Gy — T+ is the unramified
character with a (Frg) = Up. Writing vy = Apv1+Cyuva with (Cy, D) € (Frac R)?,
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we obtain an invertible matrix <A Bp) € GLy(Frac R) such that

p
CP DCI

(1 0 (& )= (8 ) () ) oraio e G

It follows that
(6.4) Cp - b(o) = Ay - (ap(0) — a(0)) for o € Gy

Note that A, and C,, both belong to (Frac R)* since v, is not an eigenvector of
px(og) for each i. Define the function

A Gg.g — Ria, K (o) =0b(o)/d(o).
For any R-submodule R’ D mgzR12 of Ri2, the reduction of # modulo R’
H =b/d(mod R') = ¢ °b(mod R') : Gx,s — Ria/R

is a continuous one-cocycle in Z' (G s, x ® Ria/R'). We claim that if the class
[#] € HY(K,x ® Ri2/R’) represented by # is zero, then Ry = R'. We can
write b(o) (mod R') = (¢°(0) — ¢(0))z for some z € Ri3/R’. Evaluating b(o) at
o = 0y, we immediately see that z = 0 from and hence b(c) (mod R’) is zero.
Since Riy is the R-module generated by {b(0)},cq, » We conclude Riz = R'. In
particular, this shows that J#" (mod mgR12) represents a non-zero class

(65) Ky 1= [7] € Hl(K,X®R12/mR).

Let p be a prime of o above p and write po = PP with P € ¥,. Suppose
that P ¢ Egr = {P1,..., B}, i.e. ¢ # ¢° on G- Then there exists o with
ay(op) —a(op) € R*. We thus obtain

_ Ay (ap(o) —a(0))
HOe T e

and 7 (o) = é—:(l —x(0)) (mod mpRy2) for all 0 € G ;. This shows that the class

[£] is locally trivial at P for any P € ¥,\XI". Legﬁ’u be the submodule of R
generated by {7 (o)} with B; € X", Then % : Gx — Riz/(mrR12+R},)

ceGgr_
K‘m

is a cocycle whose class [#] is locally trivial outside X, and we see that [#] = 0
by the ¥-Leopodlt conjecture . From the above claim, we obtain that
mprR1s + Rj; = Ri2 and hence R}, = Rz by Nakayama’s lemma. Let &; =
qﬁql(Fr%l)Up —1€ Rand Z € R be liftings of &; and Z respectively. Then the

assumption (i) implies that oy, (0) —a(o) € &R+ ZR+1Iforo € Grcy;, - Therefore,
we conclude that

"\ Ap, o ~
(6.6) Ry C Y “PE(ER+ZR+]).

i=1 Cp,

For each integral prime Q of K, denote by

(;)a: HI(K27X® Rip/mp) x HI(KQaXA(l)) — Ryz/mp
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the local Tate pairing. We choose a basis {u1,us,...,u,} of H%O,@)(K, x1(1)).

Since the class xy is unramified outside X, U i;rr, we obtain

T

(6.7) > (locg, (kx), locsg (uy))gg, = 0 in Riz/mp.

Foro e G Ky, We h:/e
$°U (0" ) (ep(0) — a(0)) = T(o)(1 + ) = (¥(0) +9(0)2)
)ei — ¥(0)Z (mod I + Zmpg).
Put o;; = (ordg ,locg (u;))5, and 1/)” = (locg (¥), locky, (u;))g,- According to
Definition [2.2]

B,

- det ((¥i5))
B = e o))
It follows from that

A ~ ~
Z Cp’ (0ij€ — ij Z 4+ mj;) = 0 (mod mpRy2) for some m;; € I+ Zmp.
i=1 pi

Combining , we obtain

" A, _ ~ = ~
Z Cpl (0ij€i — Vi; Z + myj) = 0 for some m;; € I+ Zmp + &;mpg.
i=1  Pi

Hence, N
det(04j€; — ¥i; Z + m;j;) = 0.
Applying X on both sides, we obtain
det(oje; — Vi; Z + X(mijz)) =0,  A(myj) € (Z,&)mw
Since ;7 = g;miy, = 0, we find that that
det(0i56i — Yi; Z + A(myj;)) = det(o5)er - .. er + (—1)" det(9;;) Z" (mod Z"myy)
= det(o0;;) (—bY" + f)?’ZT) (mod Z"myy ).
The proposition follows immediately. |

6.2. Applications to the Katz p-adic L-functions. Let y be a non-trivial an-
ticyclotoic character of conductor fox as in §5.4 Recall that in the A-adic cusp
form # in Definition is given by
1 1
— —0¢ € Sé

H = eord(g(m7 [0) . 0;)5) - E A

with A = C(¢,¢°)~! and B = C(¢°,¢)~! in K* = (FracAp)*. We shall assume
that the Leopoldt conjecture for F' holds, which is, by a result of Colmez [Col88],
equivalent to the following

0¢c

1
(F-Leo) Crp(s) has a simple pole at s =1 <= —— € XAp.
Fp

By the constant term formula (5.7)) and the definition of the A-adic Eisenstein series
G(m,lp) in (5.9), we find that (F-Leo) implies that
(6.8) G(m,lp) =1 (mod X).
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We continue to assume that r = rs(x) > 0 in this subsection. For i =1,...,r, we
put
g = ¢ql(Frg)Um ~1€T.

Proposition 6.2. Assume that (F-Leo|) and (X-Leo|) hold. Then we have
B e XAp.

PROOF.  Suppose that B ¢ XAp. Namely, B B~! € Ap. There are two cases:
Case (i): A7t € Ap. Let A act on St by

(6.9) g F=gF;, Y- F=¢c1...6,-F.
Define the ideal I of A by

I:=T1,0-1=(X,e} cer—Y)

yEir €

and W := A/I. Then one verifies immediately that .Zy := # (mod X) is annihi-
lated and W - %, is a free of W-module of rank one. We have a homomorphism
A: T+ — W with

MTY) = ¢(£) + (L) if [ = ££ is split in K,
MTy) = 0 if [ is inert in K,
AUp) = ¢(P) if p = PP with P € £,\T",
AUp,) = ¢(B,) (1 + &) if p; = P, with P; € L))"

Applying Proposition to A with ¥ = 1, Z = X and v = 0, we find that
Y € X"my = {0}.
This is a contradiction.
Case (ii): A € PAp. Let ry = ordp(A) > 1 and a* = A/ X" |x_o € 6: We
let A act on S*/(X"4*1) by
Y - =X, & F=¢%.

