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Abstract

For projective conifold transitions between Calabi–Yau three-
folds X and Y , with X close to Y in the moduli, we show that the
combined information provided by the A model (Gromov–Witten
theory in all genera) and B model (variation of Hodge structures)
on X, linked along the vanishing cycles, determines the corre-
sponding combined information on Y . Similar result holds in the
reverse direction when linked with the exceptional curves.

0. Introduction

0.1. Statements of main results. Let X be a smooth projective 3-
fold. A (projective) conifold transition X ↗ Y is a projective degenera-
tion π : X→ ∆ of X to a singular variety X̄ = X0 with a finite number
of ordinary double points (abbreviated as ODPs or nodes) p1, . . . , pk,
locally analytically defined by the equation

x2
1 + x2

2 + x2
3 + x2

4 = 0,

followed by a projective small resolution ψ : Y → X̄. In the process of
complex degeneration from X to X̄, k vanishing spheres Si ∼= S3 with
trivial normal bundle collapse to nodes pi. In the process of “Kähler
degeneration” from Y to X̄, the exceptional loci of ψ above each pi is
a smooth rational curve Ci ∼= P1 with NCi/Y

∼= OP1(−1)⊕2. We write
Y ↘ X for the reverse process.

Notice that ψ is a crepant resolution and π is a finite distance degen-
eration with respect to the quasi-Hodge metric [39, 40]. A transition
of this type (in all dimensions) is called an extremal transition. In
contrast to the usual birational K-equivalence, an extremal transition
may be considered as a generalized K-equivalence in the sense that the
small resolution ψ is crepant and the degeneration π preserves sections
of the canonical bundle. It is generally expected that simply connected
Calabi–Yau 3-folds are connected through extremal transitions, of which

Received December 23, 2015.

495



496 Y.-P. LEE, H.-W. LIN & C.-L. WANG

conifold transitions are the most fundamental. (This has been exten-
sively checked numerically [17].) It is, therefore, a natural starting point
of investigation.

We study the changes of the so-called A model and B model under a
projective conifold transition. In this paper, theAmodel is the Gromov–
Witten (GW) theory of all genera; the B model is the variation of Hodge
structures (VHS), which is in a sense only the genus zero part of the
quantum B model.

In general, the conditions for the existence of projective conifold tran-
sitions is an unsolved problem except in the case of Calabi–Yau 3-folds,
for which we have fairly good understanding. For the inverse coni-
fold transition Y ↘ X, a celebrated theorem of Friedman [8] (see also
[15, 38]) states that a small contraction Y → X̄ can be smoothed if
and only if there is a totally nontrivial relation between the exceptional
curves. That is, there exist constants ai 6= 0 for all i = 1, . . . , k such

that
∑k

i=1 ai[Ci] = 0. These are relations among curves [Ci]’s in the
kernel of H2(Y )Z → H2(X)Z. Let µ be the number of independent re-
lations and let A ∈Mk×µ(Z) be a relation matrix for Ci’s, in the sense
that the column vectors span all relations. Conversely, for a conifold
transition X ↗ Y , Smith, Thomas and Yau proved a dual statement in
[36], asserting that the k vanishing 3-spheres Si must satisfy a totally

nontrivial relation
∑k

i=1 bi[Si] = 0 in VZ := ker(H3(X)Z → H3(X̄)Z)
with bi 6= 0 for all i. Let ρ be the number of independent relations and
B ∈Mk×ρ(Z) be a relation matrix for Si’s. It turns out that µ+ ρ = k
[5] and the following exact sequence holds.

Theorem 0.1 (= Theorem 1.14). Under a conifold transition X ↗ Y
of smooth projective threefolds, we have an exact sequence of weight two
Hodge structures:

(0.1) 0→ H2(Y )/H2(X)
B−→ Ck At−→ V → 0.

We interpret this as a partial exchange of topological information
between the excess A model of Y/X (in terms of H2(Y )/H2(X)) and
the excess B model of X/Y in terms of the space of vanishing cycles V .

To study the changes of quantum A and B models under a projective
conifold transition of Calabi–Yau 3-folds and its inverse, the first step is
to find a D-module version of Theorem 0.1. We state the result below
in a suggestive form and leave the precise statement to Theorem 4.1:

Theorem 0.2 (= Theorem 4.1). Via the exact sequence (0.1), the
trivial logarithmic connection on (C ⊕ C∨)k → Ck induces simultane-
ously the logarithmic part of the Gauss–Manin connection on V and the
Dubrovin connection on H2(Y )/H2(X).

Note that the Gauss–Manin connection on V determines the excess
B model and Dubrovin connection on H2(Y )/H2(X) determines the
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excess A model in genus zero. The logarithmic part of the connection
determines the residue connection and, hence, the monodromy. One
can interpret Theorem 0.2 heuristically as “excess A theory + excess
B theory ∼ trivial”. In other words, the logarithmic parts of two flat
connections on excess theories “glues” to form a trivial theory. This
gives a strong indication towards a unified A+B theory.

“Globalizing” this result, i.e., going beyond the excess theories, is the
next step towards a true A+B theory, which is still beyond immediate
reach. Instead we will settle for results on mutual determination in
implicit form. Recall that the Kuranishi spacesMX ,MY of Calabi–Yau
manifolds are unobstructed (the Bogomolov–Tian–Todorov theorem).
For a Calabi–Yau conifold X̄, the unobstructedness of MX̄ also holds
[15, 38, 27].

Theorem 0.3. Let X ↗ Y be a projective conifold transition of
Calabi–Yau threefolds such that [X] is a nearby point of [X̄] in MX̄ .
Then

(1) A(X) is a sub-theory of A(Y ).
(2) B(Y ) is a sub-theory of B(X).
(3) A(Y ) can be reconstructed from a refined A model of X◦ := X \⋃k

i=1 Si “linked” by the vanishing spheres in B(X).
(4) B(X) can be reconstructed from a refined B model of Y ◦ := Y \⋃k

i=1Ci “linked” by the exceptional curves in A(Y ).

The meaning of these slightly obscure statements will take the entire
paper to spell them out. It may be considered as a categorification of
Clemens’ identity µ+ ρ = k. Here we give only brief explanations.

(1) is mostly due to Li–Ruan, who in [22] pioneered the mathematical
study of conifold transitions in GW theory. The proof follows from
degeneration arguments and existence of flops (cf. Proposition 2.1).

For (2), we note that there are natural identifications of MY with
the boundary of MX̄ consisting of equisingular deformations, and MX

with MX̄ \ D where the discriminant locus D is a central hyperplane
arrangement with axis MY (cf. §3.3.2). Therefore, the VHS associated
to Y can be considered as a sub-VHS system of VMHS associated to
X̄ (cf. Corollary 3.20), which is a regular singular extension of the VHS
associated to X.

With (3), we introduce the “linking data” of the holomorphic curves
in X◦, which not only records the curve classes in X but also how the
curve links with the vanishing spheres

⋃
i Si. The linking data on X can

be identified with the curve classes in Y by H2(X◦) ∼= H2(Y ) (cf. Def-
inition 5.2 and (5.3)). We then proceed to show, by the degeneration
argument, that the virtual class of moduli spaces of stable maps to X◦

is naturally a disjoint union of pieces labeled by elements of the linking
data (cf. Proposition 5.6). Furthermore, the Gromov–Witten invariants
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in Y is the same as the numbers produced by the component of the
virtual class on X labeled by the corresponding linking data. Thus,
the refined A model is really the “linked A model” and is equivalent to
the (usual) A model of Y (for non-extremal curves classes) in all gen-
era. The vanishing cycles from B(X) plays a key role in reconstructing
A(Y ).

For (4), the goal is to reconstruct VHS on MX from VHS on MY

and A(Y ). The deformation of X̄ is unobstructed. Moreover, it is well
known that Def(X̄) ∼= H1(Y ◦, TY ◦). Even though the deformation of Y ◦

is obstructed (in the direction transversal toMY ), there is a first order
deformation parameterized by H1(Y ◦, TY ◦) which gives enough initial
condition to uniquely determine the degeneration of Hodge bundles on
MX̄ nearMY . A technical result needed in this process is a short exact
sequence

0→ V → H3(X)→ H3(Y ◦)→ 0,

which connects the limiting mixed Hodge structure (MHS) of Schmid
on H3(X) and the canonical MHS of Deligne on H3(Y ◦) (cf. Proposi-
tion 6.1). Together with the monodromy data associated to the ODPs,
which is encoded in the relation matrix A of the extremal rays on Y , we
will be able to determine the VHS on MX near MY . In the process,
an extension of Schmid’s nilpotent orbit theorem [34] to degenerations
with certain non-normal crossing discriminant loci is also needed. See
Theorem 3.14 for details.

0.2. Motivation and future plans. Our work is inspired by the fa-
mous Reid’s fantasy [30], where conifold transitions play a key role in
connecting irreducible components of moduli of Calabi–Yau threefolds.
Theorems 0.2 and 0.3 above can be interpreted as the partial exchange
of A and B models under a conifold transition. We hope to answer the
following intriguing question concerning with “global symmetries” on
moduli spaces of Calabi–Yau 3-folds in the future: Would this partial
exchange of A and B models lead to “full exchange” when one connects
a Calabi–Yau threefold to its mirror via a finite steps of extremal tran-
sitions? If so, what is the relation between this full exchange and the
one induced by “mirror symmetry”? To this end, we need to devise a
computationally effective way to achieve explicit determination of this
partial exchange. One missing piece of ingredients in this direction is
a blowup formula in the Gromov–Witten theory for conifolds, which
we are working on and have had some partial success. (For smooth
blowups with complete intersection centers, we have a fairly good solu-
tion in genus zero [19].)

More speculatively, the mutual determination of A and B models on
X and Y leads us to surmise the possibility of a unified “A+B model”
which will be invariant under any extremal transition. For example, the
string theory predicts that Calabi–Yau threefolds form an important
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ingredient of our universe, but it does not specify which Calabi–Yau
threefold we live in. Should the A + B model be available and proven
invariant under extremal transitions, one would then have no need to
make such a choice.

The first step of achieving this goal is to generalize Theorem 0.2 to
the full local theory, including the non-log part of the connections. We
note that the excess A model on H2(Y/X) can be extended to the (flat)
Dubrovin connection on Y while the excess B model on H3(X/Y ) can
be extended to the (flat) Gauss–Manin connection on X. We hope to be
able to “glue” the complete A model on Y and the complete B model
on X as flat connections on the unified Kähler plus complex moduli.
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1. The basic exact sequence from Hodge theory

In this section, we recall some standard results on the geometry of
projective conifold transitions. Definitions and short proofs are mostly
spelled out to fix the notations, even when they are well known. Com-
bined with well-known tools in Hodge theory, we derive the basic exact
sequence, which is surprisingly absent in the vast literature on the coni-
fold transitions.

Convention. In §1–2, all discussions are for projective conifold tran-
sitions without the Calabi–Yau condition, unless otherwise specified.
The Calabi–Yau condition is imposed in §3–5. Unless otherwise spec-
ified, cohomology groups are over Q when only topological aspect (in-
cluding weight filtration) is concerned; they are considered over C when
the (mixed) Hodge-theoretic aspect is involved. All equalities, when-
ever make sense in the context of mixed Hodge structure (MHS), hold
as equalities for MHS.

1.1. Preliminaries on conifold transitions. The results here are
mostly contained in [5] and are included here for readers’ convenience.

1.1.1. Local geometry. LetX be a smooth projective 3-fold andX ↗
Y a projective conifold transition through X̄ with nodes p1, . . . , pk as in
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§0.1. Locally analytically, a node (ODP) is defined by the equation

(1.1) x2
1 + x2

2 + x2
3 + x2

4 = 0,

or equivalently uv − ws = 0. The small resolution ψ can be achieved
by blowing up the Weil divisor defined by u = w = 0 or by u = s = 0,
these two choices differ by a flop.

Lemma 1.1. The exceptional locus of ψ above each pi is a smooth
rational curve Ci with NCi/Y

∼= OP1(−1)⊕2. Topologically, NCi/Y is a
trivial rank 4 real bundle.

Proof. Away from the isolated singular points pi’s, the Weil divisors
are Cartier and the blowups do nothing. Locally near pi, the Weil divisor
is generated by two functions u and w. The blowup Y ⊂ A4 × P1 is
defined by z0v− z1s = 0, in addition, to uv−ws = 0 defining X, where
(z0 : z1) are the coordinates of P1. Namely we have u/w = s/v = z0/z1.
It is now easy to see the exceptional locus near pi is isomorphic to P1 and
the normal bundle is as described (by the definition of OP1(−1)). Since
oriented R4-bundles on P1 ∼= S2 are classified by the second Stiefel–
Whitney class w2 (via π1(SO(4)) ∼= Z/2), the last assertion follows
immediately. q.e.d.

Locally to each node p = pi ∈ X̄, the transition X ↗ Y can be
considered as two different ways of “smoothing” the singularities in X̄:
deformation leads to Xt and small resolution leads to Y . Topologically,

we have seen that the exceptional loci of ψ are
∐k
i=1Ci, a disjoint union

of k 2-spheres. For the deformation, the classical results of Picard,
Lefschetz and Milnor state that there are k vanishing 3-spheres Si ∼= S3.

Lemma 1.2. The normal bundle NSi/Xt
∼= T ∗Si is a trivial rank 3 real

bundle.

Proof. From (1.1), after a degree two base change the local equation
of the family near an ODP is∑4

j=1
x2
j = t2 = |t|2e2

√
−1θ.

Let yj = e
√
−1θxj for j = 1, . . . , 4, the equation leads to

(1.2)
∑4

j=1
y2
j = |t|2.

Write yj in terms of real coordinates yj = aj +
√
−1bj , we have |~a|2 =

|t|2 + |~b|2 and ~a · ~b = 0, where ~a and ~b are two vectors in R4. The
set of solutions can be identified with T ∗Sr with the bundle structure
T ∗Sr → Sr defined by (~a,~b) 7→ r~a/|~a| ∈ Sr where Sr is the 3-sphere with
radius r = |t|. The vanishing sphere can be chosen to be the real locus
of the equation of (1.2). Therefore, NSr/Xt is naturally identified with
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the cotangent bundle T ∗Sr, which is a trivial bundle since S3 ∼= SU(2)
is a Lie group. q.e.d.

