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Abstract. Many inverse problems are known to be ill-posed. The ill-posedness can be
manifested by an instability estimate of exponential type, �rst derived by Mandache [Man01].
In this work, based on Mandache's idea, we re�ne the instability estimates for two inverse
problems, including the inverse inclusion problem and the inverse scattering problem. Our
aim is to derive explicitly the dependence of the instability estimates on key parameters.

The �rst result of this work is to show how the instability depends on the depth of
the hidden inclusion and the conductivity of the background medium. This work can be
regarded as a counterpart of the depth-dependent and conductivity-dependent stability esti-
mate proved by Li, Wang, and Wang [LWW21], or pure dependent stability estimate proved
by Nagayasu, Uhlmann, and Wang [NUW09]. We rigorously justify the intuition that the
exponential instability becomes worse as the inclusion is hidden deeper inside a conductor
or the conductivity is larger.

The second result is to justify the optimality of increasing stability in determining the
near-�eld of a radiating solution of the Helmholtz equation from the far-�eld pattern. Isakov
[Isa15] showed that the stability of this inverse problem increases as the frequency increases
in the sense that the stability estimate changes from a logarithmic type to a Hölder type.
We prove in this work that the instability changes from an exponential type to a Hölder type
as the frequency increases. This result is inspired by our recent work [KUW21].

1. Introduction

Many inverse problems are known to be ill-posed. Even the uniqueness holds in most
cases, the continuous dependence of the unknown on the measurements is very weak. For
some inverse problems, two estimates have been proved to quantify this ill-posedness. For
example, in Calderón's problem, a logarithmic stability estimate was proved by Alessandrini
[Ale88] and an exponential instability was derived by Mandache [Man01]. The estimate
obtained in [Man01] guarantees that the logarithmic stability estimate in Calderón's problem
is optimal. More re�ned stability estimates involving parameters of the equations, such
as the frequency, the depth of the unknown, or the conductivity, etc. were derived for
many cases, not just in inverse problems, but also in the unique continuation. Following
Mandache's idea, exponential instability estimates containing the e�ect of the frequency in
some inverse problems were proved in [ZZ19] (for the transport equation) and in [KUW21]
(for the Schrödinger equation). Inspired by the results in [KUW21], in this paper, we derive
exponential instability estimates emphasizing on the e�ect of the parameters for two inverse
problems, the inverse inclusion and the inverse scattering problems. We will explain our main
results in detail below.
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In a recent article [KRS21], Koch, Rüland, and Salo investigated the mechanisms that cause
the instability for some linear and nonlinear inverse problems. The instability mechanisms
were categorized by three smoothing properties � strong global smoothing, only weak global
smoothing, and microlocal smoothing for the corresponding forward operators. They derived
instability estimates in more general geometries and coe�cients. Here we are interested
in how instability estimates depend on some key parameters. We achieve this by re�ning
Mandache's approach and, therefore, work in the situation of symmetric geometries and
constant coe�cients. In order to present the phenomena cleanly, we choose not to explore
the possibility of extending the results to more general settings.
We dedicate this paper to the memory of Victor Isakov, who made numerous fundamental

contributions in the development of inverse problems. His original research on the phenom-
enon of increasing stability gives us a better understanding of the ill-posedness in inverse
problems. This paper is largely in�uenced by his results.

1.1. Depth-dependent and conductivity-dependent instability of the Electrical
Impedance Tomography (EIT). We �rst study the exponential instability of the EIT.
Di�erent from early woks [DR03a, DR03b, Man01], here we would like to re�ne the previous
estimates in which one can understand the in�uence of other a priori factors of the conduc-
tivity in instability. Precisely, we consider the inverse inclusion problem with the information
of boundary data. We now describe the problem in more detailed. Let Ω ⊂ R2 be a domain
with smooth boundary and γ(x) > 0 (with a su�cient regularity) represent the conductivity
of Ω. Due to the conservation law, the electric potential u satis�es the conductivity equation

(1) ∇ · (γ(x)∇u) = 0 in Ω.

It is known that given any f ∈ H1/2(∂Ω), there exists a unique solution u to (1) with u|∂Ω = f .
The boundary data is given in the form of the Dirichlet-to-Neumann map (DN-map):

(2) Λγ(f) := γ∂νu

∣∣∣∣
∂Ω

,

where ν is the unit exterior normal vector of ∂Ω. The information of the conductivity is
encoded in Λγ and the EIT is to determine γ from the knowledge of Λγ.
This inverse problem was proposed by Calderón [Cal80] where he showed that the lin-

earized DN-map at the constant conductivity is injective. The global uniqueness of the EIT
was proved by Sylvester and Uhlmann [SU87] (for dimensions higher than two) and by Nach-
man [Nach96] (for dimension two). The EIT is known to be ill-posed. A log-type stability
estimate was �rst established by Alessandrini [Ale88], while Mandache [Man01] con�rmed
that Alessandrini's result is optimal by showing that the problem of exponentially unstable.
In several practical situations, the conductivity coe�cient γ takes the following form:

γ(x) = γ0(x) + γ1(x)χD,

where χD is the characteristic function of the domain D. Here, D represents an inclusion
in Ω having a di�erent conductivity γ1. In [Isa88], Isakov showed that, if γ0(x) is known,
then both γ1(x) and D can be uniquely determined by the DN-map (2). A log-type stability
estimate was obtained in [AD05] for this inverse inclusion problem, i.e. determination of D
from Λγ.
We now consider the inverse inclusion problem with γ0(x) = 1 and γ1(x) = κ ̸= 1, that is,

(3) ∇ · ((1 + (κ− 1)χD)∇u) = 0 in Ω
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an the DN-map ΛD is de�ned by

(4) ΛD : H
1
2 (∂Ω) → H− 1

2 (∂Ω), ΛD(u|∂Ω) := ∂νu|∂Ω.
The exponential instability for the inverse inclusion problem described above was proved in
[AD05]. However, the estimate obtained in [AD05] did not show that in�uence of the depth
of D on the instability. In [NUW09], they obtained a depth-dependent stability estimate by
studying the linearized DN-map. Recently, the stability estimate of [NUW09] was extended
to the multi-layer medium in [LWW21] where the e�ect of the conductivity of each layer on
the stability was also discovered. To simplify the discussions, we consider the medium which
has 3-layer structure (the ideas can be easily extended to multi-layer structure). Let Ω′ be
Lipschitz domains such that D ⊂ Ω′ and Ω′ ⊂ Ω. In this work, we study the inverse inclusion
problem with

γ(x) = κ1χD + κ2χΩ′\D + χΩ\Ω′ ,

where κi > 0 are di�erent with κi ̸= 1 (i = 1, 2). We de�ne the following operator:

LDu := ∇ · ((κ1χD + κ2χΩ′\D + χΩ\Ω′)∇u) in Ω.

Likewise, we can de�ne the DN-map ΛD by (4).
One of the main theme of this work is to investigate how the depth of the inclusion D and

the conductivity κ2 a�ect the instability of the inverse problem. To formulate our problem
precisely, we consider Ω = B1, Ω

′ = B 3
4
, and D = Br with 0 < r < 1

4
. We introduce a smooth

function
ψ : ∂D → R

and the perturbed boundary ∂Ds of the inclusion Ds is described by the image of

y = Fs(x) := x+ sψ(x)νx(x), x ∈ ∂D.

Now the linearized DN-map of ΛDs at s = 0, denoted by dΛBr(ψ), is formally de�ned by

(5) dΛBr(ψ) := lim
s→0

1

s
(ΛDs − ΛD).

