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Abstract. In this work, we consider the inverse scattering problem of determining an
unknown refractive index from the far-field measurements using the nonparametric Bayesian
approach. This paper is a continuation of our previous work [FKW24] in which we consider
Gaussian priors and Gaussian sieve priors. In this work, we will extend the result to randomly
truncated Gaussian sieve priors. Our aim is to establish the consistency of the posterior
distribution with an explicit contraction rate in terms of the sample size.
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1. Introduction

In this work, we apply the Bayes approach to study the inverse medium scattering problem.
The main purpose is to prove the consistency property of the posterior distribution. This
paper is a continuation of our previous work [FKW24] in which we consider Gaussian priors
and Gaussian sieve priors. Here we use the same setup and notations in [FKW24]. Let n ≥ 0
and 1 − n be a compactly supported function in R3 with supp (1 − n) ⊂ D, where D is an
open bounded smooth domain, and having suitable regularity, which will be specified later.
Let un = uinc + uscan satisfy

(1.1) ∆un + k2nun = 0 in R3

and

(1.2) lim
|x|→∞

|x|
(
∂uscan

∂|x|
− ikuscan

)
= 0.
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Assume that uinc is the plane incident field, i.e. uinc = eik·θ with θ ∈ S2. Then the scattered
field uscan possesses the asymptotic behavior

(1.3) uscan (x, θ) =
eik|x|

|x|
u∞n (θ′, θ) + o(r−1) as |x| → ∞,

where θ′ = x/|x|. The inverse scattering problem is to determine the medium perturbation
1− n from the knowledge of the scattering amplitude u∞n (θ′, θ) for all θ′, θ ∈ S2 at one fixed
energy k2. It was known that the scattering amplitude u∞n (θ′, θ) uniquely determines the
refractive index n. We will not review the detailed development of the theoretical results for
this problem. We only mention a log-type stability estimate derived in [HH01] which is used
in this paper.

We consider the Bayesian approach to the inverse medium scattering problem here. The
following measurement model was given in [FKW24]. Let µ be the uniform distribution on
S2 × S2, i.e., µ = dω/|S2|2, where dω is the product measure on S2 × S2, that is,

∫
S2×S2 dω =

|S2|2. We also write µ = dξ and hence
∫
S2×S2 dξ = 1. Consider the iid random variables

Xi ∼ µ, i = 1, 2, · · · , N with N ∈ N.
Denote the forward map by

(1.4) G(n)(Xi) =

(
Re (u∞n (θ′, θ))

Im (u∞n (θ′, θ))

)
,

where (θ′, θ) is a realization of Xi. The observation of the scattering amplitude G(n)(Xi)
is polluted by the measurement noise which is assumed to be a Gaussian random variable.
Consequently, the statistical model of the scattering problem is given as

(1.5) Yi = G(n)(Xi) + σWi, Wi
iid∼ N(0, I2), i = 1, · · · , N,

where σ > 0 is the noise level, I2 is the 2 × 2 unit matrix. We also assume that W (N) :=
{Wi}Ni=1 and X(N) := {Xi}Ni=1 are independent.

The aim here is to consider the inference of n from the observational data (Y (N), X(N))
with Y (N) = {Yi}Ni=1 using the Bayes method. We are interested in the asymptotic behavior
of the posterior distribution induced from randomly truncated Gaussian sieve priors on n
as N → ∞. We would like to establish the statistical consistency theory of recovering n in
(1.3) with an explicit convergence rate as the number of measurements N increases, i.e. the
contraction rate of the posterior distribution to the “ground truth” n0 when the observation
data is indeed generated by n0.

We extend the consistency results proved in [FKW24] where Gaussian process priors and
Gaussian sieve priors are treated to randomly truncated Gaussian sieve priors. The setting
of the problem considered in this paper is closely related to the ones studied in [GN20] and
[Kek22]. In [GN20], Gaussian process priors were used in the Bayesian approach to study
the recovery of the diffusion coefficient in the elliptic equation by measuring the solution at
randomly chosen interior points with uniform distribution. It was shown that the posterior
distribution concentrates around the true parameter at a rate N−λ for some λ > 0 as N → ∞,
where N is the number of measurements (or sample size). Based on the method in [GN20],
similar results were proved in [Kek22] for the parabolic equation where the aim is to recover
the absorption coefficient by the interior measurements of the solution.

The case of randomly truncated Gaussian sieve priors was already considered in [GN20].
However, we want to point out that we cannot directly apply the argument in there to our
problem in this paper. This is due to the fact that the stability estimate for the inverse
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medium scattering problem is of logarithmic type. Moreover, we have to use a different link
function from the one used in [GN20]. A major modification is needed in order to establish
the consistency theorem with randomly truncated Gaussian sieve priors.

Both the inverse problem considered here and the one in [GN20] are reduced to the same
statistical model (2.3b) through suitable link functions. Using randomly truncated sieve
priors, (2.3b) gives rise to an estimate showing that the set of the unknown F with a poly-
nomially increasing bound has a large posterior probability, see [GN20, (21) in Theorem 8].
Taking advantage of the Lipschitz stability estimate for the inverse problem considered in
[GN20], such polynomial bound can be improved to a fixed constant bound [GN20, Lemma
12], which in turn leads to a polynomial contraction rate. Unfortunately, for the inverse scat-
tering problem here, the improvement from a polynomial bound to a fixed constant bound
cannot be proved due to the log-type stability estimate. We therefore take a step back to
show a logarithmic contraction rate “conditioned” on a logarithmically increasing large set.
To achieve this, we need to refine the stability estimate obtained in [HH01]. The refinement
is to derive the explicit dependence of the constant in the stability estimate on the norm of
the unknown refractive index.

This paper is organized as follows. In Section 2, we will describe the general statistical
model which can be applied to the inverse medium scattering problem. In Section 3, we state
the main results and their proofs are given in Section 4. In Appendix A, we present some
theoretical results of the inverse scattering problem. Finally, we construct an example of the
link function in Appendix B.

2. The statistical model

In order to make the paper self-contained, here we recall some notations and function
spaces which used in our previous work [FKW24]. Throughout this paper, we shall use the
symbol ≲ and ≳ for inequalities holding up to a universal constant. For two real sequences
(aN) and bN , we say that ≃ if both aN ≲ bN and bN ≲ aN for all sufficiently large N . For a
sequence of random variables ZN and a real sequence (aN), we write ZN = OPr(aN) if for all
ε > 0 there exists Mε <∞ such that for all N large enough, Pr(|ZN | ≥MεaN) < ε. Denote
L(Z) the law of a random variable Z. Let Ct

c(O) with integer t ≥ 0 denote the Hölder space
of order t with compact supports in the bounded smooth domain O.

Let D be a bounded smooth domain in R3. For each integer s ≥ 0, we denote Hs(D) the
standard L2(D)-based Hilbert spaces, and we extend for real s ≥ 0 by using interpolation
[LM72]. It is known that the restriction operator to D is a continuous linear map of Hs(R3)
to Hs(D) [LM72, (8.6)]. We denote Hs

0(D) the completion of C∞
c (D) in Hs(D). For each

compact subset K ⊂ R3, we denote Hs
K = {f ∈ Hs(R3) : supp(f) ⊆ K}. For s > 1/2

with s ̸= Z + 1/2, the zero extension of f ∈ Hs
0(D) (extension of f by 0 outside of D) is a

continuous map Hs
0(D) → Hs(R3) [LM72, Theorem 11.4]. In addition, Hs

D̄
⊂ Hs

0(D) for all
s ≥ 0 and equality (up to equivalent norms) holds when s /∈ Z+ 1/2 [McL00, Theorem 3.29
and Theorem 3.33].

