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Abstract

In this paper we derive a propagation of smallness result for a
scalar second elliptic equation in divergence form whose leading order
coefficients are Lipschitz continuous on two sides of a C2 hypersurface
that crosses the domain, but may have jumps across this hypersur-
face. Our propagation of smallness result is in the most general form
regarding the locations of domains, which may intersect the interface
of discontinuity. At the end, we also list some consequences of the
propagation of smallness result, including stability results for the as-
sociated Cauchy problem, a propagation of smallness result from sets
of positive measure, and a quantitative Runge approximation prop-
erty.

1 Introduction

Propagation of smallness is a quantitative form of the unique continuation
property for solutions of partial differential equations. It can be regarded as
a generalization of Hadamard three-circle theorem for analytic functions. For
linear second order elliptic equations with nice coefficients, the propagation
of smallness is well understood, see for example [2] or the survey article [1]
(and references therein). In this paper, we aim to study the propagation of
smallness for second order elliptic equations with jump-type discontinuous
leading order coefficients.

The highlight of our result is that the domains in the propagation of small-
ness are arbitrarily chosen and may intersect the interface of discontinuity.
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It is also important to note that we obtain an inequality with exactly the
same dependence on the geometry of the domains involved as in the classical
result for Lipschitz leading order coefficients. This implies that a number of
consequences of the classical result also apply to the type of piecewise Lips-
chitz leading order coefficients we are considering here. These consequences
include stability results for the associated Cauchy problem, such as the ones
proved in [1], propagation of smallness from sets of positive measure, as the
one proved in [6], or the quantitative Runge approximation property devel-
oped in [8]. Propagation of smallness and quantitative Runge approximation
property have enormous applications to inverse problems such as the identi-
fication of obstacles by boundary measurements, or in the proof of stability
results.

1.1 Notations

To better describe the main result, we would like to introduce several nota-
tions. Let U ⊂ Rn, n ≥ 2 be an open bounded domain. Suppose we have
coefficients ajk, bj, q ∈ L∞(U), j, k = 1, . . . , n. We will say that

γ := ((ajk)jk, (bj)j, q) ∈ V (U, λ,M,K1, K2),

where λ,M,K1, K2 are positive constants, if

λ|ξ|2 ≤
∑
jk

ajk(x)ξjξk ≤ λ−1|ξ|2, ∀x ∈ U,

||ajk||C0,1(U) ≤M, ‖bj‖L∞(U) ≤ K2, ‖q‖L∞(U) ≤ K1.

In the case when bj = 0, j = 1, . . . , n, we will write

((ajk)jk, q) ∈ V0(U, λ,M,K1),

With the set of coefficients γ, we define the second order elliptic operator Lγ
that acts on a function u as follows

Lγu =
∑
jk

∂j(ajk∂ku) +
∑
j

bj∂ju+ qu.

Suppose now that Ω ⊂ Rn is a Lipschitz domain and Σ ⊂ Ω is a C2

hypersurface. Further assume that Ω\Σ only has two connected components,
which we denote Ω±. If we have coefficients a±jk, bj, q ∈ L∞(Ω±), j, k =
1, . . . , n, such that

γ± :=
(
(a±jk)jk, (bj)j, q

)
∈ V (Ω±, λ,M,K1, K2),
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we will use the notation Lγ to denote the operator

Lγu =
∑
jk

[
χΩ+∂j(a

+
jk∂ku) + χΩ−∂j(a

−
jk∂ku)

]
+
∑
j

bj∂ju+ qu.

For P ∈ Rn and r > 0, Br(P ) will denote the open ball with center P
and radius r. For an open set A ⊂ Rn and a number s > 0, we will use the
notations

As = {x ∈ Rn : dist(x,A) < s},

As = {x ∈ A : dist(x, ∂A) < s},

and
sA = {sx : x ∈ A}.

Definition 1.1. We say that Σ is C2 with constants r0, K0 if for any point
P ∈ Σ, after a rigid transformation, P = 0 and

Ω± ∩ Cr0,K0(0) = {(x, y) : x ∈ Rn−1, |x| < r0, y ∈ R, y ≷ ψ(x)},

where ψ is a C2 function such that ψ(0) = 0, ∇xψ(0) = 0, ‖ψ‖C2(Br0 (0)) ≤ K0,
and

Cr0,K0(0) = {(x, y) : x ∈ Rn−1, |x| < r0, |y| ≤
1

2
K0r

2
0}.

If Σ is as above, then we may ”flatten” the boundary around the point
P (without loss of generality P = 0) via the local C2-diffeomeorphism

ΨP (x, y) = (x, y − ψ(x)).

1.2 Main result and outline

Let D ⊂⊂ Ω be open and connected. Suppose that Σ ⊂ Ω is a C2 hypersur-
face with constants r0 and K0. Further assume that Ω\Σ has two connected
components, Ω±. Let a±jk, q ∈ L∞(Ω±), j, k = 1, . . . , n, be coefficients such
that (

(a±jk)jk, q
)
∈ V0(Ω±, λ,M,K1).