Remark 1.3. The vanishing spheres above are Lagrangian with re-
spect to the natural symplectic structure on T ∗S3. A theorem of Sei-
del and Donaldson [35] states that this is true globally, namely the
vanishing spheres can be chosen to be Lagrangian with respect to the
symplectic structure coming from the Kähler structure of Xt.

By Lemma 1.2, the δ neighborhood of the vanishing 3-sphere S3
r in

Xt is diffeomorphic to the trivial disc bundle S3
r ×D3

δ .
By Lemma 1.1 the r neighborhood of the exceptional 2-sphere Ci =

S2
δ is D4

r × S2
δ , where δ is the radius defined by 4πδ2 =

∫
Ci
ω for the

background Kähler metric ω.

Corollary 1.4. [5, Lemma 1.11] On the topological level one can go
between Y and Xt by surgery via

∂(S3
r ×D3

δ ) = S3
r × S2

δ = ∂(D4
r × S2

δ ).

Remark 1.5 (Orientations on S3). The two choices of orientations
on S3

r induces two different surgeries. The resulting manifolds Y and
Y ′ are in general not even homotopically equivalent. In the complex
analytic setting the induced map Y 99K Y ′ is known as an ordinary
(Atiyah) flop.

1.1.2. Global topology.

Lemma 1.6. Define

µ := 1
2(h3(X)− h3(Y )) and ρ := h2(Y )− h2(X).

Then,

(1.3) µ+ ρ = k.

Proof. The Euler numbers satisfy

χ(X)− kχ(S3) = χ(Y )− kχ(S2).

That is,

2− 2h1(X) + 2h2(X)− h3(X) = 2− 2h1(Y ) + 2h2(Y )− h3(Y )− 2k.

By the above surgery argument we know that conifold transitions pre-
serve π1. Therefore, 1

2(h3(X)− h3(Y )) + (h2(Y )− h2(X)) = k. q.e.d.

Remark 1.7. In the Calabi–Yau case, µ = h2,1(X) − h2,1(Y ) =
−∆h2,1 is the lose of complex moduli, and ρ = h1,1(Y )−h1,1(X) = ∆h1,1

is the gain of Kähler moduli. Thus, (1.3) is really

∆(h1,1 − h2,1) = k = 1
2∆χ.

In the following, we study the Hodge-theoretic meaning of (1.3).
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1.2. Two semistable degenerations. To apply Hodge-theoretic
methods on degenerations, we factor the transition X ↗ Y as a com-
position of two semistable degenerations X → ∆ and Y → ∆.

The complex degeneration

f : X → ∆

is the semistable reduction of X → ∆ obtained by a degree two base
change X′ → ∆ followed by the blow-up X → X′ of all the four dimen-

sional nodes p′i ∈ X′. The special fiber X0 =
⋃k
j=0Xj is a simple normal

crossing divisor with

ψ̃ : X0
∼= Ỹ := Bl∐k

i=1{pi}
X̄ → X̄

being the blow-up at the nodes and with

Xi = Qi ∼= Q ⊂ P4, i = 1, . . . , k

being quadric threefolds. Let X [j] be the disjoint union of j + 1 inter-
sections from Xi’s. Then the only nontrivial terms are X [0] = Ỹ

∐
iQi

and X [1] =
∐
iEi where Ei = Ỹ ∩ Qi ∼= P1 × P1 are the ψ̃ exceptional

divisors. The semistable reduction f does not require the existence of a
small resolution of X0.

The Kähler degeneration

g : Y → ∆

is simply the deformations to the normal cone Y = Bl∐Ci×{0}Y ×∆→
∆. The special fiber Y0 =

⋃k
j=0 Yj with

φ : Y0
∼= Ỹ := Bl∐k

i=1{Ci}
Y → Y

being the blow-up along the curves Ci’s and

Yi = Ẽi ∼= Ẽ := PP1(O(−1)2 ⊕ O), i = 1, . . . , k.

In this case the only non-trivial terms for Y [j] are Y [0] = Ỹ
∐
i Ẽi and

Y [1] =
∐
iEi where Ei = Ỹ ∩Ẽi is now understood as the infinity divisor

(or relative hyperplane section) of πi : Ẽi → Ci ∼= P1.

1.3. Mixed Hodge structure and the Clemens–Schmid exact
sequence. We now apply the Clemens–Schmid exact sequence [6] to
the above two semistable degenerations. A general reference is [11]. We
will mainly be interested in H≤3. The computation of H>3 is similar.

1.3.1. The cohomology of H∗(X0), with its canonical mixed Hodge

structure, is computed from the spectral sequence Ep,q0 (X0) = Ωq(X [p])
with d0 = d, the de Rham differential, and then

Ep,q1 (X0) = Hq(X [p]),

with d1 = δ being the combinatorial coboundary operator

δ : Hq(X [p])→ Hq(X [p+1]).

The spectral sequence degenerates at E2 terms.
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The weight filtration on H∗(X0) is induced from the increasing filtra-
tion on the spectral sequence Wm :=

⊕
q≤mE

∗,q. Therefore,

GrWm (Hj) = Ej−m,m2 , GrWm (Hj) = 0 for m < 0 or m > j.

Since X [j] 6= ∅ only when j = 0, 1, we have

H0 ∼= E0,0
2 , H1 ∼= E1,0

2 ⊕E
0,1
2 , H2 ∼= E1,1

2 ⊕E
0,2
2 , H3 ∼= E1,2

2 ⊕E
0,3
2 .

The only weight 3 piece is E0,3
2 , which can be computed by

δ : E0,3
1 = H3(X [0])−→E1,3

1 = H3(X [1]).

Since Qi, Ẽi and Ei have no odd cohomologies, H3(X [1]) = 0 and

H3(X [1]) = H3(Ỹ ). We have, thus, E0,3
2 = H3(Ỹ ).

The weight 2 pieces, which is the most essential part, is computed
from
(1.4)

H2(X [0]) = H2(Ỹ )⊕
⊕k

i=1
H2(Qi)

δ2−→H2(X [1]) =
⊕k

i=1
H2(Ei).

We have E1,2
2 = cok(δ2) and E0,2

2 = ker(δ2). The weight 1 and weight 0
pieces can be similarly computed. For weight 1 pieces we have

E0,1
2 = H1(X [0]) = H1(Ỹ ) ∼= H1(Y ) ∼= H1(X),

and E1,1
2 = 0. The weight 0 pieces are computed from δ : H0(X [0]) →

H0(X [1]) and we have E0,0
2 = H0(Ỹ ) ∼= H0(Y ) ∼= H0(X), and E1,0

2 = 0.
We summarize these calculations as

Lemma 1.8. There are isomorphisms of MHS:

H3(X0) ∼= H3(Ỹ )⊕ cok(δ2),

H2(X0) ∼= ker(δ2),

H1(X0) ∼= H1(Ỹ ) ∼= H1(Y ) ∼= H1(X),

H0(X0) ∼= H0(Ỹ ) ∼= H0(Y ) ∼= H0(X).

In particular, Hj(X0) is pure of weight j for j ≤ 2.

1.3.2. Here we give a dual formulation of (1.4) which will be useful
later. Let `, `′ be the line classes of the two rulings of E ∼= P1×P1. Then
H2(Q,Z) is generated by e = [E] as a hyperplane class and e|E = `+ `′.
The map δ2 in (1.4) is then equivalent to

(1.5) δ̄2 : H2(Ỹ ) −→
⊕k

i=1
H2(Ei)/H

2(Qi).

Since H2(Ỹ ) = φ∗H2(Y ) ⊕
⊕k

i=1〈[Ei]〉 and [Ei]|Ei = −(`i + `′i), the

second component
⊕k

i=1〈[Ei]〉 lies in ker(δ̄2) and δ̄2 factors through

(1.6) φ∗H2(Y )→
⊕k

i=1
H2(Ei)/H

2(Qi) ∼=
⊕k

i=1
〈`i − `′i〉
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(as Q-spaces). Notice that the quotient is isomorphic to
⊕k

i=1〈`′i〉 inte-
grally.

By reordering we may assume that φ∗`i = [Ci] and φ∗[Ci] = `i − `′i
(cf. [18]). The dual of (1.6) then coincides with the fundamental class
map

ϑ :
⊕k

i=1
〈[Ci]〉 −→ H2(Y ).

In general for a Q-linear map ϑ : P → Z, we have imϑ∗ ∼= (P/ kerϑ)∗ ∼=
(imϑ)∗. Thus,

(1.7) dimQ cok(δ2) + dimQ im(ϑ) = k.

We will see in Corollary 1.11 that dim cok δ = µ and dim imϑ = ρ.
This gives the Hodge theoretic meaning of µ + ρ = k in Lemma 1.6.
Further elaboration of this theme will follow in Theorem 1.14.

1.3.3. On Y0, the computation is similar and a lot easier. The weight 3
piece can be computed by the mapH3(Y [0]) = H3(Ỹ ) −→ H3(Y [1]) = 0;
the weight 2 piece is similarly computed by the map

H2(Y [0]) = H2(Ỹ )⊕
⊕k

i=1
H2(Ẽi)

δ′2−→H2(Y [1]) =
⊕k

i=1
H2(Ei).

Let h = π∗(pt) and ξ = [E] for π : Ẽ → P1. Then h|E = `′ and

ξ|E = ` + `′. In particular, the restriction map H2(Ẽ) → H2(E) is an
isomorphism and, hence, δ′2 is surjective. The computation of pieces
from weights 1 and 0 is the same as for X0. We have, therefore, the
following lemma.

Lemma 1.9. There are isomorphisms of MHS:

H3(Y0) ∼= H3(Y [0]) ∼= H3(Ỹ ),

H2(Y0) ∼= ker(δ′2) ∼= H2(Ỹ ),

H1(Y0) ∼= H1(Ỹ ) ∼= H1(Y ) ∼= H1(X),

H0(Y0) ∼= H0(Ỹ ) ∼= H0(Y ) ∼= H0(X).

1.3.4. We denote by N the monodromy operator for both X and Y
families. The map N induces the unique monodromy weight filtrations
W on Hn(X) which, together with the limiting Hodge filtration F •∞,
leads to Schmid’s limiting MHS [34, 37]. That is,

0 ⊂W0 ⊂W1 ⊂ · · · ⊂W2n−1 ⊂W2n = Hn(X)

such that NWk ⊂Wk−2 and for ` ≥ 0,

(1.8) N ` : GWn+`
∼= GWn−`

on graded pieces. The induced filtration F p∞GWk := F p∞∩Wk/F
p
∞∩Wk−1

defines a pure Hodge structure of weight k on GWk . Similar constructions
apply to Hn(Y ) as well.
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Lemma 1.10. We have the following exact sequences (of MHS) for
H2 and H3:

0→ H3(X0)→H3(X)
N−→H3(X)→ H3(X0)→ 0,

0→ H0(X)→ H6(X0)→ H2(X0)→H2(X)
N−→ 0,

0→ H3(Y0)→H3(Y )
N−→ 0,

0→ H0(Y )→ H6(Y0)→ H2(Y0)→H2(Y )
N−→ 0.

Proof. These follow from the Clemens–Schmid exact sequence, which
is compatible with the MHS. The other terms in the first sequence,
namely H1(X)→ H5(X0) to the left end and H5(X0)→ H5(X) to the
right end, can be ignored since they induce isomorphisms, as can be
checked using MHS on H5(X0). Similar comments apply to the third
sequence for H3(Y ).

Note that the monodromy is trivial for Y → ∆ since the punctured
family is trivial. For the second sequence, by Lemma 1.8, we know that
H2(X0) is pure of weight 2. Hence, N on H2(X) is also trivial and
the Hodge structure does not degenerate. Indeed, if N 6= 0 then kerN
contains some part of weight ≤ 2 by (1.8). q.e.d.

Corollary 1.11. (i) ρ = dim im(ϑ) and µ = dim cok(δ2).

(ii) H3(Y ) ∼= H3(Y0) ∼= H3(Y [0]) ∼= H3(Ỹ ) ∼= GrW3 H3(X).
(iii) Denote by K := ker(N : H3(X) → H3(X)). Then H3(X0) ∼=

K. More precisely, GrW3 (H3(X0)) ∼= H3(Y ) and GrW2 (H3(X0)) ∼=
cok(δ2).

Proof. By Lemma 1.8, h2(X0) = dim ker(δ2). It follows from the
second and the fourth exact sequences in Lemma 1.10 that h2(X) =
dim ker(δ2) + 1− (k + 1). Rewrite (1.4) as

(1.9) 0→ ker(δ2)→ H2(X [0])
δ−→H2(X [1])→ cok(δ2)→ 0,

which implies dim ker(δ2) + 2k = dim cok(δ2) + 2k + h2(Y ).
Combining these two equations with (1.7), we have ρ = h2(Y ) −

h2(X) = k − dim cok(δ2) = dim im(ϑ). This proves the first equation
for ρ in (i).

Combining the first equation in Lemma 1.9 and the third exact se-
quence in Lemma 1.10, we have

(1.10) H3(Y ) ∼= H3(Y0) ∼= H3(Ỹ ).

This shows (ii) except the last equality.

By Lemmas 1.10 and 1.8, K ∼= H3(X0) ∼= H3(Ỹ )⊕cok(δ2) ∼= H3(Y )⊕
cok(δ2), where the last equality follows from (1.10). This proves (iii).
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For the remaining parts of (i) and (ii), we investigate the non-trivial
terms of the limiting mixed Hodge diamond for Hn := Hn(X):
(1.11)

H2,2
∞ H3

N∼

��

H3,0
∞ H3 H2,1

∞ H3 H1,2
∞ H3 H0,3

∞ H3,

H1,1
∞ H3

where Hp,q
∞ Hn = F p∞GrWp+qH

n. The space H3,0(X) does not degen-
erate by [40] (which holds for degenerations with canonical singulari-
ties, and first proved in [39] for the Calabi–Yau case). We conclude

that H1,1
∞ H3 ∼= cok(δ2) and GrW3 H3(X) ∼= H3(Y ). By definition µ =

1
2(h3(X)− h3(Y )), hence, µ = h2,2

∞ H3 = h1,1
∞ H3 = dim cok(δ2). q.e.d.

1.3.5. We denote the vanishing cycle space V as the Q-vector space
generated by vanishing 3-cycles. We first define the abelian group VZ
from

(1.12) 0→ VZ → H3(X,Z)→ H3(X̄,Z)→ 0,

and V := VZ ⊗Z Q. The sequence (1.12) arises from the homology
Mayer–Vietoris sequence and the surjectivity on the right hand side

follows from the fact that H2(
∐k S3,Z) = 0.