Indeed, dΛBr(ψ) : H
1
2 (∂B1) → H− 1

2 (∂B1) is a bounded linear operator, see [LWW21, Lemma
2.3]. A log-type stability estimate with dΛBr including the e�ect of the depth r of the
inclusion Br and the conductivity κ2 was proved in [LWW21]. Precisely, under some apriori
assumptions, the following estimate holds:

(6) ∥ψ∥L2(∂B1) ≤ C(κ2 + 1) log(r−1)| log ∥dΛBr(ψ)∥∗|−1,

where
∥ • ∥∗ = ∥ • ∥

H
1
2 (∂B1)→H− 1

2 (∂B1)
.

Estimate (6) clearly indicates that the stability becomes worse as the depth of the inclusion
increases, i.e. r becomes smaller, or the conductivity κ2 becomes larger. It was also showed
in [NUW09] that, given any ϵ > 0, there exists no positive constant C ′ such that

∥ψ∥L2(∂Br) ≤ C ′| log ∥dΛBr(ψ)∥∗|−1−ϵ,

that is, the logarithmic stability (6) is optimal. The deterioration of the stability of re-
constructing a deeply hidden inclusion by the DN-map was also observed numerically in
[IINSU07, UW08, UWW09].
By combining the ideas of [LWW21] and [Man01], we proved the following depth-dependent

and conductivity-dependent exponential instability for the linearized DN-map dΛBr :
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Theorem 1.1. Fixing any 0 < r < 1
4
and κ2 > 1 + κ1. There exists a constant 0 < E < 1

such that, given any 0 < ϵ < E, there exists a function ψ ∈ C∞(∂Br) with

∥ψ∥L∞(∂Br) ≥ ϵ

such that

(7) ∥dΛBr(ψ)∥∗ ≤ C
1

κ2 + 1
exp(−| log r|

2
3 ϵ−

1
3α )

for some constant C which is independent of κ2, r, ϵ.

Estimate (7) corresponds to the statement that the depth-dependent and conductivity-
dependent stability obtained in [LWW21], as well as the depth-dependent stability obtained
in [NUW09], are optimal from the instability perspective. We want to point out that, since
dΛBr is a linear operator, a norm estimate was derived in [LWW21, Corollary 1], precisely,

(8) ∥dΛBr(ψ)∥∗ ≤
C|κ1 − κ2|
|κ1 + κ2|

1

κ2 + 1
r

1
2∥ψ∥L2(∂Br)

for some constant C. The norm estimate (8) holds for all perturbations of the inclusion ψ.
It gives us only an upper bound of the size of dΛBr(ψ) in terms of ψ. The merit of (7) is
that it provides a fact that the size of dΛBr(ψ) could be much smaller (exponentially small)
in terms of some perturbation ψ. The derivation of (7) is more delicate that that of (8).

1.2. Instability estimate for the determination of the near-�eld from the far-�eld.
We now study the instability phenomenon of determining the near-�eld of a radiating solution
to the Helmholtz equation from the far-�eld pattern. The uniqueness follows easily from
Rellich's lemma. Likewise, this inverse problem is also ill-posed. Nonetheless, it was proved
by Isakov [Isa15] that the stability of this inverse problem increases as the frequency increases.
In this work, we want to verify this increasing stability phenomenon from the viewpoint of
instability estimate and hence shows that the result obtained in [Isa15] is optimal. The
increasing stability phenomena were rigorously proved in other situations [DI07, DI10, HI04,
IK11, ILX20, INUW14, Isa07, Isa11, Isa15, KU19, LLU19, NUW13], not only for inverse
problems, but also for the unique continuation property.
Given any f ∈ H

1
2 (∂B1), there exists a unique u ∈ H1

loc(R3 \ B1) solving the following
exterior problem:

(9)


(∆ + κ2)u = 0 in R3 \B1,

u = f on ∂B1,

u satis�es Sommerfeld radiation condition at |x| → ∞,

and the following estimate holds

(10) ∥u∥H1(BR\B1)
≤ C(R, κ)∥f∥

H
1
2 (∂B1)

,

see, for example, [KG08, Theorem 1.1] (see also [Ne01, Theorem 2.6.2] for re�ned inequality
of (10) and [BP08, Theorem 3.3] for elastic waves). It is well-known that u satis�es the
following asymptotic expansion [CK19, KG08, Tay96]:

u(x) =
eiκr

r
u∞(x̂) +O(r−2) as r = |x| → ∞

uniformly for all x̂ = x/|x| ∈ S2, where u∞(x̂) is called the far-�eld pattern. We use u∞(f)
to indicate the dependence of u∞ on f .
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It follows from Rellich's lemma that u∞(f) uniquely determine u in R3 \B1 and therefore
the boundary data f is uniquely also recovered, i.e., the mapping f → u∞(f) is injec-
tive. We now want to remark on the stability estimate of determining f from u∞(f). Let{
Y m
n n ≥ 0, |m| ≤ n

}
be the spherical harmonics, which forms a complete orthonormal

basis in L2(S2). Therefore, we can write

u∞ =
∑
n≥0

∑
|m|≤n

u∞nmY
m
n .

De�ne

ϵ21 :=

⌊
√
κ⌋∑

n=0

∑
|m|≤n

|u∞nm|2 and ϵ22 :=
∞∑

n=⌊
√
κ⌋+1

∑
|m|≤n

|u∞nm|2

Under some a priori assumptions, it was shown in [Isa15, Theorem 1.1] that

∥f∥2L2(∂B1)
≤ 2e2

π
ϵ21 +

2e2

π
ϵ2 +

M1

κ+ | log ϵ2|
,(11a)

∥f∥2L2(∂B1)
≤ 2e2

π
ϵ21 +

√
2

πκ
eM1ϵ

1
2
2 +

M2
1

κ+ | log ϵ2|
(11b)

for some constant M1 > 0. The estimates (11a) and (11b) indicate that the logarithmic part
(κ+ | log ϵ2|)−1 decreases as κ increases, and both estimates change from a logarithmic type
to a Hölder type. In other words, Isakov's work [Isa15] can be regarded as a quantitative
version of Rellich's lemma. Moreover, using (10), one can see that Neumann data can be
easily recovered from Dirichlet data, and the recovery process is stable.
In this work, we will study the counterpart of the increasing stability by investigating how

the exponential instability is a�ected by the frequency. Inspired by the work [ZZ19] and our
recent preprint [KUW21], we prove the following theorem.

Theorem 1.2. Fixing any frequency κ > 0, and let κ̃ := (κ
2
)exp(κ). There exists a positive

constant E such that for any 0 < ϵ < E, there exists a function f ∈ C∞(∂B1) satisfying

∥f∥L∞(∂B1) ≥ ϵ

and

(12) ∥u∞(f)∥
H− 5

2 (S2)
≤ C

[
exp

(
− max{κ̃, 1}

3
ϵ−

1
α

)
+min{1, κ̃}ϵ

1
α

]
for some constant C which is independent of κ and ϵ.

Estimate (12) shows that the instability changes from an exponential type to a Hölder
type when κ increases, and vice versa. Such transition of instability was also established
for an inverse problem in the stationary radiative transport equation in [ZZ19] and in the
Schrödinger equation in [KUW21]. In addition, this result shows that Isakov's result in
[Isa15] is optimal.
Our proof relies a well-known expression (42) of u in terms of spherical harmonics Y m

n . The
crucial step is the identity, which connects the Bessel function with Lommel polynomials,
given in (44). This gives an explicit lower bound of the spherical Hankel functions, see
Lemma 4.1. It is also interesting to mention that, using some re�ned properties of Bessel
functions, John [John60] constructed an example showing a logarithmic stability uniformly
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in κ in the continuation of solution to the Helmholtz equation from the unit disk into its
complement in the plane.

