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ABSTRACT. Most inverse boundary value problems are known to be severely ill-posed with
logarithmic stability estimates, and those are shown to be optimal in general situations.
However, in some time-stationary equations, if we take the frequency (or the wave number)
into account and consider the inverse problem at high frequencies, then we can observe, both
numerically and theoretically, that the stability is improving as the frequency increases. In
the mathematical term, the stability estimate changes from a logarithmic type to a Holder
type as the frequency increases.

Motivated by Abraham and Nickl’s recent work about the statistical Calderén problem
[AN19], we will revisit the increasing stability phenomenon in the inverse boundary value
problem for the stationary wave equation with a potential using the Bayesian approach. In
this paper, rather than the Dirichlet-to-Neumann map, we consider another type of boundary
measurements called the impedance-to-Neumann map. Its graph forms a subset of Cauchy
data. We will show the consistency of the posterior mean with a contraction rate demon-
strating the phenomenon of increasing stability.
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1. INTRODUCTION

In this work, we study the inverse boundary value problem for the stationary wave equation
with frequency & in R¢ (d > 3), which is modeled by the Helmholtz equation with a potential.
We will apply the nonparametric Bayesian approach to estimate the potential using boundary
measurements as observation data. The aim of the paper is to establish the consistency result
of the posterior distribution with an explicit contraction rate depending on x. We are mainly
concerned with a large value k. Most inverse boundary value problems are severely ill-posed
with log-type stability estimates. By taking the frequency into account and studying the
inverse problem at high frequencies, then one can observe, both numerically and theoretically,
that the stability is improving as the frequency increases. In the mathematical term, the
stability estimate changes from a logarithmic type to a Holder type as the frequency increases.
Inspired by Abraham and Nickl’s recent work about the statistical Calderén problem [AN19],
we will show the consistency of the posterior mean with a contraction rate, which reflects the
phenomenon of increasing stability.

We now begin to describe the problem in more detail. Let D be a bounded Lipschitz
domain in R" satisfying

(1.1) r-v>c >0 forall zedD.

where v is the unit normal derivative on dD. Furthermore, assume D C By for some R > 0.
We consider the following impedance boundary-value problem for Helmholtz equation with
a potential

(1.2) {(A+f€2+q(w))u:0 in D,

du —iku =g on 0D,

with g € L?(0D) and s > 0 is the frequency (or wave number). Throughout the paper, we
consider k > 1. The potential function ¢ is real-valued and satisfies

K2 K?
(13) ooy < min {0, o o
for some M > 0. It is easy to see that one can choose kg = ko(D, M) > 0 such that
(1.4) for each K > ko, (1.3) implies ||q||r~(p) < M.

For the well-posedness of the boundary value problem (1.2), we show in Theorem B.5 that
there exists a unique solution u € H*(D) to (1.2) satisfying

(1.5) IVullZapy + &2 l1ull 22y + VUl 220y + 62 lullZ200) < Cllglzzom),

for some positive constant C' = C(D, ¢y), see also Remark B.4 for its optimality. We remark
that the main tool used in the proof is the Rellich identities (Lemma B.2). Accordingly, we
can define the following bounded linear operator

(16) Mqﬁz : L2(8D) — L2<8D), Mq’,,g [g] = &,u!aD,

which is called the impedance-to-Neumann map.
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1.1. Deterministic inverse problem. We prove the following stability estimate in the
determination of the potential by the measurement M, > in the deterministic case.

Theorem 1.1 (See also Theorem 2.6). Let m > 0 and s > m + £ be integers. Assume that
M > 0 and D is a bounded C™!-domain in R" satisfying (1.1). Let qi,q2 € H**(D) be
real-valued functions satisfying (1.3), supp (¢1 — ¢2) € D and sup;_; 5||q;||g2s(py < M. Then
there exists a constant C' = C(D, s, m, M,supp (q1 — ¢2)) > 0 such that

(-9
1 2
7)o =@l = Ixola = @)la-@o < Cx™E+C </£ +log E)

for all £ > 1 provided & := || My, 2 — Mg, 2|l am@p)—12000) < 1/€.

Remark. The regularity assumption on 0D is to guarantee that the boundary Sobolev
space H™(0D) is well-defined. One also can refer e.g. the monographs [LM72, McL00] for
more details about the Sobolev space H%s. By slightly modifying the ideas, one can also
obtain an analogue result for the impedance-to-Dirichlet map g — u|sp, where u is the
unique solution of (1.2) satisfying (1.5). The stability estimate in (1.7) consists of two terms.
The logarithmic term reflects the ill-posedness of this inverse boundary value problem and
may be shown to be optimal by carrying out Mandache’s method [Man0O1]. However, this
logarithmic term decreases as the frequency k increases, and the estimate becomes a Holder
type. The transition from a logarithmic estimate to a Holder estimate as k — oo justifies
the phenomenon of increasing stability rigorously.

Before going further, we would like to discuss some related works in the deterministic
setting. Assuming that x? is not a Dirichlet eigenvalue of —A — ¢(z) on D, the Dirichlet
boundary value problem of (A + k% + ¢(x))u = 0 in D with any suitable Dirichlet data
ulgp = f is well-posed. Consequently, the Dirichlet-to-Neumann (DN) map

Ayt f = Oulyp

is well-defined. The typical inverse problem is to determine ¢(z) from A, .. For general 2,
one may replace the measurement A, .2 by the set of Cauchy data

Comz = {(ulpp, Ouulyp) 1 u € H' (D) satisfies (A+£*+¢)u=0in D}
endowed with the Hausdorfl distance
||(f7 g) - (fvg)HHl/QeBH_l/Q

max max

(f:9)€Ca (f.9)€C, f,9 1/2gF1/2
<1'8) dist (Clh,n?aclh,nz) = max 7 (£:9)€Cay H( >~Hlf OH
max max ||(f7.g) B (f’g)HHl/Q@H_l/Q
(£,9)€Cas (f,5)€Cq, |(f, O\ er/2em e

where

2
1.9 vzemre = (1123 5, + 19123 )

The global injectivity of ¢ — A, .2 or ¢ — C, 42 has been established under different smooth-
ness assumptions on ¢, see |[BIY15, BTW20, Buk08, DSFKS13, NS13, SU87|. Logarith-
mic type stability estimates for this inverse problem could be found in [Ale88, BIY15,
NS10, Novll, Sanl3a]. The optimality of the logarithmic stability estimates (in terms of
exponential instability) were proved in [Isal3a, Isal3b, Man01|. Taking the frequency s
into consideration, the increasing stability estimates at the high frequency were derived
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in [Isall, IN12, ILW16, INUW14, Sanl3b, Sanl5]. On the other hand, following Man-
dache’s approach [Man01], one can show that the increasing stability estimates are optimal
[[sal3b, KUW21]. In this paper, we prove the stability estimate of the inverse boundary value
problem (Theorem 1.1) in terms of an alternative measurement (the impedance-to-Neumann
map (1.6)), which has the following two advantages:

e can be easily quantified in terms of the operator norm (compare with the Cauchy data set
C,x2 with Hausdorff distance (1.8)); and
e there is no eigenvalue issue in this formulation (compare with the DN map A, .2).

1.2. Statistical models. From now on, we additionally assume that D has smooth bound-
ary 0D. In a recent paper [AN19]|, Abraham and Nickl study the Calderén problem, deter-
mination of the conductivity parameter by the corresponding DN map, based on statistical
noise models. Their paper gives rigorous statistical guarantees for the performance of the
Bayesian approach to such statistical Calderén problem, a typical nonlinear inverse problem.
Their results also provide us the interpretations of Alessandrini’s stability estimate [Ale8§]
and Manache’s exponential instability [Man01] from the viewpoint of the Bayesian de-noise
methodology. In this work, we would like to extend Abraham and Nickl’s results to the
stationary wave equation witha potential (1.2), especially, to verify the increasing stability in
the perspective of statistical Bayesian methodology in the non-linear settings. The study of
inverse problems in the Bayesian inversion framework has recently attracted much attention
since Stuart’s seminal article [Stul0] (see also [DS17]). For further results on the Bayesian
inverse problems in the non-linear settings, we refer the reader to other interesting papers
[Abr19, GN20, MNP19, MNP21, NS17, NS19, Nic20, NP21, NW20, Vol13, FKW23].

Before stating the main results of this paper, we would like to briefly describe three noise
models mentioned in [AN19]. Let us define the map

./\/lq7,.;2 = ./\/lq,,g - M07,€2,

where M, ,2 is the impedance-to-Neumann map (1.6) corresponding to ¢ = 0. Let 1, be the
indicator of I,,, where {I,} _, is a collection of disjoint measurable subsets of JD. Denote
¥; = ¢;1y,, where ¢; is the normalization constant so that ||¢;||729p) = 1. We modify the
electrode model [AN19, (1.2)] by considering the following model:

(1.9) Yie = (M2 [0], Vo) 200y + €30, Gje KCN(0,1), jL<P

Hereafter, CN(0, 1) denotes the complex normal defined by ¢ ~ CN(0,1) iff { = R + iS¢,
where R, 3¢ are iid standard normals, denoted by A(0,1). For simplicity, we assume that
the noise level € > 0 is uniform for all j,¢ < P.

