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A new approach to the Lennard-Jones potential and a new

model: PNP-steric equations

Tai-Chia Lin ∗and Bob Eisenberg †

Abstract

A class of approximate Lennard-Jones (LJ) potentials with a small parameter is found
whose Fourier transforms have a simple asymptotic behavior as the parameter goes to zero.
When the LJ potential is replaced by the approximate LJ potential, the total energy functional
becomes simple and exactly the same as replacing the LJ potential by a delta function. Such
a simple energy functional can be used to derive the Poisson-Nernst-Planck equations with
steric effects (PNP-steric equations), a new mathematical model for the LJ interaction in
ionic solutions. Using formal asymptotic analysis, stability and instability conditions for the
1D PNP-steric equations with the Dirichlet boundary conditions for one anionic and cationic
species are expressed by the valences, diffusion constants, ionic radii and coupling constants.
This is the first step to study the dynamics of solutions of the PNP-steric equations.

1 Introduction

The Lennard-Jones (LJ) potential, a well-known mathematical model for the interaction be-
tween a pair of ions, has important applications in many fields of biology, chemistry and physics
(cf. [46]). Such a capable model can be represented by

Ψ (x) =
C1

r12
− C2

r6
for r = |x| > 0, x ∈ Rd ,

where C1, C2 are positive constants related to finite ion size, and d ≤ 3 is the spatial dimension
(cf. [36]). The inverse twelfth-power term is the repulsive term of Ψ and the inverse sixth-power
term is the attractive term of Ψ. The LJ potential Ψ can be extended to an l −m LJ potential
given as follows:

Ψl,m (x) =
C1

rm
− C2

rl
for r = |x| > 0, x ∈ Rd ,

where l and m are any positive constants with m > l > d. All the mathematical arguments of the
LJ potential Ψ here can easily be generalized to the l−m LJ potential for m > l > d, C1 > 0, and
C2 ≥ 0.

To compute the energy of ions interacting by the LJ potential, the following energy functional
is considered:

ELJ [ci, cj ] =

∫∫
Rd×Rd

Ψ(x− y) ci (x) cj (y) dxdy , (1.1)

for nonnegative functions ci and cj which denote the distribution (concentration) functions of the
ith and jth ion species (cf. [29]). Similar energy functionals for Coulomb interactions can be found
in [9]. Note that the energy functional ELJ is for two ion species if i ̸= j, but for only one ion
species if i = j. Because the LJ potential Ψ is singular at the origin, the functional ELJ is a
singular integral defined by

ELJ [ci, cj ] = lim
σ→0

∫∫
Rd×Rd

Ψχσ (x− y) ci (x) cj (y) dxdy , (1.2)
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for ci, cj ∈ L2
+

(
Rd
)
=
{
f ∈ L2

(
Rd
)
: f ≥ 0

}
, where χσ = χσ (z) is the characteristic function of

the exterior ball
{
z ∈ Rd : |z| > σ

}
. In [16, 17, 18, 28], the energy functional ELJ with C2 = 0 is

used, but here both C2 = 0 and C2 > 0 are considered.
Conventionally, the system of Poisson-Nernst-Planck (PNP) equations, a model of ion transport,

plays a crucial role in the study of many physical and biological phenomena (cf. [2, 3, 6, 7, 10, 12, 14,
15, 30, 32, 40, 41, 42, 45, 48, 52, 53, 59, 60]). However, when ions are crowded in a narrow channel,
the PNP equations become unreliable because the ion-size effect becomes important, but the PNP
equations represent ions as point particles without size (cf. [1, 4, 8, 11, 18, 21, 22, 26, 33, 37, 38,
50, 51, 56, 58, 61]). Hence the PNP equations need to be modified in order to describe solutions
where the ion-size effect is important. Biological solutions are mixtures containing divalents in
which ion size effects are always important (cf. [17, 19, 20]).

To modify the PNP equations, many efforts have been made to combine the energy functional
of the PNP equations with the other exclusion terms which may come from liquid state theory
and density functional theory [5, 23, 34, 38, 40, 47]. Being related to liquid state theory, the
Lennard-Jones (LJ) potential is often used as an approximate model of the van der Waals force
(cf. [29, 46]). However, it seems that no one had ever used the LJ potential to modify the PNP
equations before the pioneering works of Eisenberg and Liu who derived the PNP equations with
size effects i.e. equations (2.6)-(2.8) by combining the repulsive term of the LJ potential and the
energy functional of the PNP equations (cf. [16, 28]).

Equations (2.6)-(2.8) importantly generalize the PNP equations and numerically simulate the
selectivity of ion channels which can not be obtained by solving the PNP equations alone (cf. [62,
63, 64, 65, 66]). Nevertheless, due to imposing the LJ potential, equations (2.6)-(2.8) become a
complicated system of differential-integral equations having no numerical efficiency (cf. [17, 28])
and allowing no theoretical result either. The goal of this paper is to approximate the LJ potential
and simplify equations (2.6)-(2.8) into the PNP-steric equations, a new mathematical model for
the LJ interaction in ionic solutions. Instead of singular integrals of equations (2.6)-(2.8), the PNP-
steric equations are composed of the PNP equations and nonlinear differential terms with coupling
constants. Numerical simulations of the PNP-steric equations are presented in [25], which shows
the numerical efficiency to simulate the selectivity of ion channels previously studied in Monte
Carlo simulations with results comparable to a wide range of experiments.

The main difficulty of numerical simulation of the PNP-steric equations is how to choose cou-
pling constants suitably. This motivates us to study a simple case (one anion and one cation
species) of the PNP-steric equations with the Dirichlet boundary conditions using suitable asymp-
totic expansions to see the effect of coupling constants gij ’s. The formal asymptotic analysis gives
the stability and instability conditions represented by gij ’s which can be regarded as the first step
in a series of analyses. (see Section 4 and 5). More theoretical results will be done soon which may
be useful for the choice of coupling constants in order to do further numerical simulations on ion
channels.

This paper has two major parts: one is the approximation of the LJ potential using band-limited
functions and the other is the stability and instability conditions for the PNP-steric equations with
the Dirichlet boundary conditions using asymptotic expansions. The approximate LJ potentials
are introduced in Section 2.1 and the detailed mathematical arguments are stated in Section 3.
The PNP-steric equations are derived in Section 2.2 and the stability and instability conditions for
the PNP-steric equations are proved in Section 4 and 5, respectively.

2 Preliminaries

2.1 The approach to Lennard-Jones potential

Because the LJ potential Ψ does not have a Fourier transform, it is difficult to study the
energy functional ELJ directly. When the spatial frequency variable ξ is bounded, the Fourier
transform Ψ̂χσ (ξ) tends to infinity as σ goes to zero, but by the Riemann-Lebesgue Lemma,

lim
|ξ|→∞

Ψ̂χσ (ξ) = 0 for all σ > 0. Hence the asymptotic behavior of the Fourier transform Ψ̂χσ (ξ)

is dominated at bounded spatial frequencies and negligible at high spatial frequencies. This gives
a reason to cut off high spatial frequencies in order to see the asymptotic behavior of the Fourier
transform Ψ̂χσ (ξ). From a physical and biological point of view, it seems obvious that particularly
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small spatial features cannot be used by evolution to produce biological function and so should
be absent in analysis. The high spatial frequency cut-off function φσ is a band-limited function
defined by

φσ (x) = (1− χσ−γ (ξ))
v
, (2.1)

for x, ξ ∈ Rd, where v denotes the inverse Fourier transform. Obviously,

φ̂σ(ξ) = 1− χσ−γ (ξ) =

{
1 if |ξ| ≤ σ−γ ,
0 if |ξ| > σ−γ ,

(2.2)

for ξ ∈ Rd, where hat denotes the Fourier transform, 0 < γ < 1 is a constant independent of σ
and ξ.