We now introduce the space of parameters. For integer s ≥ 0 and M0 > 1, let

(2.1) FM0 =

{
n ∈ Hs(D) : 0 < n < M0, n|∂D = 1,

∂jn

∂νj

∣∣∣∣
∂D

= 0, 1 ≤ j ≤ s− 1

}
.

For n ∈ FM0 , we extend n ≡ 1 in R3 \ D, stilled denoted by n. Then it is clear that
supp (1 − n) ⊂ D. Note that for n ∈ FM0 , we only put the restriction on the size of n,
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but not on the Hs(D)-norm of u. As in [NvdGW20, FKW24, GN20, AN19, Kek22], we will
consider a re-parametrization of FM0 by using an appropriate link function.

Definition 2.1. Let Φ (link function) satisfy
(i) Φ : (−∞,∞) → (0,M0), Φ(0) = 1, Φ′(z) > 0 for all z;
(ii) for any k ∈ N

sup
−∞<z<∞

|Φ(k)(z)| <∞.

(iii) There exists a > 1 such that Φ′(t) ≳ |t|−a when |t| is sufficiently large.

The existence of a link function satisfying the requirements above is given in Appendix B.
The condition a > 1 in (iii) is necessary, since from the restriction 0 < Φ < M0, we must
have

M0 ≥ lim
s→+∞

Φ(s)− Φ(t) = lim
s→+∞

∫ s

t

Φ′(τ) dτ ≳ lim
s→+∞

∫ s

t

τ−a dτ for all large t > 1.

Given any link function Φ, by following from the same argument in [NvdGW20], the param-
eter space can be realized as (this only requires assumption (i) and (ii))

(2.2) FM0 := {Φ(F ) : F ∈ Hs
0(D)}.

We define the reparametrized forward map by

(2.3a) G(F ) = G(Φ(F ))

and the statistical model (1.3) is actually a special case of the following general model:

(2.3b) Yi = G(F )(Xi) + σWi, Wi
iid∼ N(0, I2), i = 1, · · · , N.

Assume that G satisfies

(2.3c) sup
F∈L2(D)

∥G(F )∥L∞(S2×S2) = S1 <∞,

and

(2.3d) ∥G(F1)− G(F2)∥L2(S2×S2) ≤ S2∥F1 − F2∥L2(D) for all F1, F2 ∈ L2(D)

for some constant S2 > 0.

Remark 2.2. The assumptions (2.3c)–(2.3d) are different to those in [FKW24]. If we choose
the forward map (1.4), from (A.8), we see that (2.3c) is satisfies with S1 = S1(D, k,M0). On
the other hand, from (A.9), we have

(2.4) ∥G(F1)− G(F2)∥L2(S2×S2) ≤ C3∥Φ(F1)− Φ(F2)∥L2(D).

The link function Φ is (global) Lipschitz continuous (Assumption (ii) of the link function),
which yields that

(2.5) |n1(x)− n2(x)| = |Φ(F1(x))− Φ(F2(x))| ≲ |F1(x)− F2(x)|.
Combining (2.4) and (2.5), we see that (2.3d) satisfies with S2 = S2(D, k,M0).

Let Pi
F be the laws of the iid random vectors (Yi, Xi), with expectation Ei

F . It turns out
the Radon-Nikodym derivative of Pi

F is given by

(2.6) pF (y, ξ) =
dPi

F

dy × dξ
=

1

2πσ2
e−

(y−G(F )(ξ))T (y−G(F )(ξ))

2σ2 .
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By slightly abusing the notation, we define PN
F = ⊗N

i=1Pi
F the joint law of the random vectors

(Yi, Xi)
N
i=1, with expectation EN

F .
In the Bayesian approach, let Π be a Borel probability measure on the parameter space Hs

0

supported in the Banach space C(D). From the continuity property of (F, (y, ξ)) → pF (y, ξ),
the posterior distribution Π(·|Y (N), X(N)) of F |(Y (N), X(N)) is given by

(2.7) Π(B|Y (N), X(N)) =

∫
B
eℓ

(N)(F ) dΠ(F )∫
C(D)

eℓ(N)(F ) dΠ(F )

for any Borel set B ⊆ C(D), where the log-likelihood function is written as

(2.8) ℓ(N)(F ) = − 1

2σ2

N∑
i=1

(Yi − G(F )(Xi))
T (Yi − G(F )(Xi)) .

3. Main results

In this work we are interested in the frequentist property of the posterior distribution (2.7)
in the sense that the observation data (Y (N), X(N)) are generated through the model (1.3)
of law PN

n0
with a ground truth n0. The aim here is to show that the posterior distribution

arising from randomly truncated Gaussian sieve priors concentrates near sufficiently regular
ground truth n0 and to derive a bound on the rate of contraction. A similar result for the
inverse scattering problem with Gaussian process priors and high-dimensional Gaussian sieve
priors was established in [FKW24].

From computational perspective, it is useful to consider sieve priors that are finite-
dimensional approximations of the function space supporting the prior. Here we will use
a randomly truncated Karhunen-Loéve type expansion in terms of Daubechies wavelets con-
sidered in [GN20, Appendix B] or [GN21, Chapter 4]. Let {Ψℓr : ℓ ≥ −1, r ∈ Z3} be
the (3-dimensional) compactly supported Daubechies wavelets1, which forms an orthonor-
mal basis of L2(R3). Let K be a compact set in D and for each integer ℓ ≥ −1, let
Rℓ =

{
r ∈ Zd : supp (Ψℓr) ∩ K ̸= ∅

}
. Let K′ be another compact subset in D such that

K ⊊ K′, and let χ ∈ C∞
c (D) be a cut-off function with χ = 1 on K′. For any real t > 3/2,

we consider the prior (which introduced in [GN20, Section 2.2.3 and Remark 26])

Πj = L(χFj), Fj =
∑

−1≤ℓ≤j
r∈Rℓ

2−ℓtFℓrΨℓr, Fℓr
iid∼ N (0, 1),

where j ∈ N is a truncation level. According to [GN21, Exercise 2.6.5], for each j ∈ N,
the prior Πj above defines a centered Gaussian probability measure supported on the finite
dimensional subspace

Hj := span {χΨℓr : −1 ≤ ℓ ≤ j, r ∈ Rℓ},
with RKHS norm given in [GN20, (B2)].

Assuming that the observation data (Y (N), X(N)) are generated through the model (1.3)
of law PN

n0
. The main theme of this paper is to show that the posterior distribution arising

from the statistical inverse scattering model (1.5) contracts around the “ground truth” n0 in

1This can be easily constructed from the 1-dimensional Daubechies wavelets as in [GN21, Theorem 4.2.10],
and the scaling functions (in the sense of [GN21, Definition 4.2.1]) is interpreted as the ‘first’ wavelet due to
the wavelet series expansion [GN21, (4.32)].
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the L2-risk when J is a random truncation level (rather than the deterministic truncation
point considered in [FKW24]), independently of the random coefficients Fℓr, satisfying

(3.1)
Pr(J > j) = e−23j log 23j for all j ≥ 1,

Pr(J = j) ≳ e−23j log 23j as j → ∞,

see [GN20, Example 28] for an example. In other words, we define Π as the law of random
(conditional Gaussian) sum

(3.2) Π = L(χF ), F =
∑

−1≤ℓ≤J
r∈Rℓ

2−ℓtFℓrΨℓr, Fℓr
iid∼ N (0, 1),

where J is a random truncation level satisfying (3.1).
In light of the link function, we define the push-forward posterior on the refractive index

n by
Π̃(·|Y (N), X(N)) := L(n) with n = Φ ◦ F : F ∼ Π(·|Y (N), X(N)).

We now ready to prove our first main result by using some ideas from [GN20, MNP21].