1.3. Organization of the paper. We will follow the general procedure introduced in
[Man01]. We �rst discuss the construction of an ϵ-discrete set in some function space in
Section 2. Using this ϵ-discrete set, we will prove Theorem 1.1 and Theorem 1.2 in Section 3
and Section 4, respectively.

2. Construction of an ϵ-discrete set

Let d ≥ 1. We now want to construct an ϵ-discrete set (a.k.a. ϵ-distinguishable set) for
some neighborhood which is not too large. Here we recall that a set Z of a metric space
(M, d) is called an ϵ-discrete set if d(z1, z2) ≥ ϵ for all z1 ̸= z2 ∈ Z. For each ϵ > 0, we de�ne

N̂ϵ(B 1
2
) :=

{
ψ ∈ C∞

c (Rd) ψ is real-valued, supp (ψ) ⊂ B 1
2
, ∥ψ∥L∞(Rd) ≤ ϵ

}
.

We now prove the following lemma.

Lemma 2.1. Given any α > 0, there exists µ = µ(d, α) > 0 such that the following statement

holds for any auxiliary parameter β > 0: Given any 0 < ϵ < µβ, there is an ϵ-discrete set Ẑ
of (N̂ϵ(B 1

2
), ∥ • ∥L∞) with

(13) |Ẑ| ≥ exp

[
1

2d+1

(
µβ

ϵ

) d
α
]
,

where |Ẑ| denotes the cardinality of Ẑ.

Remark 1. When d ≥ 2, Lemma 2.1 is a special case of [Man01, Lemma 2]. See also [KT61,
Theorem XIV] for more abstract setting, or [DR03a, Proposition 3.1], [KUW21, Proposition
2.1], [ZZ19, Lemma 5.2].

Proof of Lemma 2.1. It remains to prove this theorem for d = 1. We �x ψ0 ∈ C∞
c (R1) such

that supp (ψ0) ⊂ B 1
2
= (−1

2
, 1
2
) and ∥ψ0∥L∞(R1) = 1. We now de�ne

µ := ∥ψ0∥−1
Cα(R1) and N =

⌊(
µβ

ϵ

) 1
α
⌋
.

Since 0 < ϵ < µβ, then µβ
ϵ
> 1. Hence,

(14) N >
1

2

(
µβ

ϵ

) 1
α

.

We divide B 1
2
= (−1

2
, 1
2
) into N smaller intervals of length 1/N . Let y1, · · · , yN be their

centers. De�ning

Ẑ :=

{
ψ ψ(x) = ϵ

N∑
j=1

σjψ0(N(x− yj)), σj ∈ {0, 1}
}
.

Note that each element ψ ∈ Ẑ is smooth with ∥ψ∥L∞ ≤ ϵ and Ẑ ⊂ N̂ϵ(B 1
2
). Moreover, we

see that

∥ψ1 − ψ2∥L∞ = ϵ for all ψ1 ̸= ψ2 ∈ Ẑ.
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Finally, we see that

(15) |Ẑ| = 2N = exp(N log 2) ≥ exp

(
N

2

)
.

Combining (14) and (15), we obtain (13). □

Let r > 0 and let P : ∂Br → Rd ∪ {∞} be the stereographic projection. Let us de�ne

Nϵ(∂Br,P) :=
{
ψ : ∂Br → R ψ ◦ P−1 ∈ N̂ϵ(B 1

2
)
}
,

Z :=
{
ψ : ∂Br → R ψ ◦ P−1 ∈ Ẑ

}
,

and
Nϵ(∂Br) :=

{
ψ : ∂Br → R ψ is smooth with ∥ψ∥L∞(∂Br) ≤ ϵ

}
.

It is clear that Z ⊂ Nϵ(∂Br,P) ⊂ Nϵ(∂Br) and |Z| = |Ẑ|. Hence, we can rephrase Lemma 2.1
as follows:

Proposition 1. Given any α > 0, there exists µ = µ(d, α) > 0 such that the following

statement holds for any auxiliary parameter β > 0: Given any 0 < ϵ < µβ, there is an

ϵ-discrete set Z of (Nϵ(∂Br), ∥ • ∥L∞(∂Br)) with

|Z| ≥ exp

[
1

2d+1

(
µβ

ϵ

) d
α
]
,

3. Proof of Theorem 1.1

We prove Theorem 1.1 in this section.

3.1. General framework of matrix representation. For each ρ > 0 and γ ∈ R, we have

∥ψ∥2L2(∂Bρ)
=

ρ

2π

∑
k∈Z

∣∣∣∣ ∫ 2π

0

ψ(ρ cos θ, ρ sin θ)e−ikθ dθ

∣∣∣∣2,(16a)

∥ψ∥2Hγ(∂Bρ) =
ρ

2π

∑
k∈Z

(1 + k2)γ
∣∣∣∣ ∫ 2π

0

ψ(ρ cos θ, ρ sin θ)e−ikθ dθ

∣∣∣∣2,(16b)

see [NUW09, (2.1)]. For each n ∈ Z, we de�ne ϕn : ∂B1 → C

ϕn(cos θ, sin θ) :=
1

√
2π(1 + n2)

1
4

einθ.

Using (16b) with γ = 1
2
and ρ = 1 gives

∥ϕn∥2
H

1
2 (∂B1)

=
1

2π

∑
k∈Z

(1 + k2)
1
2

∣∣∣∣ ∫ 2π

0

1
√
2π(1 + n2)

1
4

einθe−ikθ dθ

∣∣∣∣2
=

1

2π
(1 + n2)

1
2

∣∣∣∣ √
2π

(1 + n2)
1
4

∣∣∣∣2
=

1

2π
(1 + n2)

1
2

2π

(2 + n2)
1
2

= 1.

That is,
{
ϕn n ∈ Z

}
forms a complete orthonormal set in H

1
2 (∂B1).



REFINED INSTABILITY ESTIMATES FOR SOME INVERSE PROBLEMS 8

Let A : H
1
2 (∂B1) → H− 1

2 (∂B1) be any bounded linear operator. For any pair (n,m) ∈
Z× Z, we de�ne the complex number

anm := ⟨Aϕn, ϕm⟩,

where ⟨•, •⟩ is the H− 1
2 (∂B1) × H

1
2 (∂B1) duality pair. We consider the Banach space X,

which consists tensors (anm) with

∥(anm)∥X :=
1

4
sup

n,m∈Z
(1 + max{|n|, |m|})2|anm| <∞.

We have the following proposition.

Proposition 2. There exists an absolute constant Cabs > 0 such that

(17) ∥A∥∗ ≤ Cabs∥(anm)∥X .

In other words, tensor (anm) can be treated as the matrix representation of the bounded linear

operator A.

Proof. Using the Hilbert-Schmidt norm, we have

∥A∥∗ ≤
( ∑

n,m∈Z

|anm|2
) 1

2

≤ 4

( ∑
n,m∈Z

1

(1 + max{|n|, |m|})4

) 1
2

∥(anm)∥X .

We now compute∑
n,m∈Z

1

(1 + max{|n|, |m|})4

≤
( ∑

n≥0,m≥0

+
∑

n≥0,m≤0

+
∑

n≤0,m≥0

+
∑

n≤0,m≤0

)
1

(1 + max{|n|, |m|})4

= 4
∑

n≥0,m≥0

1

(1 + max{n,m})4

≤ 4

( ∑
n≥m≥0

+
∑

m≥n≥0

)
1

(1 + max{n,m})4

= 8
∑

n≥m≥0

1

(1 + n)4
= 8

∞∑
n=0

n∑
m=0

1

(1 + n)4
= 8

∞∑
n=0

1

(1 + n)3
<∞,

which proves (2). □

3.2. Estimating the matrix representation of the linearized DN-map. The task
here is to estimate dΛnm

Br
(ψ) := ⟨dΛBr(ψ)(ϕn), ϕm⟩. Precisely, we want to prove the following

proposition.