With these assumptions, we will prove a propagation of smallness result
as follows.

Theorem 1.1. Suppose u ∈ H1(Ω) solves

Lγu = f +∇ · F, ‖f‖L2(Ω) + ‖F‖L2(Ω) ≤ ε.
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There exist a constant h0 > 0, depending on λ, M , K1, r0, K0, Σ, such that if
0 < h < h0, r/2 > h, D ⊂ Ω is connected, open, and such that Br(x0) ⊂ D,
dist(D, ∂Ω) ≥ h, then

‖u‖L2(D) ≤ C(‖u‖L2(Br(x0)) + ε)δ(‖u‖L2(Ω) + ε)1−δ,

where

C = C1

(
|Ω|
hn

) 1
2

, δ ≥ τ
C2|Ω|
hn ,

with C1, C2 > 0, τ ∈ (0, 1) depending on λ, M , K1, r0, K0.

We want to point out that the propagation of smallness we obtained is
in the most general form regarding the locations of D and Br0(x0), which
may intersect the interface Σ. The strategy of proving Theorem 1.1 consists
two parts. When we are at one side of the interface, we can use the usual
propagation of smallness for equations with Lipschitz coefficients. When we
near the interface, we then use the three-region inequality derived in [5]. The
three-region inequality of [5] is used to propagate the smallness across the
interface.

The rest of the paper is organized as follows. In section 2 we recall two
known results. The first is a propagation of smallness result [1, Theorem
5.1] analogous to our own, in the case of Lipschitz leading order coefficients.
The second is a “three-region inequality” [5, Theorem 3.1] for leading order
coefficients which are Lipschitz except across a C2 hypersurface. The rest
of the section is concerned with extending the three regions inequality to a
slightly richer family of regions.

In section 3 we use the three-region inequality we have established in
section 2 to prove a propagation of smallness result with somewhat worse
constants than the ones in Theorem 1.1. Then in section 4 we use this
intermediate propagation of smallness result to prove Theorem 1.1.

Finally, in section 5, following [1], [6], and [8], we list a few consequences of
our main result. These are given without proofs, as these would be identical
to the ones given in [1], [6], and [8].

2 Known results and extensions

In this section we recall the propagation of smallness result for Lipschitz
leading order coefficients established in [1] and the three-region inequality
proved in [5] for leading order coefficients that are Lipschitz except on a
plane that intersects the domain. We then state and prove an extension of
the three-region inequality which will introduce a scaling parameter to the
family of regions for which the inequality applies.
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2.1 Lipschitz leading order coefficients

Assume that ((ajk)jk, q) ∈ V0(U, λ,M,K1). We then have the following.

Theorem 2.1 ( [1, Theorem 5.1]). Let u ∈ H1(U) be a weak solution to the
elliptic equation

Lγu = f +∇ · F, ‖f‖L2(U) + ‖F‖L2(U) ≤ ε.

Let 0 < h < r/2, D ⊂ U connected, open, and such that B r
2
(x0) ⊂ D,

dist(D, ∂U) ≥ h. Then

‖u‖L2(D) ≤ C(‖u‖L2(Br(x0)) + ε)δ(‖u‖L2(U) + ε)1−δ,

where

C = C1

(
|U |
hn

) 1
2

, δ ≥ τ
C2|U|
hn ,

with C1, C2 > 0, τ ∈ (0, 1) depending on λ, M , K1.

2.2 Piecewise Lipschitz leading order coefficients

Let
Rn

+ =
{

(x, y) ∈ Rn−1 × R : y > 0
}
,

Rn
− =

{
(x, y) ∈ Rn−1 × R : y < 0

}
,

and assume that

γ̃± =
(

(ã±jk)jk, (b̃j)j, q̃
)
∈ V (Rn

±, λ,M,K1).

Theorem 2.2 ( [5, Theorem 3.1]). There exist α±, δ0, τ0, β, C, R positive
constants depending on λ, M , K1, K2, such that if 0 < δ < δ0, 0 < R1, R2 ≤
R, and

Lγ̃u = 0, in U3,

then

∫
U2

|u|2 ≤ (eτ0R2 + CR−4
1 )

∫
U1

|u|2


R2
2R1+3R2

∫
U3

|u|2


2R1+2R2
2R1+3R2

,

where

U1 = {z ≥ −4R2,
R1

8a
< y <

R1

a
},
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U2 = {−R2 ≤ z ≤ R1

2a
, y <

R1

8a
},

U3 = {z ≥ −4R2, y <
R1

a
},

a =
α+

δ
, z(x, y) =

α−y

δ
+
βy2

2δ2
− |x|

2

2δ
.

Note that in [5], the function u is required to be a solution in Rn. It is
however clear from their proof that it only needs to solve the equation in U3.
The proof of the three-region inequality is based on the Carleman estimate
derived in [3] (or [7]).