Generically, band-limited functions can handle spatial information locally in frequency domains
and play important roles in Fourier analysis of mathematics and have many applications to en-
gineering, physics and statistics (cf. [31, 35, 55]). Physically, it is obvious that the band-limited
approximation is reasonable if not inevitable. After all, derivations of PNP replace Maxwell’s
equations with Poisson’s equation, and neglect ’capacitance to ground’ (capacitive coupling be-
tween ionic solutions and nearby ground planes) always present in experiments. These and many
other effects at high frequencies are better attenuated to zero than approximated irrationally (i.e.,
without known error bounds) as they are in treatments with unlimited bandwidth. Here a new ap-
proach to the LJ potential Ψ uses the spatially band-limited function φσ to define the approximate
potential Ψ as follows:

Ψσ(z) = (Ψχσ) ⋆ φσ(z) for z ∈ Rd , (2.3)

where the asterisk is the standard convolution, φσ is the spatially band-limited function defined in
(2.1) and χσ is the characteristic function of the exterior ball {z ∈ Rd : |z| > σ}. Note that χσ (z)
and 1 − χσ−γ (ξ) are the characteristic functions of

{
z ∈ Rd : |z| > σ

}
and

{
ξ ∈ Rd : |ξ| ≤ σ−γ},

respectively, and both of them extend to the entire space Rd as the small parameter σ goes to zero.
As σ goes to zero, χσ ∼ 1, 1− χσ−γ ∼ 1, and

Ψ̂σ (ξ) = Ψ̂χσ (ξ) φ̂σ (ξ) = Ψ̂χσ (ξ) [1− χσ−γ (ξ)] ∼ Ψ̂ (ξ) .

which implies Ψσ ∼ Ψ. Hence formally,∫
Rd

ci (x) (Ψσ ⋆ cj) (x) dx ∼
∫
Rd

ci (x) (Ψ ⋆ cj) (x) dx = ELJ [ci, cj ]

This shows how we approximate the energy functional ELJ .
The approximate energy functional ELJ,σ is defined by

ELJ,σ[ci, cj ] =

∫∫
Rd×Rd

Ψσ (x− y) ci (x) cj (y) dxdy =

∫
Rd

ci (x) (Ψσ ⋆ cj) (x) dx.

As σ goes to zero, the functional ELJ,σ tends to the functional ELJ if the following hypothesis
holds:

(H) lim
σ→0+

[∫
Rd Ψ̂χσ(ξ) [1− χσ−γ (ξ)] ĉi(ξ)ĉj(ξ)dξ −

∫
Rd Ψ̂χσ(ξ)ĉi(ξ)ĉj(ξ)dξ

]
= 0.

(see Proposition 3.1). Here the meaning of ‘approximate’ is different from that of conventional
approximation theory. Note that the characteristic function 1−χσ−γ truncates the high frequencies
|ξ| > σ−γ , but still preserves the spatial frequencies of order |ξ| ∼ σ−θ (for all 0 < θ < γ) tending
to infinity as σ goes to zero. By standard theorems of Fourier analysis (cf. [54]), the functional

ELJ,σ satisfies ELJ,σ [ci, cj ] =
∫
Rd ĉi (ξ) Ψ̂σ ⋆ cj (ξ) dξ =

∫
Rd ĉi (ξ) Ψ̂σ (ξ) ĉj (ξ) dξ On the other hand,

(2.2) and (2.3) imply Ψ̂σ (ξ) ∼ C1
ωd

12−d σ
d−12 as σ goes to zero, where ωd is the surface area of d

dimensional unit ball (see the proof of Proposition 3.2). Hence

ELJ,σ [ci, cj ] ∼ C1
ωd

12− d
σd−12

∫
Rd

ĉi (ξ)ĉj (ξ) dξ = C1
ωd

12− d
σd−12

∫
Rd

ci (x)cj (x) dx .

This shows that the functional ELJ,σ is asymptotically close to another functional ẼLJ,σ as follows:

ELJ,σ [ci, cj ] ∼ ẼLJ,σ [ci, cj ] = C1 Sσ

∫
Rd

ci (x)cj (x) dx , (2.4)
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where Sσ = ωd

12−d σ
d−12. Thus the functional ẼLJ,σ can be regarded as an approximate energy

functional to ELJ . Note that the constant C1 comes from the repulsive term of the LJ potential,
but the constant C2 (for the attractive term of the LJ potential) does not affect the leading term

of the asymptotic behavior of Ψ̂σ. This may support the work of [16, 17, 18, 28] which only use
the repulsive term of the LJ potential to describe ionic interactions. However, the effects of the
attractive terms remain to be investigated. They may have been selected by evolution to produce
qualitative behavior of importance to biology. Note that the functional ẼLJ,σ is much simpler than
the functional ELJ and it can be expressed as

ẼLJ,σ [ci, cj ] =

∫∫
Rd×Rd

C1 Sσ δ0 (x− y)ci (x) cj (y) dxdy

being the same as replacing the LJ potential Ψ by a delta function C1Sσδ0 in the energy functional
ELJ , where δ0(·) is the standard delta function concentrating at the origin. Such a simple energy
functional ẼLJ,σ can be used to derive the PNP-steric equations as a new model of ionic solutions.

2.2 PNP-steric equations

The Poisson-Nernst-Planck (PNP) equations consist of the Nernst-Planck equations coupled
with the Poisson equation being expressed as follows:

∂ci
∂t = Di

kBT
∇ ·
(
ci∇ δEpnp

δci

)
, i = 1, · · · , N,

−∇ · (ε∇ϕ) = ρ0 +
N∑
i=1

zieci ,

where Epnp is the energy functional of the PNP equations given by

Epnp[c1, · · · , cN , ϕ] :=
∫
Rd

[
kBT

N∑
i=1

ci log ci +
1
2

(
ρ0 +

N∑
i=1

zieci

)
ϕ

]
dx

Here N is the number of ion species, ci is the distribution function, Di is the diffusion constant,
and zi is the valence of the ith ion species, respectively. Besides, ϕ is the electrostatic potential,
ε is the dielectric constant, ρ0 is the permanent (fixed) charge density of the system, kB is the
Boltzmann constant, T is the absolute temperature and e is the elementary charge. More precisely,
the PNP equations are denoted as

∂ci
∂t = Di∇ ·

(
∇ci + zie

kBT
ci∇ϕ

)
, i = 1, · · · , N,

−∇ · (ε∇ϕ) = ρ0 +
N∑
i=1

zieci

(2.5)

To include the hard sphere repulsion of ions, the energy functional Epnp is modified by adding

the energy functional
N∑

i,j=1

ELJ [ci, cj ] with the constants C1 = 1
2ϵij(ai + aj)

12 and C2 = 0, where

ci and cj are the distribution (concentration) functions of the ith and jth ion species with the radii
ai and aj , respectively. Then the modified energy functional Empnp becomes

Empnp[c1, · · · , cN , ϕ] :=
∫
Rd

(
kBT

N∑
i=1

ci log ci +
1

2

(
ρ0 +

N∑
i=1

zieci

)
ϕ

)
dx

+
1

2

N∑
i,j=1

∫∫
Rd×Rd

ϵij(ai + aj)
12

|x− y|12
ci (x) cj (y) dxdy ,

Using energy variational analysis (cf. [16, 28]), the modified PNP equations are the following
equations

∂ci
∂t = Di

kBT
∇ ·
(
ci∇ δEmpnp

δci

)
, i = 1, · · · , N,
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i.e.
∂ci
∂t

+∇ · Ji = 0 , i = 1, · · · , N, (2.6)

coupled with the Poisson equation

−∇ · (ε∇ϕ) = ρ0 +
N∑
i=1

zieci , (2.7)

where flux Ji is

Ji = −Di∇ci −
Dici
kBT

zie∇ϕ− Dici
kBT

N∑
j=1

∇
∫
Rd

ϵij(ai + aj)
12

|x− y|12
cj (y) dy . (2.8)

However, equations (2.6)-(2.8) are difficult to investigate theoretically because they are partial
differential-integral equations with singular integrals. Moreover, due to the effect of high (Fourier)
frequencies, the numerical computations of equations (2.6)-(2.8) may lose accuracy and become
inefficient (cf. [28]).