Lemma 1.12. Denote by H3 := H3(X).

(i) H3(X̄) ∼= K ∼= H3(X0) ∼= W3H
3.

(ii) V ∗ ∼= H2,2
∞ H3 and V ∼= H1,1

∞ H3 = cok(δ2) via Poincaré pairing.

Proof. Dualizing (1.12) over Q, we have

0→ H3(X̄)→ H3(X)→ V ∗ → 0.

The invariant cycle theorem in [1] then implies that H3(X̄) ∼= kerN =
K ∼= H3(X0). This proves (i).

Hence, we have the canonical isomorphism

V ∗ ∼= H3(X)/H3(X̄) = GW4 H3 = F 2
∞G

W
4 H3 = H2,2

∞ H3.

Moreover, the non-degeneracy of the pairing (α,Nβ) on GW4 H3 implies

H1,1
∞ H3 = NH2,2

∞ H3 ∼= (H2,2
∞ H3)∗ ∼= V ∗∗C

∼= VC.

This proves (ii). q.e.d.

Remark 1.13 (On threefold extremal transitions). Most results in
§1.3 works for more general geometric contexts. The mixed Hodge dia-
mond (1.11) holds for any 3-folds degenerations with at most canonical
singularities [40]. The identification of vanishing cycle space V via
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(1.12) works for 3–folds with only isolated (hypersurface) singularities.
Indeed, the exactness on the RHS holds for degenerations X→ ∆ such
that X is smooth and X0 has only isolated singularities. This follows
from Milnor’s theorem that the vanishing cycle has the homotopy type
of a bouquet of middle dimensional spheres [26, Theorem 6.5]. Hence,
Lemma 1.12 works for any 3-fold degenerations with isolated hypersur-
face canonical singularities.

Later on we will impose the Calabi–Yau condition on all the 3-folds
involved. If X ↗ Y is a terminal transition of Calabi–Yau 3-folds, i.e.,
X0 = X̄ has at most (isolated Gorenstein) terminal singularities, then
X̄ has unobstructed deformations [27]. Moreover, the small resolution
Y → X̄ induces an embedding Def(Y ) ↪→ Def(X̄) which identifies the
limiting/ordinary pure Hodge structures GrW3 H3(X) ∼= H3(Y ) as in
Corollary 1.11 (iii).

For conifold transitions all these can be described in explicit terms
and more precise structure will be formulated.

1.4. The basic exact sequence. We may combine the four Clemens–
Schmid exact sequences into one short exact sequence, which we call the
basic exact sequence, to give the Hodge-theoretic realization “ρ+µ = k”
in Lemma 1.6.

Let A = (aij) ∈Mk×µ(Z) be a relation matrix for Ci’s, i.e.,∑k

i=1
aij [Ci] = 0, j = 1, . . . , µ

give all relations of the curves classes [Ci]’s. Similarly, let B = (bij) ∈
Mk×ρ(Z) be a relation matrix for Si’s:∑k

i=1
bij [Si] = 0, j = 1, . . . , ρ.

Theorem 1.14 (Basic exact sequence). The group of 2-cycles gener-
ated by exceptional curves Ci (vanishing S2 cycles) on Y and the group
of 3-cycles generated by [Si] (vanishing S3 cycles) on X are linked by
the following weight 2 exact sequence

0→ H2(Y )/H2(X)
B−→
⊕k

i=1
H2(Ei)/H

2(Qi)
At−→V → 0.

In particular, B = kerAt and A = kerBt.

Proof. From §1.3.2, cok(δ2) = cok(δ̄2) and (1.9) can be replaced by
(1.13)

0→ H2(Ỹ )/(ker δ̄)
D−→
⊕k

i=1
H2(Ei)/H

2(Qi)
C−→ cok(δ2)→ 0.

By Lemma 1.12 (ii), we have cok(δ2) ∼= V . To prove the theorem, we

need to show that H2(Ỹ )/ ker δ̄ ∼= H2(Y )/H2(X), and D = B, C = At.
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By the invariant cycle theorem [1], H2(X) ∼= H2(X̄). Since H2(X̄)
injects to H2(Y ) by pullback, this defines the embedding

ι : H2(X) ↪→ H2(Y ),

and the quotient H2(Y )/H2(X).
Recast the relation matrix A of the rational curves Ci in

0→ Qµ A−→Qk ∼=
⊕k

i=1
〈[Ci]〉

S−→ im(ϑ)→ 0,

where S = cok(A) ∈ Mρ×k is the matrix for ϑ, and im(ϑ) has rank ρ.
The dual sequence reads
(1.14)

0→ (imϑ)∗ ∼= (Qρ)∗
St−→(Qk)∗ ∼=

⊕k

i=1
H2(Ei)/H

2(Qi)
At−→(Qµ)∗ → 0.

Compare (1.14) with (1.13), we see that (Qµ)∗ ∼= V . From the discussion
in §1.3.2, we have (imϑ)∗ = H2(Y )/H2(X).

We want to reinterpret the map At : (Qk)∗ → V in (1.14). This is
a presentation of V by k generators, denoted by σi, and the relation
matrix of which is given by St. If we show that σi can be identified with
Si, then (Qµ)∗ ∼= V and B = St = kerAt is the relation matrix for Si’s.

Consider the following topological construction. For any non-trivial

integral relation
∑k

i=1 ai[Ci] = 0, there is a 3-chain θ in Y with ∂θ =∑k
i=1 aiCi. Under ψ : Y → X̄, Ci collapses to the node pi. Hence,

it creates a 3-cycle θ̄ := ψ∗θ ∈ H3(X̄,Z), which deforms (lifts) to
γ ∈ H3(X,Z) in nearby fibers by the surjectivity in (1.12). Using the
intersection pairing on H3(X,Z), γ then defines an element PD(γ) in
H3(X,Z). Under the restriction V , we get PD(γ) ∈ V ∗.

It remains to show that (γ.Si) = ai. Let Ui be a small tubular

neighborhood of Si and Ũi be the corresponding tubular neighborhood
of Ci, then by Corollary 1.4,

∂Ui ∼= ∂(S3
i ×D3) ∼= S3 × S2 ∼= ∂(D4 × Ci) ∼= ∂Ũi.

Now θi := θ ∩ Ũi gives a homotopy between ai[Ci] (in the center of Ũi)

and ai pt × [S2] (on ∂Ũi). Denote by ι : ∂Ui ↪→ X and ι̃ : ∂Ũi ↪→ Y .
Then

(γ.Si)
X = (γ.ι∗[S

3])X = (ι∗γ.[S3])∂Ui = (ι̃∗γ.[S3])∂Ũi

= (ai[S
2], [S3])S

3×S2
= ai.

The proof is complete. q.e.d.

Remark 1.15. We would like to choose a preferred basis of the van-
ishing cocycles V ∗ as well as a basis of divisors dual to the space of
extremal curves. These notations will fixed, henceforth, and will be
used in later sections.

During the proof of Theorem 1.14, we establish the correspondence
between Aj = (a1j , . . . , akj)

t and PD(γj) ∈ V ∗, 1 ≤ j ≤ µ, characterized
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by aij = (γj .Si). The subspace of H3(X) spanned by γj ’s is denoted
by V ′.

Dually, we denote by T1, . . . , Tρ ∈ H2(Y ) those divisors which form
an integral basis of the lattice in H2(Y ) dual (orthogonal) to H2(X) ⊂
H2(Y ). In particular, they form an integral basis of H2(Y )/H2(X). We
choose Tl’s such that Tl corresponds to the l-th column vector of the
matrix B via bil = (Ci.Tl). Such a choice is consistent with the basic
exact sequence since

(AtB)jl =
∑k

i=1
atjibil =

∑k

i=1
aij(Ci.Tl) =

(∑
aij [Ci]

)
.Tl = 0,

for all j, l. We may also assume that the first ρ× ρ minor of B has full
rank.

2. Gromov–Witten theory and Dubrovin connections

In §2.1 the A model A(X) is shown to be a sub-theory of A(Y ). We
then move on to study the genus 0 excess A model on Y/X associated
to the extremal curve classes in §2.2. As a consequence the (nilpotent)
monodromy is calculated in terms of the relation matrix B at the end
of §2.3.

2.1. Consequences of the degeneration formula for threefolds.
The Gromov–Witten theory on X can be related to that on Y by the
degeneration formula through the two semistable degenerations intro-
duced in §1.2.

In the previous section, we see that the monodromy acts trivially on
H(X) \H3(X) and we have

H3
inv(X) = K ∼= H3(Y )⊕H1,1

∞ H3(X) ∼= H3(Y )⊕ V.
There we implicitly have a linear map

(2.1) ι : Hj
inv(X)→ Hj(Y )

as follows. For j = 3, it is the projection

H3
inv(X) ∼= H3(Y )⊕ V → H3(Y ).

For j = 2, it is the embedding defined before and the case j = 4 is the
same as (dual to) the j = 2 case. For j = 0, 1, 5, 6, ι is an isomorphism.

The following is a refinement of a result of Li–Ruan [22]. (See also
[23].)

Proposition 2.1. Let X ↗ Y be a projective conifold transition.
Given ~a ∈ (H≥2

inv(X)/V )⊕n and a curve class β ∈ NE(X)\{0}, we have

(2.2) 〈~a〉Xg,n,β =
∑

ψ∗(γ)=β
〈ι(~a)〉Yg,n,γ .

If some component of ~a lies in H0, then both sides vanish. Furthermore,
the RHS is a finite sum.
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Proof. A slightly weaker version of (2.2) has been proved in [22, 23].
We review its proof with slight refinements as it will be useful in §5.

We follow the setup and argument in [18, §4] closely. By [18, §4.2],
a cohomology class a ∈ H>2

inv(X)/V can always find a lift to

(ai)
k
i=0 ∈ H(Ỹ )⊕

⊕k

i=1
H(Qi),

such that ai = 0 for all i 6= 0. We apply J. Li’s algebraic version of
degeneration formula [21, 23] to the complex degeneration X  Ỹ ∪EQ,
where

Q :=
∐k

i=1
Qi

is a disjoint union of quadrics Qi’s and

E :=
∑k

i=1
Ei.

One has KỸ = ψ̃∗KX̄ + E. The topological data (g, n, β) lifts to two

admissible triples Γ1 on (Ỹ , E) and Γ2 on (Q,E) such that Γ1 has curve

class γ̃ ∈ NE(Ỹ ), contact order µ = (γ̃.E), and number of contact
points ρ. Then

(γ̃.c1(Ỹ )) = (ψ̃∗γ̃.c1(X̄))− (γ̃.E) = (β.c1(X))− µ.

The virtual dimension (without marked points) is given by

dΓ1 = (γ̃.c1(Ỹ )) + (dimX − 3)(1− g) + ρ− µ = dβ + ρ− 2µ,

where dβ is the virtual dimension of the absolute invariant with curve

class β (without marked points). Since we chose the lifting (~ai)
k
i=0 of ~a

to have ~ai = 0 for all i 6= 0, all insertions contribute to Ỹ . If ρ 6= 0 then
ρ − 2µ < 0. This leads to vanishing relative GW invariant on (Ỹ , E).
Therefore, ρ must be zero.

To summarize, we get

(2.3) 〈~a〉Xg,n,β =
∑

ψ̃∗(γ̃)=β
〈~a0 | ∅〉(Ỹ ,E)

g,n,γ̃ ,

such that

(2.4) ψ̃∗γ̃ = β, γ̃.E = 0, γ̃Q = 0.

Formula (2.3) also holds for ai a divisor by the divisor axiom.

We use a similar argument to compute 〈~b〉Yg,n,γ via the Kähler degen-

eration Y  Ỹ ∪ Ẽ, where Ẽ is a disjoint union of Ẽi (cf. [18, Theo-
rem 4.10]). By the divisor equation we may assume that deg bj ≥ 3 for

all j = 1, . . . , n. We choose the lifting (~b)ki=0 of ~b such that ~bi = 0 for

all i 6= 0. In the lifting γ1 on Ỹ and γ2 on π : Ẽ =
∐
i Ẽi →

∐
iCi, we

must have γ = φ∗γ1 + π∗γ2. The contact order is given by µ = (γ1.E)
which has the property that µ = 0 if and only if γ1 = φ∗γ (and, hence,
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γ2 = 0). If ρ 6= 0 we get dΓ1 = dγ + ρ − 2µ < dγ and the invariant is
zero. This proves

(2.5) 〈~b〉Yg,n,γ = 〈φ∗~b | ∅〉(Ỹ ,E)
g,n,φ∗γ ,

with φ∗γ̃ = γ, γ̃.E = 0, γ̃Ẽ = 0.
To combine these two degeneration formulas together, we notice that

in the Kähler degeneration, γ̃ ∈ NE(Ỹ ) can have contact order µ =
(γ̃.E) = 0 if and only if γ̃ = φ∗γ for some γ ∈ NE(Y ) (indeed, for

γ = φ∗γ̃). Choose ~b = ι(~a) and (2.2) follows. The vanishing statement
(of H0 insertion) follows from the fundamental class axiom.

Now we proceed to prove the finiteness of the sum. (This is not stated

in [22].) For φ : Ỹ → Y being the blow-up along Ci’s, the curve class
γ ∈ NE(Y ) contributes a non-trivial invariant in the sum only if φ∗γ

is effective on Ỹ . By combining (1.6), (2.3) and (2.5), the effectivity of
φ∗γ forces the sum to be finite. Equivalently, the condition that φ∗γ is
effective is equivalent to that γ is F-effective under the flop Y 99K Y ′.
(i.e., effective in Y and in Y ′ under the natural correspondence [18]).
Recall that under the flop the flopping curve class in Y is mapped to
the negative flopping curve in Y ′. Therefore, the sum is finite. q.e.d.

Remark 2.2. The phenomena (2.2), including finiteness of the sum,
were observed in [13] for Calabi–Yau hypersurfaces in weighted projec-
tive spaces from the numerical data obtained from the corresponding B
model generating function via mirror symmetry.

Corollary 2.3. Gromov–Witten theory on even cohomology
GW ev(X) (of all genera) can be considered as a sub-theory of GW ev(Y ).
In particular, the big quantum cohomology ring is functorial with respect
to ι : Hev(X)→ Hev(Y ) in (2.1).

Proof. We first note that ι is an injection on Hev. Proposition 2.1
then implies that all GW invariants of X with even classes can be re-
covered from invariants of Y . The only exception, H0, can be treated
by the fundamental class axiom. Therefore, in this sense that GW ev(X)
is a sub-theory of GW ev(Y ).