Another model is a theoretical model based on the spectral measurements, also a discrete
model. Let {¢;} = {¢;}32, be the set of real-valued eigenfunctions of the Laplace-Beltrami
operator on 9D, which forms an orthonormal basis of L*(0D). Scaling {¢;} appropriately,

{¢§p)} also forms an orthonormal basis of H?(9D) with p € R, where H?(9D) is the L*(0D)-
based Sobolev space defined on 0D, provided that 9D is sufficiently smooth, with the con-
vention H°(0D) = L*(OD). The data in the spectral noise model is given by

iid

(110) }7;[ = <Mq,n2[¢§'p)]7¢§‘0)>L2(8D) + €§j€7 gjf ~ CN(Ov 1)a j,€ < P7
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with p € R. According to [AN19], the parameter p is chosen by the experimenter and it

reflects how the signal-to-error ratio varies with the frequency j of gb(p ), as p increases, the
signal at high frequencies (p is large) decreases compared to the 81gnal at low frequencies.

We want to make further remarks about (1.10). Note that we can identify the Hilbert
space HP(OD) over the complex field with the Hilbert space HE(OD) over the real field R.
Now the model (1.10) can be written as

Note that /\;lq,,{z is a complex linear map on H?(9D). It is not difficult to see that %Mqﬁz
is a real linear map on HE(9D) and

RN, e li6] = R (1M, [0"]) = ~SMyalof]

By writing g;c = Rgje, 9y = —Sgje and Yy, = (RYj, —SYje)T, one sees that the model (1.10)
is equivalent to

. {(W (0], 61" 12(00) + €951,
Jjt =
<§R q,ﬁz[l(bj ]7¢£ >L2(8D)+€gj£7

for gje, g}, SN (0,1). In other words, /\;lq,ﬁz acting on H"(0D) is completely determined by
RM,, .2 acting on HE(OD) and vice versa.

The third model studied here is a continuous model, which can be formally considered
as the limit model of the discrete one (1.2) as J,L — oo. To be precise, we consider a
Gaussian white noise model on a space of Hilbert-Schmidt operators (a separable Hilbert
space). Each real linear operator T : H:(OD) — L?(0D) can be represented as follows: for
any real f € H?(0D)

(

Z tio(f, qb ) HP(9D) P g)) = Z tjébg-]gf)(f)
(1.11) e He
Z el (b( )17 (@D) P Z tﬂbﬂ
L G =1 Jt=1
where

vP () =0 @ 8" (f) = (.6 iromy 8y
0 f) =6 @0, (if) = —(f. 0 Vo @y, and

Z (tie + (t;Z)Q) < 00.

Jl=1
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Denote H, the space of all real-valued Hilbert-Schmidt operators Hﬂg(@D) — L? (0D) and H,,
itself a Hilbert space with the inner product
(S, T)m, = Z (850t e + Sigts)
je=1

Z ( (SO, 64 2oy (TS, 61 ) 12(0m)

+(5G0). 61" 12(om) (T i), &) 120m) )

where s;¢, 87, 0,1, are defined as in (1.11).
The continuous model with the Gaussian white noise defined on the space of Hilbert-
Schmidt operators H,, is given by

(1.12a) Y = RM .2 + W

which is realized as a Gaussian process indexed by Hl,, namely,

(1.12b) Y, Thu, = (RM 2, Ve, + (W, Ty, for all T € H,
where

T)m, = Z gﬂ<T¢ é L2 op) t Z gje Cb(p) >L2(aD)

je=1 j.e=1

for gje, g}, S N(0,1). In other words, the process W is an isonormal Gaussian process
indexed by the Hilbert space Hl,, see e.g. the monographs [GN21, Nic23|. Note that

E[W(T)W(S)] = (T, S)g, for all T, S € H,.

Let IP’?”Q (also depends on p) denote the probability law of Y in (1.12a) and Eg”“2 be the
corresponding expectation. One sees that ]P’g”"2 is the probability law of eW. We mainly
focus on the model (1.12a), see Theorem 1.2 and Theorem 1.4 below. By following the ideas
in [AN19, Appendix D], one can also obtain similar results for the model (1.9) and (1.10).
The work [AN19] establishes the “equivalence” of three models described above for Calderon’s
problem. Likewise, the same proofs work for the measurement M, ..» here.

1.3. Statistical inverse problem. Let Dy € D be an open domain', o > 0 and M > 0.
We define

Do = {q € CO(E,R) :q(x) =0in D\ﬁo}
Vi, (M) ={q € V, : lallem) < M} .
We will prove a contraction result for the continuous model (1.12a) in the following theorem.
Theorem 1.2. Let M > 0 and 0 < ¢y < 1 be real parameters. Let D be a bounded smooth
domain in R? satisfying (1.1) and Dy € D. Let p > 2d — 1 and let «, 8 be integers satisfying
a > (3 > 7d/2. Then there exist a positive constant C' = C(D, ¢y, p, 5, M,supp (¢1 — ¢2)) and
a measurable function ¢ .2 = ¢. ,2(Y") of the observations Y ~ IP’g”*2 such that

sup Pg"& (Ngew2 — qlloo > Ci(e)) = 0 ase — 0,
q€Vp, (M)

IThis means that Dy C D.
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where the factor £,(0) is explicitly defined by

[NJIsH

o 1
(1.13) &le) = /{%+162(a+d)(17—d+1) + (/@ + log —>
9

for all sufficiently small € > 0.

It is important to point out that the contraction rate £x(g) consists of two parts: a log-
arithmic rate and a Holder rate. The logarithmic rate decreases as k increases. In other
words, the rate becomes Holder-type dominated at high frequencies. Theorem 1.2 reflects the
phenomenon of increasing stability in the determination of the potential by the impedance-
to-Neumann map as explained in Theorem 1.1.

The construction of the estimator ¢. .2 in Theorem 1.2 follows from the Bayesian approach
to inverse problems explained in great details in [DS17, GN21, Nic23, Stul0]. Roughly
speaking, this estimator is constructed by the posterior mean arising from some given Gauss-
ian process prior. To this end, we would like to discuss the existence of a posterior dis-
tribution in the Gaussian white noise model. As above, W is a centered Gaussian white
noise indexed by T' € H,, which we also denote as (W(T') : T' € H,), with covariance
E(W(T)W(S)) = (T, S)u,. Since the covariance operator of W is not of trace class, W can-
not be realized as a random element in Hl,. To overcome this inconvenience, we can expand
the space of H, to a weighed Hilbert space as described in [Nic20, Section 7.4, (110)]. Sim-
ilar to [AN19, (13)], by the Cameron-Martin theorem, we can show that IP";”'“2 is absolutely
continuous with respect to ]P’g”‘””2 having the log-likehood function

g 1 - 1 5
(1L14)  Ug) = logpt™ (¥) =log "= (Y) = 5 (RMy,Y)s, — 55| RMyall,

for ¢ € Vpr with D" € D, see also [Nic20, Section 7.4]. The derivation of (1.14) requires the
Borel measurability of the mapping ¢ — ?R./\;lq,,iz from the (Polish) space Vp, equipped with
the ||-||o-topology into the Hilbert space H,,, which can be guaranteed by Lemma 2.5 below.

Assume that II is a prior probability distribution on (Vpr, By, ), where By, is the Borel
o-field of the (Polish) space Vp,. The Bayes theorem implies

_ Jype(Y)dll(g)
Jy, P2 (Y) dIT(g)

see e.g. [Nic20, Section 7.4, (111)]. In what follows, we denote E(-) the expectation operator
with respect to the prior and EM(:]Y") the expectation operator with respect to the posterior.

Inspire by the prior construction introduced in [AN19], here we consider the priors that
are given by appropriate scalings of a Gaussian process prior. For this end, a base prior I’
satisfying the following assumption is chosen (we consider priors which are slightly smooter
than [AN19, Assumption 1] in view of the stability estimate proved in Theorem 2.6 below,
see also [Nic23, Condition 2.2.1]):

(1.15) II(B]Y) for all B € By,

Assumption 1.3. Let I be a centered Gaussian Borel probability measure on the Banach
space C°(D), and let «, B be integers satisfying o > 3 > 7d/2. Assume that II'(H”(D)) = 1
and the RKHS (H, ||-||3) of II' is continuously embedded into the Sobolev space H¥(D).

Example. As explained in [AN19], the restrictions of Gaussian processes with covariance
given by Whittle-Matérn kernels satisfy Assumption 1.3 for any «, 3 satisfying 2 + g <f <
a—%and H = H¥(D).
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Now let ¢ : D — [0,1] be a smooth cutoff function satisfying that ¢ = 1 on Dy and
supp (¢) C Dy where Dy € D; @ D. The induced prior on g is given by
(1.16) q=catacl where ¢ ~ 1T,
The key parameter € can be interpreted as a penalized parameter. The law on ¢ is denoted
by II.. We also assume that the “true” potential qq lies inside the induced priors on g, i.e.
qo = €%HC90 for some 0y € H*(D) with supp (6p) C Dy.

We now state a key contraction result for the posterior ditribution. Theorem 1.2 then follows
from this contraction result. Let II(-|Y") be the posterior distribution of ¢ conditioned on the
observations Y in the model (1.12a).

