
Quantitative approximation theorems for scattering

neural operators

Takashi Furuya1, a and Jann-Nan Wang2, b

1Education and Research Center for Mathematical and Data Science, Shimane University, Matsue,

Shimane 690-8504, Japan
aEmail: takashi.furuya0101@gmail.com

2Institute of Applied Mathematical Sciences, National Taiwan University, Taipei 106, Taiwan
bEmail: jnwang@math.ntu.edu.tw

Abstract

In this work, we study the learning of a nonlinear operator for the scattering problem
based on neural operator architectures. In most inverse scattering problems, the forward
operator mapping from the refractive index to the far-field pattern is commonly used
measurement. In many numerical methods for constructing the refractive index from the
knowledge of the far-field pattern need to evaluate the forward operator, which involves
solving PDEs and taking asymptotics. Such procedure is time consuming and not effective.
It is therefore a favorable practice to construct a surrogate to replace this forward operator.
The main purpose of this paper is to demonstrate that, under certain conditions, the
”parametric complexity” of neural scattering operators grows at most logarithmically
with respect to the desired accuracy. This result makes the application of these neural
operators rather promising in practice.

1 Introduction

Neural operators have emerged as a powerful extension of traditional neural networks from
finite-dimensional spaces to infinite-dimensional ones, i.e., function spaces to function spaces,
see, for example, [1, 2, 17, 26] to name a few. In solving PDEs problems, while traditional
PDEs solvers often require substantial computational resources and time due to high dimen-
sionality or nonlinearity, once trained, neural operators serve as surrogate models, providing
significantly faster inference compared to traditional numerical solvers. An additional ad-
vantage of neural operators lies in their applicability to Bayesian inverse problems, where
the construction of efficient surrogate models can greatly facilitate the computational pro-
cess. Despite neural operator being universal approximators for continuous operators, their
theoretical foundations, particularly in PDEs applications, remain under-explored.

One of the most fundamental questions for any neural network is the universal approx-
imation property. For neural operators, universality has been established in a variety of
architectures such as [7, 27, 21] (DeepONets), [15] (FNOs), and [20] (ANOs). Since neural
operators map the infinite-dimensional space to the infinite-dimensional one, having man-
ageable size of learnable parameters is crucial in actual applications. Unfortunately, general
neural operators suffer from the ”curse of parametric complexity” [22]. The focus of this
paper is to beat this curse for the scattering operator.

1

1.1 Related works

Neural operators introduced in [17] as one of the operator learning methods which satisfy the
important discretization-invariant property. As mentioned above, neural operators serve as
surrogates for the operators mapping from an infinite-dimensional space into another infinite-
dimensional space. Other operator learning neural networks were already introduced such
as DeepONet [8, 26] and PCA-Net [2], [10]. Various neural operator architectures related to
[17] have been proposed, differing primarily in the choice of basis functions within non-local
operators. Notable examples include Graph Neural Operators [25], Fourier Neural Operators
[24], Wavelet Neural Operators [32, 13], Spherical Fourier Neural Operators [3], and Laplace
Neural Operators [5]. These architectures have demonstrated empirical success as the sur-
rogate models of simulators across a wide range of PDEs, as benchmarked in [31]. Even in
inverse problems, e.g., Calderón’s problem, neural operators (precisely, DeepONets) are rigor-
ously shown to be good approximators of the forward and inverse Calderón maps [4]. One of
critical theoretical foundations of neural operators is the universal approximation theorems.
This theorem establishes that, for any target operator and desired level of accuracy, there
exists a neural operator with sufficiently large learnable parameters such that it approximates
the target operators with desired accuracy. This indicates the capacity of the class of neural
operators to approximate a wide range of operators. Universal approximation theorems for
operator learning were established for neural operators [15, 17, 20, 18], DeepONet [26, 21],
and PCA-Net [19]. A nice summary about recent progress on neural operators is given [16].

Our objective here is to establish the quantitative universal approximation theorem, which
provides the upper bounds for the numbers of learnable parameters required to achieve a
given level of approximation accuracy. Recently, [22] discussed that the operator learning
for general operators suffers from “the curse of parametric complexity”, where the number
of learnable parameters grows exponentially as the desired approximation accuracy increases.
At first glance, this complexity may hinder the applicability of neural operators. To further
address this issue, we restrict general operators to the solution operators of specific PDEs.
Recently, several quantitative approximation theorems have been established for the solution
operators of specific PDEs without experiencing exponential growth in model complexity. For
instance, [15, 19] developed quantitative approximation theorems for the Darcy and Navier-
Stokes equations using Fourier neural operators and PCA-Net, respectively. Additionally,
[22] analyzed the Hamilton-Jacobi equations with Hamilton-Jacobi neural operators, while
[12] addressed nonlinear parabolic equations. Further studies, such as [6, 21, 28], investigated
quantitative approximation theorems using DeepONet for a range of PDEs, including elliptic,
parabolic, and hyperbolic equations, while [11] focused on advection-diffusion equations.

1.2 Our results and contributions

In this paper, we present a quantitative approximation theorem for the solution operator of
scattering problem using neural operators. Our aim is to establish a quantitative approxi-
mation theorem for neural operators which approximate the far-field pattern to any desired
accuracy. The far-field pattern (aka the scattering amplitude) is the most common measure-
ment used in the inverse scattering problems. In Theorem 4.1, we show that for any given
accuracy, the depth and the number of neurons of the neural operators do not grow exponen-
tially. Notably, the depth grows at most logarithmically with respect to the accuracy, while
the number of neurons at each layer has a fixed upper bound. From application perspective,
the logarithmic growth rate is important. For example, neural operators are useful in the
Ensemble Kalman Inverse (EKI), which is a derivative-free Kalman filter method [14], [29],
[30], or nonparametric Bayesian inverse problems. In both methods, it is required to evaluate
the forward map at each step. It is clear that the process will be more efficient if we replace

2

the forward map by a neural operator.
The idea of the proof is similar to that used in [12] in which it relies on the contraction

fixed-point method. It is helpful to note that we can express the solution operator and the
far-field pattern in terms of the integral operators. This structure of the paper is as follows. In
Section 2, we review some theoretical results of the scattering problem. In Section 3, we give
the precise definition of scattering neural operators. The main quantitative approximation
theorem and its proof are presented in detailed in Section 4. In Section 5, we provide an
application of neural operators to the inverse scattering problem using the EKI.

