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1. Introduction

Inspired by minimal model theory, Fujita in the 1980s conjectured as follows.

Conjecture [6]. Let X be a nonsingular complex projective variety of dimen-
sion n, and let D be an ample divisor on X. Then:

(I) KX + �D is generated by global sections for � ≥ n+ 1; and
(II) KX + �D is very ample for � ≥ n+ 2.

Moreover, (I) and (II) should still hold true if X has only “mild singularities”.

For nonsingular varieties, the one-dimensional case is an easy fact in curve the-
ory. The two-dimensional case follows from the work of Reider [16]. In higher-
dimensional cases, (I) is known for n = 3 [3] and n = 4 [8], and by [1] we know
that KX+ 1

2 (n
2 +n+ 2)D is generated by global sections for all n. Less is known

about (II) with one exception: if D is already very ample, then (I) and (II) follow
from Bertini’s theorem by induction on dimensions.

For part (I), allowing X to have rational Gorenstein singularities, Fujita him-
self had shown (among other things) that KX + (n + 1)D is nef. For varieties
over a field of arbitrary characteristic that have singularities of F -rational type,
Smith showed that (I) holds if D is further assumed to be generated by global
sections [17]. (In characteristic zero this can also be proved by using vanishing
theorems.) Both [6] and [17] apply well to quite general toric varieties, since they
have only rational singularities and on them a Cartier divisor is nef if and only
if it is basepoint free (cf. Section 5). Moreover, ample divisors are automatically
generated by global sections (Corollary 2.3). In fact, for nonsingular toric va-
rieties, Fujita’s conjectures hold because ample divisors are automatically very
ample (Demazure’s theorem).

These implications motivate our present work: results on toric varieties should
admit direct proofs using only toric (combinatorial) techniques. In this note such
elementary proofs are found for rather general toric varieties. Moreover, our com-
binatorial treatment also provides results on the “very ampleness” conjecture (II).

Main Theorem. Let X be a complete toric variety of dimension n with ample
(Cartier) divisor D.
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A The reflexive sheaf O(KX + �D) is generated by global sections for � ≥ n+1.
If X is Gorenstein, then KX + nD is also generated by global sections unless
(X,D) ∼= (P n,O(1)).

B If X is Gorenstein and Q-factorial, then KX + �D is very ample for � ≥ n+ 2
with n ≤ 6. For � = n + 1 with n ≤ 4, this is also true unless (X,D) ∼=
(P n,O(1)). For n ≥ 7, KX + �D is very ample for � ≥ ⌈

3
2n

⌉ − 1.

In Section 2 we review the necessary background in toric geometry. Section 3
contains elementary proofs of the main theorems A and B. An alternative toric
proof (modeled on [6]) of Theorem A in the Gorenstein case is given in Section 4,
where a toric proof of the singular version of toric Kodaira vanishing theorem is
also given. (After completion of this work, I was informed that a proof recently
appeared in a preprint by Mustata [13].)

We should remark here that a different toric proof of Theorem A in the Goren-
stein case has been found by Laterveer [10] and Fujino [5] using Reid’s [15] toric
version of Mori theory.

Acknowledgment. In an earlier version (authored with C.-L. Wang, dated Oc-
tober 2000), it was claimed that Theorem B is true without the dimension restric-
tion n ≤ 6 (cf. Remark 3.2). Upon finding this idea to be mistaken, Wang insisted
on his removal as co-author. However, I remain grateful to him for many useful
discussions while preparing this note.

2. Review of Toric Geometry

Only necessary material is recalled here, and readers are referred to [2; 7; 9; 14]
for details. Let N ∼= Zn be a lattice with dual M := HomZ(N,Z). A cone σ ⊂
NR will mean a closed strongly rational polyhedral convex cone with dual σ∨ ⊂
MR defined by {u ∈ MR | 〈u, v〉 ≥ 0 ∀v ∈ σ}. Denote by ∂σ the collection of
cones as faces of σ. A fan � of NR is a collection of cones {σ} such that (a) if
τ ∈ ∂σ then τ ∈ � and (b) if σ1, σ2 ∈ � then σ1 ∩ σ2 is a face of both σ1 and
σ2. A p-dimensional cone is simplicial if it has exactly p edges. A fan is called
complete if its cones fill up NR. In this paper, we consider mostly complete toric
varieties; that is, � is complete. We denote the subset of p-dimensional cones in
� by �p.