2.3 Scaling the three regions

When trying to prove a propagation of smallness result, the family of regions
given in Theorem 2.2 has one important drawback, namely that if we choose
the parameters R1 = θR̄1, R2 = θR̄2, θ ∈ (0, 1), the vertical (i.e. y-direction)
size of the regions would scale like θ, while their horizontal (i.e. x-direction)

size would scale like θ
1
2 . Using just these two parameters in the proof would

then lead to constants in the propagation of smallness inequality (i.e. the
constants C and δ in Theorem 1.1) that depend on the geometry of Ω, D,
and Br(x0) in a way that is not invariant under a rescaling of these sets.

In order to derive a propagation of smallness result that is more closely
analogous to [1, Theorem 5.1], we need to introduce another parameter to
the family of three regions.

Assume that

γ̃± =
(

(ã±jk)jk, (b̃j)j, q̃
)
∈ V (Rn

±, λ,M,K1, K2).

For 0 < θ ≤ 1, let

Lθγ̃v =
∑
jk

[
χRn+∂j(ã

+
jk(θ·)∂kv) + χRn−∂j(ã

−
jk(θ·)∂kv)

]
+
∑
j

θb̃j(θ·)∂jv + θ2q̃(θ·)v.

Note that if
(

(ã±jk)
n
j,k=1, (b̃j)

n
j=1, q̃)

)
∈ V (Rn

±, λ,M,K1, K2), then(
(ã±jk(θ·))

n
j,k=1, (θb̃j(θ·))nj=1, θ

2q̃(θ·)
)
∈ V (Rn

±, λ, θM, θ2K1, θK2).
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Suppose Lγ̃ = 0 in Ω, and let

uθ(x) = θ−2u(θx).

Then
Lθγ̃uθ = 0, in θ−1Ω.

If U ⊂ θ−1Ω, note that∫
θU

|u(x)|2 dx = θn+4

∫
U

|uθ(y)|2 dy.

We therefore obtain, by scaling, the following corollary to Theorem 2.2.

Theorem 2.3. If 0 < δ < δ0, 0 < R1, R2 ≤ R, θ ∈ (0, 1], and

Lγ̃u = 0, in θU3,

then

∫
θU2

|u|2 ≤ (eτ0R2 + CR−4
1 )

∫
θU1

|u|2


R2
2R1+3R2

∫
θU3

|u|2


2R1+2R2
2R1+3R2

.

For u a solution to an inhomogeneous equation, we easily have a similar
result.

Corollary 2.1. Under the assumptions above, if

Lγ̃u = f +∇ · F, in θU3,

‖f‖L2(Ω) + ‖F‖L2(Ω) ≤ ε,

then

‖u‖L2(θU2) ≤ C(eτ0R2 + CR−4
1 )

1
2

×
(
‖u‖L2(θU1) + ε

) R2
2R1+3R2

(
‖u‖L2(θU3) + ε

) 2R1+2R2
2R1+3R2 .

Proof. Let u0 ∈ H1
0 (θU3) be the solution to

Lγ̃u0 = f +∇ · F.

Then
‖u0‖L2(θU3) ≤ C(‖f‖L2(Ω) + ‖F‖L2(Ω)) ≤ Cε.

Since
L(u− u0) = 0

we can apply Theorem 2.3 to u− u0 and the claim follows immediately.
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3 An intermediate propagation of smallness

result

In this section we assume that D ⊂⊂ Ω is open and connected, that Σ ⊂ Ω is
a C2 hypersurface with constants r0 and K0, and that Ω \Σ and D \Σ both
have two connected components each, denoted by Ω± and D± respectively.
We will consider coefficients

γ :=
(
(a±jk)jk, q

)
∈ V0(Ω±, λ,M,K1).

We can now prove the following propagation of smallness result.

Theorem 3.1. Suppose u ∈ H1(Ω) solves

Lγu = f +∇ · F, ‖f‖L2(Ω) + ‖F‖L2(Ω) ≤ ε.

Then there exist h0 > 0 depending on λ, M , K1, r0, K0, Σ, such that if
0 < h < h0, h < r/2, Br(x0) ⊂ D+, and dist(D, ∂Ω) ≥ h, then

‖u‖L2(D) ≤ C(‖u‖L2(Br(x0)) + ε)δ(‖u‖L2(Ω) + ε)1−δ,

where

C = C1

(
|Ω|
hn

)[
1 +

(
|Σ ∩ Ω|
hn−1

) 1
2

]
, δ ≥ τ

C2|Ω|
hn ,

with C1, C2 > 0, τ ∈ (0, 1) depending on λ, M , K1, r0, K0.

The difficult part of the proof is obtaining L2 estimates of the solution in
a neighborhood of Σ. We will use Corollary 2.1 above in order to accomplish
this. In order to adapt that result to the possibly curved surface Σ, we need
to first consider how the three regions transform under the local boundary
straightening diffeomorphisms ΨP .

3.1 Preimages of the three regions

Pick a point P ∈ Σ and set P = 0 without loss of generality. Let (x, y) ∈
Cr0,K0(0). We will try to determine when (x, y) ∈ Ψ−1

P (θU2). To this end, we
introduce the notation

x′ = x, y′ = y − ψ(x).