Theorem 1.4. Let M > 0,0 < ¢y < 1 and p > 2d — 2 be given parameters. Assume that D
is a bounded smooth domain in R" satisfying (1.1) and Dy € D; € D. Let «, 8 be integers
satisfying « > 3 > 7d/2. The base prior II" satisfies Assumption 1.3 and the rescaled prior
I is given in (1.16). Assume that the “ground truth” go belongs to the set

Q:=Vp,N{g €M : gl < M}.
Then there exists a positive constant C' = C(D, co, p, a, 3, M, Dy, D5) such that

2
po"
(1.17) 1L (/g = qoll Loy > C&u(e)|Y) == 0 ase — 0,
where £, (¢) is given in (1.13). In addition, for each K > C, it holds that
(1.18) sup P2 ([E™(4lY) = qoll =0y > KEule)) = 0 as = = 0.
q0€

By setting ¢. .2 = E"<(¢|Y), it is clear that Theorem 1.2 is an easy consequence of (1.18).
Indeed, since « > 7d/2, we can choose an integer 8 > 7d/2, and, therefore, Assumption 1.3
holds.

1.4. Organization of the paper. We postpone the proof of Theorem 1.1 to Appendix A.
In order to explain the ideas clearly, we split the proof of Theorem 1.4 in Section 2, Section 3
and Section 4. In order to make the paper self-contained, we also provide a proof of the
well-posedness for the impedance boundary-value problem (1.2) in Appendix B.

2. STABILITY ESTIMATE IN TERMS OF HILBERT-SCHMIDT NORM

In order to prove Theorem 1.4, we need to measure M, .2 —RM,, .2 (as well as
My, w2 — My, 2, see Lemma 2.4 below) in terms of Hilbert-Schmidt norm rather than the
operator norm used in Theorem 1.1. In order to to so, we will consider the low rank approx-
imation by projecting §R/\;lq’,€2 onto a finite-dimensional subspace by employing the idea in
[AN19]. Our focus here is to keep track of the dependence of the key parameter k. Recall that

the collection {(bg.z), B;Z))}j,geN forms an orthonormal basis of the space of Hilbert-Schmidt
operators mapping from Hg(9D) into L?*(0D), where

{wm:w®mm:memw>
b (1) =16 @ ¢ (if) = —(f, 6}") romy 5

for all real-valued f € H"(0D). For separable Hilbert spaces A and B, let L£(A, B) be
the space of bounded linear operators mapping from A into B endowed with the operator
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norm ||-||z4,m), and let £o(A, B) be the space of Hilbert-Schmidt operators mapping from A
into B equipped With the inner product (-,-)z,ca,p)- Moreover, similar as above, define the

orthonormal basis {( pr), ]é NYieen of Lo(HP, HT) = Lo(HE(OD), H(OD)) b
{bﬁi”(f) =" © 6" (f) = (£.6]")mr 00y}

b80(if) =10 @ ¢ (if) = —(f. &) iromy6L)

for all real-valued f € H"(9D). Using this convention, one sees that H, = Lo(Hg, H).
We first recall two lemmas controlling Hilbert-Schmidt norms for different domains and
codomains in terms of each other, and in terms of operator norms.

Lemma 2.1 (J[AN19, Lemma 17]). For p,r,s,t € R, let
T € span {(b(’” b<p’"):1§jgj,1g£gf<}.

Y jf
Then there is a constant C', depending on D and the differences » — p and s — ¢, such that
1Tl categmsy < CQL+ TTT) (L KT1) T 00,110,
where 2 = max{x,0} for z € R.

Lemma 2.2 ([AN19, Lemma 18|). For p,r,s,t € R with p < r and s < t, let T €

E(Hﬁf(dfl),Ht). Then T € Lo(Hg, H®) and there exists a constant C, depending on D
and r — p, s — t, such that

(21) ||T||£2(HD§,HS) < CHTHE(HHYQ_W_U’HQ
and the following low-rank approzimation holds:

IR 1
(22) ||T_7TJKT||£2(HD§,HS) S C||T||L(H£7<d71>,Ht) maX{(1+Jd—1)P (1—|—Kd—1) t} ’

where the projection map 7 g is given by

7TJKT=< > (T, b ), 07, > <T75§Z)>HJ~?§?>

JSJLSK JIULK
r 0 T e i (r 0 7(r
- < Z <T¢§' g g)>L2(8D)b§'z)> Z <T(1¢§- ))mbé )>L2(8D)b§'g)>
JSIUL<K J<JULK

We now show the following lemma.

Lemma 2.3. Assume that D is a bounded smooth domain in R" satisfying (1.1). Let ¢, ¢2
be real-valued functions satisfying (1.3). Suppose further that |[RM,, .2 — RM,, 2|lm, <
1. Then for parameters satisfying d — 1 < m < p, there exists a positive constant Cy =
Co(D, co, p, m), which is independent of x, such that

d—1—-m
(2.3) [ RM g, 2 — gce-/\/lqz,f-cQHE(Hﬁ“,LQ) < Go|RMy, 2 — %MQQ,fszﬁlgl_p
Note that it suffices to take Cy(D, co, p, m) > 1.

Remark. Note that by (2.1), for each m +d — 1 < p, we have
(2'4) H%quiz - §R'/\/lt12,1€2||]1'11p < OH%M(]L,@ - éR-A/lqz,fc?||E(117D§{”,LQ)
for some C' = C(D,m,p).
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Proof of Lemma 2.3. It is not difficult to check that the operator norm of a linear
operator between separable Hilbert spaces is bounded by its Hilbert norm: For each m € R,
one has

||§RMq1,f€2 - %qu,fiQHE(Hﬁ“,LQ) < H%que? - %Mq27/§2||Hm
< H%qui? - WJJ?RMW#HHWL + H%MQQ»HQ - WJJ%M%HQHHWL
+ ||7TJJ§]%Mq17H2 — WJJ%MQ%HQ ||Hm'

Using (2.2)? in Lemma 2.2, together with the fact IRM ;w2 ll ez, 2y < (Mg m2llee ey <
C(D, co) (which is a consequence of the energy estimate (1.5)), for each j = 1,2, we know
that there exists a positive constant C' = C(D, ¢y, m) such that

(2.5) [RM, w2 — 71 RM g, 2|1, < C(1+ JET)mm for all mo>d — 1.

On the other hand, by Lemma 2.1%, we see that there exists a positive constant C' =
C(D,p,m) such that

|71 s RM 2 — T1 s RM, 2|1,
S C(l + Jﬁ)p_m”ﬂjl]%/\/lqlﬁ? - WJJ%MCH,K/QHHP
< C(1+ JTTP ™| RM, 2 — RM 2|, for all p > m.

From three estimates above, it follows easily that there exists a positive constant C' =
C(D, ¢y, p, m) such that

Hg%-/\/lql,n2 - §}CE-/\/lqz,ﬂQ||£(HH§{L,L2)
< C (U TFTYI 4 (L JTTP T [RM g, 2 = RM 2]l )

d—

£T+J%WRM%M—RM%*m»

§C<J

for all d — 1 < m < p and integers J > 1. We now restrict the parameters d — 1 < m < p.
Since |[|[RM, 2 — RM, .2||m, < 1, choosing
d—1

J= L”WW - M,@Hﬁ;ﬁ

in the estimate above, (2.3) follows immediately. O
We next show that measurements ®M,, .o — RM,, .2 and M, .2 — M,, .2 are equivalent.

Lemma 2.4. Suppose that all assumptions in Lemma 2.3 are satisfied. Then for each
d—1<m<p—d+1, we have

H-/\/lqmc2 - qu,HQHHp = H%J\/lqmc2 - §):E~/\/lq2,/€2||lﬂlp

and

H%/\/lqmi2 - %que?HE(Hﬂ{HL?) < “-/\/lql,re2 - Mq1,l€2||£(Hm,L2)
S 2“%/\/"(]1,/62 - %Mq17n2||£(HDE”,L2)'

Here || Mg, 2 — My, «2||m, is defined in terms of the basis {bg.jz)}.

2Wechooses:t:O,rszd—l,p:d—l,K:JandT:%qu’,{z (for 7 =0,1).
3We choose s = t = 0,r=m, K=Jand T = 75 R0Mgy, 2o — 777 RMg, 2.
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Proof. The first estimate is obvious since
(SMpp2 — SMe2) (7)) = (RMyy 2 — RM g, ) (167))  for all ;.
The first inequality in the second estimate is clear. On the other hand, we can derive

||(Mq1,fi2 - ng,fﬂ)(f)”[ﬂ(@D)

Mgy w2 — Mg, w2l carm 12) = sup
J#0 £l Emom)
< sup (H(%Mql,n? — "M, w2)(Dllzon) | 1My, 2 - gR/quz,»ﬁ)(if)||L2(aD))
J#0 1/ | o) [if [z (op)
<2 RMy, w2 — RM, 2 | e 2y,
which implies the second inequality of the second estimate. O

We now prove the continuity of the mapping ¢ — M, 2 in terms of Hilbert-Schmidt
norm.

Lemma 2.5. For each p > 2d — 2, we have
”3%-/\/1(11,»{2 - %qu,#HHp < CHQl - QQ||L°°(D)

for some positive constant C' = C(D, ¢, p).

Proof. For p > 2d — 2, we can choose m satisfyingd—1 <m < p—d+1. Foreach j =1,2,
let u; be the solution of (1.2) with ¢ = g¢;, then

(A + K%+ 91) (u1 —u2) = (@2 — q1)ug in D,
{8,,(u1 —uy) —ik(ug —ug) =0 on 0D.
By Theorem B.3, we can obtain
[V (ur — U2)HL2(6D) < Cll(q - Q2)U2HL2(D) < CHU2HL2(D)HQ1 — @2/ =(D)
< CH_IHQHH((?D)HQI — @l epy < Cﬁ_lHQHH’"(aD)HQI — @2z (),

which implies

Mg, r2 = Mgy 2 leam 2y < Cllar — @2l =)
for some positive constant C' = C(D, ¢p). Our lemma then follows from (2.4) and Lemma 2.4.
U

We end this section by proving a result analogue to Theorem 1.1, but in terms of Hilbert-
Schmidt norms.