2 Scattering problem

In this section, we would like to review some theoretical results of the acoustic scattering
problem with inhomogeneous medium. Let D ⊂ Rd with d = 2, 3 be an open bounded
smooth domain and denote the function space

L∞
Q (D;C) := {n ∈ L∞(Rd;C) : 0 < Re(n), 0 ≤ Im(n), supp(n−1) ⊂ D, |n(x)−1| ≤ Q a.e.}.

(1)
Sometimes, it is more convenient to denote n = 1+q and, by an abuse of notation, we say that
q ∈ L∞

Q (D;C) if n = 1 + q and n ∈ L∞
Q (D;C). Now, let q ∈ L∞

Q (D;C) and uq := uinc + uscaq
satisfy (assume that uinc solves the Helmholtz equation in Rd and uinc ∈ C(D;C))

∆uq + k2(1 + q)uq = 0 in Rd (2)

with the Sommerfeld radiation condition

lim
|x|→∞

|x|
d−1
2

(
∂uscaq
∂|x|

− ikuscaq

)
= 0. (3)

It is well-known that the scattered field uscaq possesses the asymptotic behavior

uscaq (x) =
eik|x|

|x|
d−1
2

(
u∞q (x̂) +O

(
1

|x|

))
as |x| → ∞, (4)

where x̂ = x/|x| ∈ Sd−1 and u∞q (x̂) is called the far-field pattern and the scattering amplitude.
Our aim is to approximate the forward map q 7→ u∞q by neural operators. Combining the

unique continuation property and the Rellich lemma, one can show that u∞q (x̂), ∀ x̂ ∈ Sd−1,

uniquely determines the scattered field uscaq (x) in Rd.
It is not hard to see that the far-field u∞q (x̂) can be expressed explicitly by

u∞q (x̂) = cd

∫
D
e−ikx̂·yq(y)uq(y) dy (5)

with

cd =


ei

π
4

√
k3

8π
for d = 2,

k2

4π
for d = 3,

where the total field uq is the solution of the Lippmann-Schwinger integral equation

uq(x) = uinc(x) + k2
∫
D
Φ(x, y)q(y)uq(y)dy, ∀ x ∈ Rd, (6)

3

where Φ(x, y) denotes the outgoing fundamental solution of the Helmholtz equation in Rd,
i.e., for x ̸= y,

Φ(x, y) :=


i

4
H

(1)
0 (k|x− y|) if d = 2,

1

4π

eik|x−y|

|x− y|
if d = 3,

(7)

where H
(1)
0 (z) is the Hankel function of the first kind of order zero.

2.1 The scattered solution and the far-field pattern

When q ∈ L∞
Q (D;C), for each k > 0, the solvability of the Lippmann-Schwinger integral

equation (6) and hence the well-posedness of the scattering (2), (3), has been proved, see [9,
Theorem 8.7]. In view of the formula of the far-field pattern (5), it suffices to consider (6)
locally. Let uq be the solution of (6), then it also satisfies

uq(x) = uinc(x) + k2
∫
D
Φ(x, y)q(y)uq(y)dy, ∀ x ∈ D. (8)

Let us now write
uq = Ψq(uq), (9)

where Ψq : L
2(D;C) → L2(D;C) is defined by

Ψq(u)(x) := uinc(x) + k2
∫
D
Φ(x, y)q(y)u(y)dy, ∀ x ∈ D. (10)

This map between L2(D;C) is well-defined, thanks to Φ ∈ L2(D×D;C) (Note that the spatial
dimensions are now three). In later use, we will consider the case where Ψq is a contraction
map. Therefore, we impose

Assumption 2.1. We assume that the wavenumber k > 0 and upper bound Q > 0 satisfies
that

k2Q∥Φ∥L2(D×D) ≤ ρ < 1.

Proposition 2.1. Under Assumption 2.1, Ψq : L
2(D;C) → L2(D;C) satisfies

∥Ψq(u)−Ψq(v)∥L2(D) ≤ ρ∥u− v∥L2(D)

for all u, v ∈ L2(D;C), which implies that uq is a fixed point of Ψq.

Proof. By (10), one has

Ψq(u)(x)−Ψq(v)(x) = k2
∫
D
Φ(x, y)q(y)[u(y)− v(y)]dy

and hence∫
D

∣∣∣Ψq(u)(x)−Ψq(v)(x)
∣∣∣2dx = k4

∫
D

∣∣∣ ∫
D
Φ(x, y)q(y)[u(y)− v(y)]dy

∣∣∣2dx
≤ k4Q2∥Φ∥2L2(D×D)∥u− v∥2L2(D)

≤ ρ2∥u− v∥2L2(D).

4

Corollary 2.1. Suppose that Assumption 2.1 holds and uinc satisfies

M := k2
∥∥∥∫

D
Φ(x, y)uinc(y)q(y)dy

∥∥∥
L2(D)

<∞.

Assume that
M

1− ρ
≤ S

and let B(uinc, S) := {v ∈ L2(D;C) : ∥v − uinc∥L2(D) ≤ S}. Then there exists a unique fixed

point u ∈ B(uinc, S) of (10).

Proof. Since Ψq is a contraction map, to prove the result, it suffices to show that if u ∈
BR(u

inc), then Ψq(u) ∈ BR(u
inc). To this end, we estimate

∥Ψq(u)− uinc∥L2(D) ≤ ∥Ψq(u)−Ψq(u
inc)∥L2(D) + ∥Ψq(u

inc)− uinc∥L2(D)

≤ ρ∥u− uinc∥L2(D) + k2
∥∥∥∫

D
Φ(x, y)uinc(y)q(y)dy

∥∥∥
L2(D)

≤ ρS +M ≤ S.

Remark 2.1. For simplicity, we could consider a weaker result. Let us set

M ′ := k2Q∥Φ∥L2(D×D)∥uinc∥L2(D)

and choose S′ satisfying
M ′

1− ρ
≤ S′.