It is clear that (x, y) ∈ Ψ−1
P (θU2) if and only if θ−1(x′, y′) ∈ U2. Because we

expect the condition on the size of (x, y) to be approximately of order θ, we
also introduce

x′′ =
x

θ
, y′′ =

y

θ
,
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and expect to obtain a condition of order 1 on these. Finally, we introduce
the function

ζ(x) =
ψ(x)

|x|2
,

which is bounded by our assumption on the regularity of Σ. Then

z(θ−1x′, θ−1y′)

=
α−
δ
y′′ +

β

2δ2
y′′2 − |x

′′|2

2δ
− α−

δ

ψ(x)

θ
− β

δ2
y′′
ψ(x)

θ
+

β

2δ2

ψ(x)2

θ2
.

Suppose |x|2 + y2 = r2. Let r′′ = θ−1r, then

z(θ−1x′, θ−1y′) =
α−
δ
y′′ +

1

2δ2
(δ + β)(y′′)2 − (r′′)2

2δ

− α−
δ
θζ(x)|x′′|2 − β

δ2
θζ(x)y′′|x′′|2 +

β

2δ2
θ2ζ(x)2|x′′|4

When r′′ < r1 = α−δ
δ+β

, the minimum and maximum values of the fist three
terms on the right hand side combined will be attained when y′′ = ±r′′
(endpoints of [−r′′, r′′]). Let ‖ζ‖ = ‖ζ‖L∞(BRn−1 (0,r0)), then

z(θ−1x′, θ−1y′) ≤ α−
δ

(1 + θ‖ζ‖r′′)r′′ + β

2δ2
(1 + 2θ‖ζ‖r′′ + θ2‖ζ‖2r′′2)r′′2,

z(θ−1x′, θ−1y′) ≥ −α−
δ

(1 + θ‖ζ‖r′′)r′′ + β

2δ2
(1− 2θ‖ζ‖r′′ − θ2‖ζ‖2r′′2)r′′2.

Suppose now that r′′ < r2, where r2 is chosen so that

2‖ζ‖r2 + ‖ζ‖2r2
2 <

1

2
,

(which implies r2 < 1/(4‖ζ‖)). We have

z(θ−1x′, θ−1y′) ≤ 3α−
2δ

r′′ +
3β

4δ2
r′′2,

z(θ−1x′, θ−1y′) ≥ −3α−
2δ

r′′ +
β

4δ2
r′′2.

Incidentally, note that if r′′ < r2, then

θ−1y′ = y′′ − θ−1ψ(x) < r′′ + θ‖ζ‖r′′2 < 3

2
r′′,
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so the condition θ−1y′ < R1

8a
is satisfied if r′′ < R1

12a
. Hence, ΨP (B(0, r)) ⊂ θU2

if
3α−
2δ

r′′ +
3β

4δ2
r′′2 <

R1

2a

and
3α−
2δ

r′′ − β

4δ2
r′′2 < R2.

Consequently, if we only consider r′′ < r3 = 2α−δ
β

, then we have that ΨP (B(0, r)) ⊂
θU2 if

3α−
δ
r′′ <

R1

2a

and
3α−
2δ

r′′ < R2

In other words, we have proved the following lemma.

Lemma 3.1. If

r < θmin

{
δR1

6aα−
,
2δR2

3α−
,
R1

12a
, θ−1r0, r1, r2, r3

}
,

then ΨP (B(P, r)) ⊂ θU2.

Using the same notation as above, by simple estimates we get that if
(x′, y′) ∈ θU3, then

|x′|2

θ2
<

2α−
a
R1 +

β

a2δ
R2

1 + 8δR2 =: R2
0,

− δ
β

(
α− −

√
α2
− − 8βR2

)
≤ y′

θ
≤ R1

a
.

Noting that
|y|2 = |y′ + ψ(x)|2 ≤ 2|y′|2 + 2‖ζ‖2|x|2,

we can show that

Lemma 3.2. Ψ−1
P (θU3) is contained in a ball of radius

θ

(1 + 2‖ζ‖2)

(
2α−

a
R1 + 8δR2

)
+

1

a2

[
2 + (1 + 2‖ζ‖2)

β

δ

]
R2

1 +
128δ2R2

2[
α− +

√
α2
− − 8βR2

]2


1/2

centered at P .
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Finally, we would like to estimate the distance between Ψ−1
P (θU1) and

Σ ∩ Cr0,K0 . Note that dist(θU1, ∂Rn
+) = θR1

8a
. Recall that R0 is such that

Ψ−1
P (θU3) intersects the plane {y = 0} in a set contained in a ball of radius

θR0 centered at P . Let x1, x2 ∈ BRn−1(0, R0), Y > 0, and set

d = dist ((x1, ψ(x1)), (x2, ψ(x2) + Y )) .