Proposition 3. Given any ϵ > 0 and 0 < r < 1
4
. If κ2 > 1+κ1, then there exists an absolute

constant C such that

(18) |dΛnm
Br

(ψ)| ≤ CR
1

κ2 + 1
ℓ

1
2 rℓ−1

for all ψ ∈ NR(∂Br), where ℓ = max{|n|, |m|}.
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Remark 2. Observe that dΛnm
Br

(ψ) = 0 when n = 0 or m = 0, since ΛDs(1) = 0 for all s ≥ 0.
Hence, we have

∥(dΛnm
Br

(ψ))∥X =
1

4
sup

0̸=n,m∈Z
(1 + max{|n|, |m|})2|dΛnm

Br
(ψ)|

≤ sup
0̸=n,m∈Z

max{|n|, |m|}2|dΛnm
Br

(ψ)|.(19)

Given any function g ∈ L2(∂Br) and k ∈ Z, we de�ne the Fourier coe�cient of g as

gk :=

∫ 2π

0

g(r cos θ, r sin θ)e−ikθ dθ.

It is easy to see that

(20) |gk| ≤ 2π∥g∥L∞(∂Br).

For f ∈ L2(∂B1), we abuse the notation and de�ne

fk :=

∫ 2π

0

f(cos θ, sin θ)e−ikθ dθ.

We need the following lemma, which is a special case of [LWW21, (18)] (taking R = 1 in
[LWW21, (18)]).

Lemma 3.1. For f ∈ H
1
2 (∂B1), we have

dΛBr(ψ)(f)

∣∣∣∣
∂B1

=
∑
a∈Z

λa(f)e
iaθ,

where λ0(f) = 0 and for all a ∈ N

λ−a(f) =
κ1 − κ2
π2

r−1Ta

∞∑
p=1

Sp

[
(κ1 + κ2)ψ−a+pf−p − (κ2 − κ1)ψ−a−pfp

]
,

λa(f) =
κ1 − κ2
π2

r−1Ta

∞∑
p=1

Sp

[
(κ1 + κ2)ψa−pfp − (κ2 − κ1)ψa+pf−p

]
,

where

Ta :=
−a

(κ2 − κ1)ra + (κ1 + κ2)r−a

Sp := 2p

((
3

4

)−p[
(κ2 − κ1)(κ2 − 1)rp

(
3

4

)−p

− (κ1 + κ2)(κ2 + 1)r−p

(
3

4

)p]
+

(
3

4

)p[
− (κ2 − κ1)(κ2 + 1)rp

(
3

4

)−p

+ (κ1 + κ2)(κ2 − 1)r−p

(
3

4

)p])−1

.

Remark 3. When κ2 = 1 and κ1 = κ, that is, the case of 2-layer medium, we have Sp = Tp,
and hence Lemma 3.1 reduces to [NUW09, Lemma 2.2] with R = 1.
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The following inequalities can be found in the proof of [LWW21, Lemma 2.3]:

|Tk| ≤
2k

κ1 + κ2
rk,(21a)

|Sn| ≤
1

min{1
2
, c0}

2n

(κ1 + κ2)(κ2 + 1)
rn,(21b)

where

c0 := inf
τ∈N

∣∣∣∣1− κ1 − κ2
κ1 + κ2

r2τ +
κ1 − κ2
κ1 + κ2

κ2 − 1

κ2 + 1
r2τ

(
3

4

)−2τ

− κ2 − 1

κ2 + 1

(
3

4

)2τ ∣∣∣∣.
Since 0 < r < 1

4
and κ2 ≥ 1 + κ1, it is easy to see that c0 ≥ 1

5
, and hence (21b) becomes

(21c) |Sn| ≤
10n

(κ1 + κ2)(κ2 + 1)
rn.

Now, we are ready to prove Proposition 3.

Proof of Proposition 3. Using (16b), we can estimate

|dΛnm
Br

(ψ)| ≤ ∥dΛBr(ψ)(ϕn)∥H− 1
2 (∂B1)

=

[
1

2π

∑
k∈Z

(1 + k2)−
1
2

∣∣∣∣ ∫ 2π

0

(∑
a∈Z

λa(ϕn)e
iaθ

)
e−ikθ dθ

∣∣∣∣2] 1
2

=

[
1

2π

∑
k∈Z

(1 + k2)−
1
2 |2πλk(ϕn)|2

] 1
2

=

[
2π

∑
k∈Z

(1 + k2)−
1
2 |λk(ϕn)|2

] 1
2

.(22)

Note that the Fourier coe�cient (ϕn)p of ϕn can be explicitly calculated:

(ϕn)p =

∫ 2π

0

ϕn(cos θ, sin θ)e
−ipθ dθ

=

∫ 2π

0

1
√
2π(1 + n2)

1
4

einθe−ipθ dθ =

√
2π

(1 + n2)
1
4

δnp.(23)
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Now we consider n > 0. For any R > 0 and ψ ∈ NR(∂Br), we can see that for k > 0,

|λ−k(ϕn)| =
∣∣∣∣κ1 − κ2

π2
r−1Tk

∞∑
p=1

Sp

[
(κ1 + κ2)ψ−k+p(ϕn)−p − (κ2 − κ1)ψ−k−p(ϕn)p

]∣∣∣∣
=

∣∣∣∣κ1 − κ2
π2

r−1TkSn

[
(κ2 − κ1)ψ−k−n

√
2π

(1 + n2)
1
4

]∣∣∣∣ (from (23))

= 2π
|κ1 − κ2|2

π2
r−1|Tk||Sn||ψ−k−n|

1

(1 + n2)
1
4

≤ 20(2π)
3
2
|κ1 − κ2|2

π2
Rr−1

(
k

κ1 + κ2
rk
)(

n

(κ1 + κ2)(κ2 + 1)
rn
)

1

(1 + n2)
1
4

(using (20),(21a), and (21c))

=
20(2π)

3
2

π2

∣∣∣∣κ1 − κ2
κ1 + κ2

∣∣∣∣2R 1

κ2 + 1
r−1 knrk+n

(1 + n2)
1
4

≤ 20(2π)
3
2

π2
R

1

κ2 + 1
r−1 knrk+n

(1 + n2)
1
4

(24a)

and

|λk(ϕn)| =
∣∣∣∣κ1 − κ2

π2
r−1Tk

∞∑
p=1

Sp

[
(κ1 + κ2)ψk−p(ϕn)p − (κ2 − κ1)ψk+p(ϕn)−p

]∣∣∣∣
=

∣∣∣∣κ1 − κ2
π2

r−1TkSn

[
(κ2 + κ1)ψk−n

√
2π

(1 + n2)
1
4

]∣∣∣∣ (from (23))

= 2π
|κ1 − κ2||κ1 + κ2|

π2
r−1|Tk||Sn||ψk−n|

1

(1 + n2)
1
4

≤ 20(2π)
3
2
|κ1 − κ2||κ1 + κ2|

π2
Rr−1

(
k

κ1 + κ2
rk
)(

n

(κ1 + κ2)(κ2 + 1)
rn
)

1

(1 + n2)
1
4

(using (20),(21a), and (21c))

=
20(2π)

3
2

π2

∣∣∣∣κ1 − κ2
κ1 + κ2

∣∣∣∣R 1

κ2 + 1
r−1 knrk+n

(1 + n2)
1
4

≤ 20(2π)
3
2

π2
R

1

κ2 + 1
r−1 knrk+n

(1 + n2)
1
4

(24b)

From (24a) and (24b), if we de�ne

C̃ :=
20(2π)

3
2

π2
,

we then have

(25) |λk(ϕn)| ≤ C̃R
1

κ2 + 1
r−1 |k|nr|k|+n

(1 + n2)
1
4

for all k ∈ Z.