Theorem 2.6. Let D be a bounded smooth domain in R" satisfying (1.1). Assume that
q1, g2 are real-valued functions satisfying (1.3), supp (¢1 —¢2) C D and sup,_, 5| || gspy < M
for some integer § > 7d/2, and fix p > 2d — 1. Then there exist a positive constant
C =C(D,co,p, 3, M,supp (g1 — q2)), independent of , such that

HQI - C12||L°°(D) < Céﬁ (||§R/\/lq1,/€2 - %qu,fe?HHp) )

where é,{ is given by
0 if (=0,

vl

1 1 1\
2.6 L(0) =< (it mam — _log- if —
26) &0 = {utremm s (s o hopg) T i0<0<

1 otherwise.
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Here C is the constant obtained in Lemma 2.3.

Proof. We write 8 = 3s — d and s is an integer satisfying s > 22, and so ||g;|| g2y <
gjllmspy < M. By the Sobolev embedding and Theorem 1.1 (with m = d), one sees that

there exists a positive constant C' = C(D, 3, M, supp (¢1 — ¢2)) such that

1/2 1/2
HCIl - Q2”L°°(D) < OH(QI - QQ)XD’ Hs—d(R4) < CH(Ql - C]2)XD||I;75(Rd)||Q1 - q2||H{35—d(D)

<27) d, 3 .1 1 _%(S_g) d, 3 1 1\ 2
< Cr2T2&2 4+ C (/@ + log E) < (Ck2T2&2 4+ C (ka + log E)

provided &€ = || My, w2 — My, w2 £(ma,12) < 1/e. Combining Lemma 2.3 and Lemma 2.4 (with
m = d) yields that

1
&< H‘SRMQI,KQ - gce~/\/lqz,m2”ﬁ(Hﬂ'jg,H) < 2COHSCEJ\/lql,N2 - %ng,ﬁHﬁ;d“
with Cy = Co(D, o, p) given in Lemma 2.3, provided ||[fM, .o —RM, .2|lm, < 1. Therefore
the condition £ < 1/e can be guaranteed as long as
1
(2Cpe)p—d+1”

Hence, whenever (2.8) holds, we obtain from (2.7) there exists a positive constant C' =
C(D, co,p, B, M,supp (q1 — ¢2)) such that

(2'8> ¢:= Hé)%'/\/lqw@2 - §)Ct/\/lqz,HQHIHIp <

NI

d 1 1 1\
- iy < OrztlC2o-avn + (O — log-=
g1 — @a||Loe(p) < Cr2T (20 + (H+p—d+1 OgC)

On the other hand, if ¢ > 1/(2Cpe)P~41, we simply consider the trivial bound || —
@2 Leo(py < 2M and the proof is completed. O

3. TESTS AND PRIORS’ PROPERTIES

To prove Theorem 1.4, motivated by [GGVDV00], we would like to prove the existence
of certain test functions by showing the existence of appropriate estimators having good
concentration properties. Recall that IEDg”’€2 is the probability law of Y arising from (1.12a)
and EgﬁQ is the corresponding expectation. Using (2.5), we can prove the following lemma
by following the argument in [AN19, Lemma 8|.

Lemma 3.1. Assume that D satisfies (1.1). Let g9 € L*(D) be the “ground truth” with
ol zoe(py < Mo for some My > 0. Let My > 0 and denote rg = ko(D, max{My, M;}) the
positive constant given in (1.4). Fix any wave number x > kg and real parameters 0 < § < 1
as well as p > (d — 1)/4. Let . > 0 satisfy

7755_(1_5) — 00 ase— 0.

For any 7 > 0, we write C;, = 1/2(1 + 27 +272). Then there exist tests ¢ = ¢(Y) with
Y ~ P©** such that for all sufficiently small € > 0, one has

(3.1a) B2~y < 2exp (—7(n./2)?)
and for each ¢ € L>(D) with ||¢||ze(py < M; and |RM, 2 — ?RJ\;lquHHP > 20, 1., we have
(3.1b) E2[1 — ] < 2exp (—7(1./2)%) .
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Proof. We define the random element M by

(3 e 3 i

j»ES‘]E j7£§JE

where J. = |n./¢| and
Mie =Y, (0B, 0))m, = (RM 02 (6, 68”) 1200) + €950
Ay = (Y, (0,89)) i, = (RM g2 (107)), 61”) 1201 + €9

where from (1.12b) we see that g;, = (W, (b;’z),O»Hp s N(0,1) and g, = (W, (O,bﬂ ), S
N(0,1).

We want to show that M is a legitimate estimator of /\;lqﬁz. Let C' > 0 be a positive
constant to be chosen later. It is easy to see that

Pe (M = RM g pells, > C. )
- ~ 1
(32) <1 {H%M(],HQ — WJEJE%MQ’HZHHP > 50775}

N ~ 1
+ ngﬁ2 (HM — WJSJE%quﬁQHHI) > 50776) s

which is known as a bias-variance trade-off inequality.
We first estimate the bias term. Similar to (2.5) (with m = p), we obtain that

d—1—p

||§R./\;lq k2 — 7TJ£J£§RM,1 ;#HH < Cng a1

for some positive constant Cy = C1(D, o, p). Hence we can estimate the bias term as
~ ~ 1 -2 1
1 HéRMq,HZ — WJEJE%M%,@HHP > 507’]5 <1 C]_z]g > 507’]5
= P P _—(1-8)2 S\ 21
<14{Ch <—> > 50775 =1 {C’ﬂdflgdfl e 1935 > O (e~ 179 71}
3
=1 {Oﬂﬁe%*l > O(ngs_(l_é))ﬁ}
Since pd > d — 1 and n.e~ =% — 00, we conclude that
- - 1 O 1
1< [[RMg 2 — T5 0. RM 2|1, > 507]5 <14C1Je > 507]5 =0

for all sufficiently small € > 0.
Next, we estimate the variance term. Applying Parseval’s identity yields

||M - WJEJE%M(] HZH%‘H
= Z <|MJ€ - <§RMq n2(¢(p ), e >L2(8D)|2 + |M;z - <%Mq,ﬁ2<i¢§‘p))a ¢§0)>L2(8D)|2>

J<Te

= > (lggel® + lgiel®).

IS Te
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Using the tail inequality in [AN19, (36)] or [GN21, Theorem 3.1.9], we have

Pr ( > (lgiel® + 1g5el®) = 2(J2 + 20.v/7 + 2@)

JA<Te

< Pr ( > gul* = J2 +2J5\/5+2x> + Pr ( > (gl = 2 +2J5\/§+2x>

j’ZSJE ]7£SJ€
< 2e 7.

We now choose x = 7(1./€)? in the above inequality and see that

2
0p—7(0:/2)? > Pr ( Z (|gj€|2 n |9;'e|2) >2(1+ 27+ 27-2) (&) )

€
J<Je

= Pr (M = 70,0 RM e, = V200 + 27 +27)1.)

It follows from above that M is indeed a valid estimator. This can be seen by choosing
C =C,=+/2(1+27+272) in (3.2) we reach

(33) P (1M = RM e i, > Crpe ) < 26770/

which is valid for all K > kg and for all ¢ € L>°(D) with ||q||cc < max{My, M;}.
Finally, we want to verify that ¢.(Y) := 1 {||M — RM g 2|1, > C’Tns} satisfies (3.1a)—
(3.1b). One can choose ¢ = qp in (3.3) and see that

E©y = PP (M = RMyyells, > Crrr.) < 26770097,

which verifies (3.1a). On the other hand, for each ¢ € L*®(D) with ||g|[zepy < M; and
[RM 2 — RM g 2|, > 2C:1., we have

Egﬁ [ 77Z)] ]P)?HQ (HM - %MQO,HQHH;D < C’r”a)

< P ([ R My = RM iy, — M = RM s, < Co.)

= P2 (R My = RM gy 2, = Cote < M = RN 2],
<P (Come < M = RM e, )
Finally, combining the above inequality with (3.3) yields (3.1b). O

Let K(p,q) = Eylog 2 = Ex., log 2(X) be the Kullback-Leibler divergence between distri-

butions with densities p and q. Let pg’“2 be the probability density given in (1.14). We also
denote Var, the variance operator associated to the probability measure ng“? Following the
same argument as in [AN19, Lemma 9], one can easily derive

12 12 1 _
(3.4&) K<pgo7 ,pav ) = 55 2Hg%-/\/lqo,n2 - %Mqhnzn]%lp

and

qo,K2

Pe -
(3.4b) Var,, (log W) = 2| RM 2 — %M%@H]%Ip

£
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for all qo, g1 € L>(D) with [[go||1<(p) < Mo, ||g1][r=(p) < My and & = ko(D, max{Mo, M }).
We now define the Kullback- Lelbler ball Bg.(n) with radius 7 centered at o by

H2 :‘62
K(p?"™, p?*) < (n/e)?