Fix a ground field k (or in fact we may take k = Z). For a cone σ ⊂ NR, we
have that Sσ = σ∨ ∩M determines a normal semigroup ring Aσ = k[Sσ ] and an
affine toric variety Uσ = SpecAσ . The zero cone 0 ∈� corresponds to the com-
mon Zariski open set U0 = Spec k[M ] ∼= Spec k[x1, x

−1
1 , . . . , xn, x

−1
n ] ∼= T ∼=

(k×)n. For a fan �, X = X(�) is the toric variety defined by gluing all the Uσ .

Here we associate to each u ∈ M a monomial xu, so there is an obvious torus
action of T on X. For τ ∈ �1, we denote by τ̂ its (integral) primitive genera-
tor. Define τ⊥ := {u ∈MR | 〈u, τ̂ 〉 = 0}. This gives a codimension-1 subtorus
Spec k[τ⊥ ∩M ] of T, and its closure in X in turn gives rise to a T (-invariant) Weil
divisor Dτ . On Uσ we have div xu = ∑

τ∈�1∩∂σ〈u, τ̂ 〉Dτ . More generally, any
w ∈�p gives rise to a (n− p) cycle.



Combinatorial Method in Adjoint Linear Systems on Toric Varieties 493

Proposition 2.1. For a T -Weil divisor D = ∑
aτDτ , the following statements

hold.

1. �(X,D) = ⊕
u∈PD∩M k · xu, where PD = {u ∈MR | 〈u, τ̂ 〉 ≥ −aτ ∀τ ∈�1}

is a convex but not necessarily integral polytope.
2. On Uσ , the reflexive sheaf O(D) corresponds to a finitely generated module

Aσ〈xm(σ)1, . . . , xm(σ)rσ〉 over Aσ , where a minimal set of generators are as-
sumed to be chosen; then O(D) is generated by its global sections if and only
if (iff ) m(σ)j ∈PD for all σ and j.

A T (-invariant) Cartier divisor D is given by data (Uσ , x
uσ ) with σ ∈ �n, uσ ∈

M, and 〈uσ , τ̂ 〉 = 〈u′σ , τ̂ 〉 whenever τ ∈ �1 ∩ ∂σ ∩ ∂σ ′. The associated Weil di-
visor is given by

∑
τ∈�1

aτDτ , where aτ = 〈uσ , τ̂ 〉 if τ ∈ �1 ∩ ∂σ. In this case,
�(Uσ ,D) = Aσ〈x−uσ 〉 and PD = ⋂

σ∈�n
(−uσ + σ∨). Note that T -Cartier divi-

sors are in one-to-one correspondence with |�|-supported PL (piecewise linear)
functions on NR that are Z-valued on N. Namely, hD(v) = −〈uσ , v〉 when v ∈ σ.
Let !D : X ··→ Ph0(X,D)−1 be the rational map defined by the linear system |D|.
Proposition 2.2. Let D be a T -Cartier divisor. Then:

1. O(D) is generated by global sections iff !D is a morphism—that is, |D| is
basepoint-free iff PD is an integral polytope with vertexes {−uσ | σ ∈ �n}
( possibly with repetition) iff hD is convex;

2. D is very ample (that is, !D is a closed embedding) iff, for all σ ∈ �n,

uσ + PD ∩M generates σ∨ ∩M as a semigroup; and
3. D is ample (that is, �D is very ample for � large) iff PD is an integral polytope

with vertexes {−uσ | σ ∈�n} (without repetition) iff hD is strictly convex.

Corollary 2.3. For complete toric varieties, ample divisors are generated by
global sections. In fact, D is ample iff !D is a finite morphism.