Then

d2 = |x2 − x1|2 + |Y + ψ(x2)− ψ(x1)|2

≥ |x2 − x1|2 + |Y |2 + |ψ(x2)− ψ(x1)|2 − 2|Y | |ψ(x2)− ψ(x1)|

≥ |x2 − x1|2 +
1

2
|Y |2 − |ψ(x2)− ψ(x1)|2.

We can estimate

|ψ(x2)− ψ(x1)| ≤ |x2 − x1|
1∫

0

|∇ψ(x1 + t(x2 − x1))| dt

≤ |x2 − x1|K0

1∫
0

|x1 + t(x2 − x1)| dt ≤ K0R0|x2 − x1|,

therefore

d ≥ 1

2
|Y |2 + (1−K2

0R
2
0)|x2 − x1|2.

If necessary, R (given in Theorem 2.2) can be changed so that K2
0R

2
0 < 1.

The above estimate, with Y = θR1

8a
, implies

Lemma 3.3.

dist(Ψ−1
P (θU1),Σ) > θ

R1

16a
.

3.2 Proof of Theorem 3.1

Without loss of generality, we may take D to be the set

D = {x ∈ Ω : dist(x, ∂Ω) > h}.

We pick R1, R2 so that we can apply Corollary 2.1 at any point P ∈ Σ ∩D.
By Lemma 3.2, there is a constant d > 0, independent of P , such that
Ψ−1
P (θU3) ⊂ Bθd(P ). We will choose θ such that θd = h

2
, which implies
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Ψ−1
P (θU3) ⊂ Ω for any P ∈ Σ ∩ D. Of course, this choice is not possi-

ble if h is too large, so here we need to set h0 low enough, depending on
r0, K0, λ,M,K1,Σ.

With this choice of parameters, by Lemma 3.3, there is a constant 1 >
µ > 0, also independent on P , so that

dist(Ψ−1
P (θU1),Σ) > µh.

Note that, depending on the geometry of Σ, we again need to set h0 and R
small enough so that Ψ−1

P (θU1) ∩ Σµh = ∅, for any P ∈ Σ ∩D.
By Lemma 3.1, there exists a constant ν > 0, and without loss of gener-

ality ν < µ < 1, so that B5νh(P ) ⊂ Ψ−1
P (θU2). By Vitali’s covering lemma,

there exist finitely many P1, . . . , PN ∈ Σ ∩D so that

Σνh ∩D ⊂
N⋃
j=1

Ψ−1
Pj

(θU2), (1)

and the balls Bνh(Pj) are pairwise disjoint. By this last property, since for
small h we have |Σνh ∩D| ∼ νh|Σ∩D|, it follows that there is a constant C
such that

N ≤ C
|Σ ∩D|
hn−1

≤ C
|Σ ∩ Ω|
hn−1

. (2)

Let us denote D̃ = (D+)h/2 \ (Σνh ∪ Ω−), then by Theorem 2.1, we have
that

‖u‖L2(D̃) ≤ C+(‖u‖L2(Br(x0)) + ε)δ+(‖u‖L2(Ω) + ε)1−δ+ , (3)

where

Br(x0) ⊂ D̃, C+ = C1

(
|Ω|
hn

) 1
2

, δ+ ≥ τ
C2|Ω|
hn .

The function v = u ◦Ψ−1
Pj
∈ H1(θU3) satisfies in θU3 an equation of the form

Lγ̃v = f̃ +∇ · F̃ , ‖f̃‖L2(Ω) + ‖F̃‖L2(Ω) ≤ Cε,

with the coefficients of the operator Lγ̃ satisfying

γ̃± =
(

(ã±jk)jk, (b̃j)j, q̃
)
∈ V (Rn

±, λ̃, M̃ , K̃1, K̃2),

with C > 0 and the parameters λ̃, M̃ , K̃1, K̃2 depending on λ,M,K1, K2, r0, K0.
We can then pull back the three regions inequality of Corrolary 2.1 and apply
it to u and the regions Ψ−1

Pj
(θU1), Ψ−1

Pj
(θU2), Ψ−1

Pj
(θU3).

Since
Ψ−1
Pj

(θU1) ⊂ (D+)h/2 \ (Σνh ∪ Ω−),
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we have that

‖u‖L2(Ψ−1
Pj

(θU2)) ≤ C(‖u‖L2((D+)h/2\(Σνh∪Ω−)) + ε)ξ(‖u‖L2(Ω) + ε)1−ξ,

where ξ = R2

2R1+3R2
. Combining this and (3), we obtain

‖u‖L2(Ψ−1
Pj

(θU2)) ≤ C ′1

(
|Ω|
hn

) ξ
2

(‖u‖L2(Br(x0)) + ε)ξδ+(‖u‖L2(Ω) + ε)1−ξδ+ .