Instead of equations (2.6)-(2.8), a simple model can be derived by replacing the energy func-

tional
N∑

i,j=1

ELJ [ci, cj ] (with C1 = 1
2ϵij(ai+aj)

12 and C2 = 0) by the approximate energy functional

N∑
i,j=1

ẼLJ,σ [ci, cj ] =
1

2
ϵij(ai + aj)

12
Sσ

∫
Rd

ci (x)cj (x) dx

defined in (2.4). Then the energy functional Empnp can be approximated by

Eσ[c1, · · · , cN , ϕ] :=
∫
Rd

(
kBT

N∑
i=1

ci log ci +
1

2

(
ρ0 +

N∑
i=1

zieci

)
ϕ

)
dx

+
1

2

N∑
i,j=1

ϵij(ai + aj)
12
Sσ

∫
Rd

ci (x) cj (x)dx ,

which is much simpler than the energy functional Empnp. Using energy variational analysis (cf. [16,
28]), a new model called the PNP-steric equations is expressed by

∂ci
∂t = Di

kBT
∇ ·
(
ci∇ δEσ

δci

)
, i = 1, · · · , N,

i.e.
∂ci
∂t

+∇ · Ji = 0 , (2.9)

coupled with the Poisson equation

−∇ · (ε∇ϕ) = ρ0 +

N∑
i=1

zieci , (2.10)

where flux Ji is

Ji = −Di∇ci −
Dici
kBT

zie∇ϕ− Dici
kBT

Sσ

N∑
j=1

ϵij(ai + aj)
12∇cj . (2.11)

Here the symmetry ϵij = ϵji has been assumed for notation convenience. The PNP-steric equations
are of convection-diffusion type with the following energy dissipation law:

d

dt
Eσ[c1, · · · , cN , ϕ] = −

∫
Rd

N∑
i=1

Dici
kBT

|∇ (kBT log ci + zieϕ+ µi)|2dx
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where µi =
δ
δci

N∑
j,k=1

ẼLJ,σ [cj , ck] = Sσ
N∑
j=1

ϵij(ai + aj)
12
cj is the chemical potential. On the other

hand, the PNP-steric equations have more nonlinear differential terms than the PNP equations
so they can simulate the selectivity of ion channels efficiently (cf. [25]). Note that the selectivity
of ion channels can not be found by using the PNP equations. This shows that the PNP-steric
equations are more capable than the PNP equations and much simpler than equations (2.6)-(2.8).

For the case of two species ions (i.e. N = 2) with one anionic and cationic species, the index
j = 1, 2 is replaced by j = n, p for notation convenience and the PNP-steric equations (2.9)-(2.11)
are presented as

∂cn
∂t

=Dn

[
∇ ·
(
∇cn +

zne

kBT
cn∇ϕ

)
+ S̃σ∇ · (gnncn∇cn + gnpcn∇cp)

]
, (2.12)

∂cp
∂t

=Dp

[
∇ ·
(
∇cp +

zpe

kBT
cp∇ϕ

)
+ S̃σ∇ · (gppcp∇cp + gnpcp∇cn)

]
, (2.13)

−∇ · (ε∇ϕ) =ρ0 + znecn + zpecp , (2.14)

for x ∈ Rd, t > 0, where the function cn is for anion concentration, cp is for cation concentration,

S̃σ = 1
kBT

Sσ, gnp = ϵ12(a1 + a2)
12, gnn = ϵ11(2a1)

12 and gpp = ϵ22(2a2)
12. Due to the spatial

dimension d ≤ 3, the constant S̃σ ∼ σd−12 becomes a large quantity tending to infinity as σ goes
to zero. Let ε̃ = kBT

e2 ε, δ̃ = 1/S̃σ, τ = t/δ̃, ϕ̃(x, τ) = e
kBT

ϕ(x, t) and c̃j(x, τ) = cj(x, t) for j = n, p.
Then the equations (2.12)-(2.14) are transformed into

1

Dn

∂c̃n
∂τ

=δ̃∇ ·
(
∇c̃n + znc̃n∇ϕ̃

)
+∇ · (gnnc̃n∇c̃n + gnpc̃n∇c̃p) , (2.15)

1

Dp

∂c̃p
∂τ

=δ̃∇ ·
(
∇c̃p + zpc̃p∇ϕ̃

)
+∇ · (gppc̃p∇c̃p + gnpc̃p∇c̃n) , (2.16)

−∇ · (ε̃∇ϕ̃) =ρ̃0 + znc̃n + zpc̃p , (2.17)

for x ∈ Rd, τ > 0, where ρ̃0 = ρ0
e . Note that

∂cj
∂t = δ̃−1 ∂c̃j

∂τ for j = n, p, and τ ∼ 1 is equivalent to

t ∼ δ̃ = 1/S̃σ being a small time scale. For notation convenience, removing tilde and replacing τ
by t, the equations (2.15)-(2.17) become

1

Dn

∂cn
∂t

=δ∇ · (∇cn + zncn∇ϕ) +∇ · (gnncn∇cn + gnpcn∇cp) , (2.18)

1

Dp

∂cp
∂t

=δ∇ · (∇cp + zpcp∇ϕ) +∇ · (gppcp∇cp + gnpcp∇cn) , (2.19)

−∇ · (ε∇ϕ) =ρ0 + zncn + zpcp , (2.20)

for x ∈ Rd, t > 0.
Instead of the entire space Rd, here the spatial domain is considered as an one-dimensional

(d = 1) interval (−1, 1), and then the equations (2.18)-(2.20) are changed as the following equations:

1

Dn

∂cn
∂t

=δ
∂

∂x
·
(
∂cn
∂x

+ zncn
∂ϕ

∂x

)
+

∂

∂x

(
gnncn

∂cn
∂x

+ gnpcn
∂cp
∂x

)
, for x ∈ (−1, 1) , t > 0 ,

1

Dp

∂cp
∂t

=δ
∂

∂x

(
∂cp
∂x

+ zpcp
∂ϕ

∂x

)
+

∂

∂x

(
gppcp

∂cp
∂x

+ gnpcp
∂cn
∂x

)
, for x ∈ (−1, 1) , t > 0 ,

−ε∂
2ϕ

∂x2
=ρ0 + zncn + zpcp , for x ∈ (−1, 1) , t > 0 .
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Setting ε = 1 and ρ0 = 0, these equations become

1

Dn

∂cn
∂t

=δ
∂

∂x

(
∂cn
∂x

+ zncn
∂ϕ

∂x

)
+

∂

∂x

(
gnncn

∂cn
∂x

+ gnpcn
∂cp
∂x

)
, for x ∈ (−1, 1) , t > 0 ,

(2.21)

1

Dp

∂cp
∂t

=δ
∂

∂x

(
∂cp
∂x

+ zpcp
∂ϕ

∂x

)
+

∂

∂x

(
gppcp

∂cp
∂x

+ gnpcp
∂cn
∂x

)
, for x ∈ (−1, 1) , t > 0 ,

(2.22)

−∂
2ϕ

∂x2
=zncn + zpcp , for x ∈ (−1, 1) , t > 0 ,

(2.23)

where δ is a small parameter tending to zero. For simplicity, we consider the following Dirichlet
boundary conditions: 

cn = −B1

zn
, cp =

B1

zp
, ϕ = B3 as x = 1 ,

cn = −B2

zn
, cp =

B2

zp
, ϕ = B4 as x = −1 ,

(2.24)

where Bk, k = 1, · · · , 4 are constants. Here we only focus on the equations (2.21)-(2.23) with the
boundary condition (2.24) but not (2.18)-(2.20) on the entire space. Using the formal asymptotic
analysis, we may get the stability and instability conditions of the equations (2.21)-(2.23) with the
boundary condition (2.24) which show the effect of coupling constants gij ’s.

To see the solution of the equations (2.21)-(2.23), the following asymptotic expansions are used:

cn = cn,0 + δcn,1 + δ2cn,2 + · · · ,
cp = cp,0 + δcp,1 + δ2cp,2 + · · · ,
ϕ = ϕ0 + δϕ1 + δ2ϕ2 + · · · .

Then the zeroth order solution (cn,0, cp,0, ϕ0) satisfies

1

Dn

∂cn,0
∂t

=
∂

∂x

(
gnncn,0

∂cn,0
∂x

+ gnpcn,0
∂cp,0
∂x

)
, (2.25)

1

Dp

∂cp,0
∂t

=
∂

∂x

(
gppcp,0

∂cp,0
∂x

+ gnpcp,0
∂cn,0
∂x

)
, (2.26)

−∂
2ϕ0
∂x2

= zncn,0 + zpcp,0 , (2.27)

for x ∈ (−1, 1) and t > 0. As gnp = 0, both (2.25) and (2.26) become the standard porous medium
equations (cf. [57]) hence for gnp ̸= 0, the equations (2.25) and (2.26) can be regarded as a coupled
system of porous medium equations.