Theorem 3.1. For each t > 3/2, s ≥ t, and N ∈ N, let ξN := N−s/(2s+3) logN . Suppose that
the random variable J satisfies (3.1) and Π is the corresponding prior defined in (3.1). Assume
that F0 ∈ Hs

K(D) for some s ≥ t and the observation (Y (N), X(N)) to be generated through
model (2.3a)–(2.3d) with the choice (1.4) of law PN

F0
, where the link function Φ in (2.3a)

satisfies (i)–(iii). Let Π(·|Y (N), X(N)) be the posterior distribution given by (2.7). Let 0 <
ϵ < t

t+3
. Then for any K > 0, there exist constants L > 0 (depending on σ,K, t, s, k, n0,M0)

and c > 0 (depending on D, t, k, ϵ) such that

Π̃

(
n :

∥n− n0∥L2(D) > |log(LξN)|−
α
2

∥1− n∥Ht(D) ≤ c|log(LξN)|
α
10

∣∣∣∣∣Y (N), X(N)

)
= OPN

n0
(e−KNξ2N ),

as N → ∞, where α = t
t+3

− ϵ > 0 and PN
n0

is the push-forward of PN
F0

.

To obtain an estimator of the unknown coefficient n, in view of the link function Φ, it is
often convenient to derive an estimator of F . We can also prove a contraction rate for the
convergence for a suitable estimator of F to F0.

Theorem 3.2. Assume that the hypotheses of Theorem 3.1 hold. There exists a constant
c′ > 0 (depending on Φ, D, t, s, k, ϵ, σ, F0, K) such that the (Bochner) estimator

FN := EΠ

[
F1

∥F∥Ht(D)≤c′
1
t |log(LξN )|

α
10t

|Y (N), X(N)

]
satisfies

(3.3) PN
F0

(
∥FN − F0ZN∥L2(D) > C ′|log(LξN)|−

α
2
(1− a

5t
)
)
→ 0 as N → ∞

provided the addition condition 1 < a < 5 assumed in (iii), where

ZN = Π
(
∥F∥Ht(D) ≤ c′

1
t |log(LξN)|

α
10t |Y (N), X(N)

)
and the constant C ′ depends on D, a, t, k, ϵ.
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Roughly speaking, FN can be regarded as the expectation of the posterior distribu-
tion Π

(
·|Y N , XN

)
“conditioned” on ∥F∥Ht(D) ≤ c′

1
t |log(LξN)|

α
10t . Denote the set AN :={

F ∈ H t
0(D) : ∥F∥Ht(D) ≤ c′

1
t |log(LξN)|

α
10t

}
and ÃN the push forward of AN by the link

function Φ. Moreover, let Z̃N = Π̃
(
ÃN |Y (N), X(N)

)
be the posterior measure of Ã. It is easy

to observe that FM0 \ ÃN ↓ 0 as N → ∞.

Corollary 3.3. Under the hypotheses of Theorem 3.2, we have

PN
n0

(
∥Φ ◦ FN − n0Z̃N∥L2(D) > C|log(LξN)|−

α
2
(1− a

5t
)
)
→ 0 as N → ∞.

Corollary 3.3 shows that Φ◦FN is an efficient estimator of n0 conditioned on the sufficiently
“large” set ÃN .

4. Proof of Theorems

We will need the following proposition concerning the general contraction rate, without
referring to the composition operator (2.3a).

Proposition 4.1 ([GN20, Theorem 19]). Suppose that the hypotheses of Theorem 3.1
are satisfied. Then given any K > 0, there exist sufficiently large constants L > 0
(depending on σ, F0, K, t, S1, S2) such that

Π(F : ∥G(F )− G(F0)∥L2(S2×S2) > LξN |Y (N), X(N)) = OPN
F0
(e−KNξ2N )

as N → ∞.

We now prove Theorem 3.1 by considering the form of the forward map (2.3a) in Propo-
sition 4.1.

Proof of Theorem 3.1. For each M > 0 satisfies ∥1− n∥Ht(D) ∨ ∥1− n0∥Ht(D) ≤M , one
has the stability estimate of G−1 in Theorem A.5:

(4.1) ∥n− n0∥L2(D) ≤ CM5|log∥G(n)−G(n0)∥L2(S2×S2)|−α.

where α = t
t+3

− ϵ > 0 and C = C(D,M0, t, k, ϵ), both independent of the parameter M . In
view of (4.1) and Proposition 4.1, given any K > 0, there exist a large constant L (which is
independent of M) such that

Π̃
(
n : ∥n− n0∥L2(D) > |log(LξN)|−

α
2 , ∥1− n∥Ht(D) ≤M |Y (N), X(N)

)
≤ Π̃

(
n : |log(LξN)|−

α
2 < CM5|log∥G(n)−G(n0)∥L2(S2×S2)|−α|Y (N), X(N)

)
= Π

(
F : |log(LξN)|−

α
2 < CM5|log∥G(F )− G(F0)∥L2(S2×S2)|−α|Y (N), X(N)

)
.

We now set M > 0 satisfying CM5 = |log(LξN)|
α
2 . From the inequality above, it yields

(4.2)
Π̃

(
n :

∥n− n0∥L2(D) > |log(LξN)|−
α
2

∥1− n∥Ht(D) ≤ c|log(LξN)|
α
10

∣∣∣∣∣Y (N), X(N)

)
≤ Π(F : ∥G(F )− G(F0)∥L2(S2×S2) > LξN |Y (N), X(N)) = OPN

F0
(e−KNξ2N ),

which concludes the theorem with c = C−5. Note that ξN → 0 as N → ∞. □
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Having proved Theorem 3.1, we then establish Theorem 3.2 using the contraction rate in
Theorem 3.1 and the link function Φ, by following the same ideas as in [GN20, Theorem 6].
However, here we need to keep track of the dependence of ∥F∥Ht(D) carefully.

Proof of Theorem 3.2. Let c′ > 0 be a number to be determined later and we aim
to estimate EΠ

[
∥F − F0∥L2(D)1∥F∥Ht(D)≤c′

1
t |log(LξN )|

α
10t

|Y (N), X(N)

]
. Since n = Φ ◦ F and

n0 = Φ ◦ F0, by the property (i) of Definition 2.1, the mean-value theorem and inverse
function theorems, there exists η lying between n0(x) and n(x) such that

|F (x)− F0(x)| =
1

|Φ′(Φ−1(η))|
|n(x)− n0(x)| for all x ∈ D.

If ∥F∥L∞(D) ≲ c′
1
t |log(LξN)|

α
10t and ∥F0∥L∞(D) ≲ c′

1
t |log(LξN)|

α
10t , by (i) and (iii) of Defini-

tion 2.1, we have

(4.3)
|F (x)− F0(x)| ≤

1

min
z∈[−c′

1
t |log(LξN )|

α
10t ,c′

1
t |log(LξN )|

α
10t ]

Φ′(z)
|n(x)− n0(x)|

≲ c′
a
t |log(LξN)|

aα
10t |n(x)− n0(x)|.

In deriving (4.3), we note that Φ′(z) > 0 for all z and the minimum of Φ′(z) on any compact
interval [−r, r] decays at the rate of |r|−a (see (iii) of Definition 2.1). On the other hand, it
follows from [NvdGW20, Lemma 29] that

∥1− n∥Ht(D) = ∥Φ(0)− Φ(F )∥Ht(D) ≤ C0(1 + ∥F∥tHt(D)),

where C0 = C0(D,Φ, t). For N large, we can see that if ∥F∥Ht(D) ≤ c′
1
t |log(LξN)|

α
10t , then

∥1− n∥Ht(D) ≤ 2C0c
′|log(LξN)|

α
10 .