Now if we take
R = S′ + ∥uinc∥L2(D), (11)

then (10) has a unique fixed point in B(0, R).

2.2 Complex-valued to Real-valued vector

Since the far-field pattern u∞q (x̂) is complex-valued (even if the potential q is real-valued), it
is more convenient to work in the real-valued setting. Note that

L2(D;C) ∼= L2(D;R)× L2(D;R) = L2(D;R)2

and
L2(Sd−1;C) ∼= L2(Sd−1;R)× L2(Sd−1;R) = L2(Sd−1;R)2.

In what follow, we consider these identifications.
We define the integral operator Ψ⃗q : L2(D;R)2 → L2(D;R)2 by, for u = (u1, u2)

T ∈
L2(D;R)2 and q = (q1, q2)

T ∈ L∞
Q (D;C) is understood that q = q1 + iq1 ∈ L∞

Q (D;C),

Ψ⃗q(u)(x) = u⃗inc(x) + k2
∫
D
Φ⃗(x, y)M(u(y), q(y))dy,

where the mapping M : R4 → R2 is defined by

M(u, q) := (u1q1 − u2q2, u1q2 + u2q1)
T ∈ R2

5

and

u⃗inc(x) = (Re(uinc(x)), Im(uinc(x)))T , Φ⃗(x, y) =

(
Re(Φ(x, y)) −Im(Φ(x, y))
Im(Φ(x, y)) Re(Φ(x, y))

)
∈ R2×2.

Using these notations, we can write

Ψ⃗q(u)(x) =

(
Re(Ψq1+iq2(u1 + iu2)(x))
Im(Ψq1+iq2(u1 + iu2)(x))

)
.

We now define the forward map F+ : L∞
Q (D;C) → L∞(Sd−1;R)2 by

F+(q)(x̂) := (Re(u∞q1+iq2(x̂)), Im(u∞q1+iq2(x̂)))
T , x̂ ∈ Sd−1, q = (q1, q2)

T ∈ L∞
Q (D;C).

Equivalently, we can write

F+(q)(x̂) = cd

∫
D
e⃗(x̂, y)M(uq(y), q(y))dy =: Π⃗q(uq)(x̂)

where

e⃗(x̂, y) =

(
Re(e−ikx̂·y) −Im(e−ikx̂·y)
Im(e−ikx̂·y) Re(e−ikx̂·y)

)
∈ R2×2,

and uq ∈ L2(D;R)2 is a fixed point of ρ-contraction map Ψ⃗q, i.e., Ψ⃗q(uq) = uq.
We now define a sequence (u(J))J∈N ⊂ L2(D;R)2 by

u(0) = 0 ∈ L2(D;R)2, u(J) := Ψ⃗q(u
(J−1)) = Ψ⃗[J]

q (u(0))

then, u(J) → uq as J → ∞. We will mimic this procedure by neural operators defined below.

3 Neural operators for the scattering problem

3.1 Motivation

Our aim is to construct an ”approximate operator” (neural operator) that serves an a surrogate
for the forward operator F+. As explained in the Introduction, we would like to study some
quantitative approximation of parameters in neural operators such as the length of layers, the
width of the neurons, and the rank, and so on, in terms of the desired accuracy. Our idea
here is similar to that in [12] in which neural operators are constructed for nonlinear parabolic
equations. The main idea is the fixed point argument. The iteration scheme is given by

u(ℓ+1) = Ψ⃗q(u
(ℓ))(x) = u⃗inc(x) + k2

∫
D
Φ⃗(x, y)M(u(ℓ)(y), q(y))dy

and u(ℓ) → uq in L2(D;R)2 provided Assumption 2.1 holds. Let {φn}∞n=1 be a complete

orthonormal basis of L2(D;R)2. Then Φ⃗(x, y) can be written as an infinite series

Φ⃗(x, y) =
∑
n,m

cn,mφn(x)⊗ φm(y)

where cn,m ∈ R2×2 for all n,m ≥ 1 and the series converges in L2(D ×D;R)2. Let Λ be an
index set that is either finite or countably infinite. Denote ΛN a subset of Λ whose cardinality
|ΛN | = N and ΛN ⊂ ΛN ′ when N ⊂ N ′. We now write the partial sum

Φ⃗N (x, y) =
∑

n,m∈ΛN

cn,mφn(x)⊗ φm(y)

6

and thus Φ⃗N → Φ⃗ in L2(D ×D;R)2. With the partial sum Φ⃗N , we define the approximate
map

Ψ⃗q,N (v)(x) := u⃗inc(x) + k2
∫
D
Φ⃗N (x, y)M(v(y), q(y))dy.

Therefore, it is legitimate to consider the following approximation scheme

û(ℓ+1) = Ψ⃗q,N (û
(ℓ))(x) = u⃗inc(x) + k2

∫
D
Φ⃗N (x, y)M(û(ℓ)(y), q(y))dy

and we expect that Π⃗q(û
(L+1))(x̂) is a good approximation of F+(q)(x̂) within any desired

accuracy when L and N are sufficiently large. We now give a formal definition of neural
operators.

3.2 Definition of neural operators

Let X be a set. For an operator A : X → X and j ∈ N, we denote by A[j] the j times
compositions of A (or the j times products of A): A[0] means the identity operator on X and
A[J] := A ◦ · · · ◦A︸ ︷︷ ︸

J times

. We now give a formal definition of neural operators.