The steady state equations of (2.25) and (2.26) are denoted as(
gnncn,0c

′
n,0 + gnpcn,0c

′
p,0

)′
(x) = 0 , (2.28)(

gppcp,0c
′
p,0 + gnpcp,0c

′
n,0

)′
(x) = 0 , (2.29)

for x ∈ (−1, 1), where a prime mark (′) is denoted as differentiation to the spatial variable x.
Electroneutrality (which means the charge of anions is equal to that of cations) holds in most
biological systems (cf. [67]). A particular assumption called pointwise electroneutrality which
means the charge of anions is everywhere equal to that of cations appears in the zeroth order
equation [24] as a pleasingly natural physical approximation. To find solutions of (2.28)-(2.29)
with pointwise electroneutrality, it is natural to assume that cn,0 and cp,0 have the following form

cn,0(x) = zpw(x) , cp,0(x) = −znw(x) for x ∈ (−1, 1) , (2.30)

so the total charge of cn,0 and cp,0 becomes zero i.e. zn cn,0(x) + zp cp,0(x) = 0 for x ∈ (−1, 1).
Note that zn and zp are the associated valences, the charge on an individual ion. To solve the
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equations (2.28) and (2.29), the function w = w(x) must satisfy
(
w2
)′′

(x) = 0 for x ∈ (−1, 1),

and hence w = w(x) =
√
K1x+K0, where K0 and K1 are constants determined by the Dirichlet

boundary conditions as follows:

−zn cn,0(1) = zp cp,0(1) = B1 , −zn cn,0(−1) = zp cp,0(−1) = B2 , (2.31)

and B1 and B2 are the positive constants for the Dirichlet boundary conditions in (2.24). Because
w(x) =

√
K1x+K0 for x ∈ [−1, 1], then by (2.30) and (2.31), it is obvious that

√
K1 +K0 =

w(1) = B1

−zn zp and
√
K0 −K1 = w(−1) = B2

−zn zp which imply

K1 =
B2

1 −B2
2

2z2n z
2
p

and K0 =
B2

1 +B2
2

2z2n z
2
p

.

Hence

w(x) =

√
(B2

1 −B2
2)x+B2

1 +B2
2√

2 |zn zp|
> 0 for x ∈ [−1, 1] , (2.32)

being non-constant if B1 ̸= B2. Combining (2.27) and (2.30), the electric potential ϕ0 satisfies the
following equation:

−ϕ′′0(x) = 0 for x ∈ (−1, 1) . (2.33)

The equation (2.33) is a standard differential equation solved as follows:

ϕ0(x) = a0x+ b0 for x ∈ (−1, 1) , (2.34)

where a0 and b0 are constants determined by the boundary conditions of ϕ0 given in (2.24). The
first order solution (cn,1, cp,1, ϕ1) = (cn,1(x, t), cp,1(x, t), ϕ1(x, t)) satisfies

1

Dn

∂cn,1
∂t

=
∂

∂x

(
∂cn,0
∂x

+ zncn,0
∂ϕ0
∂x

)
+

∂

∂x

[
gnn

∂(cn,0 cn,1)

∂x
+ gnp

(
∂cp,0
∂x

cn,1 + cn,0
∂cp,1
∂x

)]
,

(2.35)

1

Dp

∂cp,1
∂t

=
∂

∂x

(
∂cp,0
∂x

+ zpcp,0
∂ϕ0
∂x

)
+

∂

∂x

[
gpp

∂(cp,0 cp,1)

∂x
+ gnp

(
∂cn,0
∂x

cp,1 + cp,0
∂cn,1
∂x

)]
,

(2.36)

−∂
2ϕ1
∂x2

= zncn,1 + zpcp,1 , (2.37)

for x ∈ (−1, 1), t > 0. By (2.30), the equations (2.35) and (2.36) become

1

Dn

∂cn,1
∂t

= zp (w
′ + znwϕ

′
0)

′
+

∂

∂x

[
gnnzp

∂(w cn,1)

∂x
+ gnp

(
−znw′cn,1 + zpw

∂cp,1
∂x

)]
, (2.38)

1

Dp

∂cp,1
∂t

= −zn (w′ + zpwϕ
′
0)

′
+

∂

∂x

[
−zngpp

∂(w cp,1)

∂x
+ gnp

(
zpw

′cp,1 − znw
∂cn,1
∂x

)]
, (2.39)

for x ∈ (−1, 1), t > 0.
Let ψ = zncn,1 + zpcp,1 and φ = −zncn,1 + zpcp,1 i.e. cn,1 = 1

2zn
(ψ − φ) and cp,1 = 1

2zp
(ψ + φ).

Then after some algebraic calculations, the equations (2.38) and (2.39) can be transformed into
the equations for ψ and φ as follows:

∂ψ

∂t
=(Dn −Dp) znzp w

′′(x) + znzp (Dn zn −Dp zp) [w(x)ϕ
′
0(x)]

′
(2.40)

+ (d̃np − d̃)
∂2[w(x)φ]

∂x2
+ (ḡ + ḡnp)

∂

∂x
[w′(x)ψ] + (ḡ − ḡnp)

∂

∂x

[
w(x)

∂ψ

∂x

]
,

and

∂φ

∂t
=− (Dn +Dp) znzp w

′′(x)− znzp (Dn zn +Dp zp) [w(x)ϕ
′
0(x)]

′
(2.41)

+ (ḡnp + ḡ)
∂2[w(x)φ]

∂x2
+ (d̃np − d̃)

∂

∂x
[w′(x)ψ]− (d̃np + d̃)

∂

∂x

[
w(x)

∂ψ

∂x

]
,



- 9 -

where ḡnp, d̃np, ḡ and d̃ are constants defined as follows:

ḡnp = 1
2gnp (Dpzp −Dnzn) ,

d̃np = 1
2gnp (Dpzp +Dnzn) ,

ḡ = 1
2 (Dnzpgnn −Dpzngpp) ,

d̃ = 1
2 (Dnzpgnn +Dpzngpp) .

(2.42)

The equations (2.40) and (2.41) depend on valences zi, diffusion constants Di and coefficients
gij ∼ (ai+ aj)

12 (i, j = n, p) related to ionic radii. In particular, these equations can represent the
difference between NaCl, KCl and CaCl2.

For notational convenience, the equations (2.40) and (2.41) can be expressed as

∂

∂t

 ψ

φ

 =

 f1

f2

+

(
L11 L12

L21 L22

) ψ

φ

 , (2.43)

where f1 and f2 are external force functions given by

f1(x) = (Dn −Dp) znzp w
′′(x) + znzp (Dn zn −Dp zp) [w(x)ϕ

′
0(x)]

′
, (2.44)

f2(x) = − (Dn +Dp) znzp w
′′(x)− znzp (Dn zn +Dp zp) [w(x)ϕ

′
0(x)]

′
, (2.45)

and Lij , i, j = 1, 2 are differential operators defined by

L11ψ = (ḡ + ḡnp)
∂

∂x
[w′(x)ψ] + (ḡ − ḡnp)

∂

∂x

[
w(x)

∂ψ

∂x

]
, (2.46)

L12φ = (d̃np − d̃)
∂2[w(x)φ]

∂x2
, (2.47)

L21ψ = (d̃np − d̃)
∂

∂x
[w′(x)ψ]− (d̃np + d̃)

∂

∂x

[
w(x)

∂ψ

∂x

]
, (2.48)

L22φ = (ḡnp + ḡ)
∂2[w(x)φ]

∂x2
. (2.49)

When ḡ > ḡnp, the asymptotic stability of system (2.43) (i.e. the equations (2.40) and (2.41))
is proved in Corollary 4.2 (see Section 4). Thus the equations (2.38) and (2.39) have asymptotic
stability if the condition ḡ > ḡnp holds. However, if gnn = gpp = gnp = 0, then system (2.43)
becomes ψt = f1 and φt = f2 which imply (ψ,φ) = (ψ0 + tf1, φ0 + tf2) for t > 0, where ψ0 = ψ|t=0

and φ0 = φ|t=0 are initial conditions of ψ and φ, respectively. Hence the asymptotic stability of
system (2.43) is gone. This shows that the effect of coupling constants gij ’s changes the asymptotic
stability of system (2.43).