Therefore, by choosing c′ = (2C0)
−1c, where c is the constant derived in Theorem 3.1, we

obtain
∥F − F0∥L2(D)1∥F∥Ht(D)≤c′

1
t |log(LξN )|

α
10t

≤ C|log(LξN)|
aα
10t∥n− n0∥L2(D)1∥1−n∥Ht(D)≤c|log(LξN )|

α
10
,

where C depends on D, a, t, k, ϵ. Consequently, we can show that

(4.4)

C−1|log(LξN)|−
aα
10tEΠ

[
∥F − F0∥L2(D)1∥F∥Ht(D)≤c′

1
t |log(LξN )|

α
10t

|Y (N), X(N)

]
≤ EΠ̃

[
∥n− n0∥L2(D)1∥1−n∥Ht(D)≤c|log(LξN )|

α
10
|Y (N), X(N)

]
≤ |log(LξN)|−

α
2

+ EΠ̃
[
∥n− n0∥L2(D)1∥n−n0∥L2(D)>|log(LξN )|−

α
2
1∥1−n∥Ht(D)≤c|log(LξN )|

α
10
|Y (N), X(N)

]
≤ |log(LξN)|−

α
2 +

√
EΠ̃
[
∥n− n0∥2L2(D)

∣∣∣Y (N), X(N)
]
×

×

√√√√Π̃

(
n :

∥n− n0∥L2(D) > |log(LξN)|−
α
2

∥1− n∥Ht(D) ≤ c|log(LξN)|
α
10

∣∣∣∣∣Y (N), X(N)

)
.
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Let 0 < B < K be any fixed constant, then

PN
F0

(
EΠ

[
∥F − F0∥L2(D)1∥F∥Ht(D)≤c′

1
t |log(LξN )|

α
10t

|Y (N), X(N)

]
> 2C|log(LξN)|−

α
2
(1− a

5t
)

)
= PN

F0

(
C−1|log(LξN)|−

aα
10tEΠ

[
∥F − F0∥L2(D)1∥F∥Ht(D)≤c′

1
t |log(LξN )|

α
10t

|Y (N), X(N)

]
> 2|log(LξN)|−

α
2

)

= PN
F0

C−1|log(LξN)|−
aα
10tEΠ

[
∥F − F0∥L2(D)1∥F∥Ht(D)≤c′

1
t |log(LξN )|

α
10t

|Y (N), X(N)

]
> 2|log(LξN)|−

α
2 ,

EΠ̃
[
∥n− n0∥2L2(D)

∣∣∣Y (N), X(N)
]
e−BNξ2N > |log(LξN)|−α



+ PN
F0

C−1|log(LξN)|−
aα
10tEΠ

[
∥F − F0∥L2(D)1∥F∥Ht(D)≤c′

1
t |log(LξN )|

α
10t

|Y (N), X(N)

]
> 2|log(LξN)|−

α
2 ,

EΠ̃
[
∥n− n0∥2L2(D)

∣∣∣Y (N), X(N)
]
e−BNξ2N ≤ |log(LξN)|−α


≤ PN

n0

(
EΠ̃
[
∥n− n0∥2L2(D)

∣∣∣Y (N), X(N)
]
e−BNξ2N > |log(LξN)|−α

)

+ PN
n0



√
EΠ̃
[
∥n− n0∥2L2(D)

∣∣∣Y (N), X(N)
]

×

√√√√Π̃

(
n :

∥n− n0∥L2(D) > |log(LξN)|−
α
2

∥1− n∥Ht(D) ≤ c|log(LξN)|
α
10

∣∣∣∣∣Y (N), X(N)

)

EΠ̃
[
∥n− n0∥2L2(D)

∣∣∣Y (N), X(N)
]
e−BNξ2N ≤ |log(LξN)|−α

≥ |log(LξN)|−
α
2


≤ PN

n0

(
EΠ̃
[
∥n− n0∥2L2(D)

∣∣∣Y (N), X(N)
]
e−BNξ2N > |log(LξN)|−α

)
+ PN

n0

(
Π̃

(
n :

∥n− n0∥L2(D) > |log(LξN)|−
α
2

∥1− n∥Ht(D) ≤ c|log(LξN)|
α
10

∣∣∣∣∣Y (N), X(N)

)
≥ e−BNξ2N

)
= PN

F0

(
EΠ
[
∥F − F0∥2L2(D)

∣∣∣Y (N), X(N)
]
e−BNξ2N > |log(LξN)|−α

)
+ o(1),

where we have used (4.4) and then (4.2). Likewise, we can show that the first probability
on the right hand side above vanishes as N → ∞ by proceeding as in the proof of [GN20,
Theorem 6, page 14] (there, replacing [GN20, Lemma 16] by [GN20, Lemma 20]). Note that
for Π the random series prior given in (3.2), it also holds that EΠ∥F∥2L2(D) <∞, see [GN20,
page 17]. In other words, we can obtain that

PN
F0

(
EΠ

[
∥F − F0∥L2(D)1∥F∥Ht(D)≤c′

1
t |log(LξN )|

α
10t

|Y (N), X(N)

]
> 2C|log(LξN)|−

α
2
(1− a

5t
)

)
→ 0.

Finally, by the definition of FN and Minkowski’s inequality, we see that

∥FN − F0ZN∥L2(D)

=

(∫
D

(
EΠ

[
(F − F0)1∥F∥Ht(D)≤c′

1
t |log(LξN )|

α
10t

|Y (N), X(N)

])2

dx

)1/2

≤ EΠ

[
∥F − F0∥L2(D)1∥F∥Ht(D)≤c′

1
t |log(LξN )|

α
10t

|Y (N), X(N)

]
,
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which concludes our result. □

Appendix A. Inverse scattering problem

A.1. Forward problem. In what follows, instead of (2.1), we only assume that

(A.1) n ∈ L2(D), supp(1− n) ⊂ D, 0 < n ≤M0 for some M0 > 0.

We want to show the existence and uniqueness of uscan by refining the ideas in [FKW24,
Appendix A]. It is known that w := uscan satisfies the following boundary value problem:

(A.2)

{
−∆w − k2nw = k2(n− 1)uinc in BR,

∂w/∂r = SR(w|∂BR
) on ∂BR,

where BR is a ball of radius R such that D̄ ⊂ BR. Here SR : H1/2(∂BR) → H−1/2(∂BR) is
the Dirichlet-to-Neumann map, defined for g ∈ H1/2(∂BR) by SRg = (∂ug/∂r)|∂BR

, where
ug is the solution of the Helmholtz equation satisfying the Sommerfeld radiation condition
in R3 \BR and the Dirichlet condition ug = g on ∂BR. It has been shown that

(A.3) Re⟨SR(v), v⟩ ≤ 0 and Im⟨SR(v), v⟩ ≥ 0, ∀ v ∈ H1/2(∂BR),

where ⟨·, ·⟩ denotes the duality pairing betweenH−1/2(∂BR) andH1/2(∂BR), see, for example,
[CCH23, Definition 1.36 and (1.50)].

Let us replace the right-hand side of the first equation in (A.2) by a general source term
f with supp(f) ⊂ BR, i.e.,

(A.4)

{
−∆w − k2nw = f in BR,

∂w/∂r = SR(w|∂BR
) on ∂BR,

In view of the integration by parts, (A.4) is equivalent to the following variational formulation:
find w ∈ H1(BR) such that for all v ∈ H1(BR),

a1(w, v) + a2(w, v) = F (v),

where

a1(w, v) =

∫
BR

∇w · ∇v̄ dx− k2
∫
BR

nwv̄ dx+ k2(M0 + 1)

∫
BR

wv̄ dx− ⟨SR(w), v̄⟩,

a2(w, v) = −k2(M0 + 1)

∫
BR

wv̄ dx,

and
F (v) =

∫
BR

f v̄ dx.