Definition 3.1 (Neural operators, [12, 17, 20]). Let φ := {φn}n∈Λ and ψ := {ψm}m∈Γ be
ONBs in L2(D;R)2 and L2(Sd−1;R)2, respectively. Here, Λ and Γ are index sets that are
either finite or countably infinite. We define a neural operator G : L∞

Q (D;C) → L2(Sd−1;R)2
by

G : q 7→ û(L+1),

where the output function û(L+1) is determined inductively as follows:

1. (Hidden layers) For 0 ≤ ℓ ≤ L − 1, û(ℓ+1) = (û
(ℓ+1)
1 , û

(ℓ+1)
2 , . . . , û

(ℓ+1)
dℓ+1

) ∈ L2(D;R)dℓ+1

are iteratively given by

û(ℓ+1)(x) = σ
(
W (ℓ)û(ℓ)(x) + (K

(ℓ)
N û(ℓ))(x) + b

(ℓ)
N (x)

)
, 0 ≤ ℓ ≤ L− 1,

where û(0) = (q1, q2) ∈ L∞
Q (D;C) (d0 = 2), and σ : R → R is a nonlinear activation operating

element-wise, and W (ℓ) ∈ Rdℓ+1×dℓ is a weight matrix of the ℓ-th hidden layer, and K
(ℓ)
N :

L2(D;R)dℓ → L2(D;R)dℓ+1 and b
(ℓ)
N ∈ L2(D;R)dℓ+1 are defined by

(K
(ℓ)
N u)(x) :=

∑
m,n∈ΛN

C(ℓ)
n,m⟨φm, u⟩φn(x) with C(ℓ)

n,m ∈ Rdℓ+1×dℓ ,

b
(ℓ)
N (x) :=

∑
n∈ΛN

c
(ℓ)
N φn(x) with c

(ℓ)
N ∈ Rdℓ+1 ,

where ΛN is a subset of Λ with its cardinality |ΛN | = N ∈ N and the monotonicity ΛN ⊂ ΛN ′

for any N ≤ N ′. Here, we have used the notation

⟨φm, u⟩ :=
(
⟨φm, u1⟩L2(D;R), . . . , ⟨φm, udℓ⟩L2(D;R)

)
∈ Rdℓ ,

for u = (u1, . . . , udℓ) ∈ L2(D;R)dℓ.
2. (Output layer) û(L+1) is given by

û(L+1)(x̂) = (K
(L+1)
N û(L))(x̂) + b

(L+1)
N (x̂).

7

where K
(L+1)
N : L2(D;R)dL → L2(Sd−1;R)2 and b

(L+1)
N ∈ L2(Sd−1;R)2 are defined by

(K
(L+1)
N u)(x̂) :=

∑
m∈ΛN ,n∈ΓN

C(L+1)
n,m ⟨φm, u⟩ψn(x̂) with C(L+1)

n,m ∈ R2×dL ,

b
(L+1)
N (x̂) :=

∑
n∈ΓN

c(L+1)
n ψn(x̂) with c(L+1)

n ∈ R2.

We denote by NOL,d,σ
N,φ,ψ the class of neural operators defined as above, associated with the

depth L, the width d = (d1, ..., dL), the rank N , the activation function σ, and the ONBs
φ,ψ.

4 Quantitative approximation theorem

In this section, we would like to discuss the main theme of this work. For neural operators, we
are interested in deriving the upper bound estimates of the depth L, the number of neurons
H, and the rank N , in terms of the desired accuracy. In other words, we will investigate the
quantitative approximation theorem.

4.1 ReQU activation function

We define the ReQU activation function ReQU : R → R by

ReQU(t) := max{0, t}2, t ∈ R.

ReQU neural network and exactly represents the polynomial (see e.g., [23, Theorem 2.2]).

4.2 Main result

Our main result is the following quantitative approximation theorem.

Theorem 4.1. Assume that Assumption 2.1 is satisfied. Let uinc ∈ L2(D;C) and R > 0 such
that (11) holds true. For any given ϵ ∈ (0, 1), there exist a depth L, a width d, a rank N , and

G ∈ NOL,d,ReQU
N,φ,ψ such that

sup
q∈L2

Q(D;R)2
∥F+(q)−G(q)∥L2(S;R)2 ≤ ϵ.

Moreover, L = L(G) and d = d(G) = (d1(G), ..., dL(G)) satisfy

L(G) ≤ C(log(ϵ−1)) (12)

and
dℓ(G) ≤ C, (13)

where C > 0 is a constant depending on d, k,D,Q,M,R, and N = N(G) satisfies

CΦ⃗(N(G)) ≤ Cϵ and Ce⃗(N(G)) ≤ Cϵ and Cu⃗inc(N(G)) ≤ Cϵ

where

CΦ⃗(N) := ∥Φ⃗N − Φ⃗∥L2(D×D;R2×2), Ce⃗(N) := ∥e⃗N − e⃗∥L2(S2×D;R2×2), Cu⃗inc(N) := ∥u⃗incN − u⃗inc∥L2(D;R)2 .

8

To achieve the desired accuracy of the approximation, the logarithmically increasing of the
layers, the estimate (12), is expected in view of the exponential convergence rate of the fixed
point iteration step. On the other hand, combining (12) and (13), we see that the number of
neurons defined by H(G) :=

∑L
ℓ=1 dℓ(G) satisfies

H(G) ≤ C(log(ϵ−1))2,

which is reasonable since the number of neurons at each layer is upper bounded by a fixed
constant.

4.3 Proof of Theorem 4.1

Here we will give a detailed proof of Theorem 4.1. The proof is based on the techniques
developed in [12], where the nonlinear parabolic equation is treated. The argument is divided
into several steps.

Step 1. We define the approximate operators Ψ⃗q,N , Π⃗q,N by

Ψ⃗q,N (u)(x) := u⃗incN (x) + k2
∫
D
Φ⃗N (x, y)M(u(y), q(y))dy,

Π⃗q,N (u)(x̂) := cd

∫
D
e⃗N (x̂, y)M(u(y), q(y))dy,

where Φ⃗N , e⃗N , and u⃗
inc
N are given by

Φ⃗N (x, y) :=
∑

n,m∈ΛN

Cn,m(Φ⃗)φn(x)φm(y),

e⃗N (x̂, y) :=
∑

n∈ΓN ,m∈ΛN

Cn,m(e⃗)ψn(x̂)φm(y),

u⃗incN (x) :=
∑
n∈ΓN

cn(u⃗
inc)φn(x).