Toric varieties are naturally Cohen–Macaulay (they have only rational singulari-
ties), with canonical (T -Weil) divisor K = −∑

τ∈�1
Dτ . Hence X is Gorenstein

(resp., Q-Gorenstein of index r) iff K (resp., rK) is Cartier; that is, K is given by
data {kσ ∈M | σ ∈�n} such that 〈kσ , τ̂ 〉 = −1 (resp., −r) for τ ∈�1 ∩ ∂σ. We
also have thatX is Q-factorial iff � is simplicial (i.e., consists of simplicial cones)
and that X is factorial iff the set of primitive generators of edges of each cone is
part of a Z-basis of M iff X is nonsingular.

Theorem 2.4. Let D be an ample divisor.

1. (Demazure) If X is nonsingular then D is very ample.
2. (Ewald–Wessels [4]) For dimX = n ≥ 2, (n− 1)D is very ample.

3. Proof of the Main Theorem

We start with the following trivial but important observation. If W = ∑
aτDτ is

a Weil divisor, then
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IntPW ∩M = {u∈M | 〈u, τ̂ 〉 + aτ > 0 ∀τ ∈�1}
= {u∈M | 〈u, τ̂ 〉 + aτ − 1 ≥ 0 ∀τ ∈�1}
= PW+K ∩M.

These equalities hold also for incomplete toric varieties (e.g., Uσ ).

Proof of Theorem A

Now let D be an ample divisor given by the local data (Uσ , x
uσ ). Applying the

previous argument to W = �D yields P�D+K ∩M = IntP�D ∩M.

For each σ ∈ �n, if we apply the foregoing to Uσ with W = 0 then we ob-
tain the canonical module�(Uσ ,O(K)) = Aσ〈xm(σ)1, . . . , xm(σ)r 〉with exponents
consisting of Int σ∨ ∩M. Here we may (and do) choose {m(σ)j}j=1, ...,r to be a
minimal generating set that lies in the “quasi-box”

B(0,1] =
{ n∑

i=1

aivi | 0 < ai ≤ 1, v1, . . . , vn : n distinct primitive

generators of (one-dimensional) edges of σ∨
}

(B[0,1] is defined similarly). Then {−�uσ + m(σ)j}j=1, ...,r is a minimal generat-
ing set of �(Uσ ,O(�D+K)). In order to show that �(X,O(�D+K)) generates
O(�D +K) on Uσ , we must show that P�D+K contains the (−�uσ +m(σ)j )—in
other words, that �uσ + IntP�D = Int(�(uσ + PD)) contains the m(σ)j .

Let us define the “quasi-simplex” S[a,b] for a ≤ b to be the part of σ∨ that has
the form

∑
aivi with 0 ≤ ai and a ≤ ∑

ai ≤ b, where the vi are among the
primitive generators of edges of σ∨ (S(0,c), S(0,c], etc. are defined similarly). The
point is that, since D is ample, c(uσ + PD) ⊃ S[0,c] and Int c(uσ + PD) ⊃ S(0,c)

for all c > 0. Hence

Int((n+ 1)(uσ + PD)) ⊃ S(0,n+1) ⊃ B(0,1] ⊃ {m(σ)j}j=1, ...,r .

This proves that O((n+ 1)D +K) is generated by global sections.
When X is Gorenstein, �(Uσ ,O(K)) = Aσ〈x−kσ 〉 with Int σ∨ ∩ M =

−kσ + σ∨ ∩M. For nD + K to be generated by global sections is equivalent to
having, for all σ ∈�n, that −kσ ∈ Int n(uσ +PD). However, Int(n(uσ +PD)) ⊃
S(0,n) ⊃ B(0,1) and B(0,1] � −kσ and so it follows that, if there is a σ with −kσ /∈
Int n(uσ + PD), then −kσ must lie in the boundary of n(uσ + PD) and be of
the form −kσ = v1 + · · · + vn, where the vi are distinct primitive generators of
σ∨. Moreover, there are no lattice points in IntB[0,1) (actually, no lattice points in
Int n(uσ + PD)) nor any lattice points in lower faces of B[0,1], except the vertices.
This implies that v1, . . . , vn form a Z-basis of M.