Put 7' := —A# € S*. Then by (6.5),

Fh = (mod X"AH1) =6, + %9;2” — A0S (mod XAt
Define the ideal I by

I'=T, 110 =Y X -V Ye;, Xej 67 e1...60 +a*Y™™)
and W = A/I. Then one verifies that . is annihilated by the ideal I. Note that
{Yiﬁé}ZQ()_l and {e; - F(} ;49 is a basis of W - 7 and that W is generated by
the Ap-algebra W is generated by {Yl}zo_ " and the products £ with J # () over

Q We thus conclude that W - %] is a free W-module of rank one. Using (5.3)),
we verlfy easily hat W - %] is an 1nvariant T-!-submodule with

T1.%) = (¥ (Fre) + (;S\II(FrL))ﬁO if [ = £€ is split, Ti.%} = 0 if [ is inert;
Umyo = ¢P(R,)(1 +e:) 7
Applying Proposition again with U= W, Z=Y"4 and ¢ =0, we get
Y™ =0 (mod Y my).
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This is a contradiction. |

For o € G, the universal character ¥ (o) (mod X?) in (5.1 can be written as
(6.10) V(o) =1+ ns(0)X (mod X?)
for some homomorphism 1y, € Hom(Gk g, W). By definition and the choice of X

in (6.1), we have

ns(0) = —log,(es(o]ks, ))-
Recall that in Definition we have introduced the anticyclotomic Z-invariant
(6.11) L=

along the anticyclotomic logarithm ¢2¢ € Hom(GKys,Qp) given by

(&)

A Ing 05%; =0y — 7.

We next apply Proposition to relate the anticyclotomic £-invariant £ to the
higher order derivatives of B.

Proposition 6.3. With the Leopoldt hypotheses (F-Leo]) and (X-Leo]), we have

ac __ B
4= Xrlx=o

Proor. Write G = G(m, y) and consider
1 1

H = ena(G93) — 50s — 5

By Proposition B = C(¢° ¢)"t € XAp. We set r4 = ordp(A) and rp =
ordp(B) > 1. Put

04 € Sk.

* ey
b* = Xrs ’X:O € QP .

In what follows, [ denotes an integral prime of F’ with ([,pm) =1 and £ is a prime
of K above [. Let 7x/p be the quadratic ideal character of F associated with K/F.

Choose a prime-to-p prime ideal qo = Q¢Qo split in K such that

$(Q0) — ¢(Qo) # 0 and £*°(Frg, ) # 0.

This implies that C(qo,0s) — C(qo,O0¢c) € XAF. Define the Hecke operators Yy,
and Yy in Tp by
(Tqo — C(d0,04))X
C(a0,0¢¢) — C(d0,04)"
(Tg, — C(q0, 04)) X
C(d0,05) — C(a0,00°)

Case (I): X" # X, Let A act on S1/(XT5+1) by

qu =
(6.12)

Yd,c =

(6.13) Y. F =Y, e F=cF
Let ‘BO S Zp — Eiprr and Poox = ;B()ﬁ(r Put
_B _ 3
A = (Upy — $(B0)) A = e — B - e0ra(G63) € ST

¢(Po) — 6(Po)
Fy = (mod X"ETY),
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By (6.8), we have
F1 =04 — b 93X (mod X 2H).
One verifies that
Y 7 = XF = X04 (mod X"2T1),
€1...60F1 = —b"X"BF,
el - F1= Bo(B; %) (Up, — 6(Pi))*05 (mod X"271) = 0.
Thus .%#; is annihilated by the ideal

I:=1

TB,

1,1, = (XTB+1,Y—X e? Xej,e160.. .6 —|—b*XTB) C K

IR

Let W = A/I. For each subset J of {1,2...,7}, put e; := [I;csei- It is easy to
see that W is generated by the Ap-algebra W is generated by {X Z}:j(; " and the
products 7 with J # 0 over Qp. We claim that W - %, is a free W-module of rank

one. To see it, it suffices to show that {Xi,?l}:o_l and {ajﬂl}Jﬂ are linearly
independent. Suppose that there exists a polynomial f (X) with deg f < rp and
ay € Q, with J C {1,...,r} such that

F(X) T + Y age - F=0.
JC{1,...;r}, J#D
We must show that f(X) =0 and ay = 0. Applying Y on both sides, we get
Xf(X)84 =0 (mod X"5Hh).

Noting that C(0,04c) = 1, we obtain X f(X) = 0 (mod X"#F1). This implies that
f(X)=0and

0= Z ajey- F1=X"8 ZQJSJ'GZ (mod XTB+1).
TC{L,r}, J£0 T4

Now the claim follows from the linear independence of the set {6 7 Hg}J of modular
forms. From (5.3]), we deduce that
Tiv71 = (¢(L) ¥ (Frg) + 75, p (N (£) ¥ (Fre)) F1;
UpF1 = o(R) ¥ (Frgp)Z1,  p = PP with P € p\Z,
Up,F1 = 0¥ (Frg )(1+&) - Frfori=1,....r
This shows that the free W-module W-.%, is a T--invariant submodule of S+ /(X"5+1),
This induces a surjective Ap-alegbra homomorphism A : T+ — W such that

tF; = A(t) - 1. This X satisfies the assumptions in Proposition with ¥ = we
Z = X and ¢ = £*°. Applying Proposition [6.1) we obtain

—H*XTE 4+ .2 X7 =0 (mod X my).

This implies that rg > r and that ﬁ;‘("c =0ifrg >r and f;c =b*ifrg=r.
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Case (II): X, = Egr and rg > r4. Define the Ap-adic cuspform

B
I = (*B) = Z . 9¢ +0¢c - B- eord(gﬁg).