Note that the operator

(
L11 L12

L21 L22

)
=

(
L11 0

0 L22

)
becomes diagonal if d̃np − d̃ =

d̃np+ d̃ = 0 i.e. d̃np = d̃ = 0. By (2.42), the condition d̃np = d̃ = 0 is equivalent to Dpzp+Dnzn = 0
and Dnzpgnn+Dpzngpp = 0 being fulfilled if Dp = Dn, zp = −zn and gnn = gpp. In Section 5, the
case of Dp = Dn = D > 0, zp = −zn = z > 0 and gnn = gpp = g > 0 (i.e. symmetry electrolytes)
is considered in order to get the instability condition g < gnp.

3 The approximate LJ potential

In this section, we study the approximation of the functional ELJ defined in (1.2) and written as
follows:

ELJ [ci, cj ] = lim
σ→0

∫∫
Rd×Rd

[(Ψ12 −Ψ6)χσ] (x− y) ci (x) cj (y) dxdy, (3.1)
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for ci, cj ∈ L2
+

(
Rd
)
=
{
f ∈ L2

(
Rd
)
: f ≥ 0

}
. Here Ψ12(z) = C1 |z|−12 is the repulsion term and

Ψ6(z) = C2 |z|−6 is the attraction term of the LJ potential, and χσ = χσ(z) is the characteristic
function of the exterior ball

{
z ∈ Rd : |z| > σ

}
satisfying

χσ(z) =

1 if |z| > σ,

0 if |z| ≤ σ.

The main idea here is to approximate Ψ̂mχσ(ξ) (m = 6, 12) the Fourier transform of the kernel

Ψmχσ by Ψ̂mχσφ̂σ(ξ) in the frequency space, where hat denotes Fourier transform and φσ is a
band-limited function satisfying

φ̂σ(ξ) = 1− χσ−γ (ξ) for ξ ∈ Rd . (3.2)

Here 1− χσ−γ is defined by

1− χσ−γ (ξ) =

 1 if |ξ| ≤ σ−γ ,

0 if |ξ| > σ−γ ,

where σ > 0 is a small parameter tending to zero, and 0 < γ < 1 is a constant independent of ξ
and σ. Note that 1 − χσ−γ denotes the characteristic function of the ball {ξ ∈ Rd : |ξ| ≤ σ−γ}
expanding the entire space Rd as σ goes to zero.

By the standard formulas of Fourier analysis, it is obvious that

Ψ̂mχσ(ξ)φ̂σ(ξ) = ̂[(Ψmχσ) ⋆ φσ](ξ) , (3.3)

for ξ ∈ Rd, where the asterisk denotes convolution. The approximate kernel of Ψm is given as
follows:

Km,σ(z) = (Ψmχσ) ⋆ φσ(z) for z ∈ Rd , m = 6, 12 , (3.4)

and the approximate energy functional ELJ,σ given by

ELJ,σ[ci, cj ] :=

∫∫
Rd×Rd

(K12,σ −K6,σ) (x− y)ci(x)cj(y)dxdy, (3.5)

for ci, cj ∈ L2
+

(
Rd
)
. By standard theorems of Fourier analysis (cf. [54]), it is easy to check that

the functions Ψmχσ and φσ are of L2(Rd)∩L∞(Rd) which implies Km,σ ∈ L2(Rd)∩L∞(Rd). The
following proposition is for the approximation of ELJ,σ to ELJ .

Proposition 3.1. Assume ci, cj ∈ L2
+(Rd) satisfy the following hypothesis:

(H) lim
σ→0+

[∫
Rd Ψ̂χσ(ξ) [1− χσ−γ (ξ)] ĉi(ξ)ĉj(ξ)dξ −

∫
Rd Ψ̂χσ(ξ)ĉi(ξ)ĉj(ξ)dξ

]
= 0 ,

where 0 < γ < 1 is a constant independent of σ and ξ. Then

lim
σ→0+

{ELJ,σ [ci, cj ]− ELJ [ci, cj ]} = 0 . (3.6)

Note that the hypothesis (H) is achievable at least for functions ci’s satisfying ĉi(ξ) = 0 for
|ξ| > σ−γ and i = 1, · · · , N , which means all the high frequencies of ci’s have been cut off. Due

to the strong singularity of Ψ, Ψ̂χσ(ξ) has no asymptotic behavior like the right side of (3.12) as

σ goes to zero, especially for |ξ| ∼ σ−1 (see Remark 3.3). This motivates us to replace Ψ̂χσ(ξ) by

Ψ̂χσ(ξ) [1− χσ−γ (ξ)] which is a kind of truncation on the ξ variable and has a simple asymptotic
formula (3.12). The truncation may lose the effect of high frequencies |ξ| > σ−γ (0 < γ < 1), but
still involve a large part of the steric effects because it keeps the effect of frequencies like |ξ| ∼ σ−α

for 0 < α < γ tending to infinity as σ goes to zero. Please note that the main goal of our works is
to simplify the model of Liu and Eisenberg [16, 28]. Here we present a simplified model which is
easy to study and useful to understand the selectivity of ion channels [25].



- 11 -

For the proof of Proposition 3.1, we use Fourier transform to calculate the integral∫∫
Rd×Rd

Ψmχσ(|x− y|) ci(x) cj(y) dxdy ,

and get ∫∫
Rd×Rd

Ψmχσ(|x− y|) ci(x)cj(y) dxdy =

∫
Rd

[(Ψmχσ) ⋆ cj ] (x) ci(x)dx

=

∫
Rd

[
̂(Ψmχσ) ⋆ cj

]
(ξ)ĉi(ξ)dξ

=

∫
Rd

Ψ̂mχσ(ξ)ĉi(ξ)ĉj(ξ)dξ ,

i.e. ∫∫
Rd×Rd

Ψmχσ(|x− y|) ci(x)cj(y) dxdy =

∫
Rd

Ψ̂mχσ(ξ)ĉi(ξ)ĉj(ξ)dξ . (3.7)

On the other hand, (3.2)-(3.4) may give∫∫
Rd×Rd

Km,σ(x− y)ci(x)cj(y) dx dy =

∫
Rd

(Km,σ ⋆ cj) (x)ci(x) dx

=

∫
Rd

(
̂Km,σ ⋆ cj

)
(ξ)ĉi(ξ) dξ

=

∫
Rd

K̂m,σ(ξ)ĉi(ξ)ĉj(ξ)dξ

=

∫
Rd

[
̂(Ψmχσ) ⋆ φσ

]
(ξ)ĉi(ξ)ĉj(ξ)dξ

=

∫
Rd

Ψ̂mχσ(ξ)φ̂σ(ξ)ĉi(ξ)ĉj(ξ)dξ

=

∫
Rd

Ψ̂mχσ(ξ) [1− χσ−γ (ξ)] ĉi(ξ)ĉj(ξ)dξ ,

i.e. ∫∫
Rd×Rd

Km,σ(x− y)ci(x)cj(y) dx dy =

∫
Rd

Ψ̂mχσ(ξ) [1− χσ−γ (ξ)] ĉi(ξ)ĉj(ξ)dξ . (3.8)

Here Parseval’s formula and convolution theorem to Fourier transform (cf. [39]) have been used
because ci, cj ∈ L2

+

(
Rd
)
. Thus the hypothesis (H), (3.7) and (3.8) imply that

lim
σ→0+

[∫∫
Rd×Rd

Km,σ(x− y)ci(x)cj(y) dx dy −
∫∫

Rd×Rd

Ψm(|x− y|)ci(x)cj(y)dx dy
]
= 0 , (3.9)

and Km,σ can be regarded as an approximation of the kernel Ψm for m = 6, 12. Combining (3.1),
(3.5), and (3.9), it is obvious that

lim
σ→0+

(ELJ,σ − ELJ)

=
∑

m=6,12

lim
σ→0+

[∫∫
Rd×Rd

Km,σ(x− y)ci(x)cj(y) dx dy −
∫∫

Rd×Rd

Ψm(|x− y|)ci(x)cj(y)dx dy
]

= 0 ,

so (3.6) holds and the proof of Proposition 3.1 is complete.
As σ goes to zero, the asymptotic behavior of the functional ELJ,σ is stated as follows:

Proposition 3.2. Under the same hypotheses of Proposition 3.1,

ELJ,σ [ci, cj ] = C1
ωd

12− d
σd−12 (1 + oσ(1))