In genus zero, this can be rephrased as functoriality. Observe that
the degeneration formula also holds for β = 0. For g = 0, this leads to
the equality of classical triple intersection (a, b, c)X = (ι(a), ι(b), ι(c))Y .
Since the Poincaré pairing on Hev(X) is also preserved under ι, we see
that the classical ring structure on Hev(X) are naturally embedded in
Hev(Y ).

To see the functoriality of the big quantum ring with respect to ι, we
note that (ι(a).Ci) = 0 for any a ∈ Hev(X) and for any extremal curve
Ci in Y . Furthermore, for the invariants associated to the extremal rays
the insertions must involve only divisors by the virtual dimension count.
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Hence, for generating functions with at least one insertion we also have∑
β∈NE(X)

〈~a〉Xβ qβ =
∑

γ∈NE(Y )
〈ι(~a)〉Yγ qψ∗(γ).

Note that the case of H0 is not covered in Proposition 2.1, but it can
be treated by the fundamental class axiom as above. q.e.d.

Remark 2.4. It is clear that the argument and conclusion hold even
if some insertions lie in H3

inv(X)/V ∼= H3(Y ) by Proposition 2.1.

The full GW theory is built on the full cohomology superspace H =
Hev⊕Hodd. However, the odd part is not as well-studied in the literature
as the even one. In some special cases the difficulty does not occur.

Lemma 2.5. Let X be a smooth minimal 3-fold with H1(X) = 0.
The non-trivial primary GW invariants are all supported on H2(X)
and, hence, by the divisor axiom, reduced to the case without insertion.
More generally the conclusion holds for any curve class β ∈ NE(X)
with c1(X).β ≤ 0 for any 3-fold X with H1(X) = 0.

Proof. For n-point invariants, the virtual dimension of Mg,n(X,β) is

vdim = c1(X).β + (dimX − 3)(1− g) + n ≤ n.
Since the appearance of fundamental class in the insertions leads to
trivial invariants, we must have the algebraic degree deg ai ≥ 1 for all
insertions ai, i = 1, . . . , n. Hence, in fact we must have deg ai = 1 for
all i and c1(X).β = 0. q.e.d.

2.2. The even and extremal quantum cohomology. From now
on, we restrict to genus zero theory.

Let s =
∑

ε s
εT̄ε ∈ H2(X) where T̄ε’s form a basis of H2(X). Then

the genus zero GW pre-potential on H2(X) is given by

(2.6) FX0 (s) =
∞∑
n=0

∑
β∈NE(X)

〈sn〉0,n,β
qβ

n!
=
s3

3!
+
∑
β 6=0

nXβ q
βe(β.s),

where nXβ = 〈〉X0,0,β, and qβ the (formal) Novikov variables.

FX0 (s) encodes the small quantum cohomology of X (and the big
quantum cohomology if X is minimal by Lemma 2.5), except in the
topological term s3/(3!) where we need the full s ∈ Hev(X).

Similarly, we have F Y0 (t) on H2(Y ) where

(2.7) t = s+ u ∈ H2(Y ) = ι(H2(X))⊕
⊕ρ

l=1
〈Tl〉.

Namely we identify s with ι(s) in H2(Y ) and write u =
∑ρ

l=1 u
lTl. F

Y
0

can be analytically continued across those boundary faces of the Kähler
cone corresponding to flopping contractions. In the case of conifold
transitions Y ↘ X, this boundary face is naturally identified as the
Kähler cone of X.
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The following convention of indices on Hev(Y ) will be used:

• Lowercase Greek alphabets for indices from the subspace ι(Hev(X));
• lowercase Roman alphabets for indices from the subspace spanned

by the divisors Tl’s and exceptional curves Ci’s;
• uppercase Roman alphabets for variables from Hev(Y ).

The generating function associated to an extremal curve C ∼= P1 can be
derived from the well-known multiple cover formula

EC0 (t) =
∑∞

d=1
nNd q

d[C]ed(C.t) =
∑∞

d=1

1

d3
qd[C]ed(C.t)

as NC/Y = OP1(−1)⊕2. Define

EY0 (t) :=
1

3!
t3 +

∑k

i=1
ECi0 (t) = EY0 (u) +

1

3!
(t3 − u3),

where ECi0 (t) = ECi0 (u) depends only on u. Then the degeneration
formula is equivalent to the following restriction

FX0 (s)− s3

3!
=
(
F Y0 (s+ u)− (s+ u)3

3!
− EY0 (u) +

u3

3!

)∣∣∣
qγ 7→qψ∗(γ)

,

where q[Ci]’s are subject to the relations induced from the relations
among [Ci]’s. More precisely, let A = (aij) be the relation matrix and
define

rj(q) :=
∏

aij>0
qaij [Ci] −

∏
aij<0

q−aij [Ci].

Then we have

Lemma 2.6.

F Y0 (s+ u) =

[
FX0 (s) + EY0 (u) +

1

3!
((s+ u)3 − s3 − u3)

]
rj(q)=0, 1≤j≤µ

.

A splitting of variables of F Y0 would imply that QHev(Y ) decomposes
into two blocks. One piece is identified with QHev(X), and another
piece with contributions from the extremal rays. However, the classical
cup product/topological terms spoil the complete splitting.

The structural coefficients for QHev(Y ) are CPQR = ∂3
PQRF

Y
0 . We

will determine them according to the partial splitting in Lemma 2.6.
For FX0 (s), the structural coefficients of quantum product are given

by

Cεζι(s) := ∂3
εζιF

X
0 (s) = (T̄ε.T̄ζ .T̄ι)+

∑
β 6=0

(β.T̄ε)(β.T̄ζ)(β.T̄ι)n
X
β q

βe(β.s).

Recall that B = (bip) with bip = (Ci.Tp) is the relation matrix for the
vanishing 3-spheres. For EY0 (u), the triple derivatives are
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Clmn(u) := ∂3
lmnE

Y
0 (u)

= (Tl.Tm.Tn) +
∑k

i=1

∑∞

d=1
(Ci.Tl)(Ci.Tm)(Ci.Tn) qd[Ci]ed(Ci.u)

= (Tl.Tm.Tn) +
∑k

i=1
bilbimbinf(q[Ci] exp

∑ρ

p=1
bipu

p).

(2.8)

Here f(q) =
∑

d∈N q
d = q

1−q = −1 + −1
q−1 is the fundamental rational

function with a simple pole at q = 1 with residue −1 (cf. [18]). We note
that due to the existence of cross terms in Lemma 2.6, Clmn’s do not
satisfy the WDVV equations.

Denote by T̄ ε ∈ H4(X) the dual basis of T̄ε’s, and write T l, 1 ≤ l ≤ ρ
the dual basis of Tl’s. Also T̄0 = T0 = 1 with dual T̄ 0 = T 0 the
point class. Since Hev(Y ) = ι(Hev(X)) ⊕

(⊕ρ
l=1 QTl ⊕

⊕ρ
l=1 QT

l
)

is
an orthogonal decomposition with respect to the Poincaré pairing on
H(Y ), we have four types of structural coefficients

Cιεζ(s) = Cεζι(s), Cnlm(u) = Clmn(u),

Cnεm = Cεmn, Cεmn = Cεmn,

where the last two are constants. If we consider the topological terms
1
2(s0)2s0′ + s0

∑
ε u

lul
′

where we relabel the indices by ul
′

= ul and

s0′ = s0, then a few more non-trivial constants C000′ = 1, Cmn′0 = δmn
are added.

2.3. The Dubrovin connection and monodromy. The Dubrovin
connection on THev(Y ) is given by ∇z = d − 1

z

∑
P dt

P ⊗ TP ∗. By
Corollary 2.3, it restricts to the Dubrovin connection on THev(X). For
the complement with basis Tl’s and T l’s, we have

z∇z∂lT
m = −δlmT 0,

z∇z∂lTm = −
∑ρ

n=1
Clmn(u)Tn −

∑
ε
ClmεT̄

ε,

z∇z∂εTm = −
∑ρ

n=1
CεmnT

n.

(2.9)

Along u =
∑ρ

l=1 u
lTl there is no convergence issue by the explicit

expression (2.8). Thus, we drop the Novikov variables, henceforth.
From (2.8), the degeneration loci D consists of k hyperplanes in

H2(Y ):

Di := {vi :=
∑ρ

p=1
bipu

p = 0}, 1 ≤ i ≤ k,

which is the Kähler degenerating locus at which Ci shrinks to zero vol-
ume. There is a monodromy matrix corresponding to Di, whose main
nilpotent block N(i) = (N(i),mn) ∈ Mρ×ρ is the residue matrix of the

connection in (2.9). The divisor D =
⋃k
i=1Di is not normal crossing.
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Lemma 2.7. In terms of {Tn} and dual basis {Tn}, the block N(i)

is given by

N(i),mn =
1

z
bimbin.

Proof. Since dvi =
∑ρ

l=1 bil du
l, we get from (2.9) and (2.8) that

N(i),mn = −1

z
bimbin Res

vi=0

−1

evi − 1
,

which gives the result. q.e.d.

Corollary 2.8. In terms of {Tn} and dual basis {Tn}, the nilpotent
monodromy at u = 0 along ul → 0 has its main block given by Nl =
1
zB

t
lBl, where Bl is obtained from B by setting those i-th rows to 0 if

bil = 0.

Proof. This follows from Lemma 2.7, which can also be proved di-
rectly. To determine Nl,mn along ul → 0 at the locus u = 0, we compute

Nl,mn =− 1

z

k∑
i=1

bilbimbin Res
q=1

−1

ebilul − 1
=

1

z

k∑
bil 6=0; i=1

bimbin =
1

z
(Bt

lBl)mn.

This proves the result. q.e.d.

Corollary 2.9. The Dubrovin connection on X is the monodromy
invariant sub-system on Y at u = 0.

3. Period integrals and Gauss–Manin connections

From this section and on, we assume the Calabi–Yau condition:

KX
∼= OX , H1(OX) = 0.

Recall that the Kuranishi space MX̄ is smooth. In §3.1, we review
well known deformation theory of Calabi–Yau 3-folds with ODPs to
derive a local Torelli theorem for X̄. Identifying MY with equisingular
deformations of X̄ inMX̄ , we show that periods of vanishing cycles serve
as (analytic) coordinates of MX̄ in the directions transversal to MY .
To study monodromy, the Bryant–Griffiths formulation is reviewed in
§3.2 and the asymptotics of (β-)periods near [X̄] is computed in §3.3.
The monodromy is determined explicitly in terms of the relation matrix
A (Corollary 3.19). The technical result (Theorem 3.14) is a version of
nilpotent orbit theorem with non-SNC boundary, which is also needed
in §6. Following these discussions, B(Y ) is shown to be a sub-theory of
B(X) (Corollary 3.20).

3.1. Deformation theory. The main references for this subsection
are [15, 31], though we follow the latter more closely. Let ΩX̄ be the
sheaf of Kähler differential and ΘX̄ := Hom(ΩX̄ ,OX̄) be its dual. The



516 Y.-P. LEE, H.-W. LIN & C.-L. WANG

deformation of X̄ is governed by Ext1(ΩX̄ ,OX̄). By local to global
spectral sequence, we have

0→ H1(X̄,ΘX̄)
λ→ Ext1(ΩX̄ ,OX̄)

→ H0(X̄,Ext1(ΩX̄ ,OX̄))
κ→ H2(X̄,ΘX̄).

(3.1)

Since Ext1(ΩX̄ ,OX̄) is supported at the ordinary double points pi’s, we

have H0(X̄,Ext1(ΩX̄ ,OX̄)) =
⊕k

i=1H
0(Opi) by a local computation.

We rephrase the deformation theory on X̄ in terms of the log defor-
mation on Ỹ . Denote by E ⊂ Ỹ the union of the exceptional divisors
of ψ̃ : Ỹ → X̄.

Lemma 3.1. We have Rψ̃∗KỸ = ψ̃∗KỸ =KX̄ and, hence, H0(KỸ ) ∼=
H0(KX̄) ∼= C.

Proof. Apply the Serre duality for the projective morphism ψ̃ and we
have Rψ̃∗KỸ

∼= (ψ̃∗OỸ ⊗KX̄)∨. Since X̄ is normal rational Gorenstein,

we have ψ̃∗OỸ
∼= OX̄ . This proves the first equation, from which the

first part of the second equation follows. The second part follows from
KX̄
∼= OX̄ . q.e.d.

Lemma 3.2. There is a canonical isomorphism

Ω2
Ỹ

(logE) ∼= KỸ ⊗
(
ΩỸ (logE)(−E)

)∨
.

Proof. On Ỹ , the isomorphism Λ3ΩỸ (logE) ∼= Ω3
Ỹ

(E) leads to the

perfect pairing ΩỸ (logE)⊗Ω2
Ỹ

(logE)→ KỸ (E). Since Ỹ is nonsingular

and E is a disjoint union of nonsingular divisors, all sheaves involved
are locally free. Hence, the lemma follows. q.e.d.

Lemma 3.3 ([31, Lemma 2.5]). There are canonical isomorphisms

Lψ̃∗ΩX̄
∼= ψ̃∗ΩX̄

∼= ΩỸ (logE)(−E),

where Lψ̃∗ is the left-derived functor of the pullback map.

The first isomorphism follows from the facts that X̄ is a local complete
intersection and an explicit two-term resolution of ΩX̄ exists. We sketch
the argument here and refer to [31] for details. Locally near a node,

defined by (1.1), one has an exact sequence 0 → O
2~x−→ O4 → Ω → 0.

Pulling it back to Ỹ , we see that ψ̃∗(2~x) : O→ O4 is injective on Y and,
therefore, higher left-derived functors are zero.

The second isomorphism is obtained by a local calculation of the
blowing-up of an ordinary double point. If x1 is the local equation
of the exceptional divisor E, explicit computation in [31] shows that

ψ̃∗ΩX̄ is locally generated by dx1 and x1dxi for i 6= 1, which is exactly
ΩỸ (logE)(−E).
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Lemma 3.4 ([31, Proposition 2.6]). We have

RHom(ΩX̄ ,KX̄) ∼= Rψ̃∗Ω
2
Ỹ

(logE).

In particular, Ext1(ΩX̄ ,KX̄) ∼= H1(Ω2
Ỹ

(logE)).

Proof. By Lemma 3.2,

Rψ̃∗Ω
2
Ỹ

(logE) ∼= Rψ̃∗Hom(ΩỸ (logE)(−E),KỸ ).