We claim that there is no other primitive generator v of σ. If such a v did exist,
then IntB[0,1) ∩M = ∅ implies that any n−1 vi, together with v, would still form
a Z-basis of M. Write v = ∑n

i=1 civi . Computation of determinant shows that
|ci | = 1 for all i. Since v is also a primitive generator, at least one ci must be −1.
Let I be the subindex set of {1, . . . , n} such that ci = −1 for all i ∈ I and cj = 1
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for all j /∈ I. Consider the element w = v + ∑
i∈I vi =

∑
j /∈I vj . Then w =

1
2

(
v + ∑n

i=1 vi
)

would be a nontrivial interior lattice point of Int n(uσ + PD), a
contradiction.

It follows that, if nD + K is not generated by global sections on some Uσ ,

then n(uσ + PD) = S[0,n] and the polytope uσ + PD = S[0,1] is the regular n-
simplex, with v1, . . . , vn the edges through 0. Because D is ample, this implies
that (X,D) ∼= (P n,O(1)).

Proof of Theorem B

The Q-factorial assumption asserts that all cones involved are simplicial. Let us
first suppose that X is singular on some open set Uσ with σ ∈ �n. Since X is
Gorenstein, this is equivalent (by our previous argument) to −kσ �= v1+ · · · + vn
for vi the primitive generators of edges of σ∨.

Claim 3.1. If � ≥ max
{
n + 1,

⌈
3
2n

⌉ − 1
}
, then �D + K is very ample on Uσ .

That is, !�D+K |Uσ
is a closed embedding.

Proof. LetB[0,1], S(a,b), S[a,b), . . . be the same subsets of σ∨ as before. We set also
Sc = S[c,c]. There is an obvious reflection of lattice points in B[0,1] with respect to
the center 1

2

∑
vi, namely B[0,1] ∩M � α �→ α ′ = ∑

vi − α ∈ B[0,1] ∩M. This
reflects S[a,b) to S(n−b,n−a].

By assumption we have that −kσ ∈ Sλ for 0 < λ < n (λ ∈ Q) and there is no
interior lattice point in S[0,λ). By reflection, there is also no interior lattice point
in S(n−λ,n] ∩ B[0,1].

If −kσ ∈ IntB[0,1] then n − λ ≥ λ (i.e., λ ≤ n/2). In general, let −kσ =∑n
i=1 aivi . By reordering the vi if necessary, we may assume that there exists an

m ∈ N with 0 < ai < 1 for i ≤ m and with ai = 1 for i ≥ m + 1. If m < n

then −kσ is in the interior of an “upper face” F ′
m of B[0,1]. In this case −k ′ :=∑m

i=1 aivi is an interior lattice point of the “lower face” Fm of B[0,1], which makes
the cone σ∨′ spanned by v1, . . . , vm Gorenstein because {vm+1, . . . , vn} and −k ′
generate −kσ :

m∈ Int σ∨′ ∩M �⇒ m+ vm+1 + · · · + vn ∈ Int σ∨ ∩M

�⇒ m+ vm+1 + · · · + vn = −kσ + γ, γ ∈ σ∨ ∩M

�⇒ m = −k ′ + γ (and so γ ∈ σ∨′ ∩M).

Observe also that when m < n there are no interior lattice points of B[0,1] and
{vm+1, . . . , vn} is a Z-basis of R〈vm+1, . . . , vn〉 ∩M. Moreover, B[0,1] ∩M is gen-
erated by {vm+1, . . . , vn} ⊂ S1 and Fm ∩M, on which −k ′ ∈ Sλ′ with λ′ ≤ m/2
and λ = λ′ + (n−m) ≤ n−m/2.