By (n) = q € L™(D) : 1o
Varg, (log = | < (n/e)’

£

see also [GN20, (A4)]. From (3.4a), (3.4b) and Lemma 2.5, for each p > 2d — 2 there exists
a positive constant ¢ = ¢(D, cp, p) such that
{a€ (D) llg = wllL=w) < en}
C {q€ L®(D) : |RMy,2 — RM, 2|lu, <n} C Bip(n) foralln >0,
hence
(3.5) {q€CD):|lg— @llz=m < e’} C Bip(n) for all sufficiently small n > 0.

With the preceding preparations, we now prove the following support result for the prior
I1. along the lines of [AN19, Lemma 11|, roughly indicating that the prior puts a sufficient
amount of "mass" near the true parameter.

Lemma 3.2. Let M > 0, 0 < ¢y < 1 and p > 2d — 2 be real parameters. Let D be
a bounded smooth domain in R™ satisfying (1.1) and let Dy € D. Assume that o, are
integers satisfying o > § > 7d/2, the base prior II satisfies Assumption 1.3 and II. is the
prior arising from (1.16). Suppose that ¢y € Q, where Q is the set given in Theorem 1.4. Let

Ne = 5170%1, then there exist positive constants kg = ko(c, D, M) and v = y(«, D, co, p, M),
which is independent of Dy, qq, such that

I (B, () = e 70/
for all kK > ko and for all sufficiently small ¢ > 0.
Proof. Note that I1.’s RKHS is H. = {(#' : 0’ € H} with norm ||-||3,. satisfying the bound
__d_ €
I, < 50 o = 22

Since qo = (qo (recall that supp(qo) C Dy and ¢ = 1 on Dy), qo € H and ||qo||% < M, by
choosing #' = ¢y in the above equation, we see that

M,

e
lqolln. < ?HQOHH <
Hence from [GN21, Corollary 2.6.18], one has

1
11, (||q — o=y < CU?) > exp (——HQOH%{E) 11, (HQHLOC(D) < Cng)

(3.6)
> e _1M2(775/E <”9/||LOO < C%)
where the last inequality follows from (1.16).

We denote N (By, ||*||L~(p),0) the smallest number of ||-|| o (py-balls of radius § needed to
cover the unit ball By in 7-[ Smce H embeds continuously into H%(I;) for some sufficiently
large cube I, then

log N (By, |||l e (py, 6) < K6 &
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for some positive constant K = K (a, D), see [GN21, after Corollary 4.3.38|. It then follows
from [LL99, Theorem 1.2] that

(3.7) (||9 [P c”—f) et/
for some constant ¢ = (¢, K), where s is such that g = f—js, ie s= Qﬁd.

By Assumption 1.3 and Sobolev embedding, one has H C H%(D) C C°(D), and hence
there exists a positive constant My = My(«, D, M) such that

g0l () < Mo,

therefore (3.5) is valid for all kK > ko(D, My). We now combine (3.5), (3.6) and (3.7) to obtain
that
L, (Bi () > ¢~ $H0/0 (a0

for all sufficiently small £ > 0, and together with the fact (n?/e)~2#/(a=4) = (y_/e)?, the
lemma is proved. 0

4. POSTERIOR CONTRACTION

This section is devoted to the proof of Theorem 1.4. Following the ideas in [AN19], we
first establish two results about posterior asymptotic. Recall that D; satisfies Dy € D1 € D.
Choosing IT = II. in (1.15) yields

[ P2 (Y)/po* (V) dIL.(q)
S, PE(Y) /P2 (Y) dIL(q)

We first estimate the size of the denominator in (4.1), which is similar to [AN19, Lemma 14].
The proof modifies the ideas in [GN21, Lemma 7.3.4|.

(4.1) II.(B|Y) = for all B € By, .

Lemma 4.1. Suppose all assumptions in Lemma 3.2 hold. Then

2
sup PL*" (Lgo) —0 ase—0,
q0€Q

where Lgo is the complement of the event

Ly, = {/ (p2™"/p2") dIT(g) > e‘”“)("f/f)?}
Vb,

Proof. We follow the argument used in the proof of [Abrl9, Lemma 21|. From Jensen’s
inequality, we have

/v (p2*” /p2*) dT1.(g) > TI. (Biy (1)) exp (/B log(p2™” /po )dﬂa(9)> ,

}e(L (776)
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where II, = II./IL. (B%; (1.)). Combining the above equation with Lemma 3.2 implies

poe (k) — b ([
Vb,

< B (1L (B (n:)) ¥ < 7 0#20/7)

(p2 ) all <@<eWMWW>
(4.2)

< ]P’go”’i2 <e_7("5/6)26X < e_(7+2)("5/5)2> = PEO’KQ (X < —2(n./¢)?),

where

L

Thus, applying Fubini’s theorem and the definition of B, (7.) gives

log(p2*” /pg*") dIl.(q) = — / log(p2"” /p®=") dII(q).
B

Biy,(ne) &1 (1<)

2 2 2 K2
EPCX 2= sup EXlog(pl/pt) 2 —(n:/e)*.
qE€BEy, (e

From (4.2) and Chebyshev’s inequality, we now have
P (L],) < B (X —EPX < ~(n./e))
(4.3) <P (|X - B2 X] > (./2)?)
< (n/2) " Va2~ X,

Finally, by Jensen’s inequality, Fubini’s theorem and the definition of Bf; (7.) again, we can
estimate

2
Var®"” X = R’ / log(p?*” /p®*) dIl.(q) — B2 X
Bf@(ne)
2 ~
< B / (log(pg < /plor") — EL log(pt" /pt" )) dll(q)
Bf(}_,(’?s)

- / Varqo“ log(p§“ /plo-r )dﬂa(Q) < (n:/e)?,
BKL(%)

and our lemma follows from the above inequality and (4.3). O

We now prove the following two results (see Lemma 4.2 and Lemma 4.3 below) using
the method in [AN19, Lemma 12 and Lemma 13| whose the ideas are taken from Bayesian
nonparametric statistics [GvdV17, vdVvZ08].

Lemma 4.2. Suppose all assumptions in Lemma 3.2 hold. Then there exists a positive
constant M’ > 0, independent of x, such that

sup peo* (HE(Hq”Hﬁ(D) > M'Y) > e_(7+4)(’75/8)2> —0 ase—0.

q€eQ

Remark. By Sobolev embedding theorem and adjusting the constant M’ Lemma 4.2 re-
mains valid if ||q|| g (p) is replaced by ||q||z(p).
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Proof. Let L,, be the event as in Lemma 4.1. In view of the posterior distribution (4.1), by
Fubini’s theorem and the identity EgO”*Q(pg’“2 / ngv"‘2)(Y) =1, we have

| fppt (V) /P (V) I (g)
® fyy PE(Y) /B (V) dILL(g)

< e ([ g ) o) o))
B

E@ (L, IL(BJY)) = B2~

(4.4)

€

< 6(74_2)(%/5)2 / EZO’Rz(pg’H/pqOﬁQ)(Y) dHe(Q) — e(7+2)(775/€)2HE(B)
B

for all B € By,, . Let M " be a positive parameter to be chosen later. By Markov’s inequality
(see e.g. [Durl9]) and choosing B = {||q||zs(p) > M'} in the above inequality, we see that

P (e(lglasco) > MIY) > e 080097
K2 K2 _ - 2
< P (LE) + P (L, Iellallms oy > MIY) > e OF900/20)

(4.5)
n2 C e /€ 2 ,nQ
< PO (LE ) 4 00/ RO (1, T1(||g]| oy > M|Y))

< PO (LG) + @O L lgl oy > M),

In conjunction with the facts that =~/ = 1. /e and that |C8'llys(p) < CIClls(oy 1015
for some positive constant C' = C'(D, ), one can deduce that

(46) M. (Il > M) = T ([ C0CH |35y > M)

<0 (10150 > 01/ © M)

We now want to apply Fernique’s theorem following the ideas in [Nic23, Step 1 in Theo-
rem 2.2.2|. In view of the separability H”(D), the Hahn-Banach theorem, and the hypothesis
II'(H?(D)) = 1, we obtain that

P s [70)] = 19150y < ) = 1
TeT
where T is a countable family of (H?(D)). Fernique’s theorem [GN21, Theorem 2.1.20]

implies initially that E'||6"|| yspy < C' for some positive constant C’ depending only on the
base prior IT', and similar to [Nic23, (2.21)] one has

1 (10 s0) > (/2IIC g iy M)
<1 (18l o00) = B0 50y > (/2115 ) (2C) 1 M1)
< exp (= (1e/PIIC s iy M) -
Hence, given any ¢ > 0, one can choose M’ > 0 such that

(1) I (10 20) > 1/ sy © M) < e/,



INCREASING STABILITY - BAYESAIN VIEWPOINT 19
We combine (4.5), (4.6) and (4.7) to obtain
P (Helllgls oy > M) > 000127
< PO (LD ) 4 eGrH0-e)ne/e)
Finally, choosing ¢ > 27 + 6, our lemma immediately follows from Lemma 4.1. O

Lemma 4.3. Under the assumptions of Lemma 3.2, there exists a positive constant C; > 0,
which is independent of x, such that

sup PZOWQ <H5 (H%Mq,n? - 8:E'/\/lqo,f@“]ﬂlp > Cl”a’y) > 267(7+4)(n5/5)2> — 0

qo€Q
as € — 0.