By Lemma 3.3 and the projection formula, the RHS is isomorphic to

RHom(ΩX̄ , Rψ̃∗KỸ ) ∼= RHom(ΩX̄ ,KX̄),

with the last isomorphism coming from Rψ̃∗KỸ
∼= KX̄ in Lemma 3.1.

q.e.d.

From the general deformation theory, the first term H1(X̄,ΘX̄) in
(3.1) parameterizes equisingular deformation of X̄. Thanks to the the-
orem of Kollár and Mori [16] that this extremal contraction deforms
in families, this term parameterizes deformations of Y . Therefore, the
cokernel of λ in (3.1), or equivalently the kernel of κ, corresponds to
deformation of the singularities. Since the deformation of X̄ is un-
obstructed [15], Def(X̄) has the same dimension as Def(X), which is
h2,1(X). Comparing the Hodge number h2,1 of X and Ȳ (cf. §1) we
have the dim ker(κ) = µ.

Proposition 3.5. The sequence

0→ H1(X̄,ΘX̄)
λ→ Ext1(ΩX̄ ,OX̄)→ V ∗ → 0

is exact.

Proof. The residue exact sequence on Ỹ is

0→ ΩỸ → ΩỸ (logE)
res−→ OE → 0.

Taking wedge product with ΩỸ we get

0→ Ω2
Ỹ
→ Ω2

Ỹ
(logE)

res−→ ΩE → 0.

Part of the cohomological long exact sequence reads

H0(ΩE)→ H1(Ω2
Ỹ

)→ H1(Ω2
Ỹ

(logE))→ H1(ΩE)
κ−→ H2(Ω2

Ỹ
).

Since H1(E) = 0, the first term vanishes. By Lemma 3.4, the third
term is equal to Ext1(ΩX̄ ,OX̄). Indeed, it is not hard to see that this
exact sequence is equal to that in (3.1) (cf. [31, (3.2)]).

Using similar arguments as in §1.3.2, we have

0→ H1(Ω2
Ỹ

)→ H1(Ω2
Ỹ

(logE))→
⊕k

i=1
〈(`i−`′i)〉

κ̄−→
H2(Ω2

Ỹ
)⊕k

i=1〈(`i + `′i)〉
.

From (1.5) and Lemma 1.12 (ii) we have

H2(Ỹ )
δ̄2−→
⊕k

i=1
〈(`i − `′i)〉 → V → 0.
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Now by comparing the dual of the maps δ̄2 and κ̄, we see that ker(κ) =
cok(δ̄2)∗ = V ∗. The proof is complete. q.e.d.

This proposition shows that the deformation of Y naturally embeds
to that of X̄, with the transversal direction given by the periods of the
vanishing cycles. Moreover, the above discussion also leads to important
consequences on the infinitesimal period relations on Ỹ and on X̄.

Corollary 3.6. On Ỹ , the natural map

H1(
(
ΩỸ (logE)(−E)

)∨
)⊗H0(KỸ )→ H1(Ω2

Ỹ
(logE))

is an isomorphism.

Proof. This follows from Lemma 3.1 and Lemma 3.2. q.e.d.

Corollary 3.7. On X̄, the natural map

H1(RHom(ΩX̄ ,OX̄))⊗H0(KX̄)→ Ext1(ΩX̄ ,KX̄)

is an isomorphism. Indeed, both sides are isomorphic to Ext1(ΩX̄ ,OX̄).

Proof. This is a reformulation of Corollary 3.6 via Lemma 3.4. q.e.d.

Remark 3.8. Since X̄ is rational Gorenstein, RHom(ΩX̄ ,OX̄) has
cohomology only in degrees 0 and 1. Indeed, R0Hom(ΩX̄ ,OX̄) ∼= ΘX̄

and

R1Hom(ΩX̄ ,OX̄) ∼= Ext1(ΩX̄ ,OX̄) ∼=
⊕k

i=1
Opi .

By a Leray spectral sequence argument, this gives (3.1) as well and

H1(RHom(ΩX̄ ,OX̄)) ∼= Ext1(ΩX̄ ,OX̄).

Interpreting Corollary 3.7 as a local Torelli type theorem, we conclude
that the differentiation of any non-zero holomorphic sections of the
relative canonical bundle on any deformation parameter of X̄ is non-
vanishing.

3.2. Vanishing cycles and the Bryant–Griffiths/Yukawa cubic
form. Recall the Gauss–Manin connection ∇GM on

Hn = Rnf∗C⊗ OS → S,

for a smooth family f : X → S is a flat connection with its flat sections
being identified with the local system Rnf∗C. It contains the integral
flat sections Rnf∗Z. Let {δp ∈ Hn(X,Z)/(torsions)} be a homology
basis for a fixed reference fiberX = Xs0 , with cohomology dual basis δ∗p’s
in Hn(X,Z). Then δ∗p can be extended to (multi-valued) flat sections
in Rnf∗Z. For η ∈ Γ(S,Hn), we may rewrite it in terms of these flat
frames with coefficients being the “multi-valued” period integrals “

∫
δp
η”
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as η =
∑

p δ
∗
p

∫
δp
η. For any local coordinate system (xj) in S, since

∇GMδ∗p = 0, we get

∇GM∂/∂xjη =
∑
p

δ∗p
∂

∂xj

∫
δp

η.

Thus, as far as period integrals are concerned, we may simply regard
the Gauss–Manin connection as partial derivatives.

When the family contains singular fibers, by embedded resolution of
singularities we may assume that the discriminant loci D ⊂ S is a normal
crossing divisor. It is well-known that the Gauss–Manin connection has
at worst regular singularities along D by the regularity theorem. Namely
it admits an extension to the boundary with at worst logarithmic poles.

Let X ↗ Y be a projective conifold transition, and V the correspond-
ing space of vanishing cycles. Since the vanishing spheres Si have trivial
normal bundles in X, we see that (Si.Sj) = 0 for all i, j, and, hence,
V is isotropic. Define V ′ to be the subspace dual to V with respect
to the intersection pairing in H3(X), then V and V ′ are coisotropic.
Furthermore, we have

H3(X) ∼= H3(Y )⊕H3(Y )⊥ ∼= H3(Y )⊕ V ⊕ V ′,

from (the proof of) Theorem 1.14 and Remark 1.15. Let {γj}µj=1 be a

basis of V ′ satisfying

PD(γj)([Si]) ≡ (γj .Si) = aij , 1 ≤ j ≤ µ,

where Si’s are the vanishing 3-spheres and A = (aij) is the relation
matrix of the exceptional curves Ci’s. Additionally, let {Γj}µj=1 be the

basis of V dual to {γj}µj=1 via intersection pairing. Namely (Γj .γl) = δjl.

Lemma 3.9. We may construct a symplectic basis of H3(X):

α0, α1, . . . , αh, β0, β1, . . . , βh, (αj .βp) = δjp,

where h = h2,1(X), with αj = Γj, 1 ≤ j ≤ µ.

Proof. Notice that V ⊂ H3(X,Z) is generated by [S3
i ]’s, and, hence,

is totally isotropic. Let W ⊃ V be a maximal isotropic subspace (of
dimension h+ 1). We first select αj = Γj for 1 ≤ j ≤ µ to form a basis
of V . We then extend it to α1, . . . , αh, and set α0 ≡ αh+1, to form a
basis of W .

To construct βl, we start with any δl such that (αp.δl) = δpl. Such δl’s
exist by the non-degeneracy of the Poincaré pairing. We set β1 = δ1.
By induction on l, suppose that β1, . . . , βl have been constructed. We
define

βl+1 = δl+1 −
∑l

p=1
(δl+1.βp)αp.

Then it is clear that (βl+1.βp) = 0 for p = 1, . . . , l. q.e.d.
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With a choice of basis of H3(X), any η ∈ H3(X,C) ∼= C2(h+1)

is identified with its “coordinates” given by the period integrals ~η =( ∫
αp
η,
∫
βp
η
)
. Alternatively, we denote the cohomology dual basis by

α∗p and β∗p so that α∗j (αp) = δjp = β∗j (βp). Then we may write

η =
∑h

p=0
α∗p

∫
αp

η + β∗p

∫
βp

η.

The symplectic basis property implies that α∗p(Γ) = (Γ.βp) and β∗p(Γ) =
−(Γ.αp) = (αp.Γ). This leads to the following observation.

Lemma 3.10. For 1 ≤ j ≤ µ, we may modify γj by vanishing cycles
to get γj = βj. In particular, (γj .γl) = 0 for 1 ≤ j, l ≤ µ and α∗j (Si) =

(Si.βj) = −aij.

Lemma 3.11. For all i = 1, . . . , k, PD([Si]) = −
∑µ

j=1 aij PD(Γj).

Proof. Comparing both sides by evaluating at αl’s and βl’s for all l.
q.e.d.

Let Ω be the non-vanishing holomorphic 3-form on the Calabi–Yau
threefold. Bryant–Griffiths [3] showed that the α-periods xp =

∫
αp

Ω

form the projective coordinates of the image of the period map inside
P(H3) ∼= P2h+1 as a Legendre sub-manifold of the standard holomorphic
contact structure. It follows that there is a holomorphic pre-potential
u(x0, . . . , xh), which is homogeneous of weight two, such that uj ≡ ∂u

∂xj
=∫

βj
Ω. In fact,

(3.2) u = 1
2

∑h

p=0
xpup = 1

2

∑h

p=0
xp

∫
βp

Ω.

Hence, Ω =
∑h

p=0(xp α
∗
p + up β

∗
p). In particular,

∂jΩ = α∗j +
∑h

p=0
ujp β

∗
p , ∂2

jlΩ =
∑h

p=0
ujlp β

∗
p .

By the Griffiths transversality, ∂jΩ ∈ F 2, ∂2
jlΩ ∈ F 1. Hence, we have

the Bryant–Griffiths cubic form, which is homogeneous of weight −1:

ujlm = (∂mΩ.∂2
jlΩ) = ∂m(Ω.∂2

jlΩ)− (Ω.∂3
jlmΩ) = −(Ω.∂3

jlmΩ).

This is also known as Yukawa coupling in the physics literature.
For inhomogeneous coordinates zi = xi/x0, the corresponding formu-

lae may be deduced from the homogeneous ones by noticing that ∂Iu is
homogeneous of weight 2− |I| for any multi-index I.

Under a suitable choice of the holomorphic frames respecting the
Hodge filtration, the Bryant–Griffiths–Yukawa couplings determine the
VHS as the structural coefficients of the Gauss–Manin connection:



A+B THEORY IN CONIFOLD TRANSITIONS 521

Proposition 3.12. Let τ0 = Ω ∈ F 3, τj = ∂jΩ ∈ F 2, τ j = β∗j −
(xj/x0)β∗0 ∈ F 1 for 1 ≤ j ≤ h, and τ0 = β∗0 ∈ F 0. Then for 1 ≤ p, j ≤
h,

∇∂pτ0 = τp,

∇∂pτj =
∑h

m=1
upjm τ

m,

∇∂pτ j = δpj τ
0,

∇∂pτ0 = 0.

(3.3)

Proof. We prove the second formula. Since upj has weight 0, we have

the Euler relation x0 upj0 +
∑h

m=1 xm upjm = 0. Hence,

∂p∂jΩ =
∑h

m=1
upjm β

∗
m + upj0 β

∗
0

=
∑h

m=1
upjm

(
β∗m −

xm
x0
β∗0

)
=
∑h

m=1
upjm τ

m.

It remains to show that τ j ∈ F 1. By the first Hodge–Riemann bilin-
ear relations, namely F 1 = (F 3)⊥ and F 2 = (F 2)⊥ in our case, it is
equivalent to showing that τ j ∈ (F 3)⊥. This follows from

(τ j ,Ω) =
(
β∗j −

xj
x0
β∗0 ,
∑h

p=0
(xpα

∗
p + upβ

∗
p)
)

= −xj +
xj
x0
x0 = 0.

The remaining statements are clear. q.e.d.

3.3. Degenerations via Picard–Lefschetz and the nilpotent or-
bit theorem. Let X → ∆ be a one parameter conifold degenera-
tion of threefolds with nonsingular total space X . Let S1, . . . , Sk be
the vanishing spheres of the degeneration.. The Picard–Lefschetz for-
mula (see, e.g., [24, §3.B]) asserts that the monodromy transformation
T : H3(X)→ H3(X) is given by

(3.4) Tσ = σ +
∑k

i=1
σ([Si]) PD([Si]),

where σ ∈ H3(X). It is unipotent, with associated nilpotent monodromy

N := log T =
∑∞

m=1
(T − I)m/m.

We have seen that (Si.Sj) = 0 for all i, j. Therefore, T = I + N and
N2 = 0 (cf. §1). The main purpose here is to generalize these to multi-
dimensional degenerations, and, in particular, to the local moduli MX̄

near [X̄].

3.3.1. VHS with simple normal crossing boundaries. Even though
the discriminant loci for the conifold degenerations are in general not
simple normal crossing (SNC) divisors, by embedded resolution of sin-
gularity they can in principle be modified to become ones. We will begin
our discussion in this case for simplicity.
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Let
X →∆ := ∆ν ×∆ν′ 3 t := (t, s)

be a flat family of Calabi–Yau 3-folds such that Xt is smooth for

t ∈∆∗ := (∆×)ν ×∆ν′ .

Namely, the discriminant locus is a SNC divisor:

D :=
⋃ν

j=1
Z(tj) = ∆ \∆∗.

Around each punctured disk tj ∈ ∆×, 1 ≤ j ≤ ν, we assume the
monodromy Tj is unipotent with nilpotent Nj . Note that NjNl = NlNj

since π1(∆∗) ∼= Zν is abelian.
If for any t = (t, s) we assume that Xt acquires at most canonical sin-

gularities, then NjF
3
∞|Dj = 0 and N2

j = 0 for each j (cf. Remark 1.13).
Different Nj may define different weight filtration Wj and each bound-
ary divisor Z(tj) corresponds to different set of vanishing cycles. In our
case, the structure turns out to be simple. For any nj ∈ N, 1 ≤ j ≤ ν,
the degeneration along the curve

γ(w) := (t(w), s(w)) = (wn1 , . . . , wnν , s0)

has monodromy

Nγ = log Tγ = log
∏ν

j=1
T
nj
j =

∑ν

j=1
njNj .

Hence, N2
γ = 0 for any (n1, . . . , nν) ∈ Nν . That is, NjNl = 0 for all j, l.