Let β ∈ B[0,1] ∩ M. If β ∈ Int σ∨, the Gorenstein property implies that β =
−kσ + γ for some γ ∈ σ∨ ∩M and γ ∈ S[0,n−λ]. If β /∈ Int σ∨, then we may as-
sume modulo S1 that β ∈ IntFm (for m = n, Fm := B[0,1]). The result of Ewald
and Wessels [4] states that β is generated by S[0,m−1]∩Fm∩M (cf. Theorem 2.4(2)
and Remark 3.2).
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The “very ampleness” of �D + K on Uσ is equivalent to the fact that
(�uσ + kσ )+ P�D+K ∩M generates B[0,1] ∩M, since the latter generates σ∨ ∩M

via translations. Given

(�uσ + kσ )+ P�D+K ∩M = kσ + �uσ + IntP�D ∩M

= kσ + Int(�(uσ + PD)) ∩M

⊃ kσ + S(0,�) ∩M ⊃ S[0,�−λ) ∩M,

we need only require that � − λ > max{n − λ,m − 1, λ′,1}. That is, � >

max{n, λ+m− 1, λ+ λ′, λ+ 1}. Now

λ+m− 1 < n+m/2 − 1 ≤ 3
2n− 1,

λ+ λ′ = 2λ′ + (n−m) ≤ n,

λ+ 1 < n−m/2 + 1 ≤ n+ 1/2.

The claim is proved.

Notice that
⌈

3
2n

⌉ − 1 ≤ n+ 2 for n ≤ 6 and
⌈

3
2n

⌉ − 1 ≤ n+ 1 for n ≤ 4. In the
range n ≤ 4, KX + (n + 1)L fails to be very ample only if X is nonsingular on
some Uσ , hence −kσ = ∑

vi ∈ Sn. Since the vi already form a Z-basis of M and

(n+ 1)uσ + kσ + P(n+1)D+K ∩M ⊃ kσ + S(0,n+1) ∩M ⊃ S[0,1) ∩M,

it is clear that (�uσ + kσ )+ P�D+K ∩M ⊃ S[0,1] ∩M for all � > n+ 1 and that
�D+K is very ample on Uσ for � ≥ n+2. (In particular, this gives a simple toric
proof of Fujita’s conjecture for nonsingular toric varieties in any dimensions.)

Moreover, if (n + 1)D + K fails to be very ample on Uσ , then (n + 1)uσ +
kσ +P(n+1)D+K ∩M �⊃ S[0,1] ∩M. That is, vi /∈ (n+1)uσ + kσ +P(n+1)D+K ∩M
for some (in fact, all) i. This implies that (n+1)(uσ + PD) = S[0,n+1]. Indeed, if
(n+ 1)(uσ + PD) properly contains S[0,n+1] then

vi + (−kσ ) = vi + (v1 + v2 + · · · + vn)∈ Sn+1 ∩ Int σ∨ ∩M

⊂ Int(n+ 1)(uσ + PD) ∩M = (n+ 1)uσ + P(n+1)D+K ∩M,

which is a contradiction!
Therefore, the polytope uσ +PD must be the regular n-simplex with v1, . . . , vn

the edges through 0. SinceD is ample, this implies that (X,D) ∼= (P n,O(1)).

Remark 3.2. Wang has conjectured that, for an n-dimensional Gorenstein cone
σ∨ with −kσ ∈ IntB[0,1], B[0,1] is generated by S[0,n/2] ∩M. If this is true then the
foregoing argument will lead to a proof of conjecture (II) in the singular case in
any dimension. No counterexample has been found in a Maple program search.

4. Toric Vanishing Theorems

The following Kodaira-type vanishing theorem (Theorem 4.1(2)) for ample line
bundles on toric varieties was stated without proof in [2, (7.5.2)] and [14, p. 130].
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For the reader’s convenience we give a proof here assuming only that the bundle
is big and nef (Kawamata–Viehweg vanishing theorem). Part 1 is a more standard
fact in toric geometry. We put them together not only for completeness but also
because their proofs are along the same line.

Theorem 4.1. Let X be a complete toric variety, and let D be a Cartier divisor
that is generated by global sections.