Let %5 := % (mod X"8F1). Let Y and ¢; act on A as in (6.13) and set zo =
1+ % € Ap. Then one verifies that

Y - Fo=X04, Y 04 =X04,
XA Ty = 29Y ™4 - Py,
E1...6p Fo = b XIS = bYTE - Py,
This shows that %5 is annihilated by the ideal
Ii=Trprpmg = (Y2 2 X6, Ve, V(X —Y), X — Y™ g1 ...e, +b*Y"5).
Let W = A/I. We claim that W - .%, is a free W-module. To see it, since W/I is
generated by {Xi}z(;l {yi };i;l and {e} 4y, it suffices to show that

ra—1

] . rg—1
{X yQ}i:O U {YJ "0}2}]'21 U{es- y2}JC2p,J#®,EP
are linearly independent over Qp. Suppose that we have a linear equation
FX) s+ g(Y)Y - Ao+ ayey- Hs =0(mod X"
J£0

for some polynomials f(X),g(X) € QP[X} with deg f < r4 and degg < rg — 1.
Applying Y on both sides, we obtain

(f(X) +g(X)X)X0¢C = O(mod XTB+1)’
and hence f(X) + g(X)X =0 (mod X"#) as C(0,04:) = 1. Tt follows that

f(X) +9(X)X =0;
B
T AXTETa

X
€A%

(6.14) FX)XT27 440 + Z asb*X"™Pe; 05 =0, u
J#0D

We this find that f(X)X"27"4 = 0 (mod X"8), which in turn shows that f(X) =0

for deg f < ra. In view of (6.14]), we thus get g(X) =0 and oy =0 for J # 0. On

the other hand, a direct calculation shows that
T\Fy = (¢Wa(Fre) + 1r/p () dW2(Frg)) Fa,
where ¥y : G g — W is the character defined by
¥(o) = ¥(o)
X

This shows that W - %, is an invariant T+-submodule. We therefore obtain the
surjective homomorphism A : T+ — W such that t.%, = A(t) - F». Applying
Proposition to A with U =Wy, Z =Y and ¥ = ¢2°, we find that

=b*Y"P 4+ Z2°Y" =0 (mod Y my).

Uy(o) =P(o) + Y.

This implies that rg > r and that ﬁ;‘("c =0ifrg >r and f;c =b*ifrg=r.
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Case (III): ¥, = X" and 74 > rg > 0. Let a* = A lx=o € Q; Put
A
S = (—A)% = 0¢ + B - 0¢c —A- eord(g9;)-

Let W act S*/(X"4*1) by
v. g~ Tao =~ Cla0,04:))X
C(g0,64) — C(q0, 0pc)
Put .73 = 54 (mod X"4+1). One verifies easily that
Y- %3=Y-0,=X0,(mod Xratly,
€1...6p - Fg=—A- 9;2”) =—a"- X"10, (mod XTA'H).

One verifies that

F, & F = (¢\Il(Fr%)Up —1).7.

A
X" I3 =1+ E)YTB - F3, and g1...6, - F3 = —a"Y"™ - F3.

Setting z3 =1+ % € Ap, it follows that 73 is annihilated by the ideal

I3 =1, rp 250"
(615) ra+l _2 r r *y’r
=" el Xey,Ye,,Y(X —Y), X" — 23" gy ..., +a"YT™).
By a similar argument as in the case (II), one can show that {Xifg}:i;l, {yi. ﬁg};i;l

and {e; - F3} J£0 Are linearly independent and conclude that W - Z3 is free of rank
one over W. By (5.3, we also verify that

T1.F3 =(¢¥s(Fre) + 71/ p (DOV3(Frg)) - 43,
where U3 : G, — W* is defined by
(o) — ¥0)
X
Applying Proposition to A with ¥ = Vs, Z =X —Y and ¥ = £*°, we obtain
—a"Y"™ + 22X - Y)" =0(mod (X —Y) my).
Since r4 > rp, we have Z"™8 = (X -Y)"8 = Z—:Y“ € W . This implies that rg > r

and that .,f;jc =0ifrg >r and f;‘c = b* if rg = r. This finishes the proof in all
cases. |

Theorem 6.4. Suppose that (F-Leo]) and (2-Leo]) hold. Then we have

OrdszoﬁE(sa =S, X) >r

Us(0) =0°%0) + Y.

and r
lim £2E 90 gme pr0y) T (- x(B).

s—0 S
PEX,\ELT
PROOF. Let B(s) := e%(B) be the meromorphic function on Z,,. Then B(s)/s"|s=0 =
B/X"|x=o based on the choice of the uniformizer X. By Proposition
1 . EE (87 -, X) .
N 250500 T, v (1 — XCB))
Crp(l—s) Hmezp(l - ESE(Frﬁ)) xu, ()
£2(S,071) <AKN(’:X>S fo '

B(s) =

hi/r
(6.16)
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To simply the notation, we put

LE(sox) = L300 [ (1 =x(P).

PEX,\Zir
Combined with Proposition Proposition and Ex,(0) = 1, we obtain
Lo = B(TS)’ o= Ef(s, _SaX)| N
sm ls= sTLE (s, x) =0
The theorem follows. n

Corollary 6.5. Suppose that the Leopoldt hypotheses (F-Leo) and (X-Leo|) hold
and that (f,p0x/r) = 1. Suppose that rs(x) > 0 and P, € Z;”. Then we have

Ls(0,x) =0 and

Lx(s,x . _
BOX) —zirso0 T G- x@).
PET\{P1}
ProoF. Let r = rs(x). Since nz(Frgy) = —log,(ex(Frg)) for P € Xy, by

Theorem we see that ords—o(Lx(s,0,x)) = r and if r = 1 and X" = {1},
then

Ly, (‘97 0, X) ok

EEERRN) = () - £8(0,0),
This implies that WE:O =0 if » > 1 in view of Theorem Now suppose
that » = 1. Note that the cyclotomic logarithm /¢ = —ns — 15, so if r = 1 and
Z]io" = {91}, then

25 =2ns(Frg) — 2.

It follows that the cyclotomic derivative @L:O equals
£E(Sa SaX) o 2£Z(S,OaX) 7‘62(87 753X)
s |s:0 - s |s:0

= 2z (Frg )L57(0,x) — ZL8°LS (s, X)
= 2 L5 0,%).

This completes the proof of our main theorem. ]

6.3. Non-vanishing of £3(0, x). We study the non-vanishing of £3(0, x) via the
one-sided divisibility of Iwasawa main conjecture for CM fields in [Hsil4a).

Proposition 6.6. Let x be a non-trivial ray class character of prime-to-p order.
Suppose that (x, K,p) satisfies the assumptions (H1|) and (H2) in the introduction.

If the 3-Leopoldt conjecture (X-Leo) is valid, then L£%(0,x) # 0.