∫
Rd

ci (x) cj (x) dx , (3.10)

where ωd is the surface area of d dimensional unit ball and oσ(1) is a small quantity tending to
zero as σ goes to zero.
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Proof. Using the definition of the Fourier transform, the function Ψ̂mχσ(ξ) [1− χσ−γ (ξ)] can be
expressed by

Ψ̂mχσ(ξ) [1− χσ−γ (ξ)] = αm

∫
|x|>σ

exp{
√
−1x · ξ}|x|−mdx [1− χσ−γ (ξ)]

for m = 6, 12, where αm = C1 if m = 12; αm = C2 if m = 6. Let ξ̃ = σγ ξ and x̃ = σ−γx. Then
|ξ| ≤ σ−γ is equivalent to |ξ̃| ≤ 1; |x| > σ is equivalent to |x̃| > σ1−γ . Besides, |x|−m = σ−mγ |x̃|−m,
dx = σdγdx̃ and hence

Ψ̂mχσ(ξ) [1− χσ−γ (ξ)] = αm [1− χσ−γ (ξ)]

∫
|x|>σ

exp{
√
−1x · ξ}|x|−mdx

= αm σ
(d−m)γ

[
1− χ1

(
ξ̃
)] ∫

|x̃|>σ1−γ

exp{
√
−1x̃ · ξ̃}|x̃|−mdx̃

Note that 0 < γ < 1, 1− χ1

(
ξ̃
)
= 0 if |ξ̃| > 1, and 1− χ1

(
ξ̃
)
= 1 if |ξ̃| ≤ 1. Then

[
1− χ1

(
ξ̃
)] ∫

|x̃|> σ1−γ

exp{
√
−1x̃ · ξ̃}|x̃|−mdx̃ = ωd

m−d σ
(d−m)(1−γ)(1 + o σ(1)) (3.11)

i.e.
Ψ̂mχ σ(ξ) [1− χ σ−γ (ξ)] = ωd

m−d σ
d−m(1 + o σ(1)), (3.12)

where ωd is the surface area of d dimensional unit ball and oσ(1) is a small quantity tending to
zero as σ goes to zero. Thus (3.8), (3.12) and Parseval’s formula to Fourier transform (cf. [39])
imply∫∫

Rd×Rd

Km,σ(x− y)ci(x)cj(y) dx dy = αm
ωd

m−d σ
d−m (1 + oσ(1))

∫
Rd

ĉi(ξ)ĉj(ξ)dξ

= αm
ωd

m−d σ
d−m (1 + oσ(1))

∫
Rd

ci(x) cj(x) dx ,

for m = 6, 12. Therefore, the proof of (3.10) is complete.

Remark 3.3. Suppose γ = 1. Then the asymptotic behaviors (3.11) may fail. Hence the condition
0 < γ < 1 can not be generalized to γ = 1.

Combining Proposition 3.1, (3.6) and (3.10), we have the following obvious theorem:

Theorem 3.4. Under the same hypotheses of Proposition 3.1, the energy functional ELJ satisfies

ELJ [ci, cj ] = C1
ωd

12−dσ
d−12 (1 + oσ(1))

∫
Rd

ci(x) cj(x) dx , (3.13)

as σ goes to zero, where ωd is the surface area of d dimensional unit ball and oσ(1) is a small
quantity tending to zero as σ goes to zero.

4 Stability conditions

Let (ψ,φ) be a smooth solution of the system (2.43) with the zero Dirichlet boundary condition
ψ = φ = 0 at x = ±1. Note that the function ϕ0 is a smooth function. We take the L2

x-inner

product of (2.43) and

(
ψ
φ

)
, and then we may use (2.46)-(2.49) and integration by parts to get

d

dt

∫ 1

−1

(
ψ2 + φ2

)
dx = I + II + III , (4.1)
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where ψx = ∂ψ
∂x , φx = ∂φ

∂x , (·)x = ∂
∂x , and

I =

∫ 1

−1

(f1 ψ + f2 φ) dx , (4.2)

II = −(ḡ + ḡnp)

∫ 1

−1

w′(x)ψψx dx− (ḡ − ḡnp)

∫ 1

−1

wψ2
x dx− (ḡnp + ḡ)

∫ 1

−1

(wφ)x φx dx ,

III = −(d̃np − d̃)

∫ 1

−1

(wφ)x ψx dx− (d̃np − d̃)

∫ 1

−1

w′(x)ψφx dx+ (d̃np + d̃)

∫ 1

−1

wψxφx dx .

Using integration by parts and the zero Dirichlet boundary conditions ψ = 0 at x = ±1, it is
obvious that ∫ 1

−1

w′(x)ψψx dx =

∫ 1

−1

1

2
w′(x)

(
ψ2
)
x
dx = −1

2

∫ 1

−1

w′′(x)ψ2 dx ,

Similarly, due to φ = 0 at x = ±1,∫ 1

−1

w′(x)φφx dx = −1

2

∫ 1

−1

w′′(x)φ2 dx ,

and then ∫ 1

−1

(wφ)x φx dx =

∫ 1

−1

w |φx|2 dx+

∫ 1

−1

w′(x)φφx dx

=

∫ 1

−1

w |φx|2 dx− 1

2

∫ 1

−1

w′′(x)φ2 dx .

Hence II becomes

II = −(ḡ − ḡnp)

∫ 1

−1

wψ2
x dx+

1

2
(ḡ + ḡnp)

∫ 1

−1

w′′(x)ψ2 dx (4.3)

−(ḡnp + ḡ)

[∫ 1

−1

w |φx|2 dx− 1

2

∫ 1

−1

w′′(x)φ2 dx

]
.

By (2.32), the solution w satisfies

B ≥ w(x) =

√
(B2

1 −B2
2)x+B2

1 +B2
2√

2 |zn zp|
≥ b > 0 for x ∈ [−1, 1] , (4.4)

and w′′(x) ≤ 0 for x ∈ (−1, 1), where b = min{B1,B2}
|zn zp| and B = max{B1,B2}

|zn zp| are positive constants.

Suppose ḡ > ḡnp. Then (4.3) and (4.4) imply

II ≤ −b(ḡ − ḡnp)

∫ 1

−1

|ψx|2 dx− b(ḡnp + ḡ)

∫ 1

−1

|φx|2 dx , (4.5)

Here we have used the fact that ḡ and ḡnp are positive constants. By the Holder inequality, it is
obvious that

I ≤ C1

[∫ 1

−1

(
ψ2 + φ2

)
dx

]1/2
, (4.6)

where C1 is a positive constant depending on f1 and f2. On the other hand, both ψ and φ satisfy
the Sobolev inequalities ∫ 1

−1

ψ2 dx ≤ C2

∫ 1

−1

|ψx|2 dx , (4.7)

and ∫ 1

−1

φ2 dx ≤ C2

∫ 1

−1

|φx|2 dx , (4.8)
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where C2 is a positive constant independent of ψ and φ. Hence by (4.4), (4.7), (4.8) and the Holder
inequality, we get

III ≤
(
|d̃np|+ |d̃|

)
C3

∫ 1

−1

(
|ψx|2 + |φx|2

)
dx , (4.9)

where C3 is a positive constant independent of d̃, d̃np, ψ and φ. Suppose both |d̃| and |d̃np| are
sufficiently small such that

(
|d̃np|+ |d̃|

)
C3 < b(ḡ − ḡnp). Then (4.5) and (4.9) give

II + III ≤ −θ
∫ 1

−1

(
|ψx|2 + |φx|2

)
dx , (4.10)

where θ = b(ḡ− ḡnp)−
(
|d̃np|+ |d̃|

)
C3 is a positive constant. Consequently, (4.7), (4.8) and (4.10)

imply

II + III ≤ −θ0
∫ 1

−1

(
ψ2 + φ2

)
dx , (4.11)

where θ0 = θ
C2

is a positive constant. Let M(t) =

∫ 1

−1

(
ψ2 + φ2

)
dx for t > 0. Then combining

(4.1), (4.6) and (4.11), we have

dM

dt
≤ C1

√
M − θ0M for t > 0 . (4.12)

Notice that as M > (C1/θ0)
2
, the right side of (4.12) becomes negative and dM

dt < 0. This implies
that supt>0 M(t) <∞ and the result can be summarized as follows:

Theorem 4.1. Let (ψ,φ) be a smooth solution of the system (2.43) with the zero Dirichlet boundary
condition ψ = φ = 0 at x = ±1. Suppose ḡ > ḡnp, where both ḡ and ḡnp are defined in (2.42).