For conifold degenerations, this is clear from the Picard–Lefschetz
formula (3.4). Indeed, (Si1 .Si2) = 0 for all i1, i2 implies NjNl = 0 for
all j, l.

Let zj = log tj/2π
√
−1 ∈ H (the upper half plane), zN :=

∑ν
j=1 zjNj ,

and let Ω denote (the class of) a relative Calabi–Yau 3-form over ∆, i.e.,
a section of F 3. By Schmid’s nilpotent orbit theorem [34] (cf. [39, 40]),
a natural choice of Ω takes the form

Ω(t) = ezNa(t) = ezN
(
a0(s) +

∑ν

j=1
aj(s)tj + · · ·

)
= a(t) + zNa(t) ∈ F 3

t ,
(3.5)

where a(t) is holomorphic, Nja0(s) = 0 for all j.
In order to extend the theory of Bryant–Griffiths to include the

boundary points of the period map, namely to include ODP degenera-
tions in the current case, we need to answer the question if the α-periods
θj(t) :=

∫
Γj

Ω(t) may be used to replace the degeneration parameters

tj for 1 ≤ j ≤ ν. For this purpose we need to work on the local moduli
space MX̄ .

3.3.2. Extending Yukawa coupling towards non-SNC bound-
ary. As in §3.1, X̄ has unobstructed deformations and MX̄ = Def(X̄)
is smooth. Since X̄ admits a smoothing to X, dimMX̄ is exactly
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h = h2,1(X). The discriminant loci D ⊂ MX̄ is in general not a SNC
divisor. Comparing with the local A model picture on Y/X in §2.3,
the discriminant loci D is expected to the union of k hyperplanes. (We
intentionally use the same notation D.)

Recall Friedman’s result [8] on partial smoothing of ODPs. Let A =
[A1, . . . , Aµ] be the relation matrix. For any r ∈ Cµ, the relation vector
A(r) :=

∑µ
l=1 rlA

l gives rise to a (germ of) partial smoothing of those
ODP’s pi ∈ X̄ with A(r)i 6= 0. Thus, for 1 ≤ i ≤ k, the linear equation

(3.6) wi := ai1r1 + · · ·+ aiµrµ = 0

defines a hyperplane Z(wi) in Cµ.
The small resolution ψ : Y → X̄ leads to an embedding MY ⊂MX̄

of codimension µ. As germs of analytic spaces we, thus, have MX̄
∼=

∆µ ×MY 3 (r, s). Along each hyperplane Di := Z(wi)∆µ ×MY , there

is a monodromy operator T (i) with associated nilpotent monodromy
N (i) = log T (i). A degeneration from X to Xi with [Xi] ∈ Di a general

point (not in any Di′ with i′ 6= i) contains only one vanishing cycle
[S3
i ] 7→ pi. We summarize the above discussion in the following lemma.

Lemma 3.13. Geometrically a point (r, s) ∈ Di corresponds to a
partial smoothing Xr of X̄ for which the i-th ordinary double point pi
remains singular. Hence, for r generic, the degeneration from X to
Xr has only one vanishing sphere S3

i . Moreover, the Picard–Lefschetz
formula (3.4) says that for any σ ∈ H3(X),

N (i)σ = (σ([S3
i ])) PD([S3

i ]).

Even though the embedded resolution brings he discriminant locus to
a SNC divisor, some information might be lost in this process. There-
fore, we choose to analyze the period map directly by way of the follow-

ing nilpotent orbit theorem. We call the configuration D =
⋃k
i=1D

i ⊂
MX̄ a central hyperplane arrangement with axis MY following the usual
convention.

Theorem 3.14. Consider a degeneration of Hodge structures over
∆µ ×M with discriminant locus D being a central hyperplane arrange-
ment with axis M . Let T (i) be the monodromy around the hyperplane
Z(wi) with quasi-unipotency mi, N

(i) := log((T (i))mi)/mi, and suppose

that the monodromy group Γ generated by T (i)’s is abelian. Let D de-
note the period domain and Ď its compact dual. Then the period map
φ : ∆µ ×M \D→ D/Γ takes the following form

φ(r, s) = exp

(
k∑
i=1

mi logwi

2π
√
−1

N (i)

)
ψ(r, s),

where ψ : ∆µ ×M → Ď is holomorphic and horizontal.
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Proof. We prove the theorem by induction on µ ∈ N. The case µ =
1 is essentially the one variable case (or SNC case) of the nilpotent
orbit theorem. The remaining proof consists of a careful bookkeeping
on Schmid’s derivation of the multi-variable nilpotent orbit theorem
from the one variable case (cf. [34, §8], especially Lemma (8.34) and
Corollary (8.35)).

The essential statement is the holomorphic extension of

(3.7) ψ(r, s) := exp

(
−

k∑
i=1

mi logwi

2π
√
−1

N (i)

)
φ(r, s) ∈ Ď,

over the locus D. For p 6∈ {0} ×M , we can find a neighborhood Up
of p so that the holomorphic extension to Up is achieved by induction.

Notice that the commutativity of N (i)’s is needed in order to arrange
ψ(r, s) into the form (3.7) with smaller µ. Namely,

ψ = exp

− ∑
wi(p)=0

mi logwi

2π
√
−1

N (i)

exp

− ∑
wi(p)6=0

mi logwi

2π
√
−1

N (i)

φ

.
Let R≥1/2 := { (r, s) | |r| ≥ 1

2 }. Then we have a unique holomorphic
extension of ψ over R≥1/2. By the Hartog’s extension theorem we get
the holomorphic extension to the whole space ∆µ ×M . The statement
on horizontality follows from the same argument in [34, §8]. q.e.d.

Remark 3.15. (i) Let D =
⋃k
i=1D

i ⊂ Cµ be a central hyperplane

arrangement with axis 0. Then Cµ \ D can be realized as (C×)k ∩ L
for L ⊂ Ck being a µ dimensional subspace. Since π1((C×)k) ∼= Zk,
a hyperplane theorem argument shows that π1(Cµ \ D) ∼= Zk, hence,
abelian, if µ ≥ 3. However, for µ = 2, π1(C2 \D) is not abelian if k ≥ 3.

Indeed, the natural C× fibration C2 \
⋃k
i=1D

i → P1 \ {p1, . . . , pk} leads
to

0→ π1(C×) ∼= Z→ π1(C2 \
⋃
Di)→ Z∗(k−1) → 0,

where the RHS is a k − 1 free product of Z.
(ii) Theorem 3.14 is applicable to the conifold transitions since the

monodromy representation is abelian and mi = 1 for all i. This follows
from the Picard–Lefschetz formula (3.4) and the fact [Si].[Si′ ] = 0 for
all vanishing spheres.

Proposition 3.16. There is a holomorphic coordinate system (r, s) ∈
Ch in a neighborhood of [X̄] ∈ MX̄ such that s ∈ Ch−µ is a coordinate
system of MY near [X̄] and rj =

∫
Γj

Ω, 1 ≤ j ≤ µ, are the α-periods of

the vanishing cycles. Moreover, the section Ω(r, s) takes the form

Ω = a0(s) +

µ∑
j=1

Γ∗jrj + h.o.t.−
k∑
i=1

wi logwi

2π
√
−1

PD([Si]).
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Here h.o.t. denotes terms in V ⊥ which are at least quadratic in r1, . . . , rµ,
and wi = ai1r1 + · · · + arµrµ =

∫
Si

Ω defines the discriminant locus Di

for 1 ≤ i ≤ k.

Proof. By Theorem 3.14 and the fact N (i1)N (i2) = 0, we may write

Ω(r, s) = exp

(
k∑
i=1

logwi

2π
√
−1

N (i)

)
a(r, s)

= a(r, s) +
k∑
i=1

logwi

2π
√
−1

N (i)a(r, s) ∈ F 3
(r,s),

(3.8)

where a(r, s) = a0(s) +
∑µ

j=1 aj(s) rj +O(r2) is holomorphic in r, s.

By Lemma 3.13, all α periods θl :=
∫
αl

Ω vanish on the logarithmic

terms in (3.8). In particular, θl(r, s)’s are single-valued functions. By
Corollary 3.7 and Remark 3.8 (the local Torelli property), the h × h
matrix (

∂mθl
)h
l,m=1

=
(∫

αl

∂mΩ
)

is invertible for small r. Moreover, along r = 0, the off-diagonal block
with 1 ≤ l ≤ µ (i.e., with αl = Γl being the vanishing cycles) and
µ + 1 ≤ m ≤ h (i.e., with differentiation in the s direction) vanishes.
Hence, the first µ× µ block(

∂jθl
)µ
l,j=1

=
(∫

Γl

∂jΩ
)

is also invertible for small r. Thus, by the inverse function theorem,
θ1, . . . , θµ and s form a coordinate system near [X̄] ∈MX̄ .

Now we replace rj by the α-period θj for j = 1, . . . , µ. In order for
Theorem 3.14 to be applicable, we need to justify that the discriminant
locus Di is still defined by linear equations in rj ’s. This follows from
Lemma 3.11:∫

Si

Ω = (Ω,PD([Si])) = −
∑µ

j=1
aij(Ω,PD(Γj))

= −
∑µ

j=1
aijrj =: −wj .

Denote by h.o.t be terms in V ⊥ which are at least quadratic in rj ’s.
The above choice of coordinates implies that

Ω = a0(s) +

µ∑
j=1

Γ∗jrj + h.o.t.+

k∑
i=1

µ∑
j=1

logwi

2π
√
−1

N (i)Γ∗jrj .

Then ∑µ

j=1
N (i)Γ∗jrj = −

∑µ

j=1
aijrj PD([Si]) = −wi PD([Si])

by Lemma 3.13 and Lemma 3.10. The proof is complete. q.e.d.
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Consequently, one obtains the asymptotic forms of β-periods and
Bryant–Griffiths form in terms of the above coordinate system (r, s).
For β-periods

up(r, s) =

∫
βp

Ω = up(s) + h.o.t.−
k∑
i=1

wi logwi

2π
√
−1

∫
βp

PD([Si]),

since Ω(s) = a0(s). Thus,

up(r, s) = up(s) +
k∑
i=1

wi logwi

2π
√
−1

aip + h.o.t. for 1 ≤ p ≤ µ,

up(r, s) = up(s) + h.o.t. for p > µ.

The Bryant–Griffiths form is then obtained by taking two more deriva-
tives. For 1 ≤ p,m, n ≤ µ, we get

upm = O(r) +

k∑
i=1

logwi + 1

2π
√
−1

aipaim,

and

(3.9) upmn = O(1) +

k∑
i=1

1

2π
√
−1

1

wi
aipaimain.

Remark 3.17. The specific logarithmic function in Proposition 3.16,
which is written in terms of linear combinations of α-periods, had ap-
peared in the literature in examples, such as those studied in [4, p.89]
where there are 16 vanishing spheres with a single relation. To our
knowledge, it has not been studied in this generality.

3.3.3. Monodromy calculations. As a simple consequence, we de-
termine the monodromy N(l) towards the coordinate hyperplane Z(rl)
at r = 0. That is the monodromy associated to the one parameter de-
generation γ(r) along the rl-coordinate axis (rl ∈ ∆ and rj = 0 if j 6= l).
Let Il = {i | ail 6= 0} and let Al be the matrix from A by setting the
i-th rows with i 6∈ Il to 0.

Lemma 3.18. The sphere S3
i vanishes in Z(rl) along transversal one

parameter degenerations γ if and only if i ∈ Il, i.e., ail 6= 0.

Proof. The curve γ lies in Di = Z(wi) if and only if ail = 0. Thus,
for those i 6∈ Il, the ODP pi is always present on Xγ(r) along the curve
γ. In particular, the vanishing spheres along γ are precisely those Si
with i ∈ Il. q.e.d.

To calculate the monodromy N(l), recall that (cf. Lemma 3.10) Γ∗j ≡
α∗j = −PD(βj). The Picard–Lefschetz formula (Lemma 3.13) then says
that

N(l)Γ∗j =
∑

i∈Il
(Γ∗j .PD([Si])) PD([Si]) = −

∑
i∈Il

aij PD([Si]).
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Corollary 3.19. For 1 ≤ p ≤ µ,∫
βp

N(l)Γ∗j = −
∑
i∈Il

aij(Si.βp) =
∑
i∈Il

aijaip = (AtlAl)jp,

while for p = 0 or µ+ 1 ≤ p ≤ h we have
∫
βp
N(l)Γ∗j = 0.

Corollary 3.20. The B(Y ) is a sub-theory of B(X) by setting r = 0
and taking the monodromy invariant sub-system. In fact, a0(s) repre-
sents the family of Calabi–Yau 3-forms Ω(s) over MY and the α, β
periods along it gives the VHS on Y .

3.3.4. On topological logarithmic Gauss–Manin connection. We
study the topological logarithmic Gauss–Manin connection associated to
our conifold degenerations. That is, we seek a topological frame of the
bundle R3π∗C of a local family π : X →MX̄ near the Calabi–Yau coni-
fold [X̄]. By Lemma 1.12 and the Hodge diamond (1.11), part of the
frame comes naturally from H3(Y ), while the remaining part is modeled
on V ∗ and V . By the same procedure as in the proof of Proposition 3.16,
the topological frame modeled on V ∗ ∼= H2,2

∞ H3 can be chosen to be

vj := exp

(
k∑
i=1

logwi

2π
√
−1

N (i)

)
Γ∗j

= Γ∗J +
k∑
i=1

logwi

2π
√
−1

N (i)Γ∗j = Γ∗j −
k∑
i=1

logwi

2π
√
−1

aij PD([Si]),

(3.10)

for 1 ≤ j ≤ µ. Notice that the correction terms lie in the lower weight
piece H1,1

∞ H3 and vj is independent of s. Moreover, vj is singular along
Di if and only if aij 6= 0, i.e., Si vanishes in Z(rj) by Lemma 3.18.

On V ∼= H1,1
∞ H3, we choose the (constant) frame by

(3.11)

vj := exp

(
k∑
i=1

logwi

2π
√
−1

N (i)

)
PD(Γj) = PD(Γj), 1 ≤ j ≤ µ.

From (3.6), (3.10) and Lemma 3.11, it is easy to determine the Gauss–
Manin connection on this partial frame in the special directions ∂/∂rp’s:

∇GM∂/∂rpvm =
1

2π
√
−1

k∑
i=1

aip
wi

(
− aim PD([Si])

)
=

1

2π
√
−1

k∑
i=1

µ∑
n=1

aipaimain
wi

vn.