PROOF. This can be deduced from the one-sided divisibility result in Iwasawa
main conjecture for the improved Katz p-adic L-function £%(x). To begin with, let
K be the Z¢ ! -extension of K and for any Ko /L/K, put A(L) := W[Gal(L/K)].
If Ly C Ly, then let A(L;) — A(L2) be the surjection induced by Gal(L;/K) —
Gal(Ls/K). Let S be the union of the set of finite places of K where x is ram-
ified and the set of places above p. Define the universal character x : Gx,s —
AKw)*, 0 = x(o)[o]. Let A(L)* = Homes(A(L), Qp/Zy) be the Pontryagin
dual of A(L) endowed with A(L)-module structure given by X - f(z) = f(A\x) for
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A x € A(L). Let x ® A(L)* be the discrete A(L)-module A(L)* with the Galois
action via the character x. Define the Selmer group

Selp(x) i=ker { HY(Kg/K,x ® A(L)") =[] H'(Iw,x @ A(L))P* 3,
weS\X,

where I, and D,, denote the inertia and decomposition groups of w. Then Sely,(x)
are discrete and co-finitely generated A(L)-modules. Let chary(zySelr(x) be the
characteristic ideal of the Pontryagin dual Selr(x)* in A(L).

Let L be the compositum of the cyclotomic Z,-extension and Ky, . Since
HOY(K,x ® A(Kx)*) = {0} and L contains the cyclotomic Z,-extension, we have

(6.17) Seli. (X)" @n(x) ML) ~ Selr(x)"

is pseudo-isomorphic of finitely generated A(L)-modules in view of [Hsil4al, Remark
8.4]. Let I be the kernel of the natural quotient map A(L) — A(Kx,) = Ax. We
have the exact sequence

locs, "
0 — Seliey (x) =+ Selt O] —% [ (H'(wsx ® AL)*) @a) M) .
wefp

Taking Pontryagin dual of the above exact sequence, we find that

AK * *
(6.18) q}l;p m — Selr(x)" ®a) Ax — Selk, (x)* — 0.

Recall that [Frg] € Ak is the image of the Frobenius at P in Gal(Ky, /K) — Ak
and [Frg] # 1 by the ordinary assumption. The equation ([6.18)) implies that

IT (= x(B)[Frg)) - chara, (Seli, (x)*) C char (Selr(x)* @a(x.) Arc)-
RUSHIA
Combined with (6.17)), we get

H (1- X(‘J?)[Frﬁ]) ~charAK(SelK2p (X)) Cchary (k) (Selk. (X)" ®ax.) Ax)
Bes,

Ccharp () (Selk.. (X)) ®a(x.) Ak
On the other hand, by [Hsil4al, Theorem 2],
charp(x..)(Selr. (X)) C Lu()AME ).
By Theorem [£.9] it follows that

[T (X () Frgg))-chara, (Seliee, (007) € LAk = [] QX Frg))-L500 A,

RUSHHY PES,
and hence

(6'19) CharAK (Selep (X)*) - E;] (X)AK-
Note that

HO(I,, x ® N) @ A /(X) = {0} for all w € S\%,,.
By [Hsil4al, Lemma 8.3], this implies that

(6.20) Selry, (X)* @ax Ax/(X) = Hiy (K, x ©z, Qp/Zy)*
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By the Poitou-Tate duality, Hy, (K, x (1)) and Hy (K, X ® Q,/Z,)* have the
same rank, so the Y-Leopoldt conjecture implies that H%V)’f)(K,X ® Qp/Z,) is a
finite group. Therefore, from , we deduce that the characteristic ideal of
Selry,, (x)* is not divisible by X, and by (6.19),

L£5(x) (mod X) = L5;(0, x) # 0.
This completes the proof. |

The following is an immediate consequence of Corollary [6.5] and Proposition [6.6}

Corollary 6.7. Let x be a non-trivial anticyclotomic ray class character of K such
that

(1) (x, K,p) satisfies the assumptions and (H2).
(2) and both hold.
Then
ords=oLx(s,x) =1 if and only if rs(x) =1 and £, # 0.

Remark 6.8. One can also deduce the one side implication that if rg(x) =
1 and %, # 0, then ords—oLx(s,x) = 1 from [BS2I, Theorem 3.27] combined
with [Hsil4a, Theorem 2] and the existence of the trivial zeros

7. EXPLICIT CALCULATIONS IN THE RANKIN-SELBERG CONVOLUTION
This section is devoted to the proof of Theorem [5.3]

7.1. Adelic Hilbert modular forms. Let k& be any integer. Let w be a Hecke
character of F' of finite order. Let Aj(w) denote the space of automorphic forms

of weight k£ and central character w, consisting of smooth and slowly increasing
functions ¢ : GL2(F)\ GL2(AFr) — C such that

V(gucoz) = w(2)e(g)J (Uoo, \/—1)_’“2, z€ A}, usx € SO2(F ®q R).

Let .Ag(w) C Ag(w) be the subspace of cusp forms. For any integral ideal n of F,
put

Ul(ﬂ)z{g: (Z Z) EGLQ(E)CEﬂa,d—le‘I{U\}.

Let Ag(n,w) be the subspace of Ag(w) right invariant by U;(n). For any ¢ €
Ap(n,w), the Whittaker function W, : GLa(Afr) — C of ¢ is defined by

1 =z

Wel(g) == /F\AF <p(<0 1) 9P p(—z)dz.

To any Hilbert modular form f € My (n,w), we can associate a unique automorphic
form in ¢f € A (n,w) such that for every y € (F ® R)* and a € F*, we have

a O E o onTr(y
@ W (4 7)) = ottt O om0,
On the other hand, a Hilbert modular form f is given by an h-tuple
f:(fcm"'fch)a fw GMk(Ci,Ul(n)).

Then we have

fe (1) =y~ Ty ((g f) ((3 ?)) (Ne;)

[N

(1 =24+ V—-1y) € Hr).
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Then
C(Bciaf) :C,B(fCi)7 Ci(0,f) :CO(fCi)'

If f € Sk(n,w) is a Hilbert cuspidal newform of conductor n, then denote by ¢
the unitary and irreducible automorphic representation of GLo(A p) generated by
¢. This representation ¢ is discrete series at all infinite places and has conductor
n and central character £. Moreover, o is the new vector in m¢ and

. kE—1
(7.2) L(s,m) =Tc(s + k — )EFQ/UD(s + —5 )

where L(s,7¢) is the automorphic L-function associated with m¢ by Jacquet and
Langlands.