Here the components Cn,m(Φ⃗), Cn,m(e⃗) ∈ R2×2, and cn(u⃗
inc) ∈ R2 are defined by

Cn,m(Φ⃗) :=

(
⟨Re(Φ(x, y)), φn(x)φm(y)⟩ −⟨Im(Φ(x, y)), φn(x)φm(y)⟩
⟨Im(Φ(x, y)), φn(x)φm(y)⟩ ⟨Re(Φ(x, y)), φn(x)φm(y)⟩

)
,

Cn,m(e⃗) :=

(
⟨Re(e−ikx̂·y), ψn(x̂)φm(y)⟩ −⟨Im(e−ikx̂·y), ψn(x̂)φm(y)⟩
⟨Im(e−ikx̂·y), ψn(x̂)φm(y)⟩ ⟨Re(e−ikx̂·y), ψn(x̂)φm(y)⟩

)
,

cn(u⃗
inc) = (⟨Re(uinc(x)), φn(x)⟩, ⟨Im(uinc(x)), φn(x)⟩).

Since φ and ψ are ONBs, we see that as N → ∞

CΦ⃗(N) := ∥Φ⃗N − Φ⃗∥L2(D×D;R2×2) → 0,

Ce⃗(N) := ∥e⃗N − e⃗∥L2(Sd−1×D;R2×2) → 0,

Cu⃗inc(N) := ∥u⃗incN − u⃗inc∥L2(D;R)2 → 0.

Lemma 4.1.

∥Ψ⃗q(u)− Ψ⃗q,N (u)∥L2(D;R)2 ≤ Cu⃗inc(N) + k2QCΦ⃗(N)∥u∥L2(D;R)2 ,

∥Π⃗q(u)− Π⃗q,N (u)∥L2(Sd−1,R)2 ≤ cdQCe⃗(N)∥u∥L2(D;R)2 ,
(14)

9

and

∥Ψ⃗q,N (u)− Ψ⃗q,N (v)∥L2(D;R)2 ≤ k2Q
(
CΦ⃗(N) + ∥Φ⃗∥L2(D×D;R2×2)

)
∥u− v∥L2(D;R)2 ,

∥Π⃗q,N (u)− Π⃗q,N (v)∥L2(Sd−1;R)2 ≤ cdQ
(
Ce⃗(N) + ∥e⃗∥L2(Sd−1×D;R2×2)

)
∥u− v∥L2(D;R)2 .

(15)

Also, if uinc ∈ L2(D;C) and R > 0 satisfy (11), then we have that, for all N ∈ N,

Ψ⃗q,N : B(0, R) → B(0, R)

(see Remark 2.1).

Proof. We note that

Ψ⃗q(u)(x)− Ψ⃗q,N (u)(x) = u⃗inc(x)− u⃗incN (x) + k2
∫
D
(Φ⃗− Φ⃗N)(x, y)M(q(y), u(y))dy

and

Π⃗q(u)(x̂)− Π⃗q,N (u)(x̂) = cd

∫
D
(e⃗− e⃗N)(x̂, y)M(q(y), u(y))dy.

The estimates (14) then follows easily. On the other hand, we can write

Ψ⃗q,N (u)(x)− Ψ⃗q,N (v)(x)

= k2
∫
D
Φ⃗N (x, y)M(q(y), (u− v)(y))dy

= k2
∫
D
(Φ⃗N − Φ⃗)(x, y)M(q(y), (u− v)(y))dy + k2

∫
D
Φ⃗(x, y)M(q(y), (u− v)(y))dy

and

Π⃗q,N (u)(x̂)− Π⃗q,N (v)(x̂)

= cd

∫
D
e⃗N (x̂, y)M(q(y), (u− v)(y))dy

= cd

∫
D
(e⃗N − e⃗)(x̂, y)M(q(y), (u− v)(y))dy + cd

∫
D
e⃗(x̂, y)M(q(y), (u− v)(y))dy

and so (15) can be derived directly.
Observe that

∥u⃗incN ∥L2(D;R)2 ≤ ∥u⃗inc∥L2(D;R)2 and ∥Φ⃗N∥L2(D×D;R2×R2) ≤ ∥Φ⃗∥L2(D×D;R2×R2)

for all N . For R satisfying (11), we conclude that Ψ⃗q,N : B(0, R) → B(0, R) from Remark 2.1.

Step 2. Next, we define the map G : L∞
Q (D;C) → L2(Sd−1;R)2 by

G(q) := Π⃗q,N ◦ Ψ⃗[J]
q,N (u

(0)), (16)

where u(0) ∈ B(0, R). Recall that Ψ⃗
[J]
q,N := Ψ⃗q,N ◦ · · · ◦ Ψ⃗q,N︸ ︷︷ ︸

J times

. For any ϵ > 0, we can choose an

Nϵ ∈ N, depending on ϵ, such that

CΦ⃗(N) ≤ ϵ, Ce⃗(N) ≤ ϵ, and Cu⃗inc(N) ≤ ϵ (17)

for all N ≥ Nϵ.

10

Lemma 4.2. Let J = ⌈ log(1/ϵ)
log(1/ρ)⌉ ∈ N. Then there exists a constant C > 0 such that for any

q ∈ L∞
Q (D;C)

∥F+(q)−G(q)∥L2(Sd−1;R)2 ≤ Cϵ,

where C > 0 depends on d, k,D,Q,R.

Proof. Note that F+(q) has the form

F+(q) = Π⃗q(uq).

By the triangle inequality and using Lemma 4.1, we have

∥F+(q)−G(q)∥L2(Sd−1;R)2 ≤ ∥Π⃗q(uq)− Π⃗q,N (uq)∥L2(Sd−1;R)2 + ∥Π⃗q,N (uq)− Π⃗q,N ◦ Ψ⃗[J]
q,N (u

(0))∥L2(Sd−1;R)2

≤ cdQ∥uq∥L2(D;R)2Ce⃗(N)

+ cdQ
(
Ce⃗(N) + ∥e⃗∥L2(S2×D;R2×2)

)
∥uq − Ψ⃗

[J]
q,N (u

(0))∥L2(D;R)2 .