Assume both |d̃| and |d̃np| are sufficiently small such that
(
|d̃np|+ |d̃|

)
C3 < b(ḡ − ḡnp), where b

and C3 are given in (4.4) and (4.9), respectively. Then the function M(t) =

∫ 1

−1

(
ψ2 + φ2

)
dx is

uniformly bounded in t > 0 i.e. supt>0 M(t) <∞.

Now we want to show that the condition ḡ > ḡnp gives the asymptotic stability of the solution
of the system (2.43) with the zero Dirichlet boundary condition ψ = φ = 0 at x = ±1. Here the
asymptotic stability means that supt>0 ∥ψ∥L2

x
+ ∥φ∥L2

x
<∞ and ∥ψ − ψ∞∥L2

x
+ ∥φ− φ∞∥L2

x
→ 0

as t → ∞, whenever (ψ,φ) is a (weak) solution of the system (2.43) with the zero Dirichlet
boundary condition ψ = φ = 0 at x = ±1 and various initial conditions (ψ,φ)|t=0 = (ψ0, φ0),
where (ψ∞, φ∞) is the steady state of the system (2.43) satisfying(

L11 L12

L21 L22

)(
ψ∞
φ∞

)
=

(
−f1
−f2

)
.

Note that the uniform boundedness of ∥ψ∥L2
x
+ ∥φ∥L2

x
has been obtained by Theorem 4.1. To get

the asymptotic stability, it is sufficient to show that ∥ψ − ψ∞∥L2
x
+ ∥φ − φ∞∥L2

x
→ 0 as t → ∞.

Let Ψ = ψ − ψ∞ and Φ = φ− φ∞, where (ψ,φ) is the solution of the system (2.43) with the zero
Dirichlet boundary condition ψ = φ = 0 at x = ±1 and the initial condition (ψ,φ)|t=0 = (ψ0, φ0).
Then (2.43) implies that (Ψ,Φ) satisfies

∂

∂t

 Ψ

Φ

 =

(
L11 L12

L21 L22

) Ψ

Φ

 , (4.13)

with the zero Dirichlet boundary condition Ψ = Φ = 0 at x = ±1 and the initial condition

(Ψ,Φ)|t=0 = (Ψ0,Φ0) , Ψ0 = ψ0 − ψ∞ , Φ0 = φ0 − φ∞ .

Then as for (4.12), we may use (4.13) i.e. (2.43) with f1 ≡ f2 ≡ 0 to derive

d M̄

dt
≤ −θ0 M̄ for t > 0 ,
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where M̄ =
∫ 1

−1
Ψ2 + Φ2 dx. Consequently, M̄(t) ≤ M̄(0) e−θ0 t for t > 0, and then M̄(t) → 0

as t → ∞. This shows the asymptotic stability of the solution of the system (2.43) with the zero
Dirichlet boundary condition ψ = φ = 0 at x = ±1. Therefore, we may conclude that

Corollary 4.2. Suppose ḡ > ḡnp, where both ḡ and ḡnp are defined in (2.42). Assume both |d̃|
and |d̃np| are sufficiently small such that

(
|d̃np|+ |d̃|

)
C3 < b(ḡ − ḡnp), where b and C3 are given

in (4.4) and (4.9), respectively. Then the system (2.43) with the zero Dirichlet boundary condition
becomes asymptotically stable.

5 Instability conditions

Assume zp = −zn = z > 0 (i.e. symmetry electrolytes), Dn = Dp = D > 0 and gnn = gpp =

g > 0. Then the coefficients ḡnp, d̃np, ḡ and d̃ (defined in (2.42)) become
ḡnp = Dz gnp ,

ḡ = Dz g ,

d̃np = d̃ = 0 .

(5.1)

Hence the conditions of Corollary 4.2 can be fulfilled and the system (2.43) with the zero Dirichlet
boundary condition becomes asymptotically stable if g > gnp holds. Nevertheless, one may not
know whether the opposite condition g < gnp changes the stability or not. In the rest of the
section, it is proved that under the condition g < gnp, the system (2.43) with the zero Dirichlet
boundary condition becomes unstable for some specific initial data. Instability is of great interest
because it may be related to the spontaneous gating phenomena seen whenever currents through
single ion channels are measured [13, 43, 44, 49].

By (2.34), the electric potential ϕ0 has the following simple form:

ϕ0(x) = a0 x+ b0 for x ∈ (−1, 1) , (5.2)

where a0 and b0 are constants. By (5.1), the system (2.43) can be transformed into

∂

∂t

(
ψ
φ

)
=

(
2z3D

(
wϕ0

′)′
2z2Dw′′

)
+

(
zD (g + gnp)

∂
∂x (w

′ψ) + zD (g − gnp)
∂
∂x

(
w ∂ψ
∂x

)
zD (g + gnp)

∂2

∂x2 (wφ)

)
,

and also may be decomposed into two independent equations as follows:

1

zD

∂ψ

∂t
= 2z2

(
wϕ0

′)′ + (g + gnp)
∂

∂x
(w′ψ) + (g − gnp)

∂

∂x

(
w
∂ψ

∂x

)
, (5.3)

and
1

zD

∂φ

∂t
= 2zw′′ + (g + gnp)

∂2

∂x2
(wφ) , (5.4)

for x ∈ (−1, 1) and t > 0. Note that both (5.3) and (5.4) are non-homogeneous parabolic partial
differential equations. To simplify the form of (5.3), let

ψ̃(x, t) = e−h(x)ψ(x, t) i.e. ψ(x, t) = eh(x)ψ̃(x, t) , (5.5)

for x ∈ (−1, 1) and t > 0, where h(x) = α0 lnw(x) and α0 =
gnp+g
gnp−g > 0 because gnp > g > 0. Note

that w(x) > 0 for x ∈ (−1, 1) so the function h is well-defined. Moreover, because the function w
has positive upper and lower bounds defined in (4.4), the function eh(x) = w(x)α0 also has positive
upper and lower bounds as follows:

0 < B1 ≤ eh(x) ≤ B2 for x ∈ (−1, 1) , (5.6)
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where B1 and B2 are positive constants. Thus by(5.5) and α0 =
gnp+g
gnp−g > 0, the equation (5.3) can

be transformed into

1

zD
eh
∂ψ̃

∂t
= 2z2(wϕ′0)

′ + (g − gnp)
∂

∂x

(
weh

∂ψ̃

∂x

)
for x ∈ (−1, 1) , t > 0 . (5.7)

Note that h = α0 lnw implies wh′ = α0 w
′.

The equation (5.7) also can be written as

1

zD
eh
∂ψ̃

∂t
= 2z2(wϕ′0)

′ + (gnp − g)Lψ̃ , (5.8)

where L is a linear differential operator defined by

Lu = − d

dx

(
weh

du

dx

)
for u = u(x) ∈ H2((−1, 1)) ∩H1

0 ((−1, 1)) . (5.9)

It is obvious that the operator L is self-adjoint. Because w is a positive function, then integration
by parts gives ∫ 1

−1

uLudx = −
∫ 1

−1

u
d

dx

(
weh

du

dx

)
dx

=

∫ 1

−1

weh
(
du

dx

)2

dx > 0

for u ̸≡ 0 and u ∈ H2((−1, 1)) ∩H1
0 ((−1, 1)), and hence the operator L is positive. To solve the

equation (5.8), the following weighted eigenvalue problem is considered: Lζ = λehζ in (−1, 1) ,

ζ(±1) = 0
(5.10)

where λ is the eigenvalue and ζ is the corresponding eigenfunction. Because the operator L is self-
adjoint and positive, it is well-known that the eigenvalue problem (5.10) has eigenvalues {λj}∞j=1

and the associated eigenfunctions {ζj}∞j=1 such that

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ,

and {ζj}∞j=1 forms an orthonormal basis of the following weighted L2 function space defined by

W =

{
ζ ∈ L2((−1, 1)) :

∫ 1

−1

eh(x) ζ2(x)dx <∞
}
,

and the inner product given as follows:

⟨f, g⟩ =
∫ 1

−1

eh(x) f(x) g(x) dx for f, g ∈W . (5.11)