7.2. Eisenstein series. The aim of this subsection is to realize the weight k spe-
cialization v (€(m,l)) of the A-adic Eisenstein series £(m,[) as adelic Eisenstein
series in [Jac72l Chapter V]. For each place v, let wp, be the local component of
the Teichmiiller character wg at v. Let D be the pair

D = (k,m, myg),

where k is a positive integer, and m C mg are integral ideals of F' such that (m,po) =
1 and (mg, por) = 1. Define Op = @pexPpy @l e, Ppw € S(AT) by

o Op ,(z,y) =27F(x + V—=Ty)ke= @ %) if y | oo,

* &p.u(2,y) = Imo, ()L, 1 (y) if v f pmooo,

® Ppo(2,y) = Imo, ()L,x () if v | mo,

o Opy(z,y) = wi' (@) (), (y) if v | p.
Let fop,s = ®ufop.,s € I(wh. 1, 5), where

1
(73)  fop,.a(g9) = wh, (det g) [det g3 "2 / (0, £)g)wh, (1) 127 4%t

v

Consider the adelic Eisenstein series Ea (g, fo,, ,) defined by (4.3). It is easy to ver-
ify that Ea (g, fo..) is an automorphic form in A (m, w?.) whenever it is defined.

For 7 =z 4+ v/—1y € HF and ¢ = co for ¢ € F®P™* put
_k® x c 0 —k
B =y (Y §) (5 1) fom oz 1ol

Let Ex(m,mg) = (E,, ... Ec}+) € My (m,wk.). This way Ea(—, fo, g)|57% is the
Vo e -

automorphic form associated with Ej(m, mg) via the relation (7.1]). For any integer
n coprime to p, put (n) :=n-w((n)).
Proposition 7.1. For k > 2, we have

Nm

k

(Nm)
PROOF. As in the proof of Proposition the 8-th Fourier coefficient of E. is
given by

ve(E(m,mp)) =

Eg(m, mp).

CB(E‘) = H Wﬁ((%v (1)> vf‘I’D,u,S) |Cv‘;% :

veh
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Let v be a prime [. Put oy = NI (ND)®. If [ my, then it is easy to sce that

v(Bey)
Cy 0 k i .
Wl(§ ) Fooolloe =ledd S it 14m,

i=v(m)

W5(1’f¢v,u,s) = HUU (ﬂ) if [ | p-

For [ | mg, we have

WL, fop..s) = / Lo (8)T 5 (Bt~ V)" (1) [12° 4.
F

Since H:E =1,, — |@l, I[,-1,,, we find that
v(B) . - v(B)+1 4 -
Wa(l, fop,s) = > wi(@) @], —l@l, Y |@l,@" (@)=,
i=v(m) i=v(m)
v(B) v(BI)

= Z ol — NIt Z al.

i=v(m) i=v(m)
Combined the above formulas, we deduce that

C(a,E(m, 1)) = > Nb~! (b)* = <NNm>kC’(a7 ve(E(m, 1)),
aCbCm, (p,b)=1 m
C(a,Eg(m,mg)) = C(a, H(l — NIT'U)Eg(m, 1)).

[lmg

We next investigate the constant terms. An elementary calculation shows that

f<1>97s((8 ?)) =0,

c 0 (Nm)" k1 1
Mfons((g 1 D] _i =i e =R [ =Np" ] Ok
We obtain C;(0, Ex(m, mg)) equals

plp lmo

Nm)" 1
1= NIT'U)Eg(m, 1)) = 1— k). :
o, TT U0Bk(m, 1)) = Crp1 =8 e TT oy

[lmo l[mo
In particular, C;(0,Ex(m, 1)) = <1\11\In;>k C;(0,v,(E(m,1)). Combining everything to-
gether, we conclude that

k
By, 1)) = S g(m, 1)),
Ej(m,mg) = H (1 = NI(T'U() Eg(m, 1).
[lmo

The proposition follows. ]
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7.3. Whittaker functions. Let 7 be a irreducible automorphic representation of
GL2(AFr) with the conductor n. For each place v, denote by # (n,) = # (7, %)
the Whittaker model of 7, with respect to 1 . Recall that this is a space of
smooth functions W on GLy(F,) satisfying the following properties:

e W (m,) is invariant for the right translation p of GLa(F,) and the resulting
representation is isomorphic to m,;
e For each W € # (m,),

W((y §)9)=n@Wlo) «FgeCLa(R)

If v € ¥ and 7, is a discrete series of weight k,,, let W, € # (m,) be the Whittaker
function of minimal weight k,, i.e. the unique element in #(m,) such that

0 kv _on
we(y D)= vt e om0

If v is a finite place of F', let W, be the new Whittaker function in # (7., ¥, ), i.e.
W, is the unique Whittaker function right invariant by U; (n) with W, (1) = 1. If

Ty is a principal series and « : F* — C* is a character, we let Wéa) be the unique
Whittaker function in #(m,) such that

Wi (5 1)) = a@ /ol 1o, (o)

7.4. The bilinear pairing. Let f € Sk, (np,w) be a p-stabilized cuspidal Hilbert
newform of weight k3. Let m¢ be the cuspidal automorphic representation gener-
ated by ¢¢. Let n be the conductor of 7. Assume that

(p7 nAF) =1

For each v | p, let m¢, = m(af., Brv) be a principal series associated with un-
ramified characters ag ., B¢ : FY — C*. The Whiattker function W,, has a
factorization

(7.4) W = [[Wae T W, TI Wao (70 = 72.0).
b oloo  wipoo
Put
Syr ={v : places dividing n | L(s, ¢ ) = 1}.

Denote by 7y the contragredient of m¢. Let ¢z be the automorphic form in 7y with
the Whittaker function given by

(Bs.s)
(7.5) Wo, = [[War" - [T Way IT Wry () = 7).
v|p v|oo vtpoo

-1
Note that W;vf’”) = W#‘:f’") ® w, !. Define the C-linear pairing (, ) : A%, (w) x

Ap, (w1 — C by

(7.6) (1, 02) = / o1 (9)p2(9)d'g.
PGL2(F)\PGL2(AF)
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Here d'g is the Tamagawa measure of PGL2(A ). Let n be a positive integer. Put

-1 0 0 -n
T = (0 1) € GLy(F®R); t,= <pn po > € GLa(F ® Qp).