Since Ψ⃗q : L
2(D;R)2 → L2(D;R)2 is ρ-contractive and uq = Ψ⃗q(uq) is the fixed point of Ψ⃗q,

i.e., uq = Ψ⃗
[J]
q (uq) for all J , we have

∥uq − Ψ⃗
[J]
q,N (u

(0))∥L2(D;R)2 ≤ ∥Ψ⃗[J]
q (uq)− Ψ⃗[J]

q (u(0))∥L2(D;R)2 + ∥Ψ⃗[J]
q (u(0))− Ψ⃗

[J]
q,N (u

(0))∥L2(D;R)2

≤ ρJ∥uq − u(0)∥L2(D;R)2 + ∥Ψ⃗[J]
q (u(0))− Ψ⃗

[J]
q,N (u

(0))∥L2(D;R)2 .

To estimate the second term above, we derive that from the first estimate of (14)

∥Ψ⃗[J]
q (u(0))− Ψ⃗

[J]
q,N (u

(0))∥L2(D;R)2

≤
J∑
j=1

∥∥∥(Ψ⃗[J−j+1]
q ◦ Ψ⃗[j−1]

q,N

)
(u(0))−

(
Ψ⃗[J−j]
q ◦ Ψ⃗[j]

q,N

)
(u(0))

∥∥∥
L2(D;R)2

≤
J∑
j=1

ρJ−j
∥∥∥(Ψ⃗q ◦ Ψ⃗[j−1]

q,N

)
(u(0))− Ψ⃗

[j]
q,N (u

(0))
∥∥∥
L2(D;R)2

=

J∑
j=1

ρJ−j

Cu⃗inc(N) + k2QCΦ⃗(N) ∥Ψ⃗[j−1]
q,N (u(0))∥L2(D;R)2︸ ︷︷ ︸

≤R

 .

Putting all estimates together, we obtain that

∥F+(q)−G(q)∥L2(Sd−1;R)2 ≤ C(Ce⃗(N) + Cu⃗inc(N) + CΦ⃗(N) + ρJ) ≤ Cϵ,

where C depends on d, k,Q,D,R.

Step 3. Finally, it is sufficient to represent the approximate operator G as a neural operator
in the form of Definition 3.1 and to provide its quantitative estimates.

Lemma 4.3. Let
G ∈ NOL,H,ReQU

N,φ,ψ .

Then
L(G) ≤ C log(ϵ−1) and dℓ(G) ≤ C,

where C > 0 is a constant depending on k,D,Q,R, and N = N(G) satisfies

CΦ⃗(N(G)) ≤ Cϵ, Ce⃗(N(G)) ≤ Cϵ, and Cu⃗inc(N(G)) ≤ Cϵ.

11

Proof. Since q = (q1, q2)
T ∈ L∞

Q (D;C), it is obvious that q ∈ L2(D;R)2. We define Ψ⃗ :

L2(D;R)4 → L2(D;R)4 by

Ψ⃗(u, q) =

(
Ψ⃗q,N (u)

q

)
,

where

(
u
q

)
∈ L2(D;R)4. Similarly, we define Π⃗ : L2(D;R)4 → L2(Sd−1;R)2 by

Π⃗(u, q) := Π⃗q,N (u).

Using these notations, we denote

GJ,N (q) := Π⃗ ◦ Ψ⃗[J] ◦W1(q)

where

W1 :=

(
0
I2

)
∈ R4×2

(Note that since the initial guess u(0) ∈ B(0, R) of the fixed-point iteration can be arbitrary,
it is simple to choose u(0) = 0.)

We now write

Ψ⃗(u, q)(x) = bN (x) +W2M̂(u(x), q(x)) +
∑

n,m∈ΛN

Cn,m⟨φm, M̂(u(y), q(y))⟩φn(x)

= (W2 +KN) ◦ M̂(u, q)(x) + bN (x),

where

bN (x) =

(
u⃗incN
0

)
∈ L2(D;R)4,

W2 =

(
0 0
0 I2

)
∈ R4×4,

KNu(x) :=
∑

n,m∈ΛN

Cn,m⟨φm, u⟩φn(x), where Cn,m :=

(
k2Cn,m(Φ⃗) 0

0 0

)
∈ R4×4,

and M̂ : R4 → R4 is given by

M̂(u, q) :=

(
M(u, q)

q

)
.

Here, in an abuse of notation, we write φn ∈ L2(D;R)4 as

(
φn
0

)
. Also W2 ◦ M̂(u, q) is

interpreted as the matrix-vector multiplication W2M̂(u, q).
On the other hand, we can derive that

Π⃗(u, q)(x̂) = Π⃗q,N (u)(x̂)

= cd

∫
D
e⃗N (x̂, y)M(u(y), q(y))dy,

= cd
∑

n∈ΓN ,m∈ΛN

Cn,m(e⃗)⟨φm(y),M(u(y), q(y))⟩ψn(x̂)

= K̃N ◦M(u, q)(x̂)

12

where
K̃Nu(x̂) :=

∑
n∈ΓN ,m∈ΛN

C̃n,m⟨φm, u⟩ψn(x̂), C̃n,m := cdCn,m(e⃗) ∈ R2×2.

Thus,

GJ,N (q) = Π⃗ ◦ Ψ⃗[J] ◦W1(q)

= K̃N ◦M ◦

((W2 +KN) ◦ M̂ + bN) ◦ · · · ◦ ((W2 +KN) ◦ M̂ + bN)︸ ︷︷ ︸
J

 ◦W1(q).
(18)

We would like to remark that since bN is a fixed function, the composition bN ◦ W1(q) is
simply bN .

Since functions M̂ : R4 → R4 and M : R4 → R2 are polynomials, they can be exactly
represented as ReQU neural networks, see [23, Theorem 3.1]. So their depth and width are
constant regardless of ϵ. We now check that (18) can be written in a form of neural operators
defined in Definition 3.1. By [23, Theorem 3.1], in the first iteration step Ψ⃗[1], we have

M̂ ◦W1(q)(x) =

(
M(u(0), q)

q

)
= ReQU(u(0), q) := û(1)(x),

which can seen as the first hidden layer. The first iteration step gives

Ψ⃗[1] ◦W1(q) = (W2 +KN)û
(1) + bN .