(3.12)

Proposition 3.21. Near [X̄] ∈MX̄ , ∇GM is regular singular along
Di’s and smooth elsewhere. The connection matrix P on the block V ∗⊕
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V takes the form

P =
k∑
i=1

dwi
wi
⊗ P i =

k∑
i=1

dwi
wi
⊗

µ∑
m,n=1

aimain v
n ⊗ (vm)∗,

where Pi is a constant matrix in the topological frame vm’s and vn’s.

Note that there are no higher order terms in rj ’s and ∇GM is block-
diagonalized, in contrast to results in (3.9) and the discussions in §6
where holomorphic frames are considered.

4. Local transitions between A(Y ) and B(X)

The basic exact sequence in Theorem 1.14 provides a Hodge theoretic
realization of the numerical identity µ+ ρ = k.

Now H2(Y )/H2(X) ⊗ C ∼= Cρ is naturally the parameter space of
the extremal Gromov–Witten invariants of the Kähler degeneration ψ :
Y → X̄, and V ∗ ⊗ C ∼= Cµ is naturally the parameter space of periods
of vanishing cycles of the complex degeneration from X to X̄. Both
of them are equipped with flat connections induced from the Dubrovin
and Gauss–Manin connections respectively. Thus, it is natural to ask if
there is a D module lift of the basic exact sequence.

We rewrite the basic exact sequence in the form

H2
C(Y )/H2

C(X) ∼= Cρ B // Ck V ∗C
∼= CµAoo ,

with AtB = 0. This simply means that Ck is an orthogonal direct sum
of the two subspaces im(A) and im(B). Let A = [A1, . . . , Aµ], B =
[B1, . . . , Bρ], and consider the invertible matrix S = (sij) := [A,B] ∈
Mk×k(Z), namely sij = aij for 1 ≤ j ≤ µ and siµ+j = bij for 1 ≤ j ≤ ρ.

Denote the standard basis of Ck by e1, . . . , ek with dual coordinates
y1, . . . , yk. Let e1, . . . , ek be the dual basis on (Ck)∨. We consider the
standard (trivial) logarithmic connection on the bundle Ck⊕(Ck)∨ over
Ck defined by

(4.1) ∇ = d+
1

z

k∑
i=1

dyi
yi
⊗ (ei ⊗ e∗i ),

where z is a parameter. It is a direct sum of k copies of its one dimen-
sional version. We will show that the principal (logarithmic) part of the
Dubrovin connection over Cρ (cf. (2.8)) as well as the Gauss–Manin con-
nection on Cµ (cf. (3.9)) are all induced from this standard logarithmic
connection through the embeddings defined by B and A respectively.

Recall the basis T1, . . . , Tρ of Cρ with coordinates u1, . . . , uρ, and the
frame T1, . . . , Tρ, T

1, . . . , T ρ on the bundle Cρ ⊕ (Cρ)∨ over Cρ. Notice

that Tj corresponds to the column vector Bj = Sµ+j , 1 ≤ j ≤ ρ. Let T̂j
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correspond to the column vector Aj = Sj for 1 ≤ j ≤ µ with dual T̂ j ’s.
Then

Tj =
∑k

i=1
bij ei =

∑k

i=1
siµ+j ei,

and dually

ei =
∑µ

j=1
sij T̂

j +
∑ρ

j=1
siµ+j T

j =
∑µ

j=1
aij T̂

j +
∑ρ

j=1
bij T

j .

Denote by P the orthogonal projection

P : Ck ⊕ (Ck)∨ → Cρ ⊕ (Cρ)∨.

Using (4.1) we compute the induced connection ∇P near ~0 ∈ Cρ:

∇PTlTm =
∑k

i, i′=1
bilbi′m

(
∇eiei′

)P
=

1

z

k∑
i=1

bilbim
yi

(ei)P =
1

z

ρ∑
n=1

k∑
i=1

bilbimbin
yi

Tn.
(4.2)

We compare it with the one obtained in (2.8) and (2.9):

∇zTlTm = −1

z

ρ∑
n=1

(
(Tl.Tm.Tn) +

k∑
i=1

bilbimbin
qi

1− qi

)
Tn,

where

qi = exp

ρ∑
p=1

bipu
p = exp vi.

The principal part near ui = 0, 1 ≤ i ≤ ρ, gives

1

z

ρ∑
n=1

k∑
i=1

bilbimbin
vi

Tn,

which coincides with (4.2) by setting vi = yi for 1 ≤ i ≤ ρ. We summa-
rize the discussion in the following:

Theorem 4.1. Let X ↗ Y be a projective conifold transition through
X̄ with k ordinary double points. Let the bundle Ck ⊕ (Ck)∨ over Ck
be equipped with the standard logarithmic connection defined in (4.1).
Then

(1) The connection induced from the embedding B : Cρ → Ck defined
by the relation matrix of vanishing 3 spheres for the degeneration
from X to X̄ gives rise to the logarithmic part of the Dubrovin
connection on H2(Y )/H2(X).

(2) The connection induced from the embedding A : Cµ → Ck defined
by the relation matrix of extremal rational curves for the small
contraction Y → X̄ gives rise to the logarithmic part of the Gauss–
Manin connection on V ∗, where V is the space of vanishing 3-
cycles.
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Part (1) has just been proved. The proof for (2) is similar (by setting
z = 2π

√
−1 and wi = yi, cf. (3.9)) and is omitted. We remark that

the two subspaces B(Cρ) and A(Cµ) are, indeed, defined over Q and
orthogonal to each other, hence, A and B determine each other up to
choice of basis.

5. From A(X) +B(X) to A(Y ) +B(Y )

In this section, we prove Theorem 0.3 (3). The main idea is to refine
the GW invariants on X to respect the linking data on the vanishing
cycles. The GW theory of Y can then be reconstructed from the linked
GW theory of X.

5.1. Overview.

5.1.1. B(X) ⇒ B(Y ). This is explained in §3: The VHS on Y is con-
tained in the logarithmic extension of VHS on X as the monodromy
invariant sub-theory along MY ⊂MX̄ . This is the easy part.

5.1.2. A(X) + B(X)classical ⇒ A(Y ). What we already know about
A(Y ) consists of the following three pieces of data:

(1) A(X), which is given,
(2) the extremal ray invariants on divisors {Tl}ρl=1 determined by the

relation matrix B of the vanishing 3-spheres, and
(3) the cup product on H2(Y ). Since Y comes from surgeries on X

along the vanishing spheres, this is determined classically.

The ingredient (2) obviously does not come from A(X) but can be
computed explicitly. As discussed in §2.2 for g = 0 case, the extremal
ray invariants of all genera can be obtained from invariants of (−1,−1)
curves by the relation matrix A. Therefore, the ingredients needed for
(2) is local and independent of the transition. The genus zero case
was already discussed. The g = 1 invariants for (−1,−1) curves was
computed in [2] (and justified in [10]) and g ≥ 2 invariants in [7].

We make a quick comment on reconstruction in genus zero. Using the
notations in (2.7), (1)–(3) above give the initial conditions on the two
coordinates slices u = 0 and “s =∞” (i.e., β = 0) respectively. Naively
one may wish to reconstruct the genus zero GW theory on the entire
cohomology from these two coordinate slices. When Y is Fano, this
is often possible by WDVV. However, WDVV gives no information for
Calabi–Yau 3-folds. This issue will be resolved by studying the notion
of linking data below.

5.2. Linking data. The homology and cohomology discussed in this
subsection are over Z. As a first step, we study the topological infor-

mation about the holomorphic curves in X \
⋃k
i=1 Si instead of in X.

This can be interpreted as the linking data between the curve C and

the set of vanishing spheres
⋃k
i=1 Si. We will see that the linking data
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add extra information to the curve class in X and enable us to recover
the missing topological information in the process of transition.

Remark 5.1. As mentioned in Remark 1.3 that the vanishing sphere
Si can be chosen to be Lagrangian with respect to the prescribed Kähler
form ω on X. When ω is Ricci flat, it is expected to have special La-
grangian (SL) representatives. A proof to this was recently announced
in [12, Corollary A.2]. Assuming this, then we have T[Si]Def(Si/X) ∼=
H1(Si,R) = 0 by McLean’s theorem [25]. That is, Si is rigid in the SL
category. Thus, given a curve C in X we expect that C ∩ Si = ∅, ∀i.
Furthermore, by a simple virtual dimensional count, this is known to
hold for a generic almost complex structure J on TX (cf. [9]). But we
shall proceed without these heuristics.

The plan is to assign a linking data L between C and Si’s so that L
represents a refinement of β = [C] in X and that L uniquely determines
a curve class γ in Y , such that nXβ,L = nYγ . With the choices of lifting

β in Y being fixed (as above), this is equivalent to saying that L will
uniquely determine a curve class d` ∈ N1(Y/X̄). Let Bi = Dε(NSi/X)
be the ε open tubular neighborhood of Si in X with ε small enough such
that C ∩Bi = ∅ for all i. Then ∂Bi = Sε(NSi/X) ∼= Si × S2

ε
∼= S3 × S2.

Let M := X \
⋃k
i=1Bi. Then the pair (M,∂M) is the common part for

both X and Y . Indeed, let B+
i = Dδ(NCi/Y ), then ∂B+

i = Sδ(NCi/Y ) ∼=
S3
δ × Ci ∼= S3 × S2. This leads to two deformation retracts

(Y,
⋃
Ci) ∼ (M,∂M) ∼ (X,

⋃
Si).

Consider the sequence induced by the Poincaré–Lefschetz duality and
excision theorem for i : ∂M ↪→M :

(5.1) H2(M,∂M)
∼ // H4(M)

H2(C)
f∗ // H2(M)

j∗

OOOO

∼ // H4(M,∂M)

j∗
OOOO

⊕
iH2(S3

i × S2
i )

∼ //

i∗

OO

H3(∂M)

∆∗

OO

H3(M,∂M)

∆∗

OO

∼ // H3(M).

i∗

OO

From the retract (M,∂M) ∼ (Y,
⋃
Ci) and the excision sequence for

(Y,
⋃
Ci) we find H3(M,∂M)→

⊕
H2(Ci)→ H2(Y )→ H2(M,∂M)→

0. By comparing this with the LHS vertical sequence we conclude by
the five lemma that H2(M) ∼= H2(Y ). In particular, the curve class
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in Y
γ := f∗[C] ∈ H2(M) ∼= H2(Y )

is well defined.

Definition 5.2. The linking data (β, L) is defined to be f∗([C]) = γ
above.

From the excision sequence (X,
⋃
Si), we have

0→ H3(M,∂M)→ H3(X)→
⊕

H3(Si)

→ H4(M,∂M)→ H4(X)→ 0,

where the retract (M,∂M) ∼ (X,
⋃
Si) is used. Comparing with the

right vertical sequence in (5.1), we find H4(M) ∼= H4(X) and h3(X) =
h3(M)+k−ρ = h3(M)+µ. Since h3(X) = h3(Y )+2µ, this is equivalent
to

(5.2) h3(M) = h3(Y ) + µ.

5.3. Linked GW on X = non-extremal GW on Y .

5.3.1. Analysis of the moduli of stable maps to the degenerat-
ing families. We recall results in J. Li’s study of degeneration formula
[20, 21]: given a projective flat family over a curve π : W → A1 such
that π is smooth away from 0 ∈ B and the central fiber W0 = Y1 ∪ Y2

has only double point singularity with D := Y1 ∩ Y2 a smooth (but not
necessarily connected) divisor, Li in [20] constructed a moduli stack
M(W,Γ) → A1 which has a perfect obstruction theory and, hence, a
virtual fundamental class [M(W,Γ)]virt in [21]. The following proper-
ties will be useful to us. (The notations are slightly changed.)

(1) For every 0 6= t ∈ A1, one has

M(W,Γ)t = M(X,β), [M(W,Γ)]virt
t = [M(X,β)]virt,

where M(X,β) is the corresponding moduli of (absolute) stable
maps.

(2) For the central fiber, the perfect obstruction theory on M(W,Γ)
induces a perfect obstruction theory on M(W0,Γ) and

[M(W0,Γ)]virt = [M(W,Γ)]virt ∩ π−1(0)

is a virtual divisor of [M(W,Γ)]virt.
(3) M(W0,Γ) and its virtual class are related to the relative moduli

and their virtual classes. For each admissible triple (consisting of
gluing data) ε, there is a “gluing map”

Φε : M(Y1, D; Γ1)×Dρ M(Y2, D; Γ2)→M(W0,Γ),

inducing the relation between the virtual cycles

[M(W0,Γ)]virt =
∑
ε

mεΦε∗∆
!
(
[M(Y1, D; Γ1)]virt × [M(Y2, D; Γ2)]virt

)
,
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where ∆ : Dρ → Dρ ×Dρ is the diagonal morphism and mε is a
rational number (multiplicity divided by the degree of Φε).

5.3.2. Decomposition of M(W0,Γ). We study properties of M(W0,Γ)
and their virtual fundamental classes in the setting of §2.1. Namely we
specialize the discussions in §5.3.1 to the two semistable degenerations
constructed in §1.2.

A comprehensive comparison of the curve classes in X, Y and Ỹ is
collected in the following diagram.

H3(M,∂M) //

=

��

H2(
⋃
iEi)

//

φ̄∗
��

H2(Ỹ ) //

φ∗
��

H2(M,∂M) //

=

��

0

=

��
H3(M,∂M) //

=

��

H2(
⋃
iCi)

//

χ̄∗

��

H2(Y ) //

χ∗
��

H2(M,∂M) //

=

��

0

=

��
H3(M,∂M) // 0 // H2(X) // H2(M,∂M) // 0

A simple diagram chasing shows that there is a unique lifting γ̃ ∈
H2(Ỹ ) of γ ∈ H2(Y ) satisfying (2.4). From this and the degeneration

analysis for the Kähler degeneration Y  Ỹ ∪E Ẽ (now the divisor

D = E =
∑k

i=1Ei), we have the following lemma.

Lemma 5.3. There is a homotopy equivalence

[M(Y, γ)]virt ∼ [M(Ỹ , E; γ̃)]virt.

(If π can be extended to a family over P1, then the two cycles are ratio-
nally equivalent.) They define the same GW invariants.

Because of this lemma, we will sometimes abuse the notation and
identify [M(Ỹ , E; γ̃)]virt with [M(Y, γ)]virt.