REFINED INSTABILITY ESTIMATES FOR SOME INVERSE PROBLEMS 12

Combining (22) and (25), we obtain

|dΛnm
Br

(ψ)| ≤
√
2πC̃R

1

κ2 + 1
r−1 nrn

(1 + n2)
1
4

[∑
k∈Z

(1 + k2)−
1
2k2r2|k|

] 1
2

≤
√
2πC̃R

1

κ2 + 1
r−1 nrn

(1 + n2)
1
4

[∑
k∈Z

(1 + k2)−
1
2k2

(
1

4

)|k|] 1
2

= CR
1

κ2 + 1

n

(1 + n2)
1
4

rn−1(26)

with

C =
√
2πC̃

[∑
k∈Z

(1 + k2)−
1
2k2

(
1

4

)|k|] 1
2

<∞.

For n < 0, we can obtain an inequality similar to (26), precisely,

|dΛnm
Br

(ψ)| ≤ CR
1

κ2 + 1

|n|
(1 + n2)

1
4

r|n|−1.

Since dΛBr(ψ) is self-adjoint, i.e. (dΛ
nm
Br

(ψ)) is symmetric, we thus conclude that

|dΛnm
Br

(ψ)| ≤ CR
1

κ2 + 1

ℓ

(1 + ℓ2)
1
4

rℓ−1,

which implies (18). □

3.3. Construction of a δ-net. Given any ψ ∈ NR(∂Br), (18) implies that

(27) ℓ2|dΛnm
Br

(ψ)| ≤ CR
1

κ2 + 1
ℓ

5
2 rℓ−1

with ℓ = max{|n|, |m|} and CR depending on R > 0. Here, it su�ces to take CR > 1. Here,
from (19), it follows that

(28) ∥(dΛnm
Br

(ψ))∥X ≤ CR
1

κ2 + 1
sup
ℓ≥1

ℓ
5
2 rℓ−1 <∞.

In other words, we have

(29) (dΛnm
Br

(NR(∂Br))) ⊂ X.

In view of (29), we want to construct a δ
κ2+1

-net Y for ((dΛnm
Br

(NR(∂Br))), ∥ • ∥X), which is
not too large. Precisely, we aim to derive the following proposition.

Proposition 4. Let 0 < r < 1
4
, R > 0, and κ2 > 1 + κ1. Given any 0 < δ < 1, there exists

a δ
κ2+1

-net Y for ((dΛnm
Br

(NR(∂Br))), ∥ • ∥X) such that

(30) log |Y | ≤ C| log r|−2 log3
(
ηR
δ

)
+ C log

(
ηR
δ

)
,

where C is a general constant, and ηR is a constant depending only on R.

Remark 4. A set Y if a metric space (M,d) is called a δ-net for Y1 ⊂M if for any x ∈ Y1,
there is a y ∈ Y such that d(x, y) ≤ δ.
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Proof of Proposition 4. Step 1: Initialization. Let CR be the constant given in Proposi-
tion 3. Given any 0 < δ < 1, let τ0 > 1 be the unique positive solution (not necessarily an
integer) to

(31) τ
5
2
0 r

τ0−1 =
δ

CR

.

If we de�ne ℓ∗ = ⌊τ0⌋ (note 1 ≤ ℓ∗ ≤ τ0), then (31) implies

(32)
δ

CR

≤ ℓ
5
2
∗ r

ℓ∗−1 ≤ ℓ
5
2
∗

(
1

4

) ℓ∗−1
2

r
ℓ∗−1

2 ≤ C ′r
ℓ∗−1

2 with C ′ = sup
τ≥1

τ
5
2

(
1

4

) τ−1
2

.

Taking the logarithm both sides of (32) gives

log

(
δ

C ′CR

)
≤ log(r

ℓ∗−1
2 ) =

ℓ∗ − 1

2
log r,

and thus

log

(
C ′CR

δ

)
= log

(
− δ

C ′CR

)
≥ −ℓ∗ − 1

2
log r =

ℓ∗ − 1

2
| log r|,

which is equivalent to

(33) ℓ∗ ≤
2

| log r|
log

(
C ′CR

δ

)
+ 1.

Furthermore, we can observe that for any integer ℓ > ℓ∗, i.e. ℓ > τ0, it holds

(34) ℓ
5
2 rℓ−1 ≤ δ

CR

.

Step 2: Construction of a set. For each pair (n,m) ∈ Z × Z with 0 < ℓ =
max{|n|, |m|} ≤ ℓ∗, (27) implies

|dΛnm
Br

(ψ)| ≤ CR
1

κ2 + 1
C ′′ with C ′′ = sup

ℓ≥1
ℓ

1
2

(
1

4

)ℓ−1

.

We set

δ′ :=
δ√

2ℓ2∗(κ2 + 1)
, Y ′ :=

{
a = a1 + ia2 ∈ δ′Z+ iδ′Z |a1|, |a2| ≤ CRC′′

ℓ2∗(κ2+1)

}
,

and

Y :=

{
(bnm)

if ℓ = max{|n|, |m|} ≤ ℓ∗, then bnm ∈ Y ′,
otherwise, bnm = 0

}
.

Step 3: Verifying that Y is a δ
κ2+1

-net. Given any ψ ∈ NR(∂Br), our goal is to

construct a tensor (bnm) ∈ Y that is close to the tensor (dΛnm
Br

(ψ)). If 0 < ℓ = max{|n|, |m|} ≤
ℓ∗, we choose bnm ∈ Y ′ as the closest element to dΛnm

Br
(ψ). Then, we have

(35a) ℓ2|bnm − dΛnm
Br

(ψ)| ≤
√
2ℓ2∗δ

′ =
δ

κ2 + 1
.

Otherwise, if ℓ = max{|n|, |m|} > ℓ∗, we choose bnm = 0. For such choice of (bnm), with the
help of (27) and (34), we conclude that

(35b) ℓ2|bnm − dΛnm
Br

(ψ)| = ℓ2|dΛnm
Br

(ψ)| ≤ CR
1

κ2 + 1
ℓ

5
2 rℓ−1 ≤ δ

κ2 + 1
.
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Combining (19), (35a), and (35b), we conclude that

∥(bnm − dΛnm
Br

(ψ))∥X ≤ δ

κ2 + 1
,

which shows that Y is a δ
κ2+1

-net for ((dΛnm
Br

(NR(∂Br))), ∥ • ∥X).
Step 4: Calculating the cardinality of Y . We see that

(36) |Y ′| =
(
1 + 2

⌊
CRC

′′

ℓ2∗(κ2 + 1)δ′

⌋)2

≤
(
1 + 2

√
2
CRC

′′

δ

)2

.

Let Nℓ be the number of pairs (n,m) ∈ (Z \ {0}) × (Z \ {0}) with max{|n|, |m|} = ℓ. We
want to estimate Nℓ. When n = ±ℓ, then m can be any no-zero integer between −ℓ and ℓ
(i.e. there are 2ℓ choices). Switching the role of n and m, we hence obtain that Nℓ ≤ 8ℓ.
Consequently, we can estimate

(37) N∗ :=
ℓ∗∑
ℓ=1

Nℓ ≤
ℓ∗∑
ℓ=1

8ℓ = 4ℓ∗(ℓ∗ + 1) and |Y | = |Y ′|N∗ .