Proof. Let M’ > 0 be the positive constant obtained in Lemma 4.2 and C' > 0 be a positive
constant to be determined later. Define the set

||§R./\/lq K2 — %MQO,K?HHp > 0775
S = qc BVD , ,
" llgllzey < M
then it is readily seen that
11, (HSCE'/\/lq,H2 - §]Ct/\/lqo,m?||Hp > C’n€|Y)

< TL(S)Y) + 1L (lg]l e (py > M'Y)

= L(S|Y)1g +T(S[Y)¥Ly,, +I(S[Y)(1 =)l + 11 (llgllzoe(py > M'|Y)
<l + ¢+ I(SIY)(1 =), + 1L (llgll oo (py > M'[Y)

where 1) is the test given in Lemma 3.1 and L, is the event defined in Lemma 4.1. Accord-
ingly, we can upper bound the probability of the event

B = {IL (|RMy2 = RM gy, > Co|Y) > 2¢~ 000/ |
by
(4.8) PO (LE) + B2y P (TL(S[Y)(1 = )1y, > e~ (rHI0/%)

Similar to (4.4), using the posterior distribution (4.1), the definition of L, Fubini’s theorem
and Lemma 3.1, for each 7 > 0, one can estimate

) fspw )/ (V) dIL(q)
" Jon, P T T

(4.9) < 02/ o /5 (1= ) (V) (2 /p) (V) dIL(g)

EX (IL(S|Y)(1 - ¢)1y, ) = E2*

< om0/ [ e (1= ) (V)L (g) < 220l
s
Hence, by Markov’s inequality and (4.9), we have that
paosr? (HE(S|Y)(1 — )1y, > e*<7+4><"€/€>2)
< (D) (:/2)* Ra0.5° (H (S|Y)(1 — )1}, ) < p21H6-T)(ne/2)?
— I &€ a0 - Y
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and thus from (4.8) we reach
[Pdo:+> (B) < [Pdo:+> (Lg )+ E0" ) + e21t6-7)00:/2),
e = 4¢ 0 e

We choose 7 > 27+ 6 and the corresponding C’. given in Lemma 3.1 (and set C := C), this
lemma is proved in view of Lemma 3.1 and Lemma 4.1. O]
Now we are ready to prove the theorem of contraction result.

Proof of Theorem 1.4. Let M’ and C; be positive constants defined in Lemma 4.2 and
Lemma 4.3, respectively. By Theorem 2.6, for each sufficiently small € > 0, one observes the
implication

H%HHﬂ(D) < MI? J=12 and H%MQI,NZ - §):E~/\/lq27n2HIE]Ip < C’1775
together imply ||¢1 — g2|| oo (p) < C&(Cine),
where &, is given by (2.6). It is not difficult to compute that

d
2

- o 1
E(C1n:) < Cofu(e) with  &u(e) 1= k2Tl eTmratrar + (“ + log ;)

for all sufficiently small ¢ > 0. Therefore, we reach

1L (|lg — ol z=(p) > C2&u(€)]Y)

<IL (HQHH/?(D) > M/‘Y) + 11, (H%MW@Q - §R-/\/lqz,f-eQHTHIp > Clﬁs‘y) .
Combining (4.10) with Lemma 4.2 and Lemma 4.3 gives the contraction rate (1.17).

Next we would like to prove the consistency of the posterior mean E:(q|Y). To begin, let

v be the constant given in Lemma 3.2. Recall the event L,, defined in Lemma 4.1. Define
the event

(4.10)

A:=L, N {Ha (HC] — qoll=(p) > 0255(6)‘}/) < 36_('Y+4)(775/€)2} :

and it is readily seen that, for each constant K > 0 (to be determined later) and for any
sufficiently small ¢,

PL (J[E™ (q]Y) = ol o) > K&x(e))
< PO (A0) PO (B (g — qolY)lzecmy La > K(2))
In view of (4.10), we can see that

A = Lgo U {Hs (Hq — qoll=(p) > CQ§K(5)|Y) > 36*(%4)(175/6)2}

(4.11)

< Lgo Y {HE (|‘§RMQ’“2 o §R'/\/ttj‘((),m2||]HIp > 01775) > 26_(7+4)(775/5)2}

O{IL (s oy > MY) > e CH0e/e7 Y
and then from Lemma 4.1, Lemma 4.2 and Lemma 4.3, it follows that
(4.12) Pt (A% = 0 as e — 0.
On the other hand, by Jensen’s and Cauchy-Schwartz’s inequalities, one can estimate
|E"(q — QoY )| zo(pyla
< Co&l(e) + B (llg = qoll =y L {lla = ol =) > Coule) } [Y) L

< Coale) + (E™(Ilg = qoll3m(m¥)) * T (Il = aoll o) > Catale)[Y) 2

14
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Choosing K > C5 implies
{IE™ (g — qol V)|l ooy Ta > Ku(2)}
(E™ (Il — qoll2e (1Y) * %
L. (lg — qollz=(p) > Catule)Y) " 14

From Markov’s and Cauchy-Schwartz’s inequalities, it yields

PL (1B (g — qolY )l ooy Ta = Kéx(e))

(K - 02)511(5)

1/2
1 02 ( “(lg — ol 7= D)‘Y))
= (K — Cy)éle) x T1. (lg = qollz(p) > Cabu(&)[Y) "> 14
(413) < e B (g = ol V) 10) Y

- (K - 02)51-@(5)
x B2 (TL(|lg = qoll () > Catn(2)|Y) 1)
V3e—z(r+)(ne/2)?

<

- (K — 02)55(8)

By Fubini’s theorem and the definition of A, one can compute that

EL (E™ ([lg — qollZ(p)|Y)La)

K? e 1/2
Egm (]EH (Hq_QO|’%oo(D)|Y)I]_A) .

2

)2 12 pa"
< O/ g (/Hq - CJoH%oow)pE—(Y) st(Q)>

qo,K?
£

< (1 +2)(ne/e)* 11 (Hq _ qo||L°°(D )
Putting together the inequality above and (4.13) yields
PO (JE (g = qol V)| La > K6u(€))
(4.14) V3e—(e/e)? p— )
<Y E™ (|lg— qol/2erp) -
= (K . C)f,«v(a’:“) (”q QO”L (D))
Since
E" (llg — %H%oo(p)) <2 (||QO||%<>°(D) + EHEHQH%M(D)) 5
q = /¥ and EM||0/||7. p is finite, by Sobolev embedding theorem, we see that
EIL <||q — qo]% ( D)> is uniformly bounded for ¢y € Q. Finally, the limit (1.18) follows from
(4.11), (4.12) and (4.14), as well as the fact e~ /9% /¢, () — 0 as € — 0. O

APPENDIX A. STABILITY ESTIMATE OF THE INVERSE PROBLEM

In this section, we are devoted to the proof of the stability estimate in Theorem 1.1. We
first observe the symmetry property of the impedance-to-Dirichlet operator.

Lemma A.1. Let ¢ € L>(D) be real-valued functions satisfying (1.3). Then

/ (Myr2lg1]) g2dS = GiM2[g2] dS  for all g1, 90 € Lz(aD).
oD

oD
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Proof. Let uj,uy € H'(D) satisfy (1.2) and (1.5) with g = g1, go, respectively. By direct
computations, we obtain

0= —ik (/ (Oyu1) up dS —/ 10, U dS)
oD oD

= Oyuy (Oyug — ikug) dS — / (Oyuy — iKkuy) Oyus dS

oD oD
— [ Myclo)g2dS = [ g1 (Myalga) a5
oD oD
and hence the lemma. O
With the above symmetry property at hand, we are now able to prove the following crucial
integral identity.

Lemma A.2. Let m > 0 and ¢q1, g2 € L>(D) be real-valued functions satisfying (1.3). Given
any g1, 92 € L*(0D), let uy,us € H'(D) satisfy (1.2) and (1.5) corresponding to ¢ = ¢; and
g =g, 7 =1,2. Then

/ (Ch - CI2)U1U2 dx
D

< KJ_lHMql,n? - ng,ff2||Hm(8D)—>L2(6D) (||(9VU1||Hm(aD) + H||U1||Hm(aD)) X

x ([0vuzll L2opy + Klluzll L26D)) -

Proof. Straightforward computations show that

— ilﬁ?/ (1 — @@)uug de = —ik (/ (Opuq) ug dS — / U0, Uy dS)
D 8D 8D
= dyuy (Oyug — ikug) dS — (Oyuy — ikuy) O, ug dS

oD oD

:/a (Mql,n2[91])92d5—/ g1 Mg, (92 dS.
D

oD
Combining the above equation with Lemma A.1, we have

—i/i/ (1 — @)uug dz = / (Mg 2 = My, 2)[91]) g2 dS.
D oD

Application of Holder’s inequality gives

/ (@1 — @2)urug do
D

K < lg1llzm @) |92l L2(00) | Mgy w2 — Mg, w2 || 5m(9D)— L2(0D)
and notice
9illzm o) < 10vwsl|zm D) + Kllwsl| mm o),
the lemma is obvious. ]

In order to make the paper self-contained, we recall the complex geometric optics (CGO)
solutions described in [INUW14, Lemma 2.1| or [ILW16, Proposition 3.2|, see also [Hih96,
SuU8T|.