Proposition 7.2. We have

2L(1, ¢, Ad) 1 (2)
e e e

1 wy tag I, (0", (2)
< 11 L(1,m,, Ad) - - Cr (1) By (Ad),

vESyr v|p

<p(u700tn)50f1 Qof>

1J|n

where E,(Adf) is the modified p-Euler factor for the adjoint of f given by
Ey(Adf) =L(1, ag . fr.0) " L(0, ag , fr.0) !
=(1 — ag,Be.0(p) Ip],) (1 — ag , B, (p)-
ProOF.  For each place v, let (—, —) : # (m,) X # (m/) — C be he pairing defined

b
y W, Wa) = /F W(%” (1))>W2(<_§” ?))dxazﬂ

where d*as' is the Haar measure on F,* with vol(0o,d*a5") = 1. It follows from

[Wal85] Proposition 6] that
2L(Lm,Ad) e H () (Wi, W)
VAFCF(2) 1 1 7Tv,Ad>

y H CFH )Wﬁ?f v) Wﬂ(—(:f u) ®w—1>
CF,,( )L(1, 7y, Ad)

vlp

For v | n, it is well-known that

Wr,, Wry) 1 if v &Sy,

L(177TU,Ad) m ifv € Svr~
The local integral at primes above p is computed in [Hsi21, Lemma 2.8]

(plta) W2 W2 @) = wytad |-, (0 - (0, ap ) Be.0)Cr, (1),
where
1
or|, % L(1,a8,06,)
7(07 a_ll,ﬁf, 1) = — :
for L(0, oz, Br.0)

This finishes the proof. |

7.5. Rankin-Selberg convolution. We keep the notation in the previous sub-
section. Let m; = m¢. Let g° € Sk,(np,w™?!) be a Hilbert cuspform of parallell
weight ko < k1. Let mo be the cuspidal automorphic representation generated by
pgo. Assume that

(RS1) ki — ko is divisible by p — 1;

(RS2) for every v | n, ma, is isomorphic to 7y, up to unramified twists.
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We put
= {v : places dividing n | 7, is minimal},
Sais ={v € So | 71, is a discrete series }.

Here recall that we say m, is minimal if the conductor of 7, , is minimal among
that of its twists by a character. We define

(7.7) n=[Ta wm=g [T o I] % wmo=]]
q q&Sais q€Sais q¢So

Let S;°® be a subset of .S, the set of prime factors of p. Suppose that the automor-
phic form @go associated with g° admits the Whittaker function

(78) chgo = H Wﬂ'z,v H WT?'(;%, v)
vgSyE vESY™®
Proposition 7.3. With the assumptions (RS1-2) and D = (k1 — ko, m,my), we
have
(p(Jootn)tt, g2 - EA(= fops—1/2)) _ (V1) "R QIL(s, 1y x )
< (joo n)@f,@f'> 2L(1,7T1,Ad)

1 , T U,Ad) 1 1
Nm H L(s, ™14 X Tay) UH E,(adf)L(s,m2 ® Br.) H L(1 - s,agﬁjaf_ﬂl)).

€s, vESLE

ProOF. Let N be the unipotent upper triangular subgroup of GLs. For each
place v, define the trilinear form U : % (7 ,) X # (m2,) X 1(14,14,5) = C by

Wi, W, 1) = | W(gnm((‘l 0) 0) £ (g)dlgn,
(Fu)\ PGL3(F,) 0 1

where dg, is the Haar measure given by

/ F(g,)dg, 7/ / ( Y 0) Uy) ay| Tt A% atdu,
N(F,)\ PGL2(F,) GLa(o,) J FY 1

with vol(GLa(0,),du,) = 1. According to [Jac72l, Chapter V]| (¢f. [CH20, (5.11)]),
we have the basic identity

(p(Tsctn) s, pgo - Ea(—=; fo, —1)) = / 0r(9Tootn)pge (9) EA(9: fop,s—1)d'g
PGLy(F)\ PGL2(AF)
H\I’ (J0) mewﬂzvﬂﬂbqp s—% H \IIWTrlv’WZ'U7f¢D‘U,Sfl)
FCF - oo

ord
XH\IIWﬂl ’ Trzv’fll"pvs—l)

v|p

For each place v, let L(s,m, X m2,) be the local Rankin-Selberg L-function for
1,6 X T2y. If v € h and vt pn,

\II(WWI,U’Wﬂ?,v’f@D,U,Sfé) = L(S’ﬂ-l,v X 7T2,U)

by [Jac72, Proposition 15.9], and if v | oo, it is computed in [CH20, Proposition
5.3] that

\II(P(JOO)WM vy Wy, uafcbp Us—l) :(V _l)kl_kzz_kl_lL(Saﬂ'l,v X 7T2,OO)'
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Therefore, we find that

L(s,m x ) ((mxklw)m T v

<p(jootn)80fa§0g0EA(_vffI)D,s—%» = \/TFCF(Q) 9k1+1

v|pn
where U, (s) are the local zeta integrals defined by

_ \II(Wﬂ'l,va Wﬂ'z,u ) f@pyv,s—l/Q)

v, if ;
(S) L(Saﬂ'l,v X 71'2,1}) nY | "
\I’(p(tn)WT(f?iv)a WTF wf@ vyS—1 2) . re
Wols) = L(s,m ><2’7r2 )DY Eitv | Py v & 5%,
(ovg,0) (ag,v)
W(p(tn)Wr, )" Way 57, s— .
¥, (s) = 2P Wn, o8 fapac1ja) o gres,

L(s, 71,4 X Ta)
We first consider the integrals ¥, (s) for v | n. Put
S; = {’U € Sqis | ™10 is supercuspidal and 7y, >~ T, ® TFvZ/Fv} .

The integrals ¥, (s) for v € Sy have been evaluated in [CH20, Lemma 6.3, 6.5], and
we obtain

2 1 itvd S,
o) - S, it
Cr, (1) (1+Nvt) ifves.
If vgSy < wv|mg, then m, is not minimal and |n|, = |m|,. In this case,

Wm,,u(<g ‘f)) =1, (a) fori =1,2 and

f¢D,v7S(u) = HUO(“)‘U (u) for u € GLQ(UU).
A direct calculation shows that

2
YWy Was s Fim e j2) = vOlUp(n) dgy) = 2 Se(2),
Cr, (1)
m], ¢ (2)

CFU (1)L(Sa 10 X 7T2,v) '

U,(s) =

We next compute the local zeta integral U, (s) for v € S, by a similar calculation
in [CH20, Lemma 6.1]. Put W, = W#fﬁfv‘”) and Wy = Wy, if v & 5% or W;f;fi’”)
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ifve S{,Cg. Then V(p(t,)W1, W, for, ,.s—1/2) equals

SO L L D0 (@ E e

Xf(I)Dv7S_1(<1 >)dxd><

e L Lm0 (e (D) (0 S i

(1)
x I, (z)d*ydx

1
(e, Qacol F @MW o) 1 / T N
=2 ’ v v W. .2 a*
CFu(l) ’7(8,71’2 ®af,v) P 2( 0 1 )w2 af,v| |'u (y) Y
Cw, g |, (07)Cr, (2) L ifveXrie

- L(s,map ® o ) m
Cr, (1) P 1

otherwise.