Combining (33), (36), and (37), we obtain

log |Y | = N∗ log |Y ′| ≤ 16ℓ2∗ log

(
1 + 2

√
2
CRC

′′

δ

)
≤ 16

[
2

| log r|
log

(
C ′CR

δ

)
+ 1

]2
log

(
1 + 2

√
2
CRC

′′

δ

)
,

which implies (30). □

Remark 5. Note that

inf
0<δ<1

| log r|−2 log3
(
ηR
δ

)
= | log r|−2 log3(ηR) <

(
log

1

4

)−2

log3(ηR) := E̊R.

Therefore, given any 0 < ϵ < E̊−α
R , there exists a unique 0 < δ < 1 such that

(38) ϵ−
1
α = | log r|−2 log3

(
ηR
δ

) (
equivalently, δ = ηR exp(−| log r|

2
3 ϵ−

1
3α

)
.

Therefore, (30) can be rewritten as follows:

(39) log |Y | ≤ C(ϵ−
1
α + | log r|

2
3 ϵ−

1
3α ).

3.4. Proof of the main result.

Proof of Theorem 1.1. Fixing any auxiliary parameters R > 0 and α > 0. For each 0 < ϵ <
min{µβ, E̊−α

R , R, 1}, we can construct an ϵ-discrete Z as in Proposition 1 with d = 1. Then,
let δ be the number given in (38), and we can construct a δ

κ2+1
-net Y as in Proposition 4

such that (39) holds. Since 0 < ϵ < R, then Z ⊂ NR(∂Br). Therefore, Y is also a δ
κ2+1

-net

of ((dΛnm
Br

(Z)), ∥ • ∥X).
Now, we choose β = β(α, r, R) such that

1

8
(µβ)

1
α > C| log r|

2
3 and µβ > ϵ.
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Then it follows from (39), 0 < r < 1
4
, and 0 < ϵ < 1 that

log |Z| ≥ 1

4

(
µβ

ϵ

) 1
α

> C(ϵ−
1
α + | log r|

2
3 ϵ−

1
3α ) ≥ log |Y |.

Using the pigeonhole principle, there exist two di�erent ψ1, ψ2 ∈ Z such that

∥(dΛnm
Br

(ψ1)− ynm)∥X ≤ δ

κ2 + 1
and ∥(dΛnm

Br
(ψ2)− ynm)∥X ≤ δ

κ2 + 1

for some (ynm) ∈ Y . Letting ψ = ψ1 − ψ2, we obtain that

∥(dΛnm
Br

(ψ))∥X ≤ 2δ

κ2 + 1
=

1

κ2 + 1
CR exp(−| log r|

2
3 ϵ−

1
3α ),

which, with the help of Proposition 2, gives

(40) ∥dΛBr(ψ)∥∗ ≤
1

κ2 + 1
CR exp(−| log r|

2
3 ϵ−

1
3α ).

Finally, since Z is a ϵ-discrete set, ∥ψ∥L∞(∂Br) ≥ ϵ and the proof is complete. □

Remark 6. One may choose

ϵ−
1
α = log3

(
ηR
δ

) (
equivalently, δ = ηR exp(−ϵ−

1
3α )

)
and take β su�ciently large such that

1

8
(µβ)

1
α > C > C| log r|−2 and µβ > ϵ.

Then it follows from (30) and 0 < ϵ < 1 that

log |Z| ≥ 1

4

(
µβ

ϵ

) 1
α

> C(| log r|−2ϵ−
1
α + ϵ−

1
3α ) ≥ log |Y |.

Following the same argument as above, we then conclude that there exists ψ with ∥ψ∥L∞ ≥ ϵ,
but

(41) ∥dΛBr(ψ)∥∗ ≤
1

κ2 + 1
CR exp(−ϵ−

1
3α ).

Comparing with (40), the estimate (41) is clearly not optimal.

4. Proof of Theorem 1.2

In this section, we want to prove Theorem 1.2. We will follow the lines in the proof of
Theorem 1.1.

4.1. Spherical harmonics and series expansion. For each γ ∈ R, the Banach space
Hγ(S2) can be equipped with the following equivalent norm:

∥A∥2Hγ(S2) =
∑
n≥0

∑
|m|≤n

(1 + n)2γ|anm|2 where A =
∑
n≥0

∑
|m|≤n

anmY
m
n .

The following proposition is simple but crucial in our work.
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Proposition 5. Let s ∈ R, and we de�ne the following Banach space:

Xs :=

{
(anm) ∥(anm)∥Xs := sup

n≥0,|m|≤n

(1 + n)
3
2
−s|anm| <∞

}
.

If A =
∑
n≥0

∑
|m|≤n

anmY
m
n , then there exists an absolute constant Cabs > 0 such that

∥A∥H−s(S2) ≤ Cabs∥(anm)∥Xs .

Proof. Using direct computations, we have

∥A∥2H−s(S2) =
∑
n≥0

∑
|m|≤n

(1 + n)−2s|anm|2 =
∑
n≥0

∑
|m|≤n

1

(1 + n)3
(1 + n)3−2s|anm|2

≤
∑
n≥0

∑
|m|≤n

1

(1 + n)3
∥(anm)∥2Xs

=
∑
n≥0

2n+ 1

(1 + n)3
∥(anm)∥2Xs

,

which proves the proposition with C2
abs =

∑
n≥0

2n+ 1

(1 + n)3
<∞. □

4.2. Some elementary computations. Recall from [CK19, Theorem 2.15 and 2.16] the
following representation of u satisfying (9):

(42) u(x) =
∑
n≥0

∑
|m|≤n

(
κin+1u∞nmh

(1)
n (κr)

)
Y m
n (x̂) where u∞ =

∑
n≥0

∑
|m|≤n

u∞nmY
m
n (x̂),

In view of the boundary condition u = f on ∂B1, we have that

(43) fnm = κin+1u∞nmh
(1)
n (κ) with f(x) =

∑
n≥0

∑
|m|≤n

fnmY
m
n (x̂),

where h
(1)
n (t) is the spherical Hankel function. We can prove the following elementary lemma.

Lemma 4.1. Let κ > 0 and de�ne κ̃ := (κ
2
)exp(κ). Then there exists a constant C > 0, which

is independent of n and κ, such that

|h(1)n (κ)|−1 ≤

{
Cκ2−n if κ ≤ log(n),

Cκκ̃ if κ ≥ log(n),

for all n = 0, 1, 2, · · · .
Proof. From [Wat44, (4) (5), Sec. 9.61, p.297], it follows

|Jn+ 1
2
(κ)|2 + |J−n− 1

2
(κ)|2 = 2

πκ
(−1)nR2n, 1

2
−n(κ)

=
2

πκ

n∑
m=0

(2κ)2m−2n(2n−m)!(2n− 2m)!

((n−m)!)2m!
(44)

where Jν is the Bessel function of 1
st kind and Rn,ν is the Lommel polynomials. From [Wat44,

(3), Sec. 3.61, p.74] or [JEL60, p.142], we have

Nn+ 1
2
(κ) = (−1)n+1J−n− 1

2
(κ),
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where Nν (some authors denote Yν , see e.g. [Wat44]) is the Bessel function of 2nd kind.

Therefore, the Hankel function H
(1)
ν (κ) = Jν(κ) + iNν(κ) satis�es

(45) |H(1)

n+ 1
2

(κ)|2 = |Jn+ 1
2
(κ)|2 + |Nn+ 1

2
(κ)|2 = |Jn+ 1

2
(κ)|2 + |J−n− 1

2
(κ)|2.