Lemma A.3. Let d > 3 and 0 > g be integers. Assume that ¢ = n+i¢ (1, £ € R?) satisfies
> =r*+ |7 and n-£=0 (<= (-(=r?).
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Then there exist constants C,, > 0 and C' > 0, independent of &, such that if |{| > C.||q|| o (p)
then there exists a solution u to the equation (A + % + ¢(z))u = 0 in D of the form

i-x C
u(z) =T (1 +2(@),  [Wllaem) < EHQHHU(D)
For our purpose, we will choose o = 2s for integer s > %l. For later convenience, we denote
S .= {x eRY: |z = 1}. By the trace theorem, e.g., [LM72, Theorem 9.4], we have
lujllimop) < C (lujll2o) + 1V g 2))
10,1l 20y < C (sl 2oy + IVE" Dl 2y)

for some constant C' = C(D, m) > 0, where (V®*);,..;, = 0;, -+ - 8;,. Thus, we can substitute
the CGO solutions into the identity in Lemma A.2. We now able to prove the following
lemma.

(A1)

Lemma A.4. Suppose that all assumptions in Theorem 1.1 hold. Let C\, be the constant
given in Lemma A.3. Then there exists a constant C' = C(s,m, D, M, supp (g1 —q2)) > 0
such that

(@1 = @2)xp) (rw)| =

/ (g1 — g2)e™ "™ dx
]Rd

< Cfim+3ecaHMq1,n2 - MQQ,HQ ”Hm(aD)ﬁLQ(BD)

FE (Lo ([ s ram o mvortora) @)

for all r > 0, w € S, a > O, M with k2 + a® > % and k > 1, where {y) = (1 + |y|?)'/2.
Hereafter, x and y denote the phase variables in the Fourier transform.

1 4

Proof. Fix any w € S9!, since d > 3, one can choose w*, @+ € S9! satisfying w - wt =

w- ot =wh @t =0. Like in [[NUW14, Lemma 3.1|, we set

r r2\ 2
Sl=awt, m=—=w+ (KE+d>-—) @t
2 4
§o ==&, M= —Tw =,
and thus for each j = 1,2 we see that
&y =0, PP =r+GP 1§ =a>CM > Culgjllazn)-
For each j = 1,2, consider the CGO solutions with ¢ = ¢; described in Lemma A.3:
cCM CM C

i¢j-x C

We now plug those u; into the inequality in Lemma A.2 to obtain

/ (1 — @2)uug dz
D

< Hil”-/\/lql,nz - Mq2,52|‘Hm(8D)~)L2(8D) (HauulHHm(aD) + HHulﬂﬂm(aD)) X

/ xo(q1 — @) (1 + 1) (1 + hy)e ™" da
R4

X (l0yuzll 20y + ElluzllL2om)) »
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which implies

.7 xpla — @2)] (rw)| =

/ xp(q1 — Q2)€7im'zd$
]Rd

< KMy, w2 — My, 2| imop) 1200y (100t || mmon) + Ellw|| amop)) %

X (”81/U2HL2(6D) + /1HU2||L2(8D))

/ (g1 — @)e "™ (11 + by + 1¢e) da
D

+

We pick Ry = Ry(D) > 0 such that D C Bg,(0). For each j = 1,2, since
15l 20y < Cligjllmsy < € (since s > df2),
we have |u;(z)| < Celéfo = Ceafo for all z € D, which gives
lujllzapy < Cet™.
We can estimate

Vsl 2(p) = [liw;¢; + €Nyl r2py < (Gl reepy + €70V || 2oy
< Cla+ K)e*o + Cefo < Cre,

and, inductively,
VU || 2(py < Cr'e®  for all £ € N.
Therefore, by (A.1), we have
(A.3) 10uui|| eopy + Kl || areop) < CT2e€* for all £ € NU{0}.

We now choose y € C®°(D) with 0 < x < 1 in R? satisfying x = 1 near supp (¢1 — ¢2), and
alm to estimate

/ (1 — @) "™ (Y1 + o + h1ahe) Az
D

[ (@ = eo)ale b)) .
with W(z) = ¢1(x) + () + ¥1(x)h2(x) by modifying some ideas in [[LW16, Lemma 3.4].

It is not difficult to see that

C
)\ s < =,
W] 25 (py < -

Since D is an extension domain, one can find an extension e € H?*(R?) with Wey|p = .
Using the Parseval’s identity and the convolution identity for Fourier transform, one has

/R d((Ql — @) xp)(@)e T (2) y(2) da
= (@) /Rd((ql — g2)xp) (¥) (eI W x ) (—x) dx

= (2m) ™ /R = a2)xp) () (71X ) 5 (We ) ) (=) dx
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By Fubini’s theorem and Hélder’s inequality, we have

/Rd<(ql = g2)xp) () (71X ) 5 (Wee) ) (=) dx
= /R [((ar = a2)xp) GOl (€70 x) 5 (W) ) ()| dx
= [t~ o o)
< /R ) < /R 1 = )Xol GOl e x) (—x —y)| dx) (Toee (y)| dy

1/2

< ( /R e ( /R N = @)xn) Cll(e X (—x ~y)| dX)2 dy) X

X ||\I/ext||H25(Rd)

/Rd(e_iw)X)A(_X —¥)(Wexe) (y) dy’ dx

1/2

= ([0 e = o 0l =] 0)*dy )

X H \Ijext HH%(Rd)

< ([ ([ s ro—n i - ehxor e a) ay) s

I
It is easy to see that ||y

o R | Vext || 725 () -

merdy) < O(s, D), and thus

/ (g1 — @2)e "™ (P + s + hrah) Az
D

<o ([ ([ om0 1o - o 1 ax) ay ) e

Note that the above inequality does not depend on which extension We,; of W is chosen. In
view of the equivalence (see e.g. [McL00, Chapter 3])

C
inf Wy s || py2s py < —,
\I’extEH2s(%R%)7\Ilext|D:\Ij|| oll 2 (R) |V 25Dy < p
we obtain
/ (@1 = go)e™ " (W1 + o + P1thy) da
(A.4) b

<3 ( [ ( [ oxs =) = o) P dx) dy) -

The lemma is proved by combining (A.2), (A.3) and (A.4). O
Similar to [INUW14, Lemma 3.2] or [[LW16, Lemma 3.5, we can easily prove the following
corollary by choosing a suitable parameter a.

Corollary A.5. Suppose that all assumptions in Theorem 1.1 hold. Let C, be the con-
stant given in Lemma A.3 and R, > C,M. Denote £ = ||[M, .2 — My, 2|l am@D)—12(0D)-
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Then there exists a constant C' = C(s,m, D, M, supp (¢1 — g2)) > 0 such that the following
statement holds for all 7 > 0, w € S and Kk > 1: If 0 < r < k + R, then

(g1 = g2)xp) (rw)]

o R 1/2
<owsetg o ([ ([ e n i - w6l o) )
* Rd R4
otherwise if r > k + R, then
(01— a2)x0) 1)

<owmies s O [ ([ sy o —mnorof) )

r

Proof. If 0 <r <k + R,, we take a = R,; otherwise, we set a = r. O
We now estimate the H *-norm of ¢; — ¢» following the argument in [[LW16, Lemma 3.6].

Lemma A.6. As in Corollary A.5, there exists a constant C, depending on
s,m, D, M,supp (¢1 — ¢2), such that

(g1 — %)XD”H*S(Rd)

C
S Clim+3(€CR* +X(T)GCT)5 + EH

for all T > k + R,, where 0 < x(7') < 1 is a continuous function with x(x + R,) = 0.

d
(1 — @2)xoll -+ (re) + CT~72)

Proof. Using the polar coordinates x = rw, we write

(g1 — %)XDH%{—SOM) =L+ 1+ I3,

where

rk+R«

I, = / /d |((q1 — QQ)XD)A(TQ})|2(]_ + 7“2)_87‘(1_1 dwdr
0 Sd-1
T

I = / / (@1 — a)xo) r) P+ %) dwdr
Kk+Ry JSd-1

I3 = /TOO /Sd_l|((Q1 —@)xp) (rw)2(1 4+ rH) 5 r dw dr

It is not difficult to estimate 3. Indeed, since supp (¢1 — g2) C D, Holder’s inequality implies
[((e1 — @2)xp) (rw)| < Cllar — g2llr2p) < € and

fa= C/ / (147 r* tdwdr < CT- 9,
T Sd—l
On the other hand, the following inequality can be proved as in [ILW16, (3.18)]:
L@ [ o [ oxt 2= I — ol (6 dxdy
R4 R R4

< Cl[(q1 — Q2>XD”§{*5(D)‘
Recalling that

(A.5)

/ (T+ 735 dr < oo,
0
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and using Corollary A.5 and (A.5), we can derive
I, < CR20m+3) (CRe g2

1 R K / (k2 y) (0~ 420 (0 ey dz

2
R* |z|<k+R«

< CH2<m+3 CR*52—{——H( )XDHH D)

and
I, < CHQ(m+3)BCT€2

¢ —2s —4s —92s ~
o @ [ / (—x+ 2 y)2|((a1 — a2)xp) ()P dxy dz
k+R.<|z|<T Rd R4

*

< ORMMTOTE? 4 _||(91 — CI2)XD||H

R2
By the definition of I, we can define I, = 0 if T'= k + R,. Finally, the proof of the lemma
is completed by combining all the above inequalities. 0

With Lemma A.4 at hand, we are now ready to prove Theorem 1.1 using similar arguments
as in [ILW16, Theorem 2.1].