Here we have used the local functional equation for GL(2) in the second equality.
Combining these formulas, we finally obtain

L(s,m x ) <<ﬁ)k)[m] W

<p(jootn)30fa Pgo EA(_a f@p,sfl/Q» = \/TFCF(Q) 2(k1+1)

1
1 e
) H L(Svﬂ-l,'u X 772,1})

UES v|mg

Wy Oéfv\ L (P")¢r, (2) 1 1
XH ¢r, (1) ' L(s,m2,p © o) 11 L(1 - s,agvag,)

S, «
vlp V) &S ) Qg g,

The result follows from Proposition and the fact that if v € S, NSy, then v
must be supercuspidal, and hence

14+ No—1H)—1 if i
L(1, 7y, Ad) = (14+Nov™1 11)65-
1 otherwise.

by [GJT8, Corollary (1.3)]. |

7.6. Proof of Proposition Now we are in a position to to prove Proposi-
tion by Hida’s p-adic Rankin-Selberg method. We shall use the representation
theoretic approach in [CH20]. Let d = [F' : Q]. It suffices to show that for all but
finitely many positive integer k with k = 0 (mod p? — 1),

k c _ 1 . 2d£'2(ka07 1)£E(k70aX)
) Ez(c(¢ 7¢)) *<Nm>k hK/F -Ez(k', _kax)CF,p(l _ S)
7 V()

X — - Exy, (k).
e (1= )2 e (1= 02 o

Here recall that y = ¢'~¢ is an anticyclotomic character of conductor fox and ) is
the idele class character of K corresponding to ex with 1. (2) = 2. Note that *
is unramified everywhere for k is divisible by p? — 1. To evaluate €% (C(¢, ¢)), we
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consider the spectral decomposition

60 g [ . 2de . CF[O (1) ) 90E [
(ragy oG ) = o gy OB )

= Ci(,6°) - 057 + Cu(@,0) - 057 + S, € Siyr (np, 67 7re /),

where 73, is orthogonal to the space generated by {Vae(b—lw—k, Vablg—coyp—r }a|p under

the Petersson inner product. Since €&(0,) = 9((5)"_),@ is a p-stabilized newform of

weight (k+1)%, the decomposition (7.10)) is indeed obtained by the image of ([5.12))
under the map 5’%, and hence

e(C(6%, ) = 1" (Ck (6", 9))-
Now we use the adelic Rankin-Selberg method to compute the value Ci(¢°, ¢).
Let "% = 04-1,-» and g"®" = 64 be the Hilbert newforms associated with Hecke

characters ¢~ !4 ~! and ¢. Let m; and 7 be the cuspidal automorphic representation
of GLz(AF) associated with @gnew and @gnew. Then 7 and mo are the automorphic

k
inductions of the idele class characters gb’lw’k\-bil( and ¢, so we see that m; and
7o satisfy (RS1) and (RS2). In addition, the automorphic L-functions of 7 and 7,
are given by
d k new k -1 -k
L(s,m) =I'c(s + k)*D(s + §7f )=L(s+ §>¢ P
L(s,m) =T'c(s)?D(s,g"") = L(s, $).

Let £ = &%) be the p-stabilized newform associated with f*°V and let f .=

p—1y—F
ngz})_k be the specialization of €5,(64c) at s = k. Let g° = 03 be the theta series

defined in (5.10). Let v | p with v = PP and P € £,. Then m , = 7(t 0, Be0)s
where ag o, Br 1 £ = C* are the unramified characters such that

aro(p) = o W TFEBNB 2 Beo(p) = ¢l (BNE .

Then one verifies that the Whitaker functions of ¢¢ and ¢; are given by and
. Likewise, 72, =~ 7(0tg,0, Bg,0), Where oy ,, and fg,, are unramified characters
of F' with ag.(p) = ¢(B) and Bg,»(p) = ¢(B). Then one verifies that the Whit-
taker function of g0 is precisely given by . In the notation of previous two
subsections,

k1:k+1andk2:1.

Sais is the set of prime factors of ¢~ and eq is even for q € Sgjs.

So is the set of prime factors of n except for [, and mg = [ in view of .
The ideal m in is the one introduced in (7.7).

By [CH20, Proposition 5.2], for n > 0 large enough, we have

<p(jootn)(pfa Pgo * EA(_a f@v,871/2)>|5217§ ) 2de<F;(]-)

Cr(9°,0) = (p(Tsctn) ot 05 Crp(l — k) (Nm)*

Note that by definition
_ Cr (1)2L(1, ¢t =p1=9k) (g (1)L(1,my 1, Ad)

B = LR ) T L~ Eomg 7
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Put t_ = ¢ ~¢. From Proposition and Proposition we deduce that
(7.11)
P T S 2 V2 Rl
S (Nm)* 2L(1, 7y, Ad)Crp(1 — k)

Mpes, (L= 0T OONE (0 = 0 0 EINE ) [lyenge (1= 010 F)
Tes, (1— U5 () p ) (1 — x¢ (F))

x Ex((k).
By the functional equations of L-functions, one has
L(L, g ")L(L, ¢ 7") = e(L, ™ )e(1,x 1) L0, *) L(0, xv*),
L(1,m, Ad) = L(1, 7ge/p) L(1, 919 =)
= e(L,xyh) - L(L, /) L0, x¥2).

Note that fox is the conductor of Y and ¥* is unramified everywhere with 1_| AL T
1, so we have

= VAx x)7F, (L) = (1) v (ox) ",

(1 xw’“) =¢e(1, x)-
It follows that
(7.12)
(V=D L1, F)L(1, ¢ tp=)  (V=1)"L(0,4*)L(0, xv*) (%)
2L(1, 71, Ad) 2/ AR L(L, i) L(0, xyF) e

By the interpolation formulae of the Katz p-adic L-function in (4.14)), we find that
(7.13)

Ls(k,0,x)Ls(k,0,1)  [oj rop]  L(0,xy*)L(0,v*)
Ly(k,—k,x)  20/Ap(V=1)F  L(0,x¥*)
11 (1= (PHONP) (A — " (FTONFH (1L - (F))*

yeT, (1 =yt (B=1)p~1)(1 — xvt (%))
Combining (7.11)), (7-12)), (7.13) and (4.8)), we obtain (7.9)). This finishes the proof.