1. H i(X,D) = 0 for i ≥ 1.
2. If, moreover, D is big (e.g., ample), then H i(X,K +D) = 0 for i ≥ 1.

Proof. By Demazure’s graded decomposition theorem for the Cartier divisor L
with associated PL function h (see [2, 7.2; 9, p. 42]),

H i(X,L) =
⊕
m∈M

H i
Z(m,h)(NR, k),

where Z(m, h) = {n∈NR | 〈m, n〉 ≥ h(n)}. Moreover, for i ≥ 2 we have

H i−1(NR − Z(m, h), k) ∼= H i
Z(m,h)(NR, k),

and then there exists an exact sequence

0 → H 0
Z(m,h)(NR, k) → k → H 0(NR − Z(m, h), k) → H1

Z(m,h)(NR, k) → 0.

Note that Z(m, h) = NR if and only if xm is a section of L.
For the proof of part 1, let L = D. Since h is convex (D is generated by global

sections), NR − Z(m, h) = {n ∈ NR | 〈m, n〉 < h(n)}, which is a convex open
cone (hence, contractible) and so H i

Z(m,h)(NR, k) = 0 for i ≥ 2. To achieve the
desired vanishing for i = 1, if xm is a section of D then Z(m, h) = NR and
H 0(NR −Z(m, h), k) = H 0(∅, k) = 0, so H1

Z(m,h)(NR, k) = 0. And if xm is not
a section of D then Z(m, h) �= NR. By the definition of local cohomology, we
have H 0

Z(m,h)(NR, k) = 0. The previously displayed exact sequence again implies
that H1

Z(m,h)(NR, k) = 0.
Part 2, by a Grothendieck–Serre duality theorem for Cohen–Macaulay schemes

(see [2, (7.7.1)] for a toric proof in the toric case), is equivalent to H i(X,−D) =
0 for all i ≤ n− 1. Let L = −D. Then h = h−D = −hD is concave, so Z(m, h)
is a closed convex cone. In this case −D has no sections, so Z(m, h) �= NR for
all m. By an argument similar to our proof of part 1, we have H 0

Z(m,h)(NR, k) = 0
and H1

Z(m,h)(NR, k) = 0.
For other i, since D is assumed to be big, it follows by Lemma 4.2 that

Z(m, h) cannot contain any positive-dimensional vector subspace of NR: if for
some n �= 0 we have n ∈ Z(m, h) and −n ∈ Z(m, h), then by adding together
hD(n)+ 〈m, n〉 ≥ 0 and hD(−n)+ 〈m,−n〉 ≥ 0 we obtain (by convexity of hD)
that 0 = hD(n + (−n)) ≥ hD(n) + hD(−n) ≥ 0. That is, hD(−n) = −hD(n)
and so hD|Rn is linear—a contradiction. Notice that Z(m, h) may consist of just
a single point 0. Now it is easy to see that Hj(NR −Z(m, h), k) = 0 for 1 ≤ j ≤
n − 2, since NR − Z(m, h) is either contractible or homotopic equivalent to the
(n− 1)-dimensional unit sphere. The proof is complete.
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Lemma 4.2. Let D be a Cartier divisor that is generated by global sections. Let
d be the dimension of the maximal vector subspace V of NR such that hD|V is
linear, and let !D be the projective morphism defined by |D|. Then

dim Image!D = dimPD = n− d.

Proof. The first equality follows from basic properties of Kodaira dimension. For
the second equality, recall that PD = {u∈MR | u ≥ hD} by Proposition 2.1(1) and
the definition of hD. If the vi are a basis of V, then u ∈ PD implies that u(vi) ≥
hD(vi) and −u(vi) = u(−vi) ≥ hD(−vi) = −hD(vi). That is, u|V = hD|V .
Hence the degree of freedom of u is n− d.

One also has a nice understanding of H 0(X,K +D) by the following lemma.

Lemma 4.3 [7, p. 90]. Let X be a complete Gorenstein toric variety and D an
ample (Cartier) divisor. If �(X,K +D) �= 0 then K +D is generated by global
sections. In fact, PK+D is the convex hull of IntPD ∩M.