Combining (44) and (45) gives

|H(1)

n+ 1
2

(κ)|2 = 2

πκ

n∑
m=0

(2κ)2m−2n(2n−m)!(2n− 2m)!

((n−m)!)2m!
.

By the relation

h(1)n (κ) =

(
π

2κ

) 1
2

H
(1)

n+ 1
2

(κ),

(see e.g. DLMF:10.471), we have

|h(1)n (κ)|2 = π

2κ
|H(1)

n+ 1
2

(κ)|2 = 1

κ2

n∑
m=0

(2κ)2m−2n(2n−m)!(2n− 2m)!

((n−m)!)2m!

and hence,

(46) |h(1)n (κ)|2 ≥ 1

κ2
(2κ)2m−2n(2n−m)!(2n− 2m)!

((n−m)!)2m!

∣∣∣∣
m=0

=

(
1

κ

(2n)!

(2κ)nn!

)2

.

Note that
(2n)!

n!
=

22n√
π
Γ

(
2n+ 1

2

)
.

Consequently, we can rewrite the inequality (46) as

|h(1)n (κ)| ≥ 1

κ

(2n)!

(2κ)nn!
=

1

κ

1

(2κ)n
22n√
π
Γ

(
2n+ 1

2

)
=

1√
π

1

κ

(
2

κ

)n

Γ

(
2n+ 1

2

)
,

that is,

(47) |h(1)n (κ)|−1 ≤
√
πκ

(
κ

2

)n
1

Γ(2n+1
2

)
.

If 0 < κ ≤ log(n), since

lim
n→∞

2n
[(

log(n)

2

)n
1

Γ(2n+1
2

)

]
= 0,

(47) implies

|h(1)n (κ)|−1 ≤
√
πκ

(
log(n)

2

)n
1

Γ(2n+1
2

)
≤ Cκ2−n

for some absolute constant C > 0. Otherwise, if κ ≥ log(n), (47) gives

|h(1)n (κ)|−1 ≤
√
πκ

(
κ

2

)n[
sup
r> 1

2

1

Γ(r)

]
≤ Cκ

(
κ

2

)exp(κ)

=
√
πκκ̃,

which is our desired lemma. □

1https://dlmf.nist.gov/10.47

https://dlmf.nist.gov/10.47
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In view of Lemma 4.1, we can express (43) as u∞nm = u
∞,(1)
nm + u

∞,(2)
nm , where

u∞,(1)
nm =

1

κin+1
(h(1)n (κ))−1χκ≤log(n)fnm,(48a)

u∞,(2)
nm =

1

κin+1
(h(1)n (κ))−1χκ>log(n)fnm.(48b)

We then estimate u
∞,(1)
nm and u

∞,(2)
nm .

Proposition 6. Let R > 0 and de�ne B∞
R :=

{
f : ∂B1 → R |f | ≤ R

}
⊂ L2(S2). Then

there exists a constant CR, depending only on R, such that

|u∞,(1)
nm | ≤ CR2

−n ≤ CR,(49a)

|u∞,(2)
nm | ≤ CRκ̃,(49b)

where κ̃ is de�ned in Lemma 4.1.

Proof. Let f =
∑
n≥0

∑
|m|≤n

fnmY
m
n ∈ B∞

R . For each n′ ≥ 0 and |m′| ≤ n′, we see that

(50) |fn′m′ | ≤
(∑

n≥0

∑
|m|≤n

|fnm|2
) 1

2

= ∥f∥L2(∂B1) ≤ |∂B1|
1
2R.

Combining (48a) with (50), we obtain

(51) |u∞,(1)
nm | = 1

κ
|h(1)n (κ)|−1χκ≤log(n)|fnm| ≤

|∂B1|
1
2R

κ
|h(1)n (κ)|−1χκ≤log(n).

By Lemma 4.1, (49a) follows directly from (51). Similarly, using (48b) and (50), we have

(52) |u∞,(2)
nm | = 1

κ
|h(1)n (κ)|−1χκ>log(n)|fnm| ≤

|∂B1|
1
2R

κ
|h(1)n (κ)|−1χκ>log(n).

Then (49b) is an easy consequence of (52) with the help of Lemma 4.1. □

4.3. Construction of a net. If s > 3
2
, from (49a) and (49b), we have

∥(u∞nm(f))∥Xs ≤ CR sup
n≥0

{
(1 + n)

3
2
−s(2−n + κ̃)

}
<∞

for all f ∈ B∞
R . In other words, (u∞nm(B

∞
R )) ⊂ Xs. Now, we want to construct a δ-net Y

of ((u∞nm(B
∞
R )), ∥ • ∥Xs) which is not too large. Precisely, we want to establish the following

lemma.

Lemma 4.2. Let s > 3
2
and CR be the constant given in Proposition 6. If 0 < δ < CR, then

there exists a δ-net Y of ((u∞nm(B
∞
R )), ∥ • ∥Xs) such that

(53) log |Y | ≤ ηs,R

[
log

(
1 +

CR

δ

)
+
CRκ̃

δ
+

(
CRκ̃

δ

) 2
2s−3

]2
for some constant ηs,R, which depending only on s and R.
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Proof of Lemma 4.2. Step 1: Initialization. Let ℓ1 and ℓ2 be the solution of

(54) (1 + ℓ1)
3
2
−s2−ℓ1 =

δ

2CR

and (1 + ℓ2)
3
2
−sκ̃ =

δ

2CR

,

respectively. Let n∗ be the smallest non-negative integer such that

(55) (1 + ℓ)
3
2
−s(2−ℓ1 + κ̃) ≤ δ

CR

for all ℓ ≥ n∗.

Since s > 3
2
, we observe that

(1 + (ℓ1 + ℓ2))
3
2
−s(2−(ℓ1+ℓ2) + κ̃)

= (1 + (ℓ1 + ℓ2))
3
2
−s2−(ℓ1+ℓ2) + (1 + (ℓ1 + ℓ2))

3
2
−sκ̃

≤ (1 + ℓ1)
3
2
−s2−ℓ1 + (1 + ℓ2)

3
2
−sκ̃

≤ δ

2CR

+
δ

2CR

=
δ

CR

and, therefore,

(56) n∗ ≤ ℓ1 + ℓ2.

Note that (3
2
− s) log(1 + ℓ1) < 0. We can see that

−ℓ1 log 2 ≥
(
3

2
− s

)
log(1 + ℓ1)− ℓ1 log 2 = log

[
(1 + ℓ1)

3
2
−s2−ℓ1

]
= log

[
δ

2CR

]
,

hence,

(57a) ℓ1 ≤ − 1

log 2
log

[
δ

2CR

]
=

1

log 2
log

[
2CR

δ

]
.

On the other hand, from the de�nition of ℓ2, it follows

(57b) ℓ2 + 1 =

(
δ

2CRκ̃

) 2
3−2s

=

(
2CRκ̃

δ

) 2
2s−3

.

Combining (56), (57a), and (57b) implies

(58) n∗ + 1 ≤ 1

log 2
log

[
2CR

δ

]
+

(
2CRκ̃

δ

) 2
2s−3

.

Step 2: Construction of sets. De�ne δ′ = δ
2
√
2
and the sets

Y ′
1 :=

{
a = a1 + ia2 ∈ δ′Z+ iδ′Z |a1|, |a2| ≤ CR

}
,

Y ′
2 :=

{
a = a1 + ia2 ∈ δ′Z+ iδ′Z |a1|, |a2| ≤ CRκ̃

}
,

as well as

Y1 :=

{
(bnm)

if 0 ≤ n ≤ n∗, then bnm ∈ Y ′
1

otherwise, bnm = 0

}
,

Y2 :=

{
(cnm)

if 0 ≤ n ≤ n∗, then cnm ∈ Y ′
2

otherwise, cnm = 0

}
,

and Y = Y1 + Y2.
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Step 3: Verifying Y is a δ-net. Our goal is to construct{
(bnm) ∈ Y1, an approximation of (u

∞,(1)
nm (f)),

(cnm) ∈ Y2, an approximation of (u
∞,(2)
nm (f)).