Then it follows from (1) and (2) that

‖u‖L2(Σνh∩D) ≤ C ′′1

(
|Σ ∩ Ω|
hn−1

) 1
2
(
|Ω|
hn

) ξ
2

× (‖u‖L2(Br(x0)) + ε)ξδ+(‖u‖L2(Ω) + ε)1−ξδ+ . (4)

Applying Theorem 2.1 again (now with an appropriate small ball B̃r̃ ⊂
Σνh ∩D− ⊂ Σνh ∩D), we have

‖u‖L2(D−\Σνh) ≤ C ′′′1

(
|Ω|
hn

) 1
2
(
|Σ ∩ Ω|
hn−1

) δ−
2
(
|Ω|
hn

) δ−ξ
2

× (‖u‖L2(Br(x0)) + ε)δ−ξδ+(‖u‖L2(Ω) + ε)1−δ−ξδ+ , (5)

where

δ− ≥ τ
C′2|Ω|
hn .

Combining the estimates (3), (4), and (5), we obtain the conclusion of The-
orem 3.1.

4 The proof of Theorem 1.1

In this section we will prove the main theorem of this paper. We begin with
deriving a three balls inequality, which is a direct consequence of Theorem
3.1. We would like to remark that a version of three balls inequality for the
second order elliptic equation with jump-type discontinuous coefficients was
obtained in [4]. However, the estimate derived in [4] does not fit what we
need. So we derive our own three balls inequality here to serve a building
block in the proof of the main theorem.

13



4.1 Three balls inequality

Here we assume Ω ⊂ Rn is an open Lipschtiz domain, Σ is a C2 hypersurface
with constants r0, K0, and Ω \ Σ has two connected components, Ω±. We
also assume we have coefficients(

(a±jk)jk, q
)
∈ V0(Ω±, λ,M,K1).

With these assumptions, let u ∈ H1(Ω) be a solution of

Lγu = f +∇ · F, ‖f‖L2(Ω) + ‖F‖L2(Ω) ≤ ε.

Theorem 4.1. There exist values r̄ > 0, depending on r0, K0, such that if
0 < r1 < r2 < r3 < r̄, Q ∈ Ω, dist(Q, ∂Ω) > r3, then there exist C > 0,
0 < δ < 1 such that

‖u‖L2(Br2 (Q)) ≤ C(‖u‖L2(Br1 (Q)) + ε)δ(‖u‖L2(Br3 (Q)) + ε)1−δ. (6)

C, and δ depend on λ, M , r0, K0, K1, r1
r2

, r2
r3

, diam(Ω), |Σ ∩ Ω|.

Proof. We would like to use the propagation of smallness result with r = r1
10

,
D = Br2(Q), and Ω = Br3(Q). We can choose the constant r̄ so that
Brj(Q)\Σ can all only have at most two connected components. This would
be the case for example if r̄ ≤ min(r0,

1
2
K0r

2
0). Fix an r̄ as described. Then we

can always find Q′ ∈ Br1(Q) so that Br1/10(Q′) ⊂ Br1(Q)∩Ω+ or Br1/10(Q′) ⊂
Br1(Q) ∩ Ω−. Without loss of generality we may assume that Br1/10(Q′) ⊂
Br1(Q) ∩ Ω+.

Let gΣ be the metric induced on Σ by the Euclidean metric of Rn. Around
a point P ∈ Σ at which we have chosen coordinates as in Definition 1.1,
we can use the coordinates (x1, . . . , xn−1) as a local map for Σ. In these
coordinates

gΣ
jk = δjk + ∂jψ∂kψ.

This observation implies that there exists a constant κ so that

|Σ ∩Br3(Q)| < κrn−1
3 .

We will treat several cases separately. The first case is when r3 − r2 <
min( r1

20
, h0). Then we can apply Theorem 3.1, with h = r3 − r2, to obtain

‖u‖L2(Br2 (Q)) ≤ C(‖u‖L2(B r1
10

(Q′)) + ε)δ(‖u‖L2(Br3 (Q)) + ε)1−δ,

where

C = C1

(
rn3

(r3 − r2)n

)[
1 +

(
κrn−1

3

(r3 − r2)n−1

) 1
2

]
, (7)
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δ ≥ τ
C2

rn3
(r3−r2)n . (8)

The second case is when r1
10
< 2h0, r3 − r2 ≥ r1

20
. Let r′3 = r2 + r1

21
(note

r′3 < r3), h = r1
21

and again apply Theorem 3.1 to obtain

‖u‖L2(Br2 (Q)) ≤ C(‖u‖L2(B r1
10

(Q′)) + ε)δ(‖u‖L2(Br3 (Q)) + ε)1−δ,

where

C = C1

(
(r2 + r1/21)n

(r1/21)n

)[
1 +

(
κ(r2 + r1/21)n−1

(r1/21)n−1

) 1
2

]
, (9)

δ ≥ τ
C2

(r2+r1/21)n

(r1/21)n . (10)

The third and final case is when r1
10
≥ 2h0, r3 − r2 ≥ h0. In this case we

take h = h0, and use the estimates

|Br3(Q)| ≤ (diam(Ω))n, |Br3(Q) ∩ Σ| ≤ |Ω ∩ Σ|.