By using (A.3), we can see that a1(·, ·) is strictly coercive in the sense of

Re a1(w,w) =
∫
BR

(
|∇w|2 + k2(M0 + 1− n)|w|2

)
dx ≥ C(k)∥w∥2H1(BR).

We now define the bounded linear operator A : H1(BR) → (H1(BR))
∗, where (H1(BR))

∗ is
the dual space of H1(BR), by

⟨Aw, v⟩ := a1(w, v) for all v ∈ H1(BR),
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where ⟨·, ·⟩ is the (H1(BR))
∗ ×H1(BR) duality pair. We remind the readers that

(H1(BR))
∗ ̸= (H1

0 (BR))
∗ = H−1(BR).

By using the Lax-Milgram theorem, one sees that the operator A : H1(BR) → (H1(BR))
∗ is

invertible. Since bounded linear operator B : H1(BR) → (H1(BR))
∗ given by

⟨Bw, v⟩ := a2(w, v) for all v ∈ H1(BR)

is compact, then A + B is a Fredholm operator. By the Fredholm alternative, A + B :
H1(BR) → (H1(BR))

∗ is bounded invertible provided the kernel of A + B is trivial, which
follows the uniqueness of the scattered solution2. In addition, there exists a constant C =
C(D, k,M0) > 0 such that

(A.5) ∥w∥H1(BR) ≤ C∥f∥(H1(BR))∗ ≤ C∥f∥L2(BR).

We now choose f = k2(n− 1)uinc and w = uscan in (A.5) to obtain

sup
θ∈S2

∥uscan (·, θ)∥H1(BR) ≤ C1∥1− n∥L2(D)

with C0 = C0(D, k,M0) > 0, which is independent of θ ∈ S2. Note that supp(f) ⊂ D ⊂ BR.
By the interior estimate [GT01, Theorem 8.8] and the Sobolev embedding theorem, we reach

(A.6) sup
θ∈S2

∥uscan (·, θ)∥C(D) ≤ C sup
θ∈S2

∥uscan (·, θ)∥H2(BR) ≤ C0∥1− n∥L2(D)

with C1 = C1(D, k,M0) > 0, which is also independent of θ ∈ S2.
The scattering amplitude u∞n (θ′, θ) can be expressed explicitly by

(A.7) u∞n (θ′, θ) = − k2

4π

∫
D

e−ikθ′·y(1− n)(y)u(y, θ) dy,

where u(y, θ) = uinc(y, θ)+uscan (y, θ) is the total field and uinc(y, θ) = eiky·θ, see [CK19, (8.28)]
or [CCH23, (1.22)] or [Ser17, Page 232]. We combine (A.6) and (A.7) to obtain

∥u∞n ∥L∞(S2×S2) ≤ C2(1 + ∥n∥2L2(D)) ≤ S(A.8)

for some constant C2 = C2(D, k,M0) and S = S(D, k,M0), which implies the uniform
boundedness condition (2.3c).

Let n1, n2 satisfy (A.12). We choose w = uscan2
−uscan1

and f = k2(n2−n1)u
sca
n1

+k2(n2−n1)u
inc

in (A.5), as well as using (A.6), to obtain

∥uscan1
− uscan2

∥H1(BR) ≤ C
(
1 + ∥n1∥L2(D) + ∥n2∥L2(D)

)
∥n1 − n2∥L2(D)

for some constant C = C(D, k,M0) > 0. From (A.7) and the equation above it is not difficult
to see that

(A.9) ∥u∞n1
− u∞n2

∥L2(S2×S2) ≤ C3

(
1 + ∥n1∥L2(D) + ∥n2∥L2(D)

)
∥n1 − n2∥L2(D)

for some constant C3 = C3(D, k,M0) > 0.

2The proof needs Rellich’s lemma [CCH23, page 6] and the unique continuation property [CCH23, page 11],
which is only required n ∈ L2(D).
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A.2. Inverse problem. Next, we want to refine the stability estimate in [HH01, Theo-
rem 1.2], which studies the determination of the potential from the knowledge of the scat-
tering amplitude. To do so, we first refine [Häh96, Lemma 5] in the following lemma. Even
though the proof is similar, here we still present the proof to make the paper self contained.

Lemma A.1. Let d ≥ 2 and R0 > 0. Assume that Br0 ⊂ Rd is an open ball centered at
the origin with radius r0 ≤ R0. Let q ∈ L∞(Rd) satisfy supp (q) ⊂ Br0 and k ≥ 0 be fixed.
Given any ζ ∈ Cd with ζ · ζ = k2 and |Im (ζ)| ≥ (R0/π)∥q∥L∞(Rd) + 1, there exists a solution
u ∈ H2(Br0) of (∆+ k2 + q(x))u = 0 in Br0 such that u(x) = eiζ·x(1 +wζ(x)) for all x ∈ Br0

with
∥wζ∥L2(Br0 )

≤ (2R0)
d
2 (R0/π)∥q∥L∞(Rd)

(
(R0/π)∥q∥L∞(Rd) + 1

)
|Im ζ|−1.

Proof. Let ζ ∈ Cd be given in the lemma. Since Im ζ · Re ζ = 0, one can find an
orthogonal transform Q ∈ Rd×d such that Q(Re ζ) = (|Re ζ|, 0, · · · , 0)⊺ and Q(Im ζ) =
(0, |Im ζ|, 0, · · · , 0)⊺. We choose

ξ := (|Re ζ|, i|Im ζ|, 0, · · · , 0)⊺, q̃(x) := q(Q⊺x) for x ∈ Rd.

By [Häh96, Theorem 1], given any f ∈ L2((−R0, R0)
d) one has the estimate

∥Gξ(q̃f)∥L2((−R0,R0)d) ≤
(R0/π)∥q∥L∞(Rd)

|Im ζ|
∥f∥L2((−R0,R0)d)

≤
(R0/π)∥q∥L∞(Rd)

(R0/π)∥q∥L∞(Rd) + 1
∥f∥L2((−R0,R0)d),

where Gξ : L
2((−R0, R0)

d) → H2((−R0, R0)
d) is the operator defined in [Häh96, Theorem 1].

By Banach’s fixed point theorem, we can find a unique solution to wξ ∈ L2((−R0, R0)
d) of

wξ = −Gξ(q̃wξ + q̃). Furthermore, we have wξ ∈ H2((−R0, R0)
d) and

∥wξ∥L2((−R0,R0)d) = ∥Gξ(q̃wξ + q̃)∥L2((−R0,R0)d)

≤
(R0/π)∥q∥L∞(Rd)

|Im ζ|
∥wξ + 1∥L2((−R0,R0)d)

≤
(R0/π)∥q∥L∞(Rd)

(R0/π)∥q∥L∞(Rd) + 1
∥wξ∥L2((−R0,R0)d) + (2R0)

d
2
(R0/π)∥q∥L∞(Rd)

|Im ζ|
,

which implies

∥wξ∥L2((−R0,R0)d) ≤ (2R0)
d
2 (R0/π)∥q∥L∞(Rd)

(
(R0/π)∥q∥L∞(Rd) + 1

)
|Im ζ|−1.

Finally, one can verify that u(x) := eiζ·x(1 + wζ(x)) for x ∈ Br0 , where wζ(x) := wξ(Qx), is
our desired solution. □

Let us introduce the point source uinc(x) = Ξ(x, y) located at y ∈ R3 with |y| > R as
incident fields, where

Ξ(x, y) :=
1

4π

eik|x−y|

|x− y|
is the outgoing fundamental solution to the Helmholtz operator −(∆ + k2). Let wsca

n (·, y)
be the solution to (A.4) with uinc given above and denote the total field by wn(·, y) =
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Ξ(·, y) + wsca
n (·, y), which is the Green’s function of the corresponding scattering problem.