APPENDIX A. TRANSCENDENTAL NUMBER THEORY AND NON-VANISHING OF THE
p-ADIC REGULATORS

A.1. The p-adic transcendence conjectures. The non-vanishing of the regula-
tors are usually tied with well-known conjectures in p-adic transcendental number
theory. We first recall some standard results and conjectures in p-adic transcen-
dence. As before, log,, : Q; — Qp is the Iwasawa p-adic logarithm with log,,(p) = 0,
and we use the same notation for its composition with ¢, : Q < Q,,. Denote LcC Q,
the Q-vector space generated by 1 and elements of logp(ax). We recall the state-

ments of two conjectures at the top of a Hierarchy of conjectures and theorems
concerning the arithmetic nature of certain values of log,,.

Conjecture 5 (Strong Four Exponentials Conjecture). Let M be a 2 X 2 matriz
with entries in L. Assume the rows and the columns of M are linearly independent
over Q respectively. Then M has rank 2.
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Conjecture 6 (p-adic Schanuel’s Conjecture). Let aq,...,q, € QX such that

log,(a1),...,log,(ay)
are linearly independent over Q. Then Q(log,(a1), .. .,log,(ay)) has transcendence
degree n. over Q.

Remark A.1. The significance of thse p-adic transcendental conjectures perhaps
stems from their direct applications to the non-vanishing of p-adic regulators. Below
we give some examples without details.
(1) If F is a real quadratic field, the Strong Four Exponentials conjecture im-
plies that Zx(x) # 0, i.e. the X-Leopoldt conjecture for y holds.
(2) The p-adic Schanuel conjecture implies the X-Leopoldt conjecture (¢f. [HT94]
Lemma 1.2.1]) and the non-vanishing of the .Z-invariants %, and .Z>°.

A.2. Examples of the X-Leopoldt conjecture. Notation is as in the introduc-
tion. Recall that x is a ray class character of a CM field K and H is the abelian
extension over K cut out by y. We give examples of (x, K,X,p) such that 3-
Leopoldt conjecture for x holds, i.e., Conjecture [2| (or equivalently holds).
The following famous Baker-Brumer Theorem is the best result towards these con-
jectures in the current literature.

Theorem A.2 (Baker-Brumer [Bru67]). Let Aq,... s An € L are linearly indepen-
dent over Q, then they are linearly independent over Q.

Corollary A.3. Suppose that K = FM for an imaginary quadratic field M in
which p splits and H/M is abelian. Suppose also that the CM type ¥ of K is
obtained by extending the CM type of M, i.e. a choice of embeddings v : M — C.

Then the X-Leopoldt conjecture for x : Gal(H/K) — pr holds.

Proor. By the Dirichlet unit theorem (¢f. [NSWOS8| Prop. 8.7.2, p.503]), there
is an isomorphism
Q& Qojj = Q[Gal(H/M)]
as Gal(H/M)-modules, so there exists a Minkowski unit u € oy, i.e. the set
{a(u)ufl}UeGal(H/M)\{l} is a basis of Qoj;. Moreover, since H/M is abelian and
x # 1, we find that
d
H; 5y (K, x 71 (1) ~ @UE[)@,] as Gal(H/M)-modules,

i=1
where y; are characters of Gal(H/M) extending x and that dimg o5 [x;] = 1. For
any character y; # 1,

Uy, = Z xi(TThH @ r(uw)ut € o [xil.
reGal(H/M)
Then log,(uy,) # 0 by the Baker-Brumer Theorem. It follows that log, : 07 [xi] ~
Q, is an isomorphism and logy; , : H%f (K, x (1)) ~ QZ. n

In the above example, H is abelian over an imaginary quadratic field M, so the
Katz p-adic L-function Lx(s,x) is a product of p-adic L-functions over M, and
the trivial zeros in this case have been studied extensively in [BS19] via the Euler
system of elliptic units. To obtain more interesting examples beyond this case, we
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will make use of the following strong version of the Six Exponentials Theorem due
to Roy |[Roy92, Corollary 2]

Theorem A.4 (Strong Six Exponentials Theorem). Let M be a 2 x 3 matriz with
entries in L. Assume the rows and the columns of M are linearly independent over
Q respectively. Then M has rank 2.

Proposition A.5. Assume that F' is a quadratic real field in which p splits and
X # x°¢ Then there exists a p-adic CM type ¥ of K such that the X-Leopoldt
congjecture holds.

PrROOF. We let L be the Galois closure of H. Choose a p-adic CM type X =
{01,002} of K/F and let X, ; be the subset of ¢ € Gal(L/Q) such that o|x = 0;. Let
Go = {1,c} C Gal(L/Q) be the decomposition at the archimdean place induced
by ts : Q — C. By the Dirichlet unit Theorem, there is an isomorphism as
Gal(L/Q)-modules

Q® Qo) ~ Indg" ¥ Q.

It follows that there exists u € o} such that {r(u) is a basis of

—1
u }TGEL,luzL.z
Qoy. Fori=1,2, put w; = [[,cy5, , o(u) € 0 and

Ui 2= exUi = Z X(rh @ r(w)u; ! € oy
T€Gal(H/K)

Then {u1,us} is a basis of 0 [x]. Consider the matrix
M= (logp(ﬂl(ul)) log,, (o2(u1)) logp(dfzc(ul)))
log,, (01 (uz)) log,(02(uz)) log,(c2c(uz2)) )
Since x # x°, we see that the row and the column vectors are also linearly indepen-

dent over Q respectively by the Baker-Brumer theorem. According to Roy’s Six

exponentials theorem, M has rank 2. Therefore either (iogp(gl(ul)) log”(UQ(ul)))
og, (01 (u2)) log,(02(u2))

(10gp(01(ul)) log,,(02¢(u1))

log, (01 (u2)) log,(o2c(u2))

is a p-adic CM type that satisfies the 3-Leopoldt conjecture for x. |

) is invertible. This shows that either {o1,02} or {01, 02¢}
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