The principal eigenvalue λ1 is defined by the minimization problem

λ1 = min

{∫ 1

−1

w(x) eh(x) (ζ ′(x))2 dx : ζ ∈ H1
0 ((−1, 1)) ,

∫ 1

−1

eh(x) ζ2(x) dx = 1

}
,

and the other eigenvalues λj , j = 2, 3, · · · are determined by

λj = min

{ ∫ 1

−1
w(x)eh(x)(ζ ′(x))

2
dx : ζ ∈ H1

0 ((−1, 1)),
∫ 1

−1
eh(x)ζ2(x)dx = 1,

ζ⊥ζk, k = 1 · · · , j − 1

}
,

where ζ ⊥ ζk means the orthogonality of the inner product ⟨·, ·⟩ defined by (5.11). Consequently,

ζ ⊥ ζk if and only if ⟨ζ, ζk⟩ =
∫ 1

−1
ehζζk dx = 0. Because w and eh are positive and smooth

functions, these eigenvalues λj ’s are positive and the associated eigenfunctions ζj ’s are well-defined.
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To solve the equation (5.7) being same as the equation (5.8), Galerkin’s method is used by
setting the solution ψ̃ with the following form:

ψ̃(x, t) =
∞∑
j=1

aj(t) ζj(x) ,

where ζj is the jth eigenfunction of the operator L with the associated eigenvalues {λj}∞j=1 satis-
fying the weighted eigenvalue problem (5.10). Then

1

zD

∞∑
j=1

daj (t)

dt
ζj (x) = 2z2e−h(x)

(
wϕ0

′)′(x) + (gnp − g)
∞∑
j=1

aj (t)λj ζj(x) . (5.12)

Fix j ∈ N arbitrarily. Taking the inner product (defined in (5.11)) of (5.12) and ζj , the equation
of aj is obtained as follows:

1

zD

daj
dt

(t) = fj + (gnp − g)λj aj(t) for t > 0 , (5.13)

where fj ’s are constants given by

fj = ⟨2z2e−h(wϕ′0)′, ζj⟩ . (5.14)

Note that {ζj}∞j=1 is orthonormal to the inner product (5.11). Moreover, the Schwartz inequality
can be applied to (5.14) and implies

|fj | ≤ 2z2
∥∥∥e−h(wϕ0′)′∥∥∥ ∥ζj∥ = 2z2

∥∥∥e−h/2(wϕ0′)′∥∥∥
L2

≡ K2 , (5.15)

where K2 is a positive constant independent of j, and the norm ∥ · ∥ comes from the inner product
⟨·, ·⟩ and is defined by ∥v∥ = ⟨v, v⟩1/2 = ∥eh/2v∥L2 for v ∈ L2((−1, 1)). Notice that each ζj satisfies
∥ζj∥ = 1. On the other hand, the equation (5.13) can be solved and the explicit form of aj is
obtained as follows:

aj(t) =

[
aj(0) +

fj
(gnp − g)λj

]
ezD(gnp−g)λj t − fj

(gnp − g)λj
for t > 0 , j = 1, 2, · · · . (5.16)

Consequently, the solution ψ̃ has the following explicit form:

ψ̃(x, t) =

∞∑
j=1

{[
aj(0) +

fj
(gnp − g)λj

]
ezD(gnp−g)λj t − fj

(gnp − g)λj

}
ζj(x) , (5.17)

for x ∈ (−1, 1) and t > 0. Moreover, by (5.16), the assumption gnp > g implies that |aj(t)| may
tend to infinity exponentially as t goes to infinity, provided that the initial data aj(0) satisfies

aj(0) +
fj

(gnp−g)λj
̸= 0. Precisely speaking,

lim
t→∞

|aj(t)| = ∞ if aj(0) +
fj

(gnp − g)λj
̸= 0 .

Note that each eigenvalue λj is positive. Because ψ̃(x, t) =
∑∞
j=1 aj(t)ζj(x) and {ζj}∞j=1 is or-

thonormal to the inner product ⟨·, ·⟩ defined in (5.11), then aj(0) = ⟨ψ̃0, ζj⟩, where ψ̃0 = ψ̃|t=0 is

the initial data of ψ̃. Thus

lim
t→∞

∫ 1

−1

ψ̃2 dx = lim
t→∞

∞∑
j=1

|aj(t)|2 = ∞ if ⟨ψ̃0, ζj⟩+
fj

(gnp − g)λj
̸= 0 for some j ∈ N ,

which implies that

lim
t→∞

∫ 1

−1

ψ2dx = lim
t→∞

∫ 1

−1

e2hψ̃2dx ≥ B1
2 lim
t→∞

∫ 1

−1

ψ̃2dx = ∞ , (5.18)
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if ⟨ψ̃0, ζj⟩+ fj
(gnp−g)λj

̸= 0 for some j ∈ N. Here (5.5) and (5.6) have been used to derive

ψ2 = e2hψ̃2 ≥ B1
2ψ̃2 .

To solve the equation (5.4), let φ̃ (x, t) = w (x)φ (x, t) and transform the equation (5.4) into

1

zDw

∂φ̃

∂t
= 2zw′′ + (g + gnp)

∂2φ̃

∂x2
for x ∈ (−1, 1), t > 0 . (5.19)

As for solving the equation (5.7), we may also apply the Galerkin method by setting φ̃(x, t) =
∞∑
l=1

bl (t)ηl (x) and get

φ̃ (x, t) =
2z

g + gnp

∞∑
l=1

(ww′′, ηl)

µl
ηl (x) +

∞∑
l=1

[
bl (0)−

2z (ww′′, ηl)

(g + gnp)µl

]
ηl (x) e

−zD(g+gnp)µlt (5.20)

for x ∈ (−1, 1) and t > 0, where µl and ηl are the lth eigenvalue and eigenfunction of the following
weighted eigenvalue problem:

−η′′ (x) = µ
w(x)η (x) for x ∈ (−1, 1),

η (±1) = 0,

(5.21)

As for the weighted eigenvalue problem (5.10), the problem (5.21) also has positive eigenvalues
{µl}∞l=1 and eigenfunctions {ηl}∞l=1 such that 0 < µ1 ≤ µ2 ≤ · · · and {ηl}∞l=1 forms an orthonormal
basis of the following function space

H =

{
η ∈ L2(−1, 1) :

∫ 1

−1

1

w (x)
η2 (x)dx <∞

}
with the inner product (·, ·) defined by

(u, v) =

∫ 1

−1

1

w(x)
u(x)v(x)dx for u, v ∈ H . (5.22)

Furthermore, each (µl, ηl) satisfies{
−η′′l (x) =

µl

w(x)ηl (x) for x ∈ (−1, 1),

ηl (±1) = 0, l = 1, 2, 3, · · · .

For the convergence of the series
∞∑
l=1

(ww′′,ηl)
µl

ηl (x), the Bessel inequality and the fact that µl ≥

µ1 > 0 for l ∈ N are used to derive the following inequalities:

∞∑
l=1

∣∣∣∣ (ww′′, ηl)

µl

∣∣∣∣2 ≤ 1

µ1
2

∞∑
l=1

(ww′′, ηl)
2 ≤ 1

µ1
2
∥ww′′∥2

which implies that the series
∞∑
l=1

(ww′′,ηl)
µl

ηl is convergent in the space H. Consequently,

lim
t→∞

φ̃ (x, t) =
2z

g + gnp

∞∑
l=1

(ww′′, ηl)

µl
ηl (x) ≡ φ̃∞ (x) for x ∈ (−1, 1) ,

i.e.

lim
t→∞

φ (x, t) =
φ̃∞ (x)

w (x)
for x ∈ (−1, 1) . (5.23)

Combining (5.18) and (5.23), the instability of the system (2.43) with the zero Dirichlet boundary
condition is proved. On the other hand, zp = −zn = z > 0, Dp = Dn = D > 0, gnp < gnn = gpp =
g also satisfies the condition of Corollary 4.2 which gives the asymptotic stability. Therefore, these
results are summarized as follows:

Theorem 5.1. Suppose zp = −zn = z > 0, Dp = Dn = D > 0 and gnn = gpp = g. Then
the system (2.43) with the zero Dirichlet boundary condition becomes unstable if gnp > g, but
asymptotically stable if gnp < g.
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