Proof of Theorem 1.1. One can fix a sufficiently large
R. = R.(s,m,D, M, supp (¢1 — q2))
in Lemma A.6 to obtain
(A.6) (g1 = @2)Xpllar-+(rey < CR™3 (e 4+ X(T)eT)E + CT—075),

We now restrict £ < 1/e so that log% > 1. We consider the following two cases:

1
(ii) k + R, > plog -

1
(i) x4+ R. < plog 3, -

£

where p > 0 will be determined later.

Case (i). For kK + R, < plog %7 we choose T' = plog % Then it is easy to see that

1 1 1 1
m+logE§H+R*+logE (14 p)log z= +pT,

and, since s > %l, the following inequality holds for all C; > (1]'#)3_’
d
2

—(s—%)
1
79 <Oy </@ + log E) .

We want to choose C; and p so that

d
L\ =D
,im+351—0p — /{m+3eCTg < Cl <li+10g E) 7

equivalently,

1 1
(A.7) (m+3)logk + (Cp—1)log z + (s - é) log (/{ + log E) < log C}.
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Note that k <k + R, < plog% and hence

(LHS of (A.7)) < (m + 3)log <p log %) + (Cp—1) log% + (s - g) log ((1 + p) log é)

1

d 1 d
< (m+3—|—s—§) log(1+p)—|—(0p—1)logg+ <m+33—§> loglog(—c/,.

We now set p = % to obtain

d 2041 1 1 d 1
. < — — — — — - — —
(LHS of (A.7)) < (m—|—3+s 2)10g( e ) 2logg—k <m+3s 2)10g10g5,

and (A.7) holds if

d 20+1 1 1 d 1
1 > — =1 — —log — — = | loglog —.
ogC1_Oi1.€1£Ji<m+3+s 2) og( 50 > 20g6+<m+3s 2) oglog -

Finally, from (A.6) with 7" = plog% = % log %, it follows

1\ 69
(a1 — @)Xxpllg-s@ey < C (fﬂ + log E) ,

Case (ii). When k + R, > plog3 = 55 log £, choosing T' = « + R, and using the fact
X(k 4+ R.) = 0, we have

d
(g1 = g2)xpll s+ (ray < O™ E + Ok + R ™02

s 2 s 11, 1)t
< COK™ - < CK™ k4 —log =
< Ck 5+C(/€+2R*> < Ck 5+C(2m+4clog5)

(-9
1 2
< CrMB3E+C (/-f + log E) ,

where we recall that R, = R.(s,m, D, M, supp (¢1 — g2))- O

APPENDIX B. WELL-POSEDNESS OF THE IMPEDANCE-BOUNDARY VALUE PROBLEM

Let K > 0, g € L>(D), F € L*(D) and g € L*(0D). A function v € H'(D) is called a
(weak) solution of

(B.1) { (A+ /j:z +q¢(z))u=—F in D,
Ou—iku =g on 0D,
if
(B.2a) a(u,v) = (F,v)12p) + {g,v)op for all v € H'(D),
where
(B.2b) a(w,v) := (Vw, Vo) r2py — ((K* + @)w,v) 12(py — ik{w, v)ap

and (-, -)sp is the duality pair on 0D.
We first prove the following lemma similar to [FLL15, Lemma 2.2|.
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Lemma B.1. Let u € H'(D) be a solution of (B.1). For each dy,d, > 0, there hold
IVullZzp) < (5 + lldll (o) + 00 lullza(p)

(B.3a) 51
+ (5 + 35 ) (F B + Lol

and

= | &

(B.3b) ullF2om) < = llullizm) + 52_KHFH%2(D) + EHQH%%@D)'

Proof. We choose v = u in (B.2a), and take the real and imaginary parts, we get
(B.4a) IVullZap) — /D(ff2 +q(2))|u(@)* dz = R ((F,w)r2(p) + (9, w)ap) ,

(B4b) —i’fHUH%%aD) = % ((F, U)LQ(D) + <g,u>aD) .
It is straightforward to derive (B.3b) from (B.4b). Similarly, from (B.4a), we have

01 1
IVl < (2 + llzmcor + 5 ) Nl + 55 1P oo

(B.5)
1 2 1 2
+ EHUHB(aD) + 2_61H9HL2(8D)'

Subsituting 2 = k into (B.3b) and combining the resulting equation with (B.5) easily imply
(B.3a). O

We also need the following lemma, which can be proved using the same argument as in
[FLL15, Lemma 2.3]. SO we omit the details here.

Lemma B.2 (Rellich). For each u € H?(D), the following identities hold
d, 2 1

R(u, x - vU)LZ(D) = _§||u||L2(D) + §<$ v, |U|2>8D7

2—d 1

R(Vu, V(z - Vau))2(p) = Tuwnizw) + 5w, Vul?)on

We now prove the following wave-number explicit estimate for the solution of the boundary
value problem (B.1) similar to [FLL15, Theorem 2.4].

Theorem B.3. Let D be a bounded Lipschitz domain in R", which is star-shaped with
respect to a ball, that is,

(B.6) x-v>c>0 forall ze€dD.

Let M > 0 and the potential function ¢ satisfies ||q|[zp)y < min{M, 16MR2, - 6} where

R > 0 be any number such that D C Bg. Then there exists a positive constant C' = C'(D, ¢o)
such that

HVUH%?(D) ""fQHUH%?(D) + HVU’H%Q((?D) +“2HUH%2(3D)
< C+ 6 )(IFZ2m) + 9l Z20m));
which holds true for all £ > 0 and for all solution v € H'(D) of (B.1).

(B.7)

Remark B.4. The estimate (B.7) is almost optimal for large x > 1 in the following perspec-
tives.
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e In [BSWI16, Lemma 5.5, the authors showed that, if D is a ball then there exist a g €
L*(0D) and a solution u € H'(D) of (B.1) with ¢ = 0 and F = 0 such that x||ul|,2(p) 2

191l 22@D)-
e In [Speld, Lemma 4.12], the author proved that given any bounded Lipschitz domain D,

there exist F' € L?(D) and a solution u € H'(D) of (B.1) with ¢ = 0 and g = 0 such that
sllullz2oy 2 1F | z2o)-

We also refer to, e.g., [CWGLS12, ST18| and the references therein for related results about
this topic.

Proof. Using mollifiers, it suffices to show the theorem for u € H?(D) (also see the proof of
|[FLL15, Theorem 2.4]). Choosing v = x - Vu in the real part of (B.2a) and using Lemma B.2,
we have

2—d 1
R ((F, U)L2(D) + (g, U)aD) = T||VUH2L2(D) + 5(55 v, |VU\2>8D

dr? 9 K2 9 o
+ THUHLQ(D) - ?<LE‘ "V, |U’ >3D - §R(quv U)LQ(D) + Iid(“a U)aDu

and hence from (B.6)

dr? d—2
7““”%2@) = THVUH%Z(D) + R(qu, U)L?(D)

1 K2
— 5w, v)ap — 5(x - v, [Vul)op + 5 (- v, |ul*)ap + R ((F,v)12(p) + (9, v)ab)

2 2
d—2 1 01
< 2Nl + Rl (gl + 3190l

+ 2_62HF||L2(D) + N

KR co K2R
+ 5—4HU”%2(3D) + “R54HVUH%2(3D) - §HVUH%Q(8D) + THUH%Q({)D)'

R
||VU||%2(D) + 2—53“9“%2(013) + HVUH%Q(E)D)

2

Setting 03 = % and 44 = g% in the above equation yields

dﬁ;Q 9 d—2 R(52 R||Q||L°°(D)51 9 R||q||Loo(D) 9
ol < (5 + T 4 TSR [ul + G

S8k’R?>  K’R o
(4 ) Mo, - LIl

R . 2R2,
+ 2_52||F||L2(D) + C_OHQHL?(aD)‘
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Combining (B.3a), (B.3b) and (B.8), we obtain

Co
dﬁQHuH%Z(D) + §||vu||2L2(8D)

Rllq[|z~
< ((d— 2+ ROy + Rllallz=0)01) (5 + llall o= () + 05) + ———2 ) lullf2(p)

01
65 1 5 5
(B.9) + (d =2+ Rés + Rlglle)dn) | 55 + a5, ) U L2) + ll9llz2om)
16 R? 06 1
(B ) (Ll + eI + ol
R 2R?
+ 5 Iz + ||9||L2(aD
2
Since ||q||p=(p) < M, we choose &y = 37, 62 = 75 and compute that
R q||Lee
c1 = d,%2 — (d — 2+ R(SQ + R||q||Loo(D)51) (/{2 + ||q||Loo(D) + (55) — w
1

16 R? 0,
— K’ < 0A —I—R) =
CO K
llgllzo=(p) 4d =7 |lgllzp)
:2 2— 2— oo

16 R? 0
— 4MR2||q||L°°(D) — :‘12 ( c -+ R) _6
0

K

23 2d 3
=2

K

16R? )
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Next, from 4MR2||q||Loo(D) < K?/4 and 2223|\q|| e (p) < K2/4 (see (1.3)), it follows that
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and dg = %(163’2 + R)~! implies ¢; > "‘ . Thus, by (B.9), we have
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Combining the above inequality with Lemma B.1 (with d; = k? and d, = k) immediately
yields (B.7). O
By the Fredholm alternative principle as in [FLL15, Theorem 2.5|, we finally conclude that

Theorem B.5. Suppose that all assumptions in Theorem B.3 hold. Then there exists a
unique solution u € H'(D) to (B.1) and the estimate (B.7) is satisfied.
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