We now introduce the operator

(Snφ)(x) :=

∫
∂BR

wn(x, y)φ(y) ds(y), x ∈ ∂BR

see [HH01, Lemma 2.1] for more details.
For each y ∈ ∂BR, we choose f = k2(n − 1)Ξ(·, y) (note supp(f) ⊂ D ⊂ BR) and

w = wsca
n (·, y) in (A.5) to derive

sup
y∈∂BR

∥wn(·, y)− Ξ(·, y)∥L2(∂BR) ≤ sup
y∈∂BR

∥wn(·, y)− Φ(·, y)∥H1(BR) ≤ C0

for some constant C0 = C0(D, k,M0, R), where we have used the observation

(A.10)

∫
D

|f |2 dx ≤ k4
∫
BR

|n− 1|2|Ξ(x, y)|2 dx

≤ k4(M0 + 1)2
∫
B2R

|Ξ(x, y)|2 dx ≤ Ck4(M0 + 1)2

with C = C(R). This implies that

∥wn − Ξ∥L2(∂BR×∂BR) ≤ C0

for some constant C0 = C0(D, k,M0, R). Therefore, for n1, n2 satisfying (A.1), we have

(A.11) ∥wn1 − wn2∥L2(∂BR×∂BR) ≤ C0

with C0 = C0(D, k,M0, R).
Next we recall the following lemma from [HH01].

Lemma A.2. [HH01, Lemma 3.2] Let D ⊂ BR. Assume that n1, n2 are refractive indices
with supp (1− nj) ⊂ D for j = 1, 2. Then there exists a positive constant C = C(k,R) such
that ∣∣∣∣∫

D

(n1 − n2)u1u2 dx

∣∣∣∣ ≤ C∥Sn1 − Sn2∥L2(∂BR)→L2(∂BR)∥u1∥L2(B2R)∥u2∥L2(B2R)

for all solutions uj ∈ H2(B2R) of (∆ + k2nj)uj = 0 in B2R.

Let t > 3
2

and n1, n2 satisfy

(A.12) supp (1− nj) ⊂ D and ∥1− nj∥Ht ≤M, j = 1, 2,

where M ≥M0 and we assume M ≥ 1. We have

(A.13) n1(x)− n2(x) = (2π)−
3
2

∑
γ∈Z3

(n1 − n2)̂ (γ)e
iγ·x,

where f̂ denotes the Fourier coefficients of a function f ∈ L2((−π, π)3) with respect to the
orthonormal bases (2π)−

3
2 eiγ·x for x ∈ (−π, π)3 and γ ∈ Z3. Given any constant ρ ≥ 2, it is

easy to see that

(A.14)
∑
|γ|>ρ

|(n1 − n2)̂ (γ)|2 ≤
1

(1 + ρ2)t

∑
|γ|>ρ

(1 + γ · γ)t|(n1 − n2)̂ (γ)|2 ≤
CM2

ρ2t
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and

(A.15)

∑
|γ|>ρ

|(n1 − n2)̂ (γ)|

≤

∑
|γ>ρ|

(1 + γ · γ)t|(n1 − n2)̂ (γ)|2
 1

2
∑

|γ|>ρ

1

(1 + γ · γ)t

 1
2

≤ CM

ρt−
3
2

.

for some C = C(t) > 0, see [HH01, Page 675]. We now estimate the Fourier coefficients
(n1 − n2)̂ (γ) for |γ| ≤ ρ as in [HH01, Lemma 3.3].

Lemma A.3. Let t > 3
2
, ρ ≥ 2 and n1, n2 satisfy (A.12). Moreover, define τ0 :=

√
M2

1 + k2

with M1 = k2M + 1. Then there exists a constant C = C(k,R) > 0 such that

|(n1 − n2)̂ (γ)| ≤ CM5

(
e4R(τ+ρ)∥Sn1 − Sn2∥L2(∂BR)→L2(∂BR) +

1

τ

)
for all γ ∈ Z3 with |γ| ≤ ρ and for all τ > τ0.

Proof. We choose unit vectors d1, d2 ∈ R3 such that d1 · d2 = d1 · γ = d2 · γ = 0 and define
the complex vectors

ζ1,τ := −1

2
γ + i

√
τ 2 − k2 +

|γ|2
4
d1 + τd2 ∈ C3,

ζ2,τ := −1

2
γ − i

√
τ 2 − k2 +

|γ|2
4
d1 − τd2 ∈ C3.

Then ζ1,τ + ζ2,τ = −γ and ζ1,τ · ζ1,τ = ζ2,τ · ζ2,τ = k2. Since τ > τ0, we have

|Im (ζj,τ )| ≥M1 for all j = 1, 2.

Using Lemma A.1 with d = 3, qj = k2(nj − 1), and r0 = R0 = 2R, for j = 1, 2, there exist
geometrical optics solutions

uj,τ (x) = eiζj,τ ·x(1 + vj,τ (x)) for x ∈ B2R, ∥vj,τ∥L2(B2R) ≤ CM2|Im ζj,τ |−1

for some C = C(k,R′) > 0. We can see that

u1,τ (x)u2,τ (x) = e−iγ·x(1 + pτ (x)), pτ (x) = v1,τ (x) + v2,τ (x) + v1,τ (x)v2,τ (x)

and ∫
D

|pτ (x)| dx ≤
∫
D

|v1,τ (x)| dx+
∫
D

|v2,τ (x)| dx+
∫
D

|v1,τ (x)||v2,τ (x)| dx

≤ |D|
1
2∥v1,τ∥L2(D) + |D|

1
2∥v2,τ∥L2(D) + ∥v1,τ∥L2(D)∥v2,τ∥L2(D)

≤ CM4|Im ζj,τ |−1 ≤ CM4τ−1
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with C = C(k,R) > 0. Since |γ| ≤ ρ, from Lemma A.2, it follows that

|(n1 − n2)̂ (γ)| = (2π)−
3
2

∣∣∣∣∫
D

(n1 − n2)(x)e
−iγ·x dx

∣∣∣∣
= (2π)−

3
2

∣∣∣∣∫
D

(n1 − n2)(x)u1,τ (x)u2,τ (x) dx−
∫
D

(n1 − n2)(x)e
−iγ·xpτ (x) dx

∣∣∣∣
≤ C∥Sn1 − Sn2∥L2(∂BR)→L2(∂BR)∥u1,τ∥L2(B2R)∥u2,τ∥L2(B2R) + CM5τ−1

≤ CM5

(
e4R(τ+ρ)∥Sn1 − Sn2∥L2(∂BR)→L2(∂BR) +

1

τ

)
for some C = C(k,R) > 0, which leads to the lemma. □

We now prove the following stability estimate in terms of the total fields.

Theorem A.4. Let t > 3
2

and R > 0 be such that D ⊂ BR. Then there exists a positive
constant C = C(R, k, t), which is independent of M , such that for all refractive indices n1, n2

satisfying (A.12) the estimate

(A.16) ∥n1 − n2∥L2(D) ≤ CM5
(
− log−∥wn1 − wn2∥L2(∂BR×∂BR)

)− t
t+3

holds true, where log− z = log(z) if z ≤ 1/e and log−(z) = −1 if z > 1/e.

Remark. Using similar arguments we can obtain a stability estimate for ∥n1 − n2∥L∞(D) by
replacing (A.14) with (A.15). To simplify the presentation, we will not explore all the details
here.