Next, the M̂ operator in Ψ⃗[2] gives rise to

M̂ ◦ ((W2 +KN)û
(1) + bN) = ReQU((W2 +KN)û

(1) + bN) := û(2).

Finally, the output layer will be

K̃N ReQU((W2 +KN)û
(J) + bN).

In other words, the above construction ensures that G ∈ NOL,d,ReQU
N,φ,ψ . Moreover, in view of

Lemma 4.2, the depth L(G) and the width d(G) of the neural operator G can be estimated
as

L(G) ≲ J ≲ log(ϵ−1), dℓ(G) ≲ 1

Thus, the proof of Theorem 4.1 is now complete.

5 Application to the inverse scattering problem

In this section, we would like to demonstrate how to use the neural operator G constructed
above to solve the inverse scattering problem in which we want to determine the refractive
index 1 + q (or q) from the far-field pattern. We consider the plane incident field uinc(x) =
eikθ·x, where θ ∈ Sd−1, and the corresponding far-field pattern u∞q (θ, x̂). The inverse problem

is to determine q from u∞q (θ, x̂) for all θ, x̂ ∈ Sd−1. The unique determination of q by such
u∞q (θ, x̂) is well-known, see for example, [9, Chapter 10].

Here we are interested in the reconstruction of q from u∞q (θ, x̂) for all θ, x̂ ∈ Sd−1. Our
method is based on the Ensemble Kalman Inversion (EKI) [14], [29], [30]. EKI is known to
be a derivative-free Bayesian inference method. In theory, in each prediction step, we have to

13

evaluate the forward map q 7→ u∞q , which is rather time consuming. It is therefore reasonable
to replace the mapping q 7→ u∞q by its surrogate G.

We now describe EKI in detailed. To begin, assume that we are given a far-field pattern
u∞q (θ, x̂) generated by an unknown q. Suppose that G has been trained by a collection of

data {q(j)t , u∞
q
(j)
t

}Nj=1 with a sufficiently large N ∈ N. Let q(j0)t be given by

q
(j0)
t = argmin

q
(j)
t ,1≤j≤N

∥u∞q − u∞
q
(j)
t

∥L2(Sd−1×Sd−1). (19)

Roughly speaking, q
(j0)
t is an estimator of q. In EKI, we consider an augmented state space.

Let Z = X × Y , where X = CQ(D;C) and Y = L2(Sd−1 × Sd−1). Here we say that q ∈
CQ(D;C) if n = 1 + q and n belongs to the set

{n ∈ C(Rd;C) : 0 < Re(n), 0 ≤ Im(n), supp(n− 1) ⊂ D, |n(x)− 1| ≤ Q}.

Define the forward map G : Z 7→ Z by

G(z) =
(

q
G(q)

)
for z =

(
q
w

)
∈ Z.

We consider the inverse problem as an inference problem with noisy data given by

y = G(q) + η, (20)

where η ∼ N(0,Γ) is a mean-zero Gaussian random variable with known covariance Γ on Y .
Let us define the artificial dynamics

zk+1 = G(zk). (21)

Related to the artificial dynamics, (20) is written as

yk+1 = Hzk+1 + ηk+1, (22)

where the projection operator H : Z → Y is defined by H = (0, I) and {ηk} is an iid sequence
with η1 ∼ N(0,Γ) and Γ is given above.

The scheme requires an initial (or first guess) ensemble of particles {z(j)0 }Jj=1 which will

be iteratively updated with the ensemble Kalman filter method. The ensemble {z(j)0 }Jj=1

can be defined by constructing an ensemble {q(j)}Jj=1 in X. To be precise, let µ0 be a

probability measure on X with mean q
(j0)
t . We then choose q

(1)
0 , · · · , q(J)0

iid∼ µ0 and define

A = span{q(j)0 }Jj=1. Once {q(j)0 }Jj=1 is specified, we can simply define

z
(j)
0 =

(
q
(j)
0

G(q
(j)
0)

)
which consists of particles in Z. At any k-th step, we set the estimator

q̄k ≡
1

J

J∑
j=1

q
(j)
k =

1

J

J∑
j=1

H⊥z
(j)
k k = 0, 1, · · · ,

where H⊥ = (I, 0).
We now describe the iterative ensemble Kalman filter method for (21), (22).

Algorithm. Let {z(j)0 }Jj=1 be the initial ensemble. For k = 0, 1, 2, · · ·

14

(i) Prediction step. We first propagate particles under the dynamics (21):

z̃
(j)
k+1 =

(
q̃
(j)
k+1

w̃
(j)
k+1

)
= G(z(j)k) =

(
q
(j)
k

G(q
(j)
k)

)
.

Compute the empirical mean and covariance:

ẑk+1 =
1

J

J∑
j=1

z̃
(j)
k+1

Ck+1 =
1

J

J∑
j=1

z̃
(j)
k+1(z̃

(j)
k+1)

T − ẑk+1(ẑk+1)
T .

(ii) Analysis step. Define the Kalman gain Kk+1 by

Kk+1 = Ck+1HT (HCk+1HT + Γ)−1.

Update each ensemble particle by

z
(j)
k+1 = z̃

(j)
k+1 +Kk+1(y

(j)
k+1 −Hz̃(j)k+1) = (I −Kk+1H)z̃

(j)
k+1 +Kk+1y

(j)
k+1,

where y
(j)
k+1 = y+ η

(j)
k+1 with η

(j)
k+1 ∼ N(0,Γ). Here y is the observation data and y

(j)
k+1 is

obtained by artificially perturbing the observation data, see (22).

(iii) Finally, we compute the mean of the parameter update

q̄k+1 =
1

J

J∑
j=1

H⊥z
(j)
k+1 =

1

J

J∑
j=1

q
(j)
k+1.

Here q̄k+1 is a refined estimator of q.

It is important to point out that for every (k, j) ∈ N × {1, 2, · · · , J} we have q
(j)
k+1 ∈ A and

hence q̄k+1 ∈ A for all k ∈ N, see [14, Theorem 2.1].