We then have

||u||L2(Br2 (Q)) ≤ C(‖u‖L2(B r1
10

(Q′)) + ε)δ(‖u‖L2(Br3 (Q)) + ε)1−δ,

where

C = C1
(diam(Ω))n

hn0

[
1 +

(
|Ω ∩ Σ|
hn−1

0

) 1
2

]
, (11)

δ ≥ τ
C2

(diam(Ω))n

hn0 . (12)

It follows that, in all cases, we have our three ball inequality with the constant
C being the maximum of the ones in (7), (9), and (11), and the exponent δ
being the minimum of the ones in (8), (10), and (12).

4.2 Proof of Theorem 1.1

Once we have established the three balls inequality in Theorem 4.1, the proof
of Theorem 1.1 is standard. We include it here for the benefit of the reader.
Let

r3 =
h

2
, r2 =

1

5
r3 =

1

10
h, r1 =

1

3
r3 =

1

30
h,

and
D̃ = {x ∈ Ω : dist(x,D) < r1} ,
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which is an open connected subset of Ω, such that D ⊂ D̃, dist(D̃, ∂Ω) > h/2.
Let y ∈ D̃ and γ ∈ C([0, 1]; D̃) be a continuous curve such that γ(0) = x0,
and γ(1) = y. Define

0 = t0 < t1 < · · · < tN = 1

so that

tk+1 = max{t : |γ(t)− γ(tk)| = 2r1}, as long as |y − γ(tk)| > 2r1,

otherwise N = k + 1, tN = 1.

Then Br1(γ(tk)) ∩ Br1(γ(tk−1)) = ∅, and Br1(γ(tk+1)) ⊂ Br2(γ(tk)), k =
1, . . . , N − 1. By Theorem 4.1 we have

‖u‖L2(Br1 (γ(tk+1))) + ε ≤ C
(
‖u‖L2(Br1 (γ(tk))) + ε

)τ
(‖u‖L2(Ω) + ε)1−τ ,

where k = 0, . . . , N − 1. Note that by simply modifying the constant C we
can add ε on both sides of (6).

Let

mk =
‖u‖L2(Br0 (γ(tk)) + ε

‖u‖L2(Ω) + ε
,

then mk+1 ≤ Cmτ
k, k = 0, . . . , N , and so

mN ≤ C1+τ+···+τN−1

mτN

0 .

Since the balls Br0(γ(tk)) are pairwise disjoint,

N ≤ |Ω|
ωnrn1

≤ C2|Ω|
hn

.

Then it is easy to see that

τN ≥ τ
C2|Ω|
hn , C1+τ+···+τN−1 ≤ C

1
1−τ .

From a family of disjoint open cubes of side 2r1/
√
n whose closures cover

Rn, extract the finite number of cubes which intersect D non-trivially: Qj,

j = 1, . . . , J . The number of these cubes satisfies J ≤ nn/2|Ω|
2nrn1

. For each j

there exists wj ∈ D̃ such that Qj ⊂ Br1(wj). Then

∫
D

|u|2 ≤
J∑
j=1

∫
Qj

|u|2 ≤
J∑
j=1

∫
Br1 (wj)

|u|2

≤ JC2/(1−τ)(‖u‖L2(Br1 (x0) + ε)2δ(‖u‖L2(Ω) + ε)2(1−δ).
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5 Consequences of Theorem 1.1

In this section we list three results which are consequences of Theorem 1.1.
All of them are analogous to results of [1], [6], or [8], and exploit the similarity
of Theorem 1.1 to [1, Theorem 5.1] (quoted above as Theorem 2.1). Since the
proofs of most of these results would be identical to the ones given in [1], [8],
we will not give them here. The result analogous to that of [6] is a direct
consequence of our Theorem 1.1 and the main result of [6].

Again we assume Ω ⊂ Rn is an open Lipschtiz domain, Σ is a C2 hy-
persurface with constants r0, K0, Ω \Σ has two connected components, Ω±,
and (

(a±jk)jk, q
)
∈ V0(Ω±, λ,M,K1).

5.1 Global propagation of smallness

One consequence of Theorem 1.1 is the following global propagation of small-
ness theorem.

Theorem 5.1 (see [1, Theorem 5.3]). Let Br(x) ⊂ Ω. If u ∈ H1(Ω) is a
solution of

Lγu = f +∇ · F, ‖f‖L2(Ω) + ‖F‖L2(Ω) ≤ ε,

and
‖u‖L2(Br(x0)) ≤ η,

‖u‖H1(Ω) ≤ E,

for some η > 0, E > 0, then

‖u‖L2(Ω) ≤ (E + ε)ω

(
η + ε

E + ε

)
,

where

ω(t) ≤ C

|log t|µ
, t < 1,

and C > 0, 0 < µ < 1 depend on λ, M , K1, r0, K0, Σ, Ω, r.