Proof of Theorem A.4. Without loss of generality, we assume D ⊂ B1 and R > 1. In
view of Fourier expansion (A.13), the estimate (A.14) and Lemma A.3, and the fact that
there are less that 2ρ3 multi-indices γ ∈ Z3 with |γ| ≤ ρ, we have

∥n1 − n2∥2L2(B1)

≤ C(k,R)M10

(
2ρ3
(
e4R(τ+ρ)∥Sn1 − Sn2∥L2(∂BR)→L2(∂BR) +

1

τ

))2

+
C(t)M2

ρ2t

≤ C(k,R, t)M10

(
e(4R+1)(τ+ρ)∥Sn1 − Sn2∥L2(∂BR)→L2(∂BR) +

ρ3

τ
+

1

ρt

)2

for all τ > τ0 =
√

(k2M + 1)2 + k2 and for all ρ ≥ 2.
We now choose ρ = τ

1
t+3 and see that ρ ≥ 2 for all τ ≥ τ0 + 2t+3. Then we have

∥n1 − n2∥L2(B1)

≤ C(k,R, t)M5

(
e(8R+2)τ∥Sn1 − Sn2∥L2(∂BR)→L2(∂BR) +

2

τ t/(t+3)

)
≤ C(k,R, t)M5

(
e(8R+2)τ∥wn1 − wn2∥L2(∂BR×∂BR) +

2

τ t/(t+3)

)
.

Case 1. Suppose that ∥wn1 − wn2∥L2(∂BR×∂BR) is sufficiently small such that

(A.17) τ := − 1

t+ 3

3

8R + 2
log∥wn1 − wn2∥L2(∂BR×∂BR) ≥ τ0 + 2t+3,
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then we see that

(A.18)
∥n1 − n2∥L2(B1) ≤ C(k,R, t)M5

(
− log∥wn1 − wn2∥L2(∂BR×∂BR)

)− t
t+3

≤ C(k,R, t)M5
(
− log∥wn1 − wn2∥L2(∂BR×∂BR)

)− t
t+3 .

On the other hand, (A.17) implies

∥wn1 − wn2∥L2(∂BR×∂BR) ≤ exp

(
−1

3
(t+ 3)(8R + 2)(τ0 + 2t+3)

)
≤ e−1.

Case 2. Otherwise, if ∥wn1 −wn2∥L2(∂BR×∂BR) ≤ e−1, but (A.17) does not hold, then we see
that (

(t+ 3)(8R + 2)

3
(τ0 + 2t+3)

)− t
t+3

≤
(
− log∥wn1 − wn2∥L2(∂BR×∂BR)

)− t
t+3 .

Consequently, we have that

(A.19)

∥n1 − n2∥L2(B1) ≤ ∥1− n1∥Ht + ∥1− n2∥Ht ≤ 2M

≤ 2M

(
(t+ 3)(8R + 2)

3
(τ0 + 2t+3)

) t
t+3 (

− log∥wn1 − wn2∥L2(∂BR×∂BR)

)− t
t+3

≤ C(k,R, t)Mτ
t

t+3

0

(
− log∥wn1 − wn2∥L2(∂BR×∂BR)

)− t
t+3

≤ C(k,R, t)M
2t+3
t+3

(
− log∥wn1 − wn2∥L2(∂BR×∂BR)

)− t
t+3 .

Combining (A.18), (A.19), and using the a priori bounds of n1, n2 in the case of
∥wn1 − wn2∥L2(∂BR×∂BR) > e−1, implies (A.16). □

We are now ready to refine [HH01, Theorem 1.2] in the following theorem.

Theorem A.5. Let t > 3
2

and 0 < ϵ < t
t+3

. Assume that n1, n2 satisfy (A.12) and (A.1) also
holds. Then there exists a positive constant C = C(D,M0, t, k, ϵ), which is independent of
M , such that

∥n1 − n2∥L2(D) ≤ CM5
(
− log−∥u∞n1

− u∞n2
∥L2(S2×S2)

)− t
t+3

+ϵ
.

Proof. Without loss of generality, we may assume that D ⊂ B1. Given any 0 < θ < 1, by
following the arguments in [HH01, Theorem 1.2], one can show that there exist ω = ω(k,R) >
0 and ρ = ρ(k,R, t,M0, θ) > 0 with ωρ > 1 such that

∥wn1 − wn2∥L2(∂B2R×∂B2R) ≤ ρ exp

(
−1

2

(
− log

∥u∞n1
− u∞n2

∥L2(S2×S2)

ωρ

)θ
)

≤ ρ exp

(
−1

2

(
− log∥un∞

1
− u∞n2

∥L2(S2×S2)
)θ)

.

It is important to remark that here we use (A.11) and follow the argument on [HH01, Page
680–681] to ensure that the constant ρ is independent of M (but depends on M0).
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Choosing R = 2 in the above inequality and plugging this inequality into (A.16) yields

∥n1 − n2∥L2(B1) ≤ CM5
(
−2 log ρ+

(
− log∥u∞n1

− u∞n2
∥L2(S2×S2)

)θ)− t
t+3

= CM5
(
− log∥un1 − un2∥L2(S2×S2)

)−θ t
t+3

(
−2 log ρ

(− log∥u∞n1
− u∞n2

∥L2(S2×S2))θ
+ 1

)− t
t+3

≤ CM5
(
− log∥u∞n1

− u∞n2
∥L2(S2×S2)

)−θ t
t+3

for all sufficiently small ∥u∞n1
−u∞n2

∥L2(S2×S2). Choosing θ such that θ t
t+3

= t
t+3

−ϵ, the theorem
can be proved as in the proof of Theorem A.4.

□

Appendix B. Example of link function

Here we want to construct a link function Φ satisfying Definition 2.1 following the idea in
[NvdGW20]. Define φ ∈ C(R) such that

φ(t) =


M̃0 − t−a+1, t > t1,

C0t+ C1, t2 < t < t1,

(−t)−a+1, t < t2,

where M̃0 > 0, a > 1, −∞ < t2 < −1 < 1 < t1 <∞, and

C0 =
M̃0 − t−a+1

1 − (−t2)−a+1

t1 − t2
,

C1 = (−t2)−a+1 − t2(M̃0 − t−a+1
1 − (−t2)−a+1)

t1 − t2
.

Let ψ : R → [0,∞) be a smooth function such that suppψ ⊂ [−1, 1] and
∫
R ψ(t)dt = 1. We

now define
Φ(t) :=

ψ ∗ φ(t)
ψ ∗ φ(0)

, −∞ < t <∞,

and set M̃0 > 0 such that
M̃0

ψ ∗ φ(0)
=M0,

(if necessary, we can choose |t1|, |t2| large enough). Then, we want to verify that Φ satisfies
(i)–(iii) of Definition 2.1. Indeed, by the direct computation, we have

Φ′(t) = (a− 1)

∫ ∞

t1

ψ(t− s)s−ads+ C0

∫ t1

t2

ψ(t− s)ds+ (a− 1)

∫ t2

−∞
ψ(t− s)(−s)−ads,

which is positive for all t ∈ R, and

lim
t→∞

Φ(t) =M0, lim
t→−∞

Φ(t) = 0,

which implies that (i) holds.
Since 0 ≤ Φ(z) ≤M0 for all z,

|Φ(k)(t)| ≤
∫
R
|ψ(k)(t− s)|M0ds ≤M0

∫
R
|ψ(k)(s)|ds <∞,
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and hence (ii) holds.
Finally, for t≫ t1,

Φ′(t) = (a− 1)

∫ t−t1

−∞
ψ(z)(t− z)−adz = (a− 1)

∫ 1

−1

ψ(z)(t− z)−adz

≥ (a− 1)(t+ 1)−a

∫ 1

−1

ψ(z)dz ≈ t−a,

and for t≪ t2,

Φ′(t) = (a− 1)

∫ ∞

t−t2

ψ(z)(z − t)−adz = (a− 1)

∫ 1

−1

ψ(z)(z − t)−adz

≥ (a− 1)(−t− 1)−a

∫ 1

−1

ψ(z)dz ≈ (−t)−a,

which is (iii).