Acknowledgments

Furuya was supported by JSPS KAKENHI Grant Number JP24K16949 and JST ASPIRE
JPMJAP2329. Wang was partially supported by the National Science and Technology Council
of Taiwan, NSTC 112-2115-M-002-010-MY3.

References

[1] Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola Kovachki,
Zongyi Li, Burigede Liu, and Andrew Stuart. Neural operator: Graph kernel network
for partial differential equations. In ICLR 2020 Workshop on Integration of Deep Neural
Models and Differential Equations, 2020.

[2] Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart.
Model reduction and neural networks for parametric pdes. The SMAI journal of compu-
tational mathematics, 7:121–157, 2021.

15

[3] Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust,
Karthik Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learn-
ing stable dynamics on the sphere. In International conference on machine learning,
pages 2806–2823. PMLR, 2023.

[4] Javier Castro, Claudio Muñoz, and Nicolás Valenzuela. The calderón’s problem via
deeponets. Vietnam Journal of Mathematics, pages 1–32, 2024.

[5] Gengxiang Chen, Xu Liu, Qinglu Meng, Lu Chen, Changqing Liu, and Yingguang Li.
Learning neural operators on Riemannian manifolds. arXiv preprint arXiv:2302.08166,
2023.

[6] Ke Chen, Chunmei Wang, and Haizhao Yang. Deep operator learning lessens the curse
of dimensionality for PDEs. Transactions on Machine Learning Research, 2023.

[7] Tianping Chen and Hong Chen. Approximation capability to functions of several vari-
ables, nonlinear functionals, and operators by radial basis function neural networks. IEEE
Transactions on Neural Networks, 6(4):904–910, 1995.

[8] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems.
IEEE transactions on neural networks, 6(4):911–917, 1995.

[9] D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory, vol-
ume 93. Springer Nature, 2019.

[10] Maarten V de Hoop, Daniel Zhengyu Huang, Elizabeth Qian, and Andrew M Stuart.
The cost-accuracy trade-off in operator learning with neural networks. arXiv preprint
arXiv:2203.13181, 2022.

[11] Beichuan Deng, Yeonjong Shin, Lu Lu, Zhongqiang Zhang, and George Em Karniadakis.
Approximation rates of deeponets for learning operators arising from advection–diffusion
equations. Neural Networks, 153:411–426, 2022.

[12] Takashi Furuya, Koichi Taniguchi, and Satoshi Okuda. Quantitative approximation for
neural operators in nonlinear parabolic equations. arXiv preprint arXiv:2410.02151, 2024.

[13] Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning
for differential equations. Advances in neural information processing systems, 34:24048–
24062, 2021.

[14] Marco A Iglesias, Kody JH Law, and Andrew M Stuart. Ensemble kalman methods for
inverse problems. Inverse Problems, 29(4):045001, 2013.

[15] Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation
and error bounds for Fourier neural operators. Journal of Machine Learning Research,
22(290):1–76, 2021.

[16] Nikola B Kovachki, Samuel Lanthaler, and Andrew M Stuart. Operator learning: Algo-
rithms and analysis. arXiv preprint arXiv:2402.15715, 2024.

[17] Nikola B Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhat-
tacharya, Andrew M Stuart, and Anima Anandkumar. Neural operator: Learning maps
between function spaces with applications to PDEs. J. Mach. Learn. Res., 24(89):1–97,
2023.

16

[18] Anastasis Kratsios, Takashi Furuya, Matti Lassas, Maarten de Hoop, et al. Mix-
ture of experts soften the curse of dimensionality in operator learning. arXiv preprint
arXiv:2404.09101, 2024.

[19] Samuel Lanthaler. Operator learning with pca-net: upper and lower complexity bounds.
Journal of Machine Learning Research, 24(318):1–67, 2023.

[20] Samuel Lanthaler, Zongyi Li, and Andrew M Stuart. The nonlocal neural operator:
Universal approximation. arXiv preprint arXiv:2304.13221, 2023.

[21] Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for
deeponets: A deep learning framework in infinite dimensions. Transactions of Mathe-
matics and Its Applications, 6(1):tnac001, 2022.

[22] Samuel Lanthaler and Andrew M Stuart. The curse of dimensionality in operator learn-
ing. arXiv preprint arXiv:2306.15924, 2023.

[23] Shanshan Li, BoTang and Haijun Yu. Better approximations of high dimensional smooth
functions by deep neural networks with rectified power units. Communications in Com-
putational Physics, 27(2):379–411, 2019.

[24] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for para-
metric partial differential equations. arXiv preprint arXiv:2010.08895, 2020.

[25] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Neural operator: Graph kernel
network for partial differential equations. arXiv preprint arXiv:2003.03485, 2020.

[26] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear oper-
ators for identifying differential equations based on the universal approximation theorem
of operators. arXiv preprint arXiv:1910.03193, 2019.

[27] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis.
Learning nonlinear operators via deeponet based on the universal approximation theorem
of operators. Nature machine intelligence, 3(3):218–229, 2021.

[28] Carlo Marcati and Christoph Schwab. Exponential convergence of deep operator net-
works for elliptic partial differential equations. SIAM Journal on Numerical Analysis,
61(3):1513–1545, 2023.

[29] Claudia Schillings and Andrew M Stuart. Analysis of the ensemble kalman filter for
inverse problems. SIAM Journal on Numerical Analysis, 55(3):1264–1290, 2017.

[30] Claudia Schillings and Andrew M Stuart. Convergence analysis of ensemble kalman
inversion: the linear, noisy case. Applicable Analysis, 97(1):107–123, 2018.

[31] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco
Alesiani, Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for
scientific machine learning. Advances in Neural Information Processing Systems, 35:1596–
1611, 2022.

[32] Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric
partial differential equations in computational mechanics problems. Computer Methods
in Applied Mechanics and Engineering, 404:115783, 2023.

17

	Introduction
	Related works
	Our results and contributions

	Scattering problem
	The scattered solution and the far-field pattern
	Complex-valued to Real-valued vector

	Neural operators for the scattering problem
	Motivation
	Definition of neural operators

	Quantitative approximation theorem
	ReQU activation function
	Main result
	Proof of Theorem 4.1

	Application to the inverse scattering problem