Example 4.4. The conclusion of Lemma 4.3 is wrong ifX is only Q-Gorenstein.
Let M ∼= Z4 with v1 = (1, 0, 0, 0), v2 = (0,1, 0, 0), v3 = (0, 0,1, 0), v4 =
(1,1,1, 3), and P the convex hull of 〈0, v1, v2, v3, v4〉. Now P determines a Q-
factorial toric variety X(�) and an ample divisor D such that PD = P. Let σ∨ be
the cone spanned by v1, v2, v3, v4 (and hence uσ = 0). Then the canonical mod-
ule �(Uσ ,O(K)) = Aσ〈xm1, xm2〉, with m1 = (1,1,1,1) and m2 = (1,1,1, 2); in
fact, IntB[0,1]∩M = {m1,m2}. It is easily seen that P2D+K ∩M = IntP2D∩M =
Int 2P ∩M, which contains m2 but not m1. So �(X,K + 2D) �= 0, but the re-
flexive sheaf O(K + 2D) is not generated by its global sections on Uσ .

This example is inspired by the work of Ewald and Wessels [4]. It can easily be
generalized to higher dimensions.

Alternative Proof of Theorem A in the Gorenstein Case

By Lemma 4.3 we need only show that K + �D has a nontrivial section for some
� ≤ n+1. The Euler characteristic p(�) := χ(X,K+ �D) is a polynomial in � of
degree ≤ n and in the range � ∈ N, p(�) = h0(X,K + �D), by Theorem 4.1(2).
If K + �D has no sections for 1 ≤ � ≤ n, then p(�) has roots 1, . . . , n and hence
p(n+ 1) �= 0, because p is a nontrivial polynomial.

If K + nD is not generated by global sections, then p(�) has roots 1, . . . , n.
Therefore,

p(�) = χ(X,K + �D) = c(�− 1) · · · (�− n).

Using the formula given by the Riemann–Roch theorem for line bundles on pos-
sibly singular toric varieties,

p(�) = (−1)nχ(X,−�D) =
[
e−�D ·

(
1− K

2
+ · · ·

)]
(n)

= Dn

n!
�n + Dn−1K

2(n− 1)!
�n−1 +O(�n−1)



Combinatorial Method in Adjoint Linear Systems on Toric Varieties 499

(see [7, Sec. 5.3]), we get that c = Dn/n! and Dn−1K = −(n+ 1)Dn. That is,

(K + (n+ 1)D) ·Dn−1 = 0.

BecauseK+(n+1)D is effective andD is ample, this implies thatK+(n+1)D =
0. But then Dn = p(n + 1) = h0(X,K + (n + 1)D) = h0(X,O) = 1, so
h0(X,D) = h0(X,K + (n+ 2)D) = p(n+ 2) = n+ 1. Consider the projective
morphism !D : X → P n defined by |D| with D = φ∗H, where H is the hyper-
plane class. It is, in general, a finite morphism by Corollary 2.3. Moreover, !D is
also a birational morphism (of degree 1) onto P n since Dn = 1. Hence !D is an
isomorphism and (X,D) ∼= (P n,O(1)).

Remark 4.5. The idea of this proof follows Fujita’s paper [6] closely. It uses the
Riemann–Roch theorem and so is not as elementary as the previous proof in Sec-
tion 3. My motivation for giving this proof is to demonstrate a special feature of
toric varieties.

Remark 4.6. TheoremA in the Gorenstein case has been proved by Laterveer [10]
using different methods. In [10] it is also claimed thatK+(n+2)D is very ample.
However, there is a mistake in [10, p. 457]: If we replace t, L, and X by n + 2,
O(1), and P n (respectively) then we get a contradiction to his claim that the ratio-
nal polyhedron PKX+tL = PL contains the rational polyhedron P(t−1)L = P(n+1)L.

The correct version of this inclusion is PKX+tL ∩M = IntPtL ∩M.

Question 4.7. In the second part of Theorem A, can one relax the assumption
on X to be Q-Gorenstein or perhaps even all the assumptions? Also, can one re-
move the Q-factoriality assumption on X in Theorem B?