Acknowledgments

Kow was partially supported by the NCCU Office of research and development and the Na-
tional Science and Technology Council of Taiwan, NSTC 112-2115-M-004-004-MY3. Wang
was partially supported by the National Science and Technology Council of Taiwan, NSTC
112-2115-M-002-010-MY3. Furuya was partially supported by JSPS KAKENHI Grant Num-
ber JP24K16949.

References

[AN19] K. Abraham and R. Nickl. On statistical Calderón problems. Math. Stat. Learn., 2(2):165–216,
2019. MR4130599, Zbl:1445.35144, doi:10.4171/MSL/14, arXiv:1906.03486.

[CCH23] F. Cakoni, D. Colton, and H. Haddar. Inverse scattering theory and transmission eigenvalues,
volume 98 of CBMS-NSF Regional Conf. Ser. in Appl. Math. Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, PA, second edition, 2023. MR4539629, Zbl:1507.35002,
doi:10.1137/1.9781611977424.

[CK19] D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory, volume 93 of Ap-
plied Mathematical Sciences. Springer, Cham, fourth edition, 2019. MR3971246, Zbl:1425.35001,
doi:10.1007/978-3-030-30351-8.

[FKW24] T. Furuya, P.-Z. Kow, and J.-N. Wang. Consistency of the Bayes method for the inverse scatter-
ing problem. Inverse Problems, 40(5), 2024. Paper No. 055001, doi:10.1088/1361-6420/ad3089.

[GT01] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order (reprint
of the 1998 edition), volume 224 of Classics in Mathematics. Springer-Verlag, Berlin, 2001.
MR1814364, Zbl:1042.35002, doi:10.1007/978-3-642-61798-0.

[GN21] E. Giné and R. Nickl. Mathematical foundations of infinite-dimensional statistical models,
volume 40 of Camb. Ser. Stat. Probab. Math. Cambridge university press, New York, 2021.
MR3588285, Zbl:1460.62007, doi:10.1017/9781009022811.

[GN20] M. Giordano and R. Nickl. Consistency of bayesian inference with gaussian process priors in an
elliptic inverse problem. Inverse problems, 36(8), 2020. Paper No. 085001, 35 pages. MR4151406,
Zbl:1445.35330, doi:10.1088/1361-6420/ab7d2a, arXiv:1910.07343.

[Häh96] P. Hähner. A periodic Faddeev-type solution operator. J. Differential Equations, 128(1):300–
308, 1996. MR1392403, Zbl:0849.35022, doi:10.1006/jdeq.1996.0096.

[HH01] P. Hähner and T. Hohage. New stability estimates for the inverse acoustic inhomogeneous
medium problem and applications. SIAM J. Math. Anal., 33(3):670–685, 2001. MR1871415,
Zbl:0993.35091, doi:10.1137/S0036141001383564.

https://mathscinet.ams.org/mathscinet/article?mr=4130599
https://zbmath.org/1445.35144
https://doi.org/10.4171/MSL/14
https://arxiv.org/abs/1906.03486
https://mathscinet.ams.org/mathscinet/article?mr=4539629
https://zbmath.org/1507.35002
https://doi.org/10.1137/1.9781611977424
https://mathscinet.ams.org/mathscinet-getitem?mr=3971246
https://zbmath.org/1425.35001
https://doi.org/10.1007/978-3-030-30351-8
https://doi.org/10.1088/1361-6420/ad3089
https://mathscinet.ams.org/mathscinet/article?mr=1814364
https://zbmath.org/1042.35002
https://doi.org/10.1007/978-3-642-61798-0
https://mathscinet.ams.org/mathscinet/article?mr=3588285
https://zbmath.org/1460.62007
https://doi.org/10.1017/9781009022811
https://mathscinet.ams.org/mathscinet/article?mr=4151406
https://zbmath.org/1445.35330
https://doi.org/10.1088/1361-6420/ab7d2a
https://arxiv.org/abs/1910.07343
https://mathscinet.ams.org/mathscinet/article?mr=1392403
https://zbmath.org/0849.35022
https://doi.org/10.1006/jdeq.1996.0096
https://mathscinet.ams.org/mathscinet/article?mr=1871415
https://zbmath.org/0993.35091
https://doi.org/10.1137/S0036141001383564


BAYES METHOD 19

[Kek22] H. Kekkonen. Consistency of Bayesian inference with Gaussian process priors for a parabolic
inverse problem. Inverse Problems, 38(3), 2022. Paper No. 035002, 29 pages. MR4385425,
Zbl:1487.80018, doi:10.1088/1361-6420/ac4839, arXiv:2103.13213.

[LM72] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol.
I., volume 181 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New
York-Heidelberg, 1972. MR0350177, Zbl:0223.35039.

[McL00] W. McLean. Strongly elliptic systems and boundary integral equations. Cambridge University
Press, 2000. MR1742312, Zbl:0948.35001.

[MNP21] F. Monard, R. Nickl, and G. P. Paternain. Consistent inversion of noisy non-Abelian X-
ray transforms. Comm. Pure Appl. Math., 74(5):1045–1099, 2021. MR4230066, Zbl:7363259,
doi:10.1002/cpa.21942, arXiv:1905.00860.

[NvdGW20] R. Nickl, S. van de Geer, and S. Wang. Convergence rates for penalized least squares estimators
in PDE constrained regression problems. SIAM/ASA J. Uncertain. Quantif., 8(1):374–413, 2020.
MR4074017, Zbl:1436.62163, doi:10.1137/18M1236137, arXiv:1809.08818.

[Ser17] V. S. Serov. Fourier series, Fourier transform and their applications to mathematical
physics, volume 197 of Appl. Math. Sci. Springer, Cham, 2017. MR3729317, Zbl:1422.42001,
doi:10.1007/978-3-319-65262-7.

Education and Research Center for Mathematical and Data Science, Shimane University,
Matsue, Japan

Email address: takashi.furuya0101@gmail.com

Department of Mathematical Sciences, National Chengchi University, Taipei 116302, Tai-
wan.

Email address: pzkow@g.nccu.edu.tw

Institute of Applied Mathematical Sciences, National Taiwan University, Taipei 106, Tai-
wan.

Email address: jnwang@math.ntu.edu.tw

https://mathscinet.ams.org/mathscinet/article?mr=4385425
https://zbmath.org/1487.80018
https://doi.org/10.1088/1361-6420/ac4839
https://arxiv.org/abs/2103.13213
https://mathscinet.ams.org/mathscinet/article?mr=0350177
https://zbmath.org/0223.35039
https://mathscinet.ams.org/mathscinet-getitem?mr=1742312
https://zbmath.org/0948.35001
https://mathscinet.ams.org/mathscinet/article?mr=4230066
https://zbmath.org/7363259
https://doi.org/10.1002/cpa.21942
https://arxiv.org/abs/1905.00860
https://mathscinet.ams.org/mathscinet/article?mr=4074017
https://zbmath.org/1436.62163
https://doi.org/10.1137/18M1236137
https://arxiv.org/abs/1809.08818
https://mathscinet.ams.org/mathscinet/article?mr=3729317
https://zbmath.org/1422.42001
https://doi.org/10.1007/978-3-319-65262-7

	1. Introduction
	2. The statistical model
	3. Main results
	4. Proof of Theorems
	Appendix A. Inverse scattering problem
	A.1. Forward problem
	A.2. Inverse problem

	Appendix B. Example of link function
	Acknowledgments
	References