• If n ≤ n∗, we take b
′
nm ∈ Y ′

1 (resp. c
′
nm ∈ Y ′

1) be the closest element to u
∞,(1)
nm (f) (resp.

u
∞,(2)
nm (f)). Hence, we have

|b′nm − u∞,(1)
nm (f)| ≤

√
2δ′

(
resp. |c′nm − u∞,(2)

nm (f)| ≤
√
2δ′

)
.

Note that (1 + n)
3
2
−s ≤ 1 and thus

(59a) (1 + n)
3
2
−s

(
|b′nm − u∞,(1)

nm (f)|+ |c′nm − u∞,(2)
nm (f)|

)
≤ 2

√
2δ′ = δ.

• Otherwise, if n > n∗, we simply choose b′nm = c′nm = 0. We have

(1 + n)
3
2
−s

(
|b′nm − u∞,(1)

nm (f)|+ |c′nm − u∞,(2)
nm (f)|

)
= (1 + n)

3
2
−s

(
|u∞,(1)

nm (f)|+ |u∞,(2)
nm (f)|

)
≤ CR(1 + n)

3
2
−s(2−n + κ̃) (using Proposition 6)

≤ δ (using (55))(59b)

Combining (59a) and (59b), we conclude that Y is a δ-net of ((u∞nm(B
∞
R )), ∥ • ∥Xs).

Step 4: Estimating the size of Y . We know that

|Y ′
1 | =

(
1 +

⌊
2CR

δ′

⌋)2

≤
(
1 +

4
√
2CR

δ

)2

,(60a)

|Y ′
2 | =

(
1 +

⌊
2CRκ̃

δ′

⌋)2

≤
(
1 +

4
√
2CRκ̃

δ

)2

,(60b)

and

(61) |Y | = |Y1||Y2| = |Y ′
1 |n∗+1|Y ′

2 |n∗+1.

Therefore, combining (58), (60a), and (60b), we can compute

log |Y | = (n∗ + 1)

(
log |Y1|+ log |Y2|

)
≤

[
1

log 2
log

[
2CR

δ

]
+

(
2CRκ̃

δ

) 2
2s−3

]
×

×
[
2 log

(
1 +

4
√
2CR

δ

)
+ 2 log

(
1 +

4
√
2CRκ̃

δ

)]
.
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Since log(1 + t) ≤ t for all t ≥ 0, we have that

log |Y | ≤ 2

[
1

log 2
log

[
2CR

δ

]
+

(
2CRκ̃

δ

) 2
2s−3

]
×
[
log

(
1 +

4
√
2CR

δ

)
+

4
√
2CRκ̃

δ

]
and (53) is proved. □

Choosing s = 5
2
in Lemma 4.2, we immediately obtain the following corollary.

Corollary 1. For any 0 < δ < CR, there exists a δ-net Y of ((u∞nm(B
∞
R )), ∥ • ∥X 5

2

) such that

(62) log |Y | ≤ ηR

[
log

(
1 +

CR

δ

)
+

2CRκ̃

δ

]2
for some constant ηR, depending only on R.

Remark 7. If κ ≥ 2, then κ̃ ≥ 1. In this case, we see that

inf
0<δ<CR

1

κ̃

[
log

(
1 +

CR

δ

)
+

2CRκ̃

δ

]
=

log 2

κ̃
+ 2 ≤ 2 + log 2.

Therefore, given any ϵ satisfying

(63) 2 + log 2 < ϵ−
1
α <∞

(
equivalently, ϵ ∈ (0, (2 + log 2)−α)

)
,

there exists a unique δ ∈ (0, CR) such that

(64) ϵ−
1
α =

1

κ̃

[
log

(
1 +

CR

δ

)
+

2CRκ̃

δ

]
.

Otherwise, if 0 < κ < 2, then 0 < κ̃ ≤ 1. In this case, we note that

inf
0<δ<CR

[
log

(
1 +

CR

δ

)
+

2CRκ̃

δ

]
= log 2 + 2κ̃ ≤ 2 + log 2.

Similarly, given any ϵ satisfying (63), there exists a unique δ ∈ (0, CR) such that

(65) ϵ−
1
α = log

(
1 +

CR

δ

)
+

2CRκ̃

δ
.

Putting together (64) and (65) implies that given any ϵ satisfying (63), there exists a unique

δ ∈ (0, CR) such that

(66) ϵ−
1
α =

1

max{κ̃, 1}

[
log

(
1 +

CR

δ

)
+

2CRκ̃

δ

]
.

In view of (62) and (66), we then conclude that

(67) log |Y | ≤ ηR max{κ̃, 1}2ϵ−
2
α .
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4.4. Proof of the main result.

Proof of Theorem 1.2. As above, we take s = 5
2
and �x any auxiliary parameters R > 0 and

α > 0. For each 0 < ϵ < min{(2 + log 2)−α, R, µβ}, let Z be an ϵ-discrete set constructed in
Proposition 1 with d = 2 and r = 1. Let δ be given in (66). Next, we construct a δ-net Y
described in Corollary 1 and (67) holds. Clearly, Y is also a δ-net for ((u∞nm(Z)), ∥ • ∥X 5

2

).

We now choose β = β(α,R, κ), which is independent of ϵ, such that

µβ ≥ R and |Z| ≥ exp

[
1

8

(
µβ

ϵ

) 2
α
]
> exp

[
ηR max{κ̃, 1}2ϵ−

2
α

]
≥ |Y |.

Therefore, using pigeonhole principle, we can choose two di�erent smooth functions f1, f2 ∈ Z
such that

∥(u∞nm(f1)− ynm)∥X 5
2

≤ δ and ∥(u∞nm(f2)− ynm)∥X 5
2

≤ δ.

Letting f = f1 − f2 and using Proposition 5, we obtain

(68) ∥u∞(f)∥
H− 5

2 (S2)
≤ Cabs∥(u∞nm(f))∥X 5

2

≤ 2Cabsδ and ∥f∥L∞(∂B1) ≥ ϵ.

To �nish the proof, we discuss two cases.

• Case 1. If CRκ̃
δ

≤ log(1 + CR

δ
), then (66) implies

ϵ−
1
α =

1

max{κ̃, 1}

[
log

(
1+

CR

δ

)
+
2CRκ̃

δ

]
≤ 3

max{κ̃, 1}
log

(
1+

CR

δ

)
≤ 3

max{κ̃, 1}
log

(
2CR

δ

)
,

which gives

(69) δ ≤ 2CR exp

(
− max{κ̃, 1}

3
ϵ−

1
α

)
.

• Case 2. If CRκ̃
δ

≥ log(1 + CR

δ
), then (66) implies

ϵ−
1
α =

1

max{κ̃, 1}

[
log

(
1 +

CR

δ

)
+

2CRκ̃

δ

]
≤ 1

max{κ̃, 1}
3CRκ̃

δ
=

3CR min{1, κ̃}
δ

,

that is,

(70) δ ≤ 3min{1, κ̃}CRϵ
1
α .

Combining (69) and (70), we obtain

(71) δ ≤ 2CR exp

(
− max{κ̃, 1}

3
ϵ−

1
α

)
+ 3min{1, κ̃}CRϵ

1
α .

Finally, substituting (71) into (68), the proof is completed. □
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