5.2 Stability for the Cauchy problem

Another consequence is the following stability result for the Cauchy problem
for the operator Lγ. Here Γ ⊂ ∂Ω is an open subset of the boundary.
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Theorem 5.2 (see [1, Theorem 1.7]). Let u ∈ H1(Ω) be a solution of

Lγu = f +∇ · F, ‖f‖L2(Ω) + ‖F‖L2(Ω) ≤ ε,

with u|∂Ω ∈ H1/2(Γ),
∑

jk ajknj∂ku|∂Ω ∈ H−1/2(Γ),

‖u|∂Ω‖H1/2(Σ) + ‖
∑

jk ajknj∂ku|∂Ω‖H−1/2(Σ) ≤ η,

‖u‖L2(Ω) ≤ E0,

for some η, ε, E0 > 0. There exists 0 < h̄ < ∞, depending on λ, L,K,Ω,Σ
such that if for every 0 < h < h̄ and every open D ⊂ Ω such that dist(D, ∂Ω) ≥
h, we have

‖u‖L2(D) ≤ C(ε+ η)δ(E0 + ε+ η)1−δ,

where

C = C1

(
|Ω|
hn

) 1
2

, δ ≥ τ
C2|Ω|
hn ,

with C1, C2 > 0, τ ∈ (0, 1), depending on λ, M , K1, r0, K0, Σ, Ω, Γ.

Finally, we state a global version of the preceding theorem.

Theorem 5.3 (see [1, Theorem 1.9]). Let u ∈ H1(Ω) be a solution of

Lγu = f +∇ · F, ‖f‖L2(Ω) + ‖F‖L(Ω) ≤ ε,

with u|∂Ω ∈ H1/2(Γ),
∑

jk ajknj∂ku|∂Ω ∈ H−1/2(Γ),

‖u|∂Ω‖H1/2(Γ) + ‖
∑

jk ajknj∂ku|∂Ω‖H−1/2(Γ) ≤ η,

‖u‖L2(Ω) ≤ E0,

for some η, ε, E0 > 0. Then

‖u‖L2(Ω) ≤ (E + ε+ η)ω

(
ε+ η

E + ε+ η

)
,

where

ω(t) ≤ C

|log t|µ
, t < 1,

and C > 0, 0 < µ < 1 depend on λ, M , K1, r0, K0, Σ, Ω, Γ.
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5.3 Propagation of smallness from a set of positive
measure

The next result follows easily from Theorems 1.1 of [6] and our main result.

Theorem 5.4 (see [6, Theorem 1.1]). Let u ∈ H1(Ω) be a solution of Lγu =
0. Suppose h > 0 is such that (Ω+)h is connected, and that E ⊂ (Ω+)h is a
measurable set of positive measure. If ||u||L2(E) ≤ η, ||u||L2(Ω) ≤ 1, then

||u||L2(Ωh) ≤ C| log η|−µ,

where the constants C, µ > 0 depend on λ, M , K1, r0, K0, Σ, Ω, |E|, and h.

Proof. Note that even if Ω+ is does not have Lipschitz boundary as required
by [6, Theorem 1.1], we can still choose a slightly smaller Lipschitz domain
Ω̃+ ⊂ Ω+ such that E ⊂ (Ω̃+)h. By applying [6, Theorem 1.1], we get that

||u||L2(Br(x0)) ≤ C ′| log η|−µ′ ,

where we have picked a ball Br(x0) ⊂ (Ω̃+)h. Applying our Theorem 1.1
with D = Ωh, the result follows.

5.4 Quantitative Runge property

The final results we would like to include are two consequences of Theorems
5.2 and 5.3. These are a quantitative versions of the Runge approximation
property and result that come from the work [8].

Let D, D̃ be open subsets with Lipschitz boundaries such that D ⊂⊂
D̃ ⊂⊂ Ω and define

S1 =
{
u ∈ H1(D) : Lu = 0 in D

}
,

S̃1 =
{
u ∈ H1(D̃) : Lu = 0 in D̃

}
,

S2 =
{
u ∈ H1(Ω) : Lu = 0 in Ω, u|Γ ∈ H1/2

co (Γ)
}
.

The following two theorems can be proven by an argument identical to
that in [8].

Theorem 5.5 (see [8, Theorem 2]). There exist µ > 0 and C > 1, which
depend on n, λ, M , K1, r0, K0, Σ, Ω, Γ, such that for any v ∈ S1 and any
0 < ε < 1, there exists a u ∈ S2 such that

‖v − u‖L2(D) ≤ ε‖v‖H1(D), ‖u|∂Ω‖H1/2
co (Γ)

≤ C exp(Cε−µ)‖v‖L2(D).
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Theorem 5.6 (see [8, Theorem 3]). There exist µ > 1, C > 1, which depend
on n, λ, M , K1, r0, K0, Σ, Ω, Γ, such that for any ṽ ∈ S̃1 and any 0 < ε < 1,
there exists a u ∈ S2 such that

‖ṽ − u‖L2(D) ≤ ε‖ṽ‖H1(D̃), ‖u|∂Ω‖H1/2
co (Γ)

≤ Cε−µ‖ṽ‖L2(D).
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