Lemma 5.4. In the case of complex degeneration X  Ỹ ∪E Q in
§2.1, images of Φγ̃ for different γ̃ are disjoint from each other.

Proof. This follows from Li’s study on the related moduli stacks. In
this special case of ρ = 0, for any element in M(W0,Γ) there is only
one way to split it into two “relative maps” (with one of them being
empty). We note that this is not true in general, when there are more
than one way of splitting of the maps to the central fiber. q.e.d.

Given β 6= 0, let γ̃ and γ̃′ be classes appearing in (2.3); in particular,

they are non-exceptional for ψ̃ : Ỹ → X̄. We have

γ̃ − γ̃′ =
∑

i
ai(`i − `′i),

where `i and `′i are the ψ̃ exceptional curve classes (two rulings) in Ei,

because γ̃− γ̃′ is ψ̃ exceptional and (γ̃− γ̃′).Ei = 0. By Proposition 2.1,
there are only finitely many nonzero ai. For each γ̃ above, there is a
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unique γ = ψ∗γ̃ in Y which is non-extremal for ψ : Y → X̄ and satisfies
(2.5).

Corollary 5.5. Given β 6= 0 a curve class in X, we can associate
to it sets of non-ψ̃-exceptional curve classes γ̃ and γ discussed above.
Then

[M(X,β)]virt ∼
∑

γ̃
[M(Ỹ , E; γ̃)]virt ∼

∑
γ
[M(Y, γ)]virt,

where ∼ stands for the homotopy equivalence and the summations are
over the above sets. The conclusion holds for any projective small res-
olution Y of X̄.

Proof. This follows from (2.3), (2.5) and the above discussions. q.e.d.

Recall in §5.2 we have the identification of the linking data in

(5.3) H2(Y ◦) = H2(Y ) = H2(X◦) = H2(X \
⋃

i
Bi) = H2(X̄ \ X̄sing),

where X \
⋃k
i=1 Si =: X◦ ∼ M ∼ Y ◦ := Y \

⋃k
i=1Ci and Bi is a

tubular neighborhood of the vanishing sphere Si. Therefore, a curve
class γ ∈ H2(Y ) can be identified as a “curve class” in X◦ ∼ X̄ \ X̄sing,
with the latter a quasi-projective variety, and we can think of γ as a
curve class in X◦.

Proposition 5.6. For Xt with t ∈ A1 very small in the degenerat-
ing family π : X → A1, we have a decomposition of the virtual class
[M(Xt, β)]virt into a finite disjoint union of cycles

[M(Xt, β)]virt =
∐

γ∈H2(X◦)
[M(Xt, γ)]virt,

where [M(Y, γ)]virt ∼ [M(Xt, γ)]virt ∈ Avdim

(
M(Xt, β)

)
is a cycle class

corresponding to the linking data γ of Xt.

Proof. By the construction of the virtual class of the family π, we
know that the virtual classes for Xt and for X0 are restrictions of that for
X . Lemma 5.4 tells us that at t = 0, the virtual class decomposes into a
disjoint union. By semicontinuity of connected components, we conclude
that the virtual classes for Xt remain disconnected with (at least) the
same number of connected components labeled by γ ∈ H2(X◦). q.e.d.

We call the numbers defined by [M(Xt, γ)]virt the refined GW num-
bers of X◦ with linking data γ, or simply linked GW invariants.

Corollary 5.7. The refined GW numbers of X◦ with linking data γ
are the same as the GW invariants of Y with curve class γ, where γ is
interpreted in two ways via (5.3).



A+B THEORY IN CONIFOLD TRANSITIONS 535

6. From A(Y ) +B(Y ) to A(X) +B(X)

The purpose of this section is to establish part (4) of Theorem 0.3.
The main idea is to refine the B model on Y by studying deformations
and VHS “linked” with the exceptional curves, i.e., on the non-compact
Y \

⋃
iCi. From this, the full VHS of X is then reconstructed via

Theorem 3.14.

6.1. Overview.

6.1.1. A(Y ) ⇒ A(X). As is explained in §2, A(X) is a sub-theory of
A(Y ). Indeed, A(X) is obtained from A(Y ) by setting all extremal
ray invariants to be zero, in addition, to “reducing the linking data”
γ ∈ NE(Y ) to β ∈ NE(X).

6.1.2. A(Y )classical + B(Y ) ⇒ B(X). We have seen that B(Y ) can
be considered as a sub-theory of B(X). In this section, we will show
that B(Y ), together with the knowledge of extremal curves

⋃
iCI ⊂

Y determines B(X). More precisely, we will show that the “Hodge
filtration” underlying the variation of MHS of the quasi-projective Y ◦ =
Y \
⋃
iCi on the first jet space ofMY ⊂MX̄ can be lifted uniquely to the

Hodge filtration underlying the degenerating VHS of X. Furthermore,
the information of the Gauss–Manin connection up to the first jet is
sufficient to single out the VHS of X.

In the next subsection, we start with a statement of compatibility
of MHS which is needed in our discussion. After that we will give
a proof showing the unique determination. As in our implication of
B(X) +A(X)⇒ A(Y ) in §5, our A(Y ) +B(Y )⇒ B(X) implication is
not constructive.

6.2. Compatibility of the mixed Hodge structures. Recall from
§3.1 that MX̄ is smooth and contains MY in a natural manner. Set

U := Y ◦ = Y \
⋃k

i=1
Ci ∼= X̄◦ = X̄ \ X̄sing,

where

X̄sing = p :=
⋃k

i=1
{pi}.

To construct the VHS with logarithmic degeneration onMX̄ nearMY ,
we start with the following lifting property.

Proposition 6.1. There is a short exact sequence of mixed Hodge
structures

(6.1) 0→ V → H3(X)→ H3(U)→ 0,

where H3(X) is equipped with the limiting MHS of Schmid,

V ∼= H1,1
∞ H3(X),

and H3(U) is equipped with the canonical mixed Hodge structure
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of Deligne. In particular, F 3H3(X) ∼= F 3H3(U) and F 2H3(X) ∼=
F 2H3(U).

Proof. In the topological level, the short exact sequence (6.1) is equiv-
alent to the defining sequence of the vanishing cycle space (1.12). In-
deed, since X is nonsingular, H3(X) ∼= H3(X) by Poincaré duality.
Also,

(6.2) H3(X̄) = H3(X̄, p) ∼= H3(Ỹ , E) ∼= H3(Ỹ \E) = H3(U),

by the excision theorem and Lefschetz duality.
Now we consider the mixed Hodge structures. Since U is smooth

quasi-projective, it is well know that the canonical mixed Hodge struc-
ture onH3(U) has its Hodge diamond supported on the upper triangular
part, i.e., with weights ≥ 3. Or equivalently, the MHS on H3(X̄) has
weights ≤ 3 by duality in (6.2). The crucial point is that Lefschetz dual-
ity is compatible with mixed Hodge structures, as stated in Lemma 6.2
below. Hence, the short exact sequence (6.1) follows from Lemma 1.12
which is essentially the invariant cycle theorem.

Notice that V ∼= H1,1
∞ H3(X) by Lemma 1.12 (ii). In particular, the

isomorphisms on F i for i = 3, 2 follows immediately by applying F i to
the sequence (6.1). q.e.d.

Lemma 6.2. Let Y be an n dimensional complex projective variety,
i : Z ↪→ Y a closed subvariety with smooth complement j : U ↪→ Y
where U := Y \Z. Then the Lefschetz duality Hi(Y, Z) ∼= H2n−i(U) is
compatible with the canonical mixed Hodge structures.

This is well known in mixed Hodge theory. For the readers’ con-
venience we include a proof which is communicated to us by M. de
Caltaldo.

Proof. We will make use of the structural theorem of Saito on mixed
Hodge modules (MHM) [32, Theorem 0.1] which says that there is a
correspondence between the derived categories of MHM and that of
perverse sheaves (cf. Axiom A in 14.1.1 of Peters and Steenbrink’s book
[29]).

There is a triangle in the derived category of constructible sheaves

j!j
!QY → QY → i∗i

∗QY .

This gives maps of MHS H i(Y,Z)→ H i(Y )→ H i(Z) with H i(Y,Z) =
H i(Y, j!j

!QY ). In fact, the MHS of H i(Y,Z) can be defined by the RHS
from Saito’s theory, since j!j

!QY is a complex of MHM.
Dualizing the above setup, we have

(6.3) Hi(Y,Z) = Hi(Y, j!j
!QY )∗,
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where the LHS of (6.3) having MHS for the same reason as above and
compatibly with taking dual as MHS. Furthermore, the RHS of (6.3)
is H−ic (Y, j∗j

∗ωY ) by Verdier duality, where ωY is the Verdier dualizing
complex. Due to the compactness of Y we have

H−ic (Y, j∗j
∗ωY ) = H−i(Y, j∗j

∗ωY ) = H−i(U, ωU )

= HBM
i (U) = H2n−i(U),

where HBM is the Borel–Moore homology. Since all steps are com-
patible with MHM, the Lefschetz duality is compatible with the MHS.

q.e.d.

6.3. Conclusion of the proof. We now apply the above result to our
setting. We have on X̄ (cf. [28])

· · ·H1
p (ΘX̄)→ H1(ΘX̄)→ H1(U, TU )→ H2

p (ΘX̄)→ · · · .
Since each pi is a hypersurface singularity, we have depthOpi = 3. Using
this fact, Schlessinger [33] (see also [8]) showed that H1

p (ΘX̄) = 0 and

H2
p (ΘX̄) ∼=

⊕k
i=1 Cpi . Putting these together, we have

(6.4) 0→ H1(ΘX̄)→ H1(U, TU )→ H2
p (ΘX̄)→ · · · .

Since X̄ is a Calabi–Yau 3-fold with only ODPs, its deformation
theory is unobstructed by the T 1-lifting property [15]. Comparing (6.4)
with (3.1) we see that Def(X̄) ∼= H1(U, TU ).

Similarly, on Y we have

· · ·H1
Z(TY )→ H1(TY )→ H1(U, TU )→ H2

Z(TY )→ H2(TY )→ · · · ,
where Z = Y \U is the union of exceptional curves. Since Y is smooth,
the depth argument also gives H1

Z(TY ) = 0 (or by the local duality
theorem H1

Z(TY ) ∼= H2(Z, T∨Y ⊗KY )∨ = 0). Thus,

Def(Y ) = H1(TY ) ⊂ H1(U, TU ) ∼= Def(X̄),

and MY is naturally a submanifold of MX̄ . Write I := IMY
as the

ideal sheaf of MY ⊂ MX̄ . Since H2(U, TU ) 6= 0, the deformation of
U could be obstructed. Nevertheless, the first-order deformation of U
exists and is parameterized by H1(U, TU ) ⊃ Def(Y ). Therefore, we have
the following smooth family

π : U→ Z1 := ZMX̄
(I2) ⊃MY ,

where Z1 = ZMX̄
(I2) stands for the nonreduced subscheme of MX̄

defined by the ideal sheaf I2. Namely Z1 is the first jet extension of
MY in MX̄ .

Now we may complete the construction of VHS over MX̄ near the
boundary lociMY ↪→MX̄ . The Gauss–Manin connection for a smooth
family over non-reduced base was constructed in [14]. For our smooth
family π : U → Z1, it is defined by the integral lattice H3(U,Z) ⊂
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H3(U,C). Since U is only quasi-projective, the Gauss–Manin connec-
tion underlies VMHS instead of VHS. By Proposition 6.1, we have
WiH

3(U) = 0 for i ≤ 2, W3 ⊂ W4 with GrW3 H3(U) ∼= H3(Y ), and
GrW4 H3(U) ∼= V ∗.

The Hodge filtration of the local system F 0 = H3(U,C) has the
following structure: F • = {F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0} which satisfies the
Griffiths transversality. Since KU

∼= OU and H0(U,KU ) ∼= H0(Y,KY ) ∼=
C, F 3 is a line bundle over Z1 spanned by a nowhere vanishing relative
holomorphic 3-form Ω ∈ Ω3

U/Z1
. Near the moduli point [Y ] ∈ Z1, F 2 is

then spanned by Ω and v(Ω) where v runs through a basis of H1(U, TU ).
Notice that v(Ω) ∈W3 precisely when v ∈ H1(Y, TY ).

By Proposition 6.1, the partial filtration F 3 ⊂ F 2 on H3(U) over Z1

lifts uniquely to a filtration F̃ 3 ⊂ F̃ 2 on H3(X) over Z1 with F̃ 3 ∼= F 3

and F̃ 2 ∼= F 2. The complete lifting F̃ • is then uniquely determined since
F̃ 1 = (F̃ 3)⊥ by the first Hodge–Riemann bilinear relation on H3(X).

Alternatively, F̃ 1 is spanned by F̃ 2 and v(F̃ 2) for v runs through a basis
of H1(U, TU ).

Now F̃ • over Z1 uniquely determines a horizontal map Z1 → Ď. Since
it has maximal tangent dimension h1(U, TU ) = h1(X,TX), it determines
uniquely the maximal horizontal slice ψ : M → Ď with M ∼= MX̄

locally near MY . The smoothing loci of X̄ in MX̄ is precisely given
by MX . According to Theorem 3.14, namely an extension of Schmid’s
nilpotent orbit theorem, under the coordinates t = (r, s), the period
map

φ :MX =MX̄\
⋃k

i=1
Di → D/Γ

is then given by

φ(r, s) = exp

(
k∑
i=1

logwi

2π
√
−1

N (i)

)
ψ(r, s),

where Γ is the monodromy group generated by the local monodromy
T (i) = expN (i) (with mi = 1) around the divisor Di defined by wi =∑µ

j=1 aijrj = 0 (cf. (3.6)). Since N (i) is determined by the Picard–

Lefschetz formula (Lemma 3.13), we see that the period map φ is com-
pletely determined by the relation matrix A of the extremal curves Ci’s.
(The period map gives the desired VHS, with degenerations, overMX .)
This completes the proof that refined B model on Y \Z = U determines
the B model on X.
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MR751966, Zbl 0536.14011.



A+B THEORY IN CONIFOLD TRANSITIONS 539

[2] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa; Holomorphic anomalies
in topological field theories, Nuclear Phys. B 405 (1993), nos 2–3, 279–304,
MR1416352, Zbl 0908.58074.

[3] R. Bryant and P. Griffiths; Some observations on the infinitesimal period rela-
tions for regular threefolds with trivial canonical bundle, Arithmetic and geom-
etry, Vol. II, 77–102, Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983,
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