5. Appendix: Toric Nakai–Moishezon–Kleiman Criterion

Results in this section are well known to experts and are essentially contained in
[14; 15], though not stated in generality here. Because they are crucial for us to fix
ideas when working on toric varieties, we give the proofs for the reader’s conve-
nience. (In fact, the result in this appendix has already appeared in [12]; however,
it is hoped that the treatment here has some independent interest.)

Assume first that � is a complete simplicial fan of dimension n and that D is
a T -invariant Cartier divisor with data (Uσ , x

uσ ). Let ω ∈ �n−1 and let lω be the
corresponding 1-cycle as in Section 2. Suppose that ω separates two cones σ and
σ ′ in �n. Let e1, . . . , en−1 be the primitive generators of edges of ω, and let en and
en+1 be the primitive generators of opposite edges of σ and σ ′, respectively. Be-
cause e1, . . . , en form a Q-basis of N, we have the relation

∑n+1
i=1 aiei = 0 with

an+1 = 1 and an > 0. Recall now the following formulas from [15, (2.7)]:

(1) De lω = 0 if e /∈ {e1, . . . , en+1},
(2) Dei lω = aiDen+1lω for i = 1, . . . , n, and
(3) Den+1lω = mult(ω)mult(σ ′) > 0,

where mult(ω) = [Nω : Ze1 + · · · + Zen−1] and Nω is the sublattice of N gener-
ated (as a group) by ω ∩N, and similarly for mult(σ ′) (see [7, p. 100]).
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Lemma 5.1. Dlω = 〈uσ ′ − uσ , en+1〉Den+1lω.

Proof. By formula (1), Dlω = ∑n+1
i=1 deiDei lω,which equals

( ∑n+1
i=1 dei ai

)
Den+1lω

by (2). For i = 1, . . . , n we have dei = 〈uσ , ei〉, so

n+1∑
i=1

aidei =
〈
uσ ,

n∑
i=1

aiei

〉
+ den+1an+1

= 〈uσ ,−en+1〉 + 〈uσ ′ , en+1〉 = 〈uσ ′ − uσ , en+1〉
and then Dlω = 〈uσ ′ − uσ , en+1〉Den+1lω.

Proposition 5.2. Let hD be the PL function defined by D. Then

1. hD is convex on σ ∪ σ ′ iff Dlω ≥ 0, and
2. hD is strictly convex on σ ∪ σ ′ iff Dlω > 0.

Proof. Notice that hD is convex iff hD(w) ≤ −〈uσ ,w〉 for all w ∈ �1 and σ ∈
�n. That is, 〈uσ ′ −uσ ,w〉 ≥ 0 for all w ∈ σ ′. By Lemma 5.1 and formula (3), this
is equivalent to Dlw ≥ 0. The strictly convex case is entirely similar.

Theorem 5.3 (Toric Nakai–Moishezon–Kleiman criterion). For any complete
toric variety X with D a Cartier divisor:

1. D is generated by global sections iff D is nef ; and
2. D is ample iff D is numerically positive.

Proof. If the fan is simplicial then this follows from Proposition 2.2 and Proposi-
tion 5.2. In the general case, part 1 again follows from the simplicial case: consider
subdivision of � into the simplicial fan �′ and let φ : X ′ = X ′(�′) → X = X(�)
be the corresponding toric birational morphism. Then notice that D is nef on X

iff φ∗D is nef on X ′ and that φ∗D is generated by global sections on X ′ iff D is
generated by global sections on X.

Part 2 follows from part 1: D is ample certainly implies that it has positive de-
gree when restricted to any effective curve; conversely, ifD is numerically positive
then by part1 |D| defines a morphism!D,which has no positive-dimensional fiber
because otherwise D would have zero degree along curves in the fiber. Hence !D

is finite, and this implies that D is ample.

Added in proof. Sam Payne has informed the author that Lemma 4.3 quoted from
[7], on which our alternative proof of Theorem A is based, does not seem to have
a known valid proof.
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