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Abstract. We consider an inverse source problem for the acoustic waves using a range of
frequencies in this paper. The aims of this study are twofold. Firstly, it is known that this
inverse problem is severely ill-posed with a logarithmic stability estimate. Nonetheless, the
inverse problem becomes more stable when one increases the range of the frequencies. In this
paper, we will view the logarithmic stability estimate and the increasing resolution/stability
by carefully analyzing the singular values of the forward map. Secondly, in view of the
behavior of the singular values, we then study the consistency theorem of the inverse problem
by the nonparametric Bayesian method. Due to the ill-posedness, we can show that the
posterior distribution contracts around the ground truth at a rate, which consists of two
parts: a polynomial rate and a logarithmic rate, depending on the range of frequencies. This
phenomenon also reflects the increasing resolution/stability property observed in the PDE
inverse source problem. Moreover, such consistency theorems also suggest the amount of
measurements taken in account of the experimental quality and the cost of the measurements.
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1. Introduction

In this paper, we plan to study an inverse source problem using the nonparametric Bayesian
approach. We begin with the description of the scattering problem. Let n ≥ 2 be an integer
and κ > 0 be a wave number. We consider the time-harmonic acoustic wave with a nontrivial
volume source f , which is a distribution on Rn with a compact support supp(f):

(1.1)


− (∆ + κ2)u = f in Rn,

lim
|x|→∞

|x|
n−1
2 (∂ru− iκu) = 0 uniformly for x̂ =

x

|x|
∈ Sn−1.

The second equation in (1.1) is known as the Sommerfeld radiation condition. Without loss
of generality, we assume that supp(f) ⊆ B1. We define

Φκ(x) :=
iκ

n−2
2

4(2π)
n−2
2

|x|−
n−2
2 H

(1)
n−2
2

(κ|x|),

where H(1) is the Hankel function of the first kind. For each y ∈ Rn, it is known that Φκ

satisfies the above mentioned Sommerfeld radiation condition and

−(∆ + κ2)Φκ = δ0 in distribution sense

where δ0 is the standard Dirac delta. In other words, Φk is the outgoing fundamental solution
of the Helmholtz operator. Together with the Rellich uniqueness theorem [CK19, Hör73], we
can see that u of (1.1) is written explicitly by

(1.2) u(x) = Φκ ∗ f(x),
which is understood as the convolution of two distributions. Now its far-field pattern is
defined by

u∞κ [f ](x̂) := lim
|x|→∞

γ−1
n,κ|x|

n−1
2 e−iκ|x|u(x) with γn,κ :=

e−iπ n−3
4

2(2π)
n−1
2

κ
n−3
2 .

Such choice of γn,k guarantees that

(1.3) Φ∞
κ (x̂, y) = e−iκx̂·y for all x̂ ∈ Sn−1 and y ∈ Rn,

see e.g. [KSS24, Section 2] or [Yaf10, Section 1.2.3], therefore u∞κ can be represented in terms
of Fourier transform:

(1.4) u∞κ [f ](x̂) =

∫
Rn

e−iκx̂·yf(y) dy =

∫
B1

e−iκx̂·yf(y) dy = F [f ](κx̂) for all x̂ ∈ Sn−1.

We remark that F [f ] is analytic since f is a distribution with compact support.
Here, we are interested in the problem of determining the source f (assumed to be un-

known) by the far-field pattern u∞κ (x̂) for all x̂ ∈ Sn−1. In view of the Rellich uniqueness the-
orem, the far-field measurement u∞κ (x̂) is equivalent to the near-field measurement u(·, κ)|Γ,
where Γ = ∂BR with R > 1. Both types of measurements were considered in literature.
Inverse source problems have enormous applications in practice. For example, detection
of submarines and of anomalies in various industrial objects like material defects [EV09],
[GS17a, GS17b] can be regarded as recovery of acoustic sources from boundary measure-
ments of the pressure (see also [GS18] for similar results for the Maxwell and the elasticity
equations). It is known that from the far-field or the near-field data for one single linear
differential equation or system (that is, single wave number), it is not possible to find the
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source uniquely [Isa06, Chap 4]. This non-uniqueness is due to the existence of non-radiating
sources [BC77].

It was shown in [EI20] that if one considers the measurements u(·, κ)|Γ for all κ ∈ (0,k)
with some k > 0, then the uniqueness is true, i.e., f can be uniquely determined by u(·, κ)|Γ
for all κ ∈ (0,k). The same is true when we measure u∞κ (x̂) for all κ ∈ (0,k). This is
easily seen from the analyticity of u∞κ (x̂) in κ. On the other hand, a frequency-dependent
stability estimate can be derived indicating the increasing resolution phenomena (also known
as increasing stability phenomena) as k increases. For other inverse source problem using
multiple frequencies, we refer to, for example, [ABF02, BLT10, BLZ20, CIL16, IL18, IW21,
LY17] and references therein. Here, we will view the increasing resolution of identifying the
source f by the far-field pattern u∞κ [f ](x̂) for all κ ∈ (0,k) and x̂ ∈ Sn−1 as k increases based
on the behavior of the singular values of the forward map.

In this work, we are also interested in the inference of f from u∞κ (x̂) for κ ∈ (0,k) using
the Bayesian approach. We now describe the statistical inference problem in a general form.
Consider the observation Y = Y (N) given by Af polluted by a Gaussian white noise with
noise level 1/

√
N , that is,

(1.5) Y = Af +
1√
N
W,

where A is an injective, continuous linear map from a separable Hilbert H1 to another sep-
arable Hilbert space H2. The Gaussian white noise W is defined as a centered Gauss-
ian process indexed by H2, that is, W = (Wh : h ∈ H2) is mean-zero Gaussian pro-
cess with covariance EWhWh′ = ⟨h, h′⟩H2 . In the inverse source problem considered here,
A = Gk : L2(B1) 7→ L2(Sn−1

k , dκdx̂) defined by

∥Gkf∥2L2(Sn−1
k ,dκ dx̂)

=

∫ k

0

∫
Sn−1

|u∞κ [f ](κx̂)|2 dx̂ dκ,

where Sn−1
k := (0,k) × Sn−1. The above discussions suggest us to choose H1 = L2(B1) and

H2 = L2(Sn−1
k , dκ dx̂).

In the Bayesian inference, we assume that f is a random variable and we assign a prior
distribution Π to it. Here Π is a probability distribution defined on the Borel algebra B of
H1. Let ΠN(·|Y (N)) be the resulting posterior distribution. The Bayes method is to make
inferences of f based on ΠN(·|Y (N)). Our first aim is to investigate the asymptotic behavior
of ΠN(·|Y (N)) as N → ∞ from the frequentist viewpoint, that is, the data Y (N) is gener-
ated by a true parameter f0 ∈ H1. One important question is to study the consistency of
ΠN(·|Y (N)) around f0 with an explicit contraction rate. In the case of the inverse source
problem, we are able to analyze the singular values of the linear map Gk. Hence, we will use
the singular value decomposition (SVD) approach to prove the consistency of ΠN(·|Y (N)).
For other nonparametric Bayesian inference for linear inverse problems by the SVD, we refer
to [Cav08, CGPT02, GP00, KvdVvZ11, Ray13], just to list a few. There is a vast of literature
investigating the consistency of the nonparametric Bayes method for both linear and non-
linear inverse problems. We refer the reader to [AN19, ALS13, ASZ14, FKW24, GGvdV00,
GN20, GvdVY20, Kek22, KSvdVvZ16, MNP19, MNP21, Vol13] and references therein. Fur-
thermore, two nice monographs [GvdV17, Nic23] contain more exhaustive references.

The derivation of contraction rates of ΠN(·|Y (N)) around f0 as N → ∞ relies on a testing
approach outlined in [GGvdV00, Section 7]. The main idea of this approach is to construct
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suitable tests for the problem

(1.6) H0 : f = f0, HA : f ∈ {f : ∥f − f0∥H1 ≥ ξN}

with exponentially decaying type-II error for some sequence ξN → 0. Following the method
as in [AN19, GN11, Ray13], we will use concentration properties of certain centered linear
estimators to construct suitable plug-in tests. For the inverse source problem, relying on the
singular values of Gk, see Section 2, we can construct linear estimators using the band-limited
elements as in [LN11, Ray13].

Another key condition in the testing approach is that the prior distributions put sufficient
mass near the ground truth f0. This condition is achieved by establishing lower bounds of
the “small-ball problem”, i.e., the probability of Af contained in a small-ball centered at Af0
under the prior. In view of the decaying behavior of singular values of A, a small ball in
H2 is transformed by A−1 to a large H1 ellipsoid whose size is precisely determined by the
singular values.

In this paper, we are not only interested in the consistency of the posterior distribution
ΠN(cot |Y (N)), but also precisely deriving how the contraction rate depends on k. Due to
the behavior of the singular values, we can show that the posterior distribution contracts
around the ground truth at a rate, which consists of two parts: a polynomial rate and a
logarithmic rate, depending on the range of frequencies. This phenomenon also reflects the
increasing resolution/stability property observed in the PDE inverse source problem. We
believe that our results provide a better way of applying the Bayesian method for ill-posed
inverse problems.

This paper is structured as follows. In Section 2, we outline the behaviors of singular values
of Gk. In Section 3, we will describe the Bayesian method for the inverse source problem and
state main consistency theorems using sieve and Gaussian priors. The detailed derivation of
the behaviors of singular values of Gk is given in Section 4. In Section 5, we state and prove
a general quantitative consistency theorem, which is a refinement of [Ray13, Theorem 2.1]
by taking the parameter k into consideration. The proofs of consistency theorems with k-
dependence contraction rates for sieve and Gaussian priors are given in Section 6 and 7,
respectively.

Notations. We summarize some notations and function spaces used in this work. Through-
out, we shall use the symbol ≲ and ≳ for inequalities holding up to a universal constant.
For two real sequences (aN) and (bN), we say that ≃ if both aN ≲ bN and bN ≲ aN for all
sufficiently large N . In this paper, the universal constants in ≲, ≳ and ≃ are referred as
“implied constants”, which are all all independent of k and N . For any t ≥ 0, ⌈t⌉ denotes the
ceiling function t, i.e., ⌈t⌉ is the smallest integer larger than t. All formulas in the Digital
Library of Mathematical Functions (DLMF, https://dlmf.nist.gov/), which is maintained
by the National Institute of Standards and Technology of U.S Department of Commerce
(https://www.nist.gov/), can be also found in [OLBC10].

2. Singular values of Gk

In this section, we would like to analyze the singular values of Gk as explicitly as possible.
Our aim is to understand the decaying behavior of the singular values, accounting the effect
of the parameter k.

https://dlmf.nist.gov/
https://www.nist.gov/
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2.1. Upper bounds of singular values and an instability result. By the plane wave
expansion DLMF:10.60.E7, we can write

e−iκx̂·y =
∞∑
ℓ=0

(2ℓ+ 1)iℓjℓ(k|y|)Pℓ(x̂ · ŷ) for all x̂ ∈ Sn−1 and y ∈ B1 \ {0},

where ŷ = y/|y|, jℓ are the spherical Bessel functions and Pℓ are Legendre polynomials. Con-
sequently, we can use the addition theorem for Legendre polynomials [EF14, Theorem 4.11]
to derive the n-dimensional plane wave expansion1:

e−iκx̂·y = Ωn−1

∞∑
ℓ=0

(2ℓ+ 1)iℓ

N(n, ℓ)

N(n,ℓ)∑
j=1

jℓ(κ|y|)Yℓ,j(ŷ)Yℓ,j(x̂)

where Ωn−1 = 2πn/2

Γ(n/2)
is the surface area of Sn−1 [EF14, Proposition 2.3] and {Yℓ,j(x̂)}N(n,ℓ)

j=1

is the orthonormal set of spherical harmonics with N(n, ℓ) = 2ℓ+n−2
ℓ

(
ℓ+n−3
ℓ−1

)
[EF14, Theo-

rem 4.4]. Here we also point out that

(2.1) N(3, ℓ) = 2ℓ+ 1 for all ℓ = 0, 1, 2, · · · .
Therefore, if f ∈ L2(B1), then from (1.4), it follows that

(2.2) u∞κ [f ](x̂) = Ωn−1

∞∑
ℓ=0

(2ℓ+ 1)iℓ

N(n, ℓ)

N(n,ℓ)∑
j=1

(∫
B1

jℓ(κ|y|)Yℓ,j(ŷ)f(y) dy
)
Yℓ,j(x̂)

which converges in L2(Sn−1).
The inverse source problem aims to recover the source f , which is a distribution supported

in B1, from multifrequency data {u∞κ [f ](x̂) : 0 < κ < k, x̂ ∈ Sn−1} for some k > 0. From
(1.4) we see that such information gives us the value of F [f ] in Bk on the frequency space.
Since f is compactly supported, by the analyticity of F [f ], the full data F [f ] on Rn can be
obtained, and finally the Fourier inverse formula recovers the source f . It is also interesting
to point out that the set of {u∞κ [f ](x̂) : 0 < κ < k, x̂ ∈ Sn−1} is actually identical to the
linearized scattering matrix considered in [KSZ24, Lemma 3.1].

Now let us quantify the measurement mentioned above. By using (1.4), we can see that

(2.3)

∫ k

0

∥u∞κ [f ]∥2L2(Sn−1) dκ =

∫ k

0

∫
|x̂|=1

|F [f ](κx̂)|2 dx̂ dκ

=

∫ k

0

∫
|κx̂|=κ

κ1−n|F [f ](κx̂)|2 d(κx̂) dκ =

∫
Bk

|ξ|1−n|F [f ](ξ)|2 dξ,

which implies that Gkf is isometrically and isomorphically to the operator

(2.4) Ukf(x) = F−1
[
χBk

|·|
1−n
2 F [f ]

]
= F−1[χBk

] ∗ (−∆)
1−n
4 f in Rn,

where (−∆)
1−n
4 f = F−1

[
|·| 1−n

2 F [f ]
]

is the negative power of the Laplacian [Sti19]. In other
words, we have

(2.5) ∥Ukf∥2L2(Rn) = ∥Gkf∥2L2(Sn−1
k ,dκdx̂)

.

1The n-dimensional analogue for the Funk-Hecke formula [CK19, (2.45)] is an immediate consequence of
this n-dimensional plane wave.

https://dlmf.nist.gov/10.60.E7
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In the analysis of the singular values, it is more convenient to work with the operator Uk.
By the Fourier inversion formula, one has

F−1[χBk
](x) = (2π)−nknF [χB1 ](−kx) = (2π)−nkn(k|x|)−

n
2 Jn/2(k|x|),

where Jα is the Bessel function of first kind of order α. In view of (2.4), we rigorously define
the linear operator Uk in the following setting:

(2.6) Uk : H
(1−n)/2

B1
→ L2(Rn),

where for each compact set K ⊂ Rn and a parameter s ∈ R, the Sobolev space Hs
K is defined

by
Hs

K := {f ∈ Hs(Rn) : supp (f) ⊆ K} , ∥f∥Hs
K
:= ∥fχK∥Hs(Rn).

In the following theorem, by the smoothing property of the forward operator and the
Courant min-max/max-min principles, we can estimate singular values without using the
explicit expression (2.2).

Theorem 2.1. Let n ≥ 2 and κ ≥ 1. Then the bounded linear operator (2.6) is compact
and injective. In addition, there exist positive constants C = C(n) > 1, c = c(n) and
C ′ = C ′(n) > 0 such that the singular values σj

(
Uk : H

(1−n)/2

B1
→ L2(Rn)

)
of (2.6) satisfy

C−1 ≤ σj

(
Uk : H

(1−n)/2

B1
→ L2(Rn)

)
≤ Ck

n−1
2 for j < C ′kn,(2.7a)

σj

(
Uk : H

(1−n)/2

B1
→ L2(Rn)

)
≤ Cj

n−1
2n exp

(
−cj

1
2nk− 1

2

)
for j ≥ C ′kn.(2.7b)

Here all the constants C, c, C ′ are independent of k.

In view of the mechanism explained in [KRS21, KSZ24] (see also [Ray13] in probabilistic
settings), the estimates (2.7a) and (2.7b) indicate that the singular values are almost con-
stant (up to a polynomial multiplier k

n−1
2 ) in the stable region {j ∈ N : j ≲ kn} and begin

decay rapidly in the unstable region {j ∈ N : j ≳ kn} which led instability in the inverse
problem. It is clear that the stable region {j ∈ N : j ≲ kn} increases and the unstable re-
gion {j ∈ N : j ≳ kn} decreases as k → ∞, which demonstrates the increasing resolution
phenomena.

We can restrict Uk on L2(B1) and thus

(2.8) U∞
k : L2(B1) → L2(Rn)

is compact injective. Using the similar method, we can show that the singular values
σj (Uk : L2(B1) → L2(Rn)) satisfy

(2.9)
σj
(
Uk : L2(B1) → L2(Rn)

)
≤ C for all j < C ′kn,

σj
(
Uk : L2(B1) → L2(Rn)

)
≤ C exp

(
−cj

1
2nk− 1

2

)
for all j ≥ C ′kn.

Following the arguments of the proof in [KSZ24, Theorem 1.5], we can prove that

Corollary 2.2 (Instability of the inverse problem). If there exists a non-decreasing function
t ∈ (0,∞) 7→ ω(t) ∈ (0,∞) such that

∥f∥L2(B1) ≤ ω

((∫ k

0

∥u∞κ [f ]∥2L2(Sn−1) dκ

)1/2
)
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for any f ∈ H1
B1

with ∥f∥H1(B1) ≤ 1, then there exist positive constants c = c(n) and c′ = c′(n)

such that

(2.10) ω(t) ≥ cmax
{
t,k−1(log(1/t))−2

}
for all 0 < t < c′.

Estimate (2.10) demonstrates that the logarithmic part becomes less dominating when k
increases. This observation reflects the increasing resolution phenomenon proved in literature
mentioned in the Introduction.

2.2. Lower bounds of singular values and a stability result. Understanding lower
bounds of singular values is extremely important in practice, especially in the Bayesian
inference method. However, the general method used in deriving the upper bounds obtained
in Theorem 2.1 does not seem to be effective. To overcome the difficulty, we will derive
lower bounds for (2.9) using the explicit formula (2.2). For definiteness, we restrict our
computations for n = 3, the most practical case. By (2.1), now (2.2) reads

(2.11) u∞κ [f ](x̂) = 4π
∞∑
ℓ=0

2ℓ+1∑
m=1

(∫
B1

jℓ(κ|y|)Yℓ,m(ŷ)f(y) dy
)
Yℓ,m(x̂)

which converges in L2(S2). It is also helpful to see that we can relabel the spherical harmonics
as

Yℓ,m = Yℓ2+m for all ℓ = 0, 1, 2, · · · and m = 1, · · · , 2ℓ+ 1.
By the Courant min-max/max-min principles and the expression (2.11), we are able to prove
the following theorem.

Theorem 2.3. Let n = 3 and k ≥ 4. The singular values σj (Uk : L2(B1) → L2(R3)) of
(2.8) satisfy the lower bound

(2.12)

σj
(
Uk : L2(B1) → L2(R3)

)
≥


ck− 4

3 for all j <
(
k− 3

2

)2

,

ck− 4
3 exp

(
−3j

1
2 log j

)
for all j ≥

(
k− 3

2

)2

,

for some positive constant c > 0, which is independent of both k and j.

Remark 2.4. Both upper and lower bounds of singular values in (2.9) and (2.12) can be
written for the operator Gk. In other words, for n = 3 and k ≥ 4, we have

(2.13)
σj
(
Gk : L2(B1) → L2(S2

k, dκ dx̂)
)
≤ C for all j < C ′k3,

σj
(
Gk : L2(B1) → L2(S2

k, dκ dx̂)
)
≤ C exp

(
−cj

1
6k− 1

2

)
for all j ≥ C ′k3,

and

(2.14)

σj
(
Gk : L2(B1) → L2(S2

k, dκ dx̂)
)

≥


ck− 4

3 for all j <
(
k− 3

2

)2

,

ck− 4
3 exp

(
−3j

1
2 log j

)
for all j ≥

(
k− 3

2

)2

.



FREQUENCY DEPENDENT CONTRACTION RATES 8

Combining (2.14) and (2.13), we can derive a stability estimate, which further explains the
increasing resolution phenomena of the inverse source problem.

Corollary 2.5 (Stability of the inverse problem). Let n = 3 and k ≥ 4. Given any µ > 1
2
,

and we denote {φj}j∈N the singular basis in L2(B1) of (2.8) corresponding to the singular
values σj (u∞k : L2(B1) → L2(R3)), and define the subspace2

K(µ) :=

{
f ∈ L2(B1) : ∥f∥2K(µ) :=

∑
j∈N

jµ|⟨f, φj⟩L2(B1)|2 ≤ 1

}
.

There exist a positive constant C > 0 and a logarithmic modulus of continuity ηlog : R>0 →
R>0 which is a bijective, concave and strictly increasing function (see (4.19) below), both are
independent of k and µ, such that

∥f∥L2(B1) ≤ ηlog

(
∥u∞k [f ]∥L2(S2

k,dκdx̂)

)
for all f ∈ K(µ,k; unstable),

∥f∥L2(B1) ≤ Ck
4
3∥u∞k [f ]∥L2(S2

k,dκdx̂)
for all f ∈ K(µ,k; stable),

where

K(µ,k; unstable) := K(µ) ∩ span

{
φj : j ≥

(
k− 3

2

)2
}
,

K(µ,k; stable) := K(µ) ∩ span

{
φj : j <

(
k− 3

2

)2
}
.

Remark 2.6. We observe the increasing resolution phenomena in the sense that the cardi-
nality |K(µ,k; stable)| of K(µ,k; stable) satisfies

|K(µ,k; stable)| ↗ +∞ as k ↗ +∞.

However, since the singular basis {φj}j∈N the singular basis of (2.8) depends on k, there-
fore one should not expect the set inclusion between K(µ,k1; stable) and K(µ,k2; stable) for
distinct k1 and k2.

3. Consistency of the Bayesian inference

Let us now consider the statistical model (1.5) with A given by Gk defined in (1.5). Here
we study the case where n = 3. As in the Introduction, we take separable Hilbert spaces
H1 = L2(B1) and H2 = L2(S2

k, dκ dx̂) here. Also, for simplicity, denote by ⟨·, ·⟩1, ⟨·, ·⟩2
(∥ · ∥1, ∥ · ∥2) the inner products (norms) of H1 and H2. Let {σj}j∈N be the singular values
of Gk with the corresponding singular vectors {φj}j∈N. As in Corollary 2.5, the set {φj}j∈N
forms an orthonormal basis of H1. Denote {ej}j∈N ⊂ H2 the conjugate basis of {φj}j∈N, i.e.,
Gkφj = σjej for all j. Recall that W is a Gaussian white noise on H2. In other words, W
is described by a mean-zero Gaussian process W = (Wj := Wej : j ∈ N) with covariance
EWjWj′ = δjj′ , where δjj′ is the Kronecker delta function. In this form, (1.5) is interpreted
as

(3.1) Yj = ⟨Gkf, ej⟩2 +
1√
N
Wj,

2See [KRS21, (A.1)].
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which is called the sequence space model corresponding to (1.5) [Cav08]. Now, we consider
f ∈ H1 and hence f can be written as

f =
∑
j

fjφj,

where
∑

j means
∑∞

j=1 and fj = ⟨f, φj⟩1. Consequently, Yj are distributed N (σjfj,
1
N
)

independently. So the inverse problem is to estimate f = {fj}j∈N from the sequence of in-
dependent observations {Yj}j∈N. Since each Yj depends on the noise level 1/

√
N , we denote

Y (N) := {Yj}j∈N. Next, relying on the Kakutani product martingale theorem [DP06, Theo-
rem 2.7], it was proved in [Ray13] (see (1.4) there) that the posterior distribution conditioned
on the observation Y (N) is given by

(3.2) ΠN(B|Y (N)) =

∫
B
eN

∑
j σjfjYj−N

2
∥Gkf∥22 dΠ(f)∫

S e
N

∑
j σjfjYj−N

2
∥Gkf∥22 dΠ(f)

for all B ∈ B,

where S is the support of the prior Π. For f ∈ H1, let Pf denote the law of the model (1.5).
It is know that the family of distributions (Pf : f ∈ H1) is dominated by the law Pf0 with
density

(3.3)
dPf

dPf0

= exp

(
N
∑
j

σjfjYj −
N

2
∥Gkf∥22

)
.

see [Ray13] or [Ray15, (2.1.3)]. Similar to the priors studied in [Ray13], we consider two
types of priors.

3.1. Sieve priors. We consider sieve priors in the singular basis {φj} of Gk : H1 → H2 with
truncation level J , i.e.,

(3.4) f =
J∑

j=1

fjφj,

where J has probability mass function m on N with distribution function J . The coefficients
fj are random variables with density τ−1

j q(τ−1
j ·), for some positive sequence {τj}j∈N to be

chosen later, and for fixed density q. Consequently, the prior is given as

(3.5) Π =
∞∑
j=1

m(j)Πj where Πj(x1, · · · , xj) =
j∏

k=1

τ−1
k q(τ−1

k xk).

Sieve priors of this type are commonly used in nonparametric Bayesian inference, see, for
example, [AGR13, Hua04, SW01, Zha00]. Now we want to make the following assumption
on q.

Assumption 1. There exist constants D > 0, d > 0, and β ≥ 1 such that the density
q : C → [0,∞) satisfies

De−d|x|β ≤ q(x), for all x ∈ C.

We first prove a result which is in fact a parametric inference, which holds true for any
choice of the positive sequence {τj}j∈N.
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Theorem 3.1. Assume that the ground truth f0 takes the form f0 =
∑j0

j=1 f0,jφj for some
fixed j0 ∈ N. Let q satisfy Assumption 1 and Π be the prior defined as (3.5) such that there
exists a constant b > 0 and

0 <m(j) and
∞∑

ℓ=j+1

m(ℓ) ≲ e−bj for all j ∈ N.

If k >
√
j0 +

3
2
, then the following holds for any parameter ϑ > 0: there exist M > 0 and L,

which are independent of k, such that

(3.6) Pf0

(
ΠN

(
f ∈ L2(B1) : ∥f − f0∥1 ≥MξN |Y (N)

)
≥ ϑ

)
≲ (log(kN))−1

for all sufficiently large N ≳ log k, where

(3.7) ξN = k
4
3

(
log(kN)

N

)1/2

·



1 if ⌈L log(kN)⌉ <
(
k− 3

2

)2

,

exp
(
3⌈L log(kN)⌉

1
2 log(⌈L log(kN)⌉)

)
if ⌈L log(kN)⌉ ≥

(
k− 3

2

)2

,

and all the implied constants are independent of k.

From (3.6), one sees that

ΠN

(
f ∈ L2(B1) : ∥f − f0∥1 ≥MξN |Y (N)

) Pf0→ 0 uniformly in k.

The form of ξN strongly suggests that we consider the “stable region”

Rk :=

{
N ∈ R : log k ≲ N ≲ exp

((
k− 3

2

)2
)}

,

and we observe the increasing resolution phenomenon in the sense that the range of Rk

increases as k increases. If the parameter k is adaptive to the noise level with a growth rate
described in the first part of (3.7), we have a better contraction rate than the case where k is
fixed. Nonetheless, in the parametric case, the contraction rate of the posterior distribution
using a sieve prior is N−1/2+ϵ with any ϵ > 0, regardless the value of k.

We now consider the nonparametric inference problem. In order to obtain bounds which
are uniform with respect to the key parameter k, we will consider the ground truth which is
“smoother” than the one studied in [Ray13]. For each s ≥ 0, let Hs

exp ≡ Hs
exp(H1) be defined

in terms of the basis {φj}j∈N given by

Hs
exp =

{
f ∈ L2(B1) : ∥f∥2Hs

exp(H1)
:=
∑
j∈N

j2s exp
(
6j

1
2 log j

)
|fj|2 < +∞

}
where fj = ⟨f, φj⟩1. The consideration of such weighted Hilbert space is motivated by the
discrepancy of lower and upper bounds of singular values derived in (2.13) and (2.14). The
following theorem clearly demonstrates the increasing resolution phenomenon for nonpara-
metric case:
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Theorem 3.2. We assume that the density q is a standard Gaussian, i.e., β = 2 in Assump-
tion 1 and the scale parameters satisfy

(3.8) τj ≃
(
j

1
2 log j

)− 3+δ
2 for all j ∈ N.

for some δ > 0. Assume that the ground truth 0 ̸≡ f0 ∈ Hs
exp for some s > 2

3
+ δ

4
. Let Π be

the prior defined as (3.5) in which m(j) satisfies

(3.9) exp

(
−b
(
j

1
2 log j

)3)
≲ m(j),

∞∑
ℓ=j+1

m(ℓ) ≲ exp

(
−b′

(
j

1
2 log j

)3)
for all j ∈ N

with some b > 0 and b′ > 0. Given any α > 0 and k >
√
e+ 3

2
satisfying3

(3.10) k
8
3

(
k− 3

2

)−4s+δ (
2 log

(
k− 3

2

))δ

≤ 1, α log k ≤ 2

(
k− 3

2

)
log

(
k− 3

2

)
,

then the following holds true for any parameter ϑ > 0: there exists a constant M > 1, which
is independent of k, such that

Pf0

(
ΠN(f ∈ L2(B1) : ∥f − f0∥1 ≥Mξ̂N |Y (N)) ≥ ϑ

)
≲ (log(kN))−3

for all N ≳ (log k)3+δ, where

ξ̂N =


k3α

(
(log(kN))3

N

) 1
2

if k
1
2
N log kN < α log k,

k
8
3k

− δ
4

N if k
1
2
N log kN ≥ α log k,

where kN is the smallest integer satisfying

(3.11) k−s
N exp

(
−3k

1
2
N log kN

)
≃ k− 4

3

(
(log(kN))3

N

) 1
2

.

Here, all the implied constants are independent of k.

Remark. Since (see (6.12) below)

log k+ logN = log(kN) ≃ k
1
2
N log kN for all large N ≳ (log k)3+δ,

one can choose a sufficiently large α > 1 to see that there exists a constant α′ = α′(α) > 0
such that {

N ∈ R : N ≳ (log k)3+δ, k
1
2
N log kN < α log k

}
=
{
N ∈ R : N ≳ (log k)3+δ, log k+ logN ≲ α log k

}
=
{
N ∈ R : (log k)3+δ ≲ N ≲ kα′

}
,

which demonstrates the increasing resolution phenomenon.

3The mapping t ∈ (e,∞) 7→ t−2s+ δ
2 (log t)δ is monotone decreasing due to s > 3

4δ.
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From a frequentist perspective, it is reasonable to calibrate the prior adapted to the forward
operator Gk, see also [KSvdVvZ16, KvdVvZ11, KvdVvZ13, Ray13] which also make strong
use of knowledge of the forward operator through the choice of diagonalizing basis.

The estimate (3.13) should read with a caveat. Even though the contraction rate is domi-

nated by the term k3α
(

(log(kN))3

N

) 1
2 at large k, the constant k3α there suggests that there may

be no significant improvement in the quality of the reconstruction of the source f from large
amount of measurements {u∞κ [f ] : κ ∈ (0,k)}. In the case when the parameter N is large
(i.e. the noise level 1/

√
N is low), we expect that collecting large amount of measurements

{u∞κ [f ] : κ ∈ (0,k)} would be helpful. Otherwise, if the data is noisy (i.e. the parameter N
is small), collecting large amount of such noisy data should not be too helpful.

3.2. Gaussian priors. In this section, we consider a conjugate prior. Let Λ : H1 → H1 be
a positive semidefinite, self-adjoint and trace class linear operator, satisfying the following
assumption similar as in [Ray13, Condition 3] (see also [KvdVvZ11, KvdVvZ13]).

Assumption 2. Suppose that the eigenvectors of Λ : H1 → H1 are identical to the
singular basis {φj}j∈N of Gk : H1 → H2, and its corresponding eigenvalues are τj ≃
j−ρ exp

(
−3j

1
2 log j

)
for some constant ρ > 3

2
. Here the implied constants are independent

of k.

Let N (0,Λ) be the mean-zero Gaussian distribution on H1 with covariance operator Λ :
H1 → H1, that is, G ∈ N (0,Λ) if and only if (⟨G, h⟩1 : h ∈ H1) is a Gaussian process with

E⟨G, h⟩1 = 0, cov (⟨G, h⟩1, ⟨G, h′⟩1) = ⟨h,Λh′⟩1 for all h, h′ ∈ H1.

We now take the prior Π = N (0,Λ). Recall that a Gaussian distribution has support equal
to the closure of its reproducing kernel Hilbert space (RKHS) H, see [vdVvZ08b]. Since the
posterior has the same support, consistency is only achievable when Gkf0 is contained in this
set.

Theorem 3.3. Assume that the prior Π = N (0,Λ) with Λ : H1 → H1 satisfies Assumption 2.
Let the ground truth f0 ∈ Hγ

exp for some number γ ≥ ρ, then there exist constants M > 1
and s > 0 which are independent of k, such that

(3.12) Pf0

(
ΠN(f ∈ L2(B1) : ∥f − f0∥1 ≥Mξ̃N |Y (N)) ≥ ϑ

)
≲ (logN)−3

for all N ≳ 1, where

(3.13) ξ̃N = k
4
3


(
(logN)3

N

) 1
2

if kN <

(
k− 3

2

)2

,

k−s
N if kN ≥

(
k− 3

2

)2

,

where kN is the smallest integer satisfying

k−s
N exp

(
−3k

1
2
N log kN

)
≃
(
(logN)3

N

) 1
2

.

Again, all the implied constants are independent of k.
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From (3.12) we have the following uniform convergence

ΠN(f ∈ L2(B1) : ∥f − f0∥1 ≥Mξ̃N |Y (N))
Pf0→ 0 uniformly in k.

It is reasonable to choose k as a function of N , for example, we can take

(3.14) k(N) = k
1
2
N + 2,

which tends to infinity at a logarithmic rate as N → ∞, and now we obatin the following
corollary.

Corollary 3.4. Under the same assumptions as in Theorem 3.3, if k = k(N) is given in
(3.14), then

ΠN

(
f ∈ L2(B1) : ∥f − f0∥1 ≥M

(
(logN)3

N

) 1
2 (
k

1
2
N + 2

) 4
3

∣∣∣∣∣Y (N)

)
Pf0→ 0

as N → +∞.

In other words, Corollary 3.4 suggests the amount of measurements taken in account of
the experimental quality and the cost of the measurements. From the mathematical point of
view, similar discussions also can be found in our previous work [KW24].

4. Proofs of theorems in Section 2

Before proving Theorem 2.1, we use the compact support condition for f to bound Uk(f).

Lemma 4.1. There exists a constant C = C(n) > 0 such that

∥Uk(f)∥L2(Rn) ≤ C(Cmk)2m∥f∥H−2m

B1

for all k ≥ 1 and integers m ≥ 0.

Proof. We will prove our lemma by modifying the ideas in [KSZ24, Lemma 3.2]. From (2.3)
and the Placherel formula, we write

(4.1) ∥Uk(f)∥2L2(Rn) = I1 + I2

with
I1 =

∫
B1

|ξ|1−n|F [f ](ξ)|2 dξ, I2 =

∫
Bk\B1

|ξ|1−n|F [f ](ξ)|2 dξ.

By using [KSZ24, (3.4)], we see that there exists a constant C = C(n) > 0 such that

|F [f ](ξ)| ≤ C(Cm+ C|ξ|)2m∥f∥H−2m

B1

for all ξ ∈ Rn,

and therefore I1 can be estimated for m ≥ 1 by

I1 ≤ C sup
|ξ|≤1

|F [f ](ξ)|2 ≤ C(Cm)4m∥f∥2
H−2m

B1

.

We proceed to esitmate I2 by

I2 ≤ C2+4m

(
sup

1≤|ξ|≤k

(m+ |ξ|)4m|ξ|1−n

)
∥f∥2

H−2m

B1

≤ C2(Cmk)4m∥f∥2
H−2m

B1

.

Plugging the estimates for I1 and I2 into (4.1) implies the lemma. □
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For any m > (n − 1)/4, since the embedding H(1−n)/2

B1
⊂ H−2m

B1
is compact, the operator

(2.6) is compact. It follows from [KSZ24, (3.8) in Lemma 3.4] that there exists a constant
C = C(n) > 0 such that the singular values of the canonical embedding ι : H(1−n)/2

B1
→ H−2m

B1

satisfies

(4.2) σj

(
ι : H

(1−n)/2

B1
→ H−2m

B1

)
≤ C(Cm)2mj−

2m+(1−n)/2
n for any integer m > (n− 1)/4.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. First of all, by using [KRS21, Proposition 2.3(a)] and Lemma 4.1
with integer m = ⌈(n − 1)/4⌉ + 1, we immediately obtain the following trivial bound via
interpolation (e.g., [LM72, Theorem 5.1])

(4.3) σj(Uk) ≤ σ1(Uk) = ∥Uk∥H(1−n)/2

B1
→L2(Rn)

≤ Ck
n−1
2 for all j ∈ N,

where C = C(n). The central idea of the remaining proof utilizes the following Courant’s
min-max principle:

(4.4) σj(Uk) = min
S

max
{f∈H(1−n)/2

B1
:f⊥S,∥f∥

H
(1−n)/2

B1

=1}
∥Uk(f)∥L2(Rn)

where the minimum is taken over all subspaces S ⊂ H
(1−n)/2

B1
with dim (S) = j − 1. Let

m ∈ N and {ψℓ}ℓ∈N be an orthonormal basis of H(1−n)/2

B1
consisting of singular vectors of the

canonical embedding ι : H(1−n)/2

B1
→ H−2m

B1
. For each j ∈ N, we consider the vector space

Sj := span {ψ1, · · · , ψj−1} .

From (4.2) we see that

∥f∥H−2m

B1

= ∥ι ◦ f∥H−2m

B1

≤ C(Cm)2mj−
2m+(1−n)/2

n ∥f∥
H

(1−n)/2

B1

for all f ⊥ Sj

and consequently using the estimate in Lemma 4.1 for f ∈ Sj, we see that

∥Uk(f)∥L2(Rn) ≤ C(Cmk1/2)4mj−
2m+(1−n)/2

n ∥f∥
H

(1−n)/2

B1

for all f ⊥ Sj.

Applying the Courant’s min-max principle (4.4) yields

(4.5) σj(Uk) ≤ C(Cmk1/2j−
1
2n )4mj

n−1
2n for all j ∈ N and m ∈ N.

Now, for each j ∈ N, we consider the function

fj(t) = C(Ctk1/2j−
1
2n )4t for all t > 0.

It is not difficult to see that such function fj is convex and has a global minimum t0 over
t > 0 with

Ct0k
1/2j−

1
2n = 1/e.
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Next, for any j ≥ (2Cek1/2)2n, we note that t0 ≥ 2 and so we can choose m = ⌊t0⌋ ≥ t0/2 ≥ 1
in (4.5) to see that

(4.6)

σj(Uk) = σj

(
Uk : H

(1−n)/2

B1
→ L2(Rn)

)
≤ j

n−1
2n fj(m)

≤ j
n−1
2n fj(t0/2) = Cj

n−1
2n (Ct0k

1/2j−
1
2n/2)2t0 = Cj

n−1
2n (2e)−

2
Ce

j1/2nk−1/2

= Cj
n−1
2n exp

(
log
(
(2e)−

2
Ce

j1/2nk−1/2
))

= Cj
n−1
2n exp

(
−2 log(2e)

Ce
j

1
2nk− 1

2

)
for all j ∈ N. Combining (4.6) with the trivial bound (4.3), we conclude the upper bounds
in (2.7a) and (2.7b).

We proceed to prove the lower bound in the stable region. Now we use the Courant
max-min principle:

(4.7) σj

(
Uk : H

(1−n)/2

B1
→ L2(Rn)

)2
= max

X
min

{f∈X:∥f∥
H

(1−n)/2

B1

=1}
∥Uk(f)∥2L2(Rn)

where the maximum is taken over all subspaces X of H(1−n)/2

B1
with dim (X) = j. Since

∥Uk(f)∥2L2(Rn) =

∫
Rn

|ξ|1−n|F [f ](ξ)|2 dξ −
∫
Rn\Bk

|ξ|1−n|F [f ](ξ)|2 dξ

≥ ∥f∥2
H

(1−n)/2

B1

− k1−n∥f∥2L2(B1)
,

and from (4.7) it follows

(4.8) σj

(
Uk : H

(1−n)/2

B1
→ L2(Rn)

)2
≥ max

X
min

{f∈X:∥f∥
H

(1−n)/2

B1

=1}

(
1− k1−n∥f∥2L2(B1)

)
.

We choose
Xj = span {ψ1, · · · , ψj}

where {ψℓ}ℓ∈N is an orthonormal basis of L2(B1) consisting of singular vectors of ι : L2(B1) →
H

(1−n)/2

B1
. Applying [KSZ24, Lemma 3.4] implies that there exists a positive constant c0 =

c0(n)

∥f∥2
H

(1−n)/2

B1

= ∥ι ◦ f∥2
H

(1−n)/2

B1

≥ c0j
(1−n)/n∥f∥2L2(B1)

.

Then by (4.8) we have that

σj

(
Uk : H

(1−n)/2

B1
→ L2(Rn)

)2
≥ min

{f∈Xj :∥f∥
H

(1−n)/2

B1

=1}

(
1− k1−n∥f∥2L2(B1)

)
≥ 1− c−1

0 k1−nj
n−1
n

for all j ∈ N. Consequently, we conclude that

σj

(
Uk : H

(1−n)/2

B1
→ L2(Rn)

)2
≥ 1

4
for all j ≤

(
3c0
4

) n
n−1

kn,

which gives the lower bound in (2.7a). □

Next, we prove Theorem 2.3 using the explicit formula (2.11).
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Proof of Theorem 2.3. Similar to Theorem 2.1, the main idea is to use the Courant
max-min principle:

(4.9) σj
(
Uk : L2(B1) → L2(R3)

)2
= max

X
min

{f∈X:∥f∥L2(B1)
=1}

∥Uk(f)∥2L2(R3)

where the maximum is taken over all subspaces X of L2(B1) with dim (X) = j. By (2.11)
and DLMF:10.51.E3, we can obtain that

u∞κ [|y|ℓYℓ,m(ŷ)](x̂) = 4π

(∫ 1

0

jℓ(κr)r
2+ℓ dr

)
Yℓ,m(x̂)

= 4πκ−(3+ℓ)

(∫ κ

0

jℓ(z)z
2+ℓ dz

)
Yℓ,m(x̂)

= 4πκ−1jℓ+1(κ)Yℓ,m(x̂).

The relation (2.5) yields

∥Uk(|y|ℓYℓ,m(ŷ))∥2L2(R3) =

∫ k

0

∥u∞κ [|y|ℓYℓ,m(ŷ)]∥2L2(S2) dκ = 16π2

∫ k

0

κ−2|jℓ+1(κ)|2 dκ,

where the convergence of the integral can be easily seen from DLMF:10.7.E3.
For each j ∈ N, we define

ϕj(y) :=
√
2ℓ+ 3|y|ℓYℓ,m(ŷ)

where we write j = ℓ2 + m for ℓ = 0, 1, 2, · · · and m = 1, · · · , 2ℓ + 1 as in (2.2). Note
that {ϕj}j∈N forms an orthonormal set of L2(B1). By DLMF:10.47.3 (Jν denotes the Bessel
function of the first kind) and DLMF:10.22.E27, we can compute

(4.10)

∥Uk(ϕj)∥2L2(R3) = 16π2(2ℓ+ 3)

∫ k

0

κ−2|jℓ+1(κ)|2 dκ

= 8π3(2ℓ+ 3)

∫ k

0

κ−3|Jℓ+ 3
2
(κ)|2 dκ

≥ 8π3(2ℓ+ 3)k−4

∫ k

0

κ|Jℓ+ 3
2
(κ)|2 dκ

= 16π3(2ℓ+ 3)k−4

∞∑
α=0

(
ℓ+

5

2
+ 2α

)
|Jℓ+ 5

2
+2α(k)|2

≥ 8π3(2ℓ+ 3)(2ℓ+ 5)k−4|Jℓ+ 5
2
(k)|2

≥ 120π3k−4|Jℓ+ 5
2
(k)|2.

Observe that j ≤ (ℓ + 1)2. If j ≥ (k − 3
2
)2, then ℓ + 5

2
≥ k, and thus we can use

DLMF:10.14.E7 to see that

(4.11)

∥Uk(ϕj)∥2L2(R3) ≥ 120π3k−4

∣∣∣∣Jℓ+ 5
2

((
ℓ+

5

2

)
k

(ℓ+ 5
2
)

)∣∣∣∣2
≥ 120π3k−4

∣∣∣∣∣
(

k

(ℓ+ 5
2
)

)ℓ+ 5
2

Jℓ+ 5
2

(
ℓ+

5

2

)∣∣∣∣∣
2

.

https://dlmf.nist.gov/10.51.E3
https://dlmf.nist.gov/10.7.E3
https://dlmf.nist.gov/10.47.3
https://dlmf.nist.gov/10.22.E27
https://dlmf.nist.gov/10.14.E7
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Here we remind the readers that

(4.12) Jν(ν) > 0 for all ν > 0,

see DLMF:10.14.E2. Now we use DLMF:10.19.E8, DLMF:9.2.E3, and DLMF:9.2.E4, to derive
that

Jν(ν) ∼
21/3

ν1/3
1

32/3Γ(2
3
)

∞∑
i=0

Pi(0)

ν2i/3
− 22/3

ν

1

31/3Γ(1
3
)

∞∑
i=0

Qi(0)

ν2i/3
as ν → ∞,

for some polynomial coefficients Pi and Qi, where ∼ is the Poincaré asymptotic expansion
described in DLMF:2.1.iii. From DLMF:10.19.E10, we see that

P0(0) = 1, P1(0) = P2(0) = 0, P3(0) = − 1

225
, P4(0) = 0,

and from DLMF:10.19.E11 we have

Q0(0) = 0, Q1(0) =
1

70
, Q2(0) = Q3(0) = 0.

Next, DLMF:2.1.E15 implies

lim
ν→∞

ν
1
3Jν(ν) =

21/3

32/3Γ(2
3
)
.

On the other hand, by the monotonicity of ν
1
3Jν(ν), see [Wat95, 8.54], there exists a constant

c > 0, which is independent of ν, such that

(4.13) Jν(ν) ≥ cν−
1
3 for all ν ≥ 1.

Putting together (4.11), (4.12) and (4.13) gives

∥Uk(ϕj)∥2L2(R3) ≥ c2k2ℓ+1

(
ℓ+

5

2

)−(2ℓ+ 17
3
)

≥ c2k2
√
j+1(4ℓ)−8ℓ,

where we used the fact ℓ ≥
√
j − 1 ≥ k − 5/2 ≥ 1. Furthermore, from ℓ ≤

√
j, we see that

there exists a positive constant c > 0, which is independent of both j and k, such that

(4.14)
∥Uk(ϕj)∥2L2(R3) ≥ c2k2

√
j+1(4

√
j)−8

√
j

= c2k2
√
j+1 exp

(
−4j

1
2 log(16j)

) for all j ≥
(
k− 3

2

)2

.

https://dlmf.nist.gov/10.14.E2
https://dlmf.nist.gov/10.19.E8
https://dlmf.nist.gov/9.2.E3
https://dlmf.nist.gov/9.2.E4
https://dlmf.nist.gov/2.1.iii
https://dlmf.nist.gov/10.19.E10
https://dlmf.nist.gov/10.19.E11
https://dlmf.nist.gov/2.1.E15
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We now consider the case where j < (k− 3
2
)2. Since ℓ2 < j, we have ℓ+ 3

2
< k. In view of

(4.10) and DLMF:10.22.E7, we can estimate

(4.15)

∥Uk(ϕj)∥2L2(R3) = 16π2(2ℓ+ 3)

∫ k

0

κ−2|jℓ+1(κ)|2 dκ

= 8π3(2ℓ+ 3)

∫ k

0

κ−3|Jℓ+ 3
2
(κ)|2 dκ

≥ 8π3(2ℓ+ 3)

∫ ℓ+ 3
2

0

κ−(2ℓ+7)κ2ℓ+4|Jℓ+ 3
2
(κ)|2 dκ

≥ 8π3(2ℓ+ 3)

(
ℓ+

3

2

)−(2ℓ+7) (ℓ+ 3
2
)2ℓ+5

2(2ℓ+ 4)

∣∣∣∣Jℓ+ 3
2

(
ℓ+

3

2

)∣∣∣∣2
= 4π32ℓ+ 3

2ℓ+ 4

(
ℓ+

3

2

)−2 ∣∣∣∣Jℓ+ 3
2

(
ℓ+

3

2

)∣∣∣∣2
≥ 3π3

(
ℓ+

3

2

)−2 ∣∣∣∣Jℓ+ 3
2

(
ℓ+

3

2

)∣∣∣∣2 .
From (4.13) and (4.15), it follows that

(4.16) ∥Uk(ϕj)∥2L2(R3) ≥ c2
(
ℓ+

3

2

)− 8
3

≥ c2k− 8
3 for all j <

(
k− 3

2

)2

.

Consequently, gathering (4.14) and (4.16) implies

(4.17) ∥Uk(ϕj)∥L2(R3) ≥


ck− 4

3 for all j <
(
k− 3

2

)2

,

ck− 4
3 exp

(
−3j

1
2 log j

)
for all j ≥

(
k− 3

2

)2

.

Finally, considering Xj = span{ϕ1, · · · , ϕj} in (4.9), (4.17) immediately implies the lower
bounds of (2.12). □

Now we would like to prove Corollary 2.5 by modifying the ideas in [KRS21, Proposi-
tion A.4].

Proof of Corollary 2.5. By (2.9), we can choose a positive constant c0 > 0, which is
independent of j and k, such that

c0σj
(
Uk : L2(B1) → L2(R3)

)2 ≤ 1

e
for all j ∈ N.

Since µ > 1
2
, there exists a constant C ′ = C ′(µ) > 0 such that 3j

1
2 log j ≤ C ′jµ. Given any

s > 0, from the second estimate in (2.12), for each j ≥ (k− 3
2
)2, we have

c0
(
σj
(
Uk : L2(B1) → L2(R3)

)
/js
)2 ≥ c0c

2k− 8
3 j−2s exp (−2C ′jµ) .

https://dlmf.nist.gov/10.22.E7
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We further obtain that∣∣∣log (c0 (σj (Uk : L2(B1) → L2(R3)
)
/js
)2)∣∣∣

= − log
(
c0
(
σj
(
Uk : L2(B1) → L2(R3)

)
/js
)2)

≤ − log
(
c0c

2k− 8
3 j−2s exp (−2C ′jµ)

)
= log

(
c−1
0 c−2k

8
3 j2s exp (2C ′jµ)

)
≤ log

(
c−1
0 c−2

(
j2 +

3

2

) 8
3

j2s exp (2C ′jµ)

)
.

We can choose a positive constant C = C(µ, s) > 0 such that

c−1
0 c−2

(
j2 +

3

2

) 8
3

j2s exp (2C ′jµ) ≤ exp(Cjµ) for all j ∈ N,

and thus ∣∣∣log (c0 (σj (Uk : L2(B1) → L2(R3)
)
/js
)2)∣∣∣−1

≥ C−1j−µ.

Taking s = µ
2

above implies

(4.18) ηlog

((
σj
(
Uk : L2(B1) → L2(R3)

)
/jµ/2

)2) ≥ j−µ for all j ≥
(
k− 3

2

)2

,

where ηlog : R>0 → R>0 is any bijective, concave and strictly increasing function given by

(4.19) ηlog(t) = C|log(c0t)|−1 for all t ∈ (0, (c0e)
−1)

and

(4.20) t ∈ R>0 7→
ηlog(t)

t
is nonincreasing.

Now let
(4.21) f =

∑
j≥(k− 3

2
)2

(f, φj)L2(B1)φj ∈ K(µ),

and define λ := ∥f∥K(µ)(≤ 1) and the normalized function fλ := f/∥f∥K(µ) and its coefficients

aj :=
1

∥f∥K(µ)

(f, φj)L2(B1).

The fact
∑

j≥(k− 3
2
)2 j

µ|aj|2 = ∥f∥−2
K(µ)

∑
j≥(k− 3

2
)2 j

µ|(f, φj)L2(B1)|2 = 1 suggests that we define
cj := jµ|aj|2 and so

∑
j≥(k− 3

2
)2 cj = 1. This enables us to apply Jenson’s inequality to obtain

η−1
log

(
∥fλ∥2L2(B1)

)
= η−1

log

 ∑
j≥(k− 3

2
)2

cjj
−µ

 ≤
∑

j≥(k− 3
2
)2

cjη
−1
log

(
j−µ
)

because η−1
log is convex. Therefore, by (4.18), we have

η−1
log

(
∥fλ∥2L2(B1)

)
≤

∑
j≥(k− 3

2
)2

cj
(
σj
(
Uk : L2(B1) → L2(R3)

)
/jµ/2

)2
=

∑
j≥(k− 3

2
)2

|aj|2σj
(
Uk : L2(B1) → L2(R3)

)2
= ∥Uk(fλ)∥2L2(R3).
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Consequently, we can use (4.20) and the fact λ2 ≤ 1 to derive that

(4.22) ∥f∥2L2(B1)
≤
ηlog(∥Uk(f)∥2L2(R3)/λ

2)

1/λ2
≤ ηlog

(
∥Uk(f)∥2L2(R3)

)
for all f given in (4.21).

Next we consider

(4.23) f =
∑

j<(k− 3
2
)2

(f, φj)L2(B1)φj ∈ K(µ).

From the first estimate in (2.12), it is easy to see that

(4.24)

∥Uk(f)∥2L2(R3) =
∑

j<(k− 3
2
)2

|(f, φj)L2(B1)|2σj
(
Uk : L2(B1) → L2(R3)

)2
≥ c2k− 8

3

∑
j<(k− 3

2
)2

|(f, φj)L2(B1)|2 = c2k− 8
3∥f∥2L2(B1)

for all f given in (4.23). Finally, we conclude the result from (4.22) and (4.24) by noting
∥Uk(f)∥2L2(R3) = ∥u∞k [f ]∥2

L2(S(n−1)
k ,dκdx̂)

. □

5. General quantitative consistency theorem

In order to prove the consistency theorems stated in Section 3, we first establish a general
contraction theorem. Since our aim is to study the dependence on the key parameter k, we
need to refine [Ray13, Theorem 2.1] or [Ray15, Theorem 2.2.1] by tracking the dependence
on k carefully. We first recall some preliminaries as in [Ray13] in the way that fits into our
problem.

Let σj(k) := σj (Gk : L2(B1) → L2(S2
k, dκ dx̂)) for j ∈ N, be the singular values of Gk, with

the singular basis {φj}j∈N, which forms an orthonormal basis of H1 = L2(B1). By letting
ej := σ−1

j Gkφj, from [KRS21, Proposition 2.3] we know that {ej}j∈N forms an orthonormal
basis of H2 and satisfies G∗

κej = σjφj, therefore we also refer {ej}j∈N as the conjugate basis
to {φj}j∈N. We denote φ̃j := σ−1

j ej and see that G∗
kφ̃j = σ−1

j G∗
kej = φj, i.e. for each f ∈ H1

one has
⟨f, φj⟩1 = ⟨Gkf, φ̃j⟩ for all j ∈ N,

which means that we can express the coordinates of f in the {φj} basis in terms of the action
of {φ̃j} on Gkf . This suggests us to define

Ỹj := ⟨f, φj⟩1 +
1√
N
Z̃j,

where Z̃j are mean-zero Gaussian random variables with covariance EZ̃jZ̃j′ = δjj′ . Thus
the sequence {Ỹj} provides an unbiased estimator of the coefficients of the true regression
function f in the singular basis {φj}, and we define a canonical linear estimator of f :

fN =

kN (k)∑
j=1

Ỹjφj,
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where the integer-valued function kN(k) is the resolution level to be specified. Let Pk be
the orthogonal projection operator onto span {φj : 1 ≤ j ≤ k}. Now we can decompose the
estimator fN,k into its bias and variance parts

fN,k = PkN (k)(f) +
1√
N

kN (k)∑
j=1

Z̃jφj.

Now following the lines in the proof of the equation before [Ray13, (4.2))], which involves
a version of Borell’s inequality for the supremum of Gaussian processes in [Ray13, (4.1)] or
[Led01, page 134] (see Borell’s paper [Bor75]), given any function L(k) > 0 and any positive
function {εN(k)}, one can obtain that

P

(
∥fN,k − EfN,k∥1 ≥

1

σkN (k)

(√
2L(k)εN(k) +

√
kN(k)

N

))
≤ e−LNε2N (k).

If there exists a function ℓ1(k) ≥ 0, which is independent of N , such that

(5.1) kN(k) ≤ ℓ21(k)Nε
2
N(k),

then it follows

(5.2) P

(
∥fN,k − EfN,k∥1 ≥

√
2L(k) + ℓ1(k)

σkN (k)(k)
εN(k)

)
≤ e−L(k)Nε2N (k).

Furthermore, suppose that there exists a function ℓ2(k) > 0, which is independent of N , such
that

(5.3)
εN(k)

σkN (k)
≤ ℓ2(k)ξN(k),

where ξN(k) is a positive function, representing the contraction rate, then from (5.2) we
obtain

(5.4) P
(
∥fN,k − EfN,k∥1 ≥ (

√
2L(k) + ℓ1(k))ℓ2(k)ξN(k)

)
≤ e−L(k)Nε2N (k).

We now assume that there exists a function ℓ3(k) ≥ 0, which is independent of N , such
that the bias of f0 satisfies

(5.5) ∥PkN (k)(f0)− f0∥1 ≤ ℓ3(k)ξN(k).

Given any

(5.6) M0(k) > ℓ1(k)ℓ2(k) + ℓ3(k),

we consider the function4

ϕN,k := 1 {∥fN,k − f0∥1 ≥M0(k)ξN(k)} ,
where 1A denotes the characteristic function of the set A. Then, by (5.3) and (5.5), we can
see that the type-I error satisfies

Ef0 ϕN,k = Pf0 (∥fN,k − f0∥1 ≥M0(k)ξN(k))

≤ Pf0 (∥fN,k − Ef0fN,k∥1 ≥M0(k)ξN(k)− ∥Ef0fN,k − f0∥1)
≤ Pf0 (∥fN,k − Ef0fN,k∥1 ≥ (M0(k)− ℓ3(k))ξN(k)) .

4Such ϕN is also called a “test”.
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Choosing

L(k) =
1

2


> 0 since (5.6)︷ ︸︸ ︷

M0(k)− ℓ3(k)

ℓ2(k)
− ℓ1(k)


2

in (5.4) yields

(5.7) Ef0ϕN,k ≤ exp

(
−1

2

(
M0(k)− ℓ3(k)

ℓ2(k)
− ℓ1(k)

)2

Nε2N(k)

)
.

We now let

(5.8) SN be a sequence of subsets of
{
f ∈ H1 : ∥PkN (k)(f)− f∥1 ≤ ℓ4(k)ξN(k)

}
for some function ℓ4(k) ≥ 0.

Example 5.1. The choice SN :=
{
f ∈ H1 : f =

∑kN (k)
j=1 fjφj

}
satisfies (5.8) with ℓ4 ≡ 0 and

is valid for any choice of ξN(k).

We further assume that

(5.9) ℓ1(k) <
M(k)− ℓ4(k)−M0(k)

ℓ2(k)
.

For each f ∈ SN with ∥f − f0∥1 ≥M(k)ξN(k), we see that

Ef (1− ϕN,k) = Pf (∥fN,k − f0∥1 ≤M0(k)ξN(k))

≤ Pf (∥f0 − f∥1 − ∥f − EfN,k∥1 − ∥EfN,k − fN,k∥1 ≤M0(k)ξN(k))

= Pf (∥EfN,k − fN,k∥1 ≥ ∥f0 − f∥1 − ∥f − EfN,k∥1 −M0(k)ξN(k))

≤ Pf (∥EfN,k − fN,k∥1 ≥ (M(k)− ℓ4(k)−M0(k))ξN(k))

It follows by choosing

L(k) =
1

2


> 0 since (5.9)︷ ︸︸ ︷

M(k)− ℓ4(k)−M0(k)

ℓ2(k)
− ℓ1(k)


2

in (5.4) that

(5.10) Ef (1− ϕN,k) ≤ exp

(
−1

2

(
M(k)− ℓ4(k)−M0(k)

ℓ2(k)
− ℓ1(k)

)2

Nε2N(k)

)
Note that (5.6) and (5.9) can be guaranteed by the condition

(5.11) ℓ1(k)ℓ2(k) + ℓ3(k) < M0(k) < M(k)− ℓ4(k)− ℓ1(k)ℓ2(k).

With (5.7) and (5.10) at hand, we are ready to prove the following proposition by modifying
the ideas in [Ray15, Theorem 2.5.3], which is based on [GGvdV00, Theorem 2.1].
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Proposition 5.2. Let the white noise model (1.5) with A = Gk with singular basis {φj}j∈N,
which forms an orthonormal basis of H1 = L2(B1). Assume that {εN(k)}, {ξN(k)} and
{kN(k)} are sequence of positive functions such that

(5.12a) kN(k) ≤ ℓ1(k)
2NεN(k)

2,
εN(k)

σkN (k)
≤ ℓ2(k)ξN(k),

for some ℓ1(k) ≥ 0 and ℓ2(k) > 0. Assume that Y has law Pf0 with the ground truth f0 ∈ H1

such that the bias of f0 satisfies the following condition: there exists a function ℓ3(k) ≥ 0
such that

(5.12b) ∥PkN (k)(f0)− f0∥1 ≤ ℓ3(k)ξN(k) for all N ≥ 1.

Let Pk be the orthogonal projection operator onto span {φj : 1 ≤ j ≤ k}, and let SN be a se-
quence of subsets of

{
f ∈ H1 : ∥PkN (k)(f)− f∥1 ≤ ℓ4(k)ξN(k)

}
for some ℓ4(k) ≥ 0. Suppose

that there exists a constant C > 1, which is independent of k, such that

(5.12c) ΠN(S∁
N) ≤ C exp

(
−1

2

(
M(k)− ℓ4(k)−M0(k)

ℓ2(k)
− ℓ1(k)

)2

NεN(k)
2

)
for all N ≥ 1 and with M0(k) satisfying (5.6), and further there exists a function h(k) > 0
satisfying

(5.12d) ΠN

(
f ∈ H1 : ∥Gkf −Gkf0∥2 ≤

√
2εN(k)

)
≥ C−1e−h(k)NεN (k)2 .

Then for each M(k) > 0 satisfying (5.9), there exists a positive constant C̃, which is inde-
pendent of k and N , such that

Pf0

(
ΠN

(
f ∈ H1 : ∥f − f0∥1 ≥M(k)ξN |Y (N)

)
≥ 2ϑ

)
≤ 1

g(k)2Nε2N(k)
+ ϑ−1C̃ exp

(
−M̃(k)NεN(k)

2
)

+ ϑ−1 exp

(
−1

2

(
M0(k)− ℓ3(k)

ℓ2(k)
− ℓ1(k)

)2

NεN(k)
2

)
for all positive parameter ϑ > 0 and any function5 g(k) > 0, where

(5.13) M̃(k) =
1

2

(
M(k)− ℓ4(k)−M0(k)

ℓ2(k)
− ℓ1(k)

)2

− 1− g(k)− h(k).

Proof. Here we denote by Pv the law of the model (1.5) when the operator A equals the
identity. Let wv = dPv

dP0
be the density of Pv with respect to the law P0 of the pure white noise

process. By the second equation in the proof of [Ray15, Theorem 2.5.3], we have

(5.14)

ΠN (f ∈ H1 : ∥f − f0∥1 ≥M(k)ξN |Y ) (1− ϕN,k)

=

∫
f∈H1:∥f−f0∥1≥M(k)ξN (k)

wGkf

wGkf0
(Y ) dΠN(f)(1− ϕN,k)∫

H1

wGkf

wGkf0
(Y ) dΠN(f)

.

5In [GGvdV00, Ray13, Ray15], they simply choose g(k) = 1.
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Recall from [Ray15, (2.5.12)] that

(5.15) −Ef0 log

(
wGkf

wGkf0

)
=
N

2
∥Gkf −Gkf0∥22.

Denote the event

BN =
{
f ∈ H1 : ∥Gkf −Gkf0∥2 ≤

√
2εN(k)

}
,

and now the small ball condition (5.12d) reads

(5.16) ΠN(BN)) ≥ C−1e−h(k)NεN (k)2 .

It was derived in the proof of [Ray15, Theorem 2.5.3] (which utilized [Ray15, Lemma 2.5.4])
that

Pf0

(∫
BN

wGkf

wGkf0
(Y ) dν(f) ≥ e−(1+g(k))NεN (k)2

)
≥ 1− 2

g2(k)NεN(k)2
,

where ν =
ΠN |BN

ΠN (BN )
, then from the small ball condition (5.16) we have

1− 2

g2(k)NεN(k)2
≤ Pf0

(∫
BN

wGkf

wGkf0
(Y ) dΠN(f) ≥ e−(1+g(k))NεN (k)2ΠN(BN)

)
≤ Pf0

(∫
BN

wGkf

wGkf0
(Y ) dΠN(f) ≥ C−1e−(1+g(k)+h(k))NεN (k)2

)
.

In view of this, we consider the event

AN =

{∫
BN

wGkf

wGkf0
(Y ) dΠN(f) ≥ C−1e−(1+g(k)+h(k))NεN (k)2

}
,

which satisfies

(5.17) Pf0(A∁
N) ≤

1

g(k)2NεN(k)2
.

We now fix any ϑ > 0, and from (5.14), we can see that

(5.18)

Pf0 (ΠN (f ∈ H1 : ∥f − f0∥1 ≥M(k)ξN |Y ) (1− ϕN,k) ≥ ϑ)

≤ Pf0(A∁
N) + Pf0

(1− ϕN,k)

∫
f∈H1:∥f−f0∥1≥M(k)ξN (k)

wGkf

wGkf0
(Y ) dΠN(f)

≥ ϑC−1e−(1+g(k)+h(k))NεN (k)2

 .

Since

Ef0

(
wGkf

wGkf0
(Y )

)
= 1 and Ef0

(
wGkf

wGkf0
(Y )(1− ϕN,k)

)
= Ef (1− ϕN,k),
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from (5.10) and (5.12c), it follows that

Ef0

(
(1− ϕN,k)

∫
f∈H1:∥f−f0∥1≥M(k)ξN (k)

wGkf

wGkf0
(Y ) dΠN(f)

)
≤
∫
S∁
N

Ef0

(
wGkf

wGkf0

)
dΠN(f) + sup

f∈SN :∥f−f0∥1≥M(k)ξN (k)

Ef0

(
(1− ϕN,k)

wGkf

wGkf0
(Y )

)
= ΠN(S∁

N) + sup
f∈SN :∥f−f0∥1≥M(k)ξN (k)

Ef (1− ϕN,k)

≤ (C + 1) exp

(
−1

2

(
M(k)− ℓ4(k)−M0(k)

ℓ2(k)
− ℓ1(k)

)2

NεN(k)
2

)
.

Now using Markov’s inequality yields

Pf0

(1− ϕN,k)

∫
f∈H1:∥f−f0∥1≥M(k)ξN (k)

wGkf

wGkf0
(Y ) dΠN(f)

≥ ϑC−1e−(1+g(k)+h(k))NεN (k)2


≤

Ef0

(
(1− ϕN,k)

∫
f∈H1:∥f−f0∥1≥M(k)ξN (k)

wGkf

wGkf0
(Y ) dΠN(f)

)
ϑC−1e−(1+g(k)+h(k))NεN (k)2

≤ ϑ−1C(C + 1) exp
(
−M̃(k)NεN(k)

2
)

where M̃ is the function defined in (5.13). Combining the above inequality with (5.17) and
(5.18), we have

(5.19)
Pf0 (ΠN (f ∈ H1 : ∥f − f0∥1 ≥M(k)ξN |Y ) (1− ϕN,k) ≥ ϑ)

≤ 1

g(k)2NεN(k)2
+ ϑ−1C(C + 1) exp

(
−M̃(k)NεN(k)

2
)
.

Again, by Markov’s inequality and (5.7), we obtain

(5.20)

Pf0 (ΠN (f ∈ H1 : ∥f − f0∥1 ≥M(k)ξN(k)|Y )ϕN,k ≥ ϑ)

≤ ϑ−1Ef0 (ΠN (f ∈ H1 : ∥f − f0∥1 ≥M(k)ξN(k)|Y )ϕN,k) ≤ Ef0ϕN,k

≤ ϑ−1 exp

(
−1

2

(
M0(k)− ℓ3(k)

ℓ2(k)
− ℓ1(k)

)2

NεN(k)
2

)
.

Finally, putting together (5.19) and (5.20) yields
Pf0 (ΠN (f ∈ H1 : ∥f − f0∥1 ≥M(k)ξN(k)|Y ) ≥ 2ϑ)

≤ Pf0 (ΠN (f ∈ H1 : ∥f − f0∥1 ≥M(k)ξN(k)|Y ) (1− ϕN,k) ≥ ϑ)

+ Pf0 (ΠN (f ∈ H1 : ∥f − f0∥1 ≥M(k)ξN(k)|Y )ϕN,k ≥ ϑ)

≤ 1

g(k)2NεN(k)2
+ ϑ−1C(C + 1) exp

(
−M̃(k)NεN(k)

2
)

+ ϑ−1 exp

(
−1

2

(
M0(k)− ℓ3(k)

ℓ2(k)
− ℓ1(k)

)2

NεN(k)
2

)
,

which concludes the proposition. □
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6. Proofs of theorems in Section 3.1

By imitating some ideas in [Ray13, Proposition 3.1], we prove Theorem 3.1 by verifying
conditions in Proposition 5.2.

Proof of Theorem 3.1. First of all, we consider the choice SN in Example 5.1, which allows
us to choose ℓ4(k) = 0 in Proposition 5.2. We now verify the small ball condition (5.12d).
Let f be distributed according to Π, conditioned on J = j0, and P be the corresponding
probability measure. It is easy to see that

(6.1)

P
(
∥Gkf −Gkf0∥2 ≤

√
2εN(k)

)
= P

(
j0∑
j=1

|fj − f0,j|2σ2
j ≤ 2εN(k)

2

)

≥ P
(
|fj − f0,j|2σ2

j ≤ 2εN(k)
2

j0
, j = 1, · · · , j0

)
=

j0∏
j=1

P (|fj − f0,j| ≤ ηN,j)

by the independence of fj’s, where

ηN,j =

√
2εN√
j0σj

.

If X : C → [0,∞) is a complex-valued random variable with density q satisfying Assump-
tion 1, then we obtain that for all z ∈ C and t > 0

(6.2) P(|X − z| ≤ t) ≥ 2πDte−d(|z|+t)β

from [Ray13, (5.2)]. On the other hand, since j0 < (k− 3
2
)2 ≤ C ′k3, by (2.13) and (2.14) we

can see that

c−1εN ≤ ηN,j ≤ ck
4
3 εN for 1 ≤ j ≤ j0

for some c = c(j0) > 1. Using (6.2)6 and noting that (a+ b)β ≤ 2β−1(aβ + bβ) for all a, b ≥ 0
and β ≥ 1, the right hand side of (6.1) is bounded below by

(6.3)

j0∏
j=1

2πDηN,jτ
−1
j exp(−dτ−β

j 2β−1(|f0,j|β + ηβN,j))

= 2πD exp

(
j0∑
j=1

[
log

(
ηN,j

τj

)
− dτ−β

j 2β−1(|f0,j|β + ηβN,j)

])
≥ 2πD exp

(
j0

(
log εN − C1(1 + k

4β
3 εβN)

))
for some C1 = C1(j0, d, β, f0, τ1, · · · , τj0) > 1. We now choose

εN = εN(k) = k− 4
3

(
log(kN)

N

)1/2

6with choices X = τ−1
j fj (to ensure it has density q), z = τ−1

j f0,j and t = τ−1
j ηN,j .
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and hence k
8
3Nε2N = log(kN) and

εN exp
(
−C1(1 + k

4β
3 εβN)

)
= k− 4

3

(
log(kN)

N

) 1
2

exp

(
−C1

(
1 +

(
log(kN)

N

)β
2

))

≥ C2k
− 4

3

(
log(kN)

N

) 1
2

for all sufficiently large N ≳ log k,

since
log(kN)

N
=

logN

N
+

log k

N
≲ 1, ∀ N ≳ log k.

This implies

log
(
εN exp

(
−C1(1 + k

4β
3 εβN)

))
≥ logC2 −

4

3
log k+

1

2
log logN − 1

2
logN

≳ − log(kN) = −k
8
3Nε2N .

Next, from (6.1) and (6.3), it follows that

P
(
∥Gkf −Gkf0∥2 ≤

√
2εN

)
≥ 2πD exp

(
−C2k

8
3Nε2N

)
for all sufficiently large N ≳ log k. Now since j0 is fixed and m(j0) > 0, we can see that

ΠN (f ∈ H1 : ∥Gkf −Gkf0∥2 ≤ εN)

≥ 2πDm(j0) exp
(
−C2k

8
3Nε2N

)
,

which verifies (5.12d) with h(k) = C2k
8
3 .

In order to fulfill the first condition in (5.12a), let L > 1 be a constant to be determined
later and take ℓ1(k) =

√
2Lk

4
3 and

kN = kN(k) := ⌈Lk
8
3Nε2N⌉ = ⌈L log(kN)⌉ ≤ 2L log(kN) = 2Lk

8
3Nε2N .

Since ∥PkN (f0)− f0∥1 = 0 for all N ≥ exp(j0), it immediately implies (5.12b) with ℓ3(k) = 0
and is valid for arbitrary choices of M(k) and M0(k). In view of the upper bound on m, we
then have

ΠN(S∁
N) ≲ e−bkN ≤ exp

(
−bLk

8
3Nε2N

)
,

which guarantees (5.12c) with M(k) = ℓ2(k)(1+
√
b)
√
2Lk

4
3 +M0(k). Now we simply choose

M0(k) = 2ℓ1(k)ℓ2(k) + ℓ3(k) to verify (5.11). From (5.13), we can choose g(k) = k
8
3 and

L = 1
b
(C2 + 2) + 1

b
to see that

M̃(k) = bLk
8
3 − 1− k

8
3 − C2k

8
3 > k

8
3 .
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In order to fulfill the second condition in (5.12a), one shall choose ℓ2(k) = 1 and set ξ̃N = εN
σkN

.
Finally, (2.14) implies

ξ̃N(k) ≲

(
log(kN)

N

)1/2

·


1 if kN <

(
k− 3

2

)2

,

exp
(
3k

1
2
N log kN

)
if kN ≥

(
k− 3

2

)2

,

=

(
log(kN)

N

)1/2

·



1 if ⌈L log(kN)⌉ <
(
k− 3

2

)2

,

exp
(
3⌈L log(kN)⌉

1
2 log(⌈L log(kN)⌉)

)
if ⌈L log(kN)⌉ ≥

(
k− 3

2

)2

.

We now use Proposition 5.2 to conclude

Pf0

(
ΠN

(
f ∈ H1 : ∥f − f0∥1 ≥M(k)ξ̃N(k)|Y (N)

)
≥ ϑ

)
≲ (log(kN))−1 + exp (− log(kN)) + exp

(
−1

2
bL log(kN)

)
≲ (log(kN))−1.

Note that we can write
M(k)ξ̃N(k) =MξN

for some constant M > 0, which is independent of k, where ξN is given as (3.7). The proof
of Theorem 3.1 is now completed. □

The strategy for proving Theorem 3.2 is essentially same as Theorem 3.1.

Proof of Theorem 3.2. First of all, we will verify the small-ball condition (5.12d). By
the triangle inequality

∥Gkf −Gkf0∥2 ≤ ∥Gkf −Gk(PkN (k)(f0))∥2 + ∥Gk(PkN (k)(f0))−Gkf0∥2,

where kN(k) → ∞ will be specified later. By (2.13), we see that there exists an absolute
constant C∗ > 1, which is independent of k and j, such that σj ≤ C∗ for all j ∈ N. For
f0 ∈ Hs

exp, we can estimate

∥Gk(PkN (k)(f0))−Gkf0∥22

=
∞∑

j=kN (k)+1

σ2
j j

−2s exp
(
−6j

1
2 log j

)
j2s exp

(
6j

1
2 log j

)
|f0,j|2

≤ C2
∗kN(k)

−2s exp
(
−6kN(k)

1
2 log kN(k)

)
∥f0∥2Hs

exp
.

Let kN(k) be an integer larger than e2 and define

(6.4) εN(k) := 2C∗kN(k)
−s exp

(
−3kN(k)

1
2 log kN(k)

)
∥f0∥Hs

exp
.
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Consider f as a finite series of {φj} of degree kN(k), i.e.

f =

kN (k)∑
j=1

fjφj.

Similar to the derivations of (6.1) and (6.3), using (6.2), we obtain

(6.5)

P
(
∥Gkf −Gk(PkN (k)(f0))∥2 ≤

εN(k)

2

)
≥

kN (k)∏
j=1

P

(
|fj − f0,j| ≤

εN(k)

2σj
√
kN(k)

)

≥ 2πD exp

kN (k)∑
j=1

[
log

(
η̃N,j

τj

)
− 2dτ−2

j (|f0,j|2 + η̃2N,j)

] ,

where η̃N,j =
εN (k)

2σj

√
kN (k)

. By (3.8) and (6.4), for each j = 1, · · · , kN(k), we see that

η̃N,j

τj
≥ kN(k)

− 1
2kN(k)

−s exp
(
−3kN(k)

1
2 log kN(k)

)
∥f0∥Hs

exp
τ−1
j

≳ kN(k)
− 1+2s

2 exp
(
−3kN(k)

1
2 log kN(k)

)
,

and hence

(6.6)
kN (k)∑
j=1

log

(
η̃N,j

τj

)
≥ −CkN(k)

3
2 log kN(k) ≥ −C

(
kN(k)

1
2 log kN(k)

)3
for some constant C > 0, which is independent of k.

Next, from (3.8), it is easy to see that

(6.7)
kN (k)∑
j=1

τ−2
j |f0,j|2 ≲

kN (k)∑
j=1

(
j

1
2 log j

)3+δ

|f0,j|2 ≲
∞∑
j=1

(
j

1
2 log j

)3+δ

|f0,j|2 ≲ ∥f0∥2Hs
exp
.

On the other hand, it follows from (2.14) that

η̃2N,j

τ 2j
≲


k

8
3
εN(k)

2

kN(k)

(
j

1
2 log j

)3+δ

for all j <
(
k− 3

2

)2

,

k
8
3
εN(k)

2

kN(k)

(
j

1
2 log j

)3+δ

exp
(
6j

1
2 log j

)
for all j ≥

(
k− 3

2

)2

.
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From above, we then have that

(6.8)

kN (k)∑
j=1

η̃2N,j

τ 2j
≲



kN (k)∑
j=1

k
8
3
εN(k)

2

kN(k)

(
j

1
2 log j

)3+δ

if kN(k) <

(
k− 3

2

)2

,

kN (k)∑
j=1

k
8
3
εN(k)

2

kN(k)

(
j

1
2 log j

)3+δ

exp
(
6j

1
2 log j

)
if kN(k) ≥

(
k− 3

2

)2

,

≲



k
8
3 εN(k)

2
(
kN(k)

1
2 log kN(k)

)3+δ

if kN(k) <

(
k− 3

2

)2

,

k
8
3 εN(k)

2
(
kN(k)

1
2 log kN(k)

)3+δ

exp
(
6kN(k)

1
2 log kN(k)

)
if kN(k) ≥

(
k− 3

2

)2

,

where the implied constant is independent of k, εN(k) and kN(k).
Now substituting (6.6), (6.7) and (6.8) into (6.5) and noting that kN(k) is the smallest

integer satisfying (3.11), we can see that:

Case 1. If kN(k) ≥ (k− 3
2
)2, then

P
(
∥Gkf −Gk(PkN (k)(f0))∥2 ≤

εN(k)

2

)

≥ 2πD exp

− C
(
kN(k)

1
2 log kN(k)

)3
×

×
(
1 + k

8
3

(
kN(k)

1
2 log kN(k)

)δ
εN(k)

2 exp
(
6kN(k)

1
2 log kN(k)

))


≥ 2πD exp

(
−C

(
kN(k)

1
2 log kN(k)

)3 (
1 + k

8
3kN(k)

−2s+ δ
2 (log kN(k))

δ
))

≥ 2πD exp
(
C0 (log εN(k))

3) ,
for some C0 > 1, since k

8
3kN(k)

−2s+ δ
2 (log kN(k))

δ ≤ 1, which is guaranteed by kN(k) ≥(
k− 3

2

)2
> k

16
3(4s−δ−ϵ) for some suitable chosen ϵ > 0 depends on s and δ due to s > 2

3
+ δ

4
.

We now choose εN = εN(k) satisfying

(6.9) εN(k) ≃ k− 4
3

(
(log(kN))3

N

) 1
2

,

i.e.,

k
8
3Nε2N ≃ (log(kN))3.

Thus, we have

(log εN)
3 ≃

(
− log(kN) + log

(
(log(kN))3

))3 ≃ −(log(kN))3 ≃ −k
8
3Nε2N ,
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for all N large. This choice yields

(6.10) (log(kN))3 ≃ k
8
3Nε2N ≃ (− log εN)

3 ≃
(
k

1
2
N log kN

)3
≳ kN ,

which verifies the first condition of (5.12a) with ℓ1(k) = k
4
3 , and

(6.11) P
(
∥Gkf −Gk(PkN (f0))∥2 ≤

εN
2

)
≳ exp

(
−C1k

8
3Nε2N

)
.

Case 2. If kN < (k− 3
2
)2, then we again consider the choice (6.9) and use (6.10) to see that

P
(
∥Gkf −Gk(PkN (k)(f0))∥2 ≤

εN
2

)
≥ 2πD exp

(
−C

((
k

1
2
N log kN

)3(
1 + k

8
3 ε2N

(
k

1
2
N log kN

)δ)))
≥ 2πD exp

(
−C ′

((
k

1
2
N log kN

)3(
1 +

(log(kN))3+δ

N

)))
≥ 2πD exp

(
−2C ′

(
k

1
2
N log kN

)3)
for all sufficiently large N ≳ (log k)3+δ. This again implies (6.11) for all N ≳ (log k)3+δ.

From (6.4), it is readily seen that

∥Gk(PkN (f0))−Gkf0∥2 ≤
1

2
εN ,

and consequently by (6.11), (3.9) and (6.10), we obtain that

ΠN (f ∈ H1 : ∥Gkf −Gkf0∥2 ≤ εN)

≥ ΠN

(
f ∈ H1 : ∥Gk(PkN (f0))−Gkf∥2 ≤

1

2
εN

)
≳ m(kN) exp

(
−C1k

8
3Nε2N

)
≳ exp

(
−b
(
k

1
2
N log kN

)3)
exp

(
−C1k

8
3Nε2N

)
≳ exp(−h∗k

8
3Nε2N)

and thus the small ball condition (5.12d) is satisfied with h(k) = k
8
3h∗ for some positive

constant h∗, which is independent of k.
Noting from (6.4) and (6.10) that

(6.12) log(kN) ≃ − log εN ≃ k
1
2
N log kN for all large N ≳ (log k)3+δ.

In order to fulfill the second condition in (5.12a), we will choose ℓ2(k) = ℓ2 for some k-
independent constant ℓ2 > 0, to be determined later, and in view of (2.14) and (6.9), we can
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see that

1

ℓ2

εN
σkN

≲
1

ℓ2
·


k

4
3 εN if kN <

(
k− 3

2

)2

,

k
4
3 exp

(
3k

1
2
N log kN

)
εN if kN ≥

(
k− 3

2

)2

,

≤ 1

ℓ2
·

k
4
3 εN if k

1
2
N log kN < α log k,

k
4
3 exp

(
3k

1
2
N log kN

)
εN if k

1
2
N log kN ≥ α log k,

≃ 1

ℓ2
·


(
(log(kN))3

N

) 1
2

if k
1
2
N log kN < α log k,

k
4
3k−s

N if k
1
2
N log kN ≥ α log k,

≲ ξN(k) :=
1

ℓ2
·


(
(log(kN))3

N

) 1
2

if k
1
2
N log kN < α log k,

k
4
3k

− δ
4

N if k
1
2
N log kN ≥ α log k,

for any α > 1. Taking ℓ2 = 2
C∗

yields that

∥PkN (f0)− f0∥1 ≤
1

2
εN ≤ C∗

2
ℓ2ξN = ξN ,

which verifies (5.12b) with ℓ3(k) = 1 and we see that

ℓ1(k)ℓ2(k) + ℓ3(k) = k
4
3 ℓ2 + 1.

In this case, we will not consider the choice described in Example 5.1. Argue as in the
proof of [Ray13, Proposition 3.4], for f ∈ supp(Πm) and by the Karhunen-Loéve expansion,
we can express

(6.13) ∥PkN (f)− f∥1 = sup
h∈B0

GN(h),

where B0 is a weak ∗ dense subset of {h ∈ H1 : ∥h∥1 ≤ 1} and GN is the Gaussian process

GN(h) = ⟨h, PkN (f)− f⟩1 =
∞∑

j=kN+1

τjζj⟨h, φj⟩1,

where {ζk} are iid standard normal random variables. Applying Jenson’s inequality to the
bias, using (3.8) and (6.10), as well as the inequality

∑∞
j=kN+1 j

−w ≤ k1−w
N

w−1
for any w > 1, we

obtain the bias estimate

(6.14)

E∥PkN (f)− f∥1 ≤

(
∞∑

j=kN+1

τ 2j

) 1
2

≃

(
∞∑

j=kN+1

(
j

1
2 log j

)−(3+δ)
) 1

2

≲

(
∞∑

j=kN+1

j−
3+δ
2

) 1
2

(log kN)
− 3+δ

2 ≲
(
k

1
2
N log kN

)− 1+δ
2 ≃ (log(kN))−

1+δ
2 .
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For the variance, note that for any h ∈ B0,

(6.15)
EGN(h)

2 =
∞∑

j=kN+1

τ 2j |⟨h, φj⟩1|2 ≤ τ 2kN+1∥h∥21 ≤ τ 2kN

≲
(
k

1
2
N log kN

)−(3+δ)

≃ k− 8
3

(
Nε2N

)−1
(log(kN))−δ.

In view of (6.13), (6.14) and (6.15), applying the version of Borell’s inequality for the
supremum of Gaussian process in [Led01, page 134] (similar to [Ray13, (4.1)]) gives

P
(
∥PkN (f)− f∥1 ≥ x+ C1(log(kN))−

1+δ
2

)
≤ P (∥PkN (f)− f∥1 − E∥PkN (f)− f∥1 ≥ x)

= P
(
sup
h∈B0

GN(h)− E sup
h∈B0

GN(h) ≥ x

)
≤ exp

(
− x2

2 suph∈B0
EGN(h)2

)
≤ exp

(
−k

8
3Nε2N

(log(kN))δ

2C2

x2
)

for all x > 0.

For any L > 1, we choose x =
√

2C2L(log(kN))−δ in the inequality above to see that

(6.16) P
(
∥PkN (f)− f∥1 ≥

√
2C2L(log(kN))−

δ
2 + C1(log(kN))−

1+δ
2

)
≤ exp

(
−k

8
3LNε2N

)
.

We now discuss the following two cases.

Case 1. If k
1
2
N log kN ≥ α log k, then by (6.12) we have

ξN ≳ k
− δ

4
N =

(
k

1
2
N log kN

)− δ
2

(log kN)
δ
2 ≃ (log(kN))−

δ
2 (log kN)

δ
2 .

For each sufficiently large N ≳ (log k)3+δ satisfying (log kN)
δ
2 ≳

√
L, we obtain from (6.16)

that
P (∥PkN (f)− f∥1 ≥ ξN) ≤ exp

(
−k

8
3LNε2N

)
.

By considering ℓ4(k) = 1 and

SN := {f ∈ H1 : ∥PkN (f)− f∥1 ≤ ξN} ,

we see that

ΠN(S∁
N) ≤ P (∥PkN (f)− f∥1 ≥ ξN) ·

∞∑
ℓ=kN+1

m(ℓ) ≲ exp
(
−(b′ + L)k

8
3Nε2N

)
,

which verifies (5.12c) with M(k) = (
√

2(b′ + L) + 1)ℓ2k
4
3 + 1 +M0(k) > 0. We now take

M0(k) = k
4
3 ℓ2 + 2 and choose a sufficiently large L, if necessary, to see that

M(k)− ℓ4(k)− ℓ1(k)ℓ2(k) = ℓ2k
4
3

√
2(b′ + L) +M0(k) > M0(k) = 2 + k

4
3 ℓ2

> 1 + k
4
3 ℓ2 = ℓ1(k)ℓ2(k) + ℓ3(k),

which implies (5.11). Next, setting g(k) = k
8
3 , it follows from (5.13) that

M̃(k) = (b′ + L)k
8
3 − 1− k

8
3 − h∗k

8
3 ≥ k

8
3 ,
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which holds true by (possibly) replacing L with the larger one. Note that the choice of L is
independent of k. For each positive parameter ϑ > 0, we can use Proposition 5.2 to conclude
that

(6.17) Pf0

(
ΠN(f ∈ H1 : ∥f − f0∥1 ≥MξN(k)|Y (N)) ≥ ϑ

)
≲

1

(log(kN))3
.

Case 2. If k
1
2
N log kN < α log k, then (3.11) implies

ξN =
C∗

2

(
(logN)3

N

) 1
2

≃ k
4
3 εN ≃ k

4
3k−s

N exp
(
−3k

1
2
N log kN

)
≥ k exp (−3α log k) > k−3α exp

(
1

α
k

1
2
N log kN

)
.

From (6.16) we also have

P
(
∥PkN (f)− f∥1 ≥

√
2C2L+ C1

)
≤ exp

(
−k

8
3LNε2N

)
.

In view of (6.12), for any sufficiently large N , one has exp
(

1
α
k

1
2
N log kN

)
≥

√
2C2L+C1, and

so
P
(
∥PkN (f)− f∥1 ≥ k3αξN

)
≤ exp

(
−k

8
3LNε2N

)
.

By considering ℓ4(k) = k3α and setting

SN :=
{
f ∈ H1 : ∥PkN (f)− f∥1 ≤ k3αξN

}
,

it yields that

ΠN(S∁
N) ≤ P

(
∥PkN (f)− f∥1 ≥ k3αξN

)
·

∞∑
ℓ=kN+1

m(ℓ)

≲ exp
(
−(b′ + L)k

8
3Nε2N

)
,

which verifies (5.12c) with M(k) = (
√

2(b′ + L) + 1)ℓ2k
4
3 + k3α +M0(k) > 0. As above, we

set M0(k) = 2 + k
4
3 ℓ2 and, if necessary, choose a sufficiently large L (which is independent

of k) to see that

M(k)− ℓ4(k)− ℓ1(k)ℓ2(k) = ℓ2
√

2(b′ + L) +M0 > M0 = 2 + k
4
3 ℓ2

> 1 + k
4
3 ℓ2 = ℓ1(k)ℓ2(k) + ℓ3(k),

which verifies (5.11). Choosing g(k) = k
8
3 and from (5.13) we can check that

M̃(k) = (b′ + L)k
8
3 − 1− k

8
3 − h∗k

8
3 ≥ k

8
3 ,

which holds by (possibly) replacing L with the larger one, which is still independent of k.
Now for each positive parameter ϑ > 0, we can use Proposition 5.2 to conclude that

(6.18) Pf0

(
ΠN(f ∈ H1 : ∥f − f0∥1 ≥MξN(k)|Y (N)) ≥ ϑ

)
≲

1

(log(kN))3
.

Conclusion. Finally, combining (6.17) and (6.18) ends the proof of Theorem 3.2. □
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7. Proofs of theorems in Section 3.2

The central idea of the proof is to the small-ball asymptotics of a Gaussian measure in
a separable Hilbert space. Some suitable lower bounds are obtained in [Ray13], which can
be proved using either direct methods [HJSD79] or via the metric entropy of the unit ball
of the RKHS [KL93] (both of which yield the same result). We also remark that small-ball
asymptotics of a Gaussian measure in a Hilbert space also have been exactly characterized by
Sytava in [Syt74], and Sytava’s result was rediscovered in [Ibr82, Zol86], see also [DMWZ95,
Lif97, MWZ93].

As mentioned in Section 3.2, a Gaussian distribution has support equal to the closure of its
RKHS H and so posterior consistency is achievable only when Gkf0 is contained in this set.
For f ∼ N (0,Λ), by the Karhunen-Loève expansion, we can write f d

=
∑

j∈N τjζjφj, where
{φj}j∈N is an orthonormal basis of H1 and {ζj}j∈N are iid standard normal random variables.
Recall that {φj}j∈N is identical to the singular basis of Gk as described in Assumption 2. We
can easily characterize its RKHS Hf in terms of ellipsoids (see [vdVvZ08b] for more details):

(7.1) a =
∑
j∈N

ajφj ∈ Hf if and only if ∥a∥2Hf
:=
∑
j∈N

a2j
τ 2j

< +∞.

Recall that the concentration function of a zero-mean Gaussian distribution W in H2 with
RKHS HW is defined by

(7.2) ϕw0(ε) := inf
h∈HW :∥h−w0∥2<ε

(
∥h∥2HW

− logP(∥W∥2 < ε)
)
.

Note that the second term in (7.2) is exactly the small deviation function defined in [Lif12,
Section 11.4].

From [vdVvZ08a, Theorem 2.1], the following statement holds: for w0 contained in the
closure of HW

(7.3) if ϕw0

(
1√
2
εN(k)

)
≤ 1

2
NεN(k)

2, then P
(
∥W − w0∥ ≤

√
2εN(k)

)
≥ e−

1
2
NεN (k)2 .

This property is helpful to verify the small ball condition (5.12d). First of all, we refine
[Ray13, Lemma 5.1] in the following lemma in which the dependence on k is examined
carefully.

Lemma 7.1. Let f ∈ N (0,Λ) with Λ satisfying Assumption 2 and let f0 ∈ Hγ
exp with γ ≥ ρ

Then Gkf has RKHS equal to

(7.4) HGkf =

{
b =

∞∑
j=1

bjej ∈ H2 : ∥b∥2HGkf
=

∞∑
j=1

|bj|2

τ 2j σ
2
j

< +∞

}
and the concentration function of Gkf satisfies

(7.5) ϕGkf0(ε) ≲
(
log
(
ε−1
))3 for all 0 < ε ≲ 1.

Here all the implied constants are independent of k.

Proof. First of all, we see that Gkf is a Gaussian random variable in H2 with Gkf ∼
N (0, GkΛG

∗
k). By Assumption 2, GkΛG

∗
k has eigenvectors {ej}j∈N, where {ej}j∈N is an
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orthonormal basis of H2 consisting of conjugate basis of Gk with corresponding eigenvalues
{τ 2j σ2

j}j∈N, then (7.4) follows directly. The expansion Gkf0 =
∑∞

j=1 σjf0,jej gives

(7.6) ∥Gkf0∥2HGkf
=

∞∑
j=1

τ−2
j |f0,j|2 ≲

∞∑
j=1

j2ρ exp
(
6j

1
2 log j

)
|f0,j|2 ≤ ∥f0∥2Hγ

exp
,

which implies that Gkf0 is contained in RKHS HGkf0 . Consequently, (7.6) gives a bound on
the first term of ϕGkf0(ε).

Next, to give a bound for the second term of ϕGkf0(ε), we will follow the lines used in
[Ray13, Lemma 5.2]. Denote KGkf be the unit ball in HGkf and let N(KGkf , ∥·∥2, ϑ) be the
covering number of KGkf with respect to the norm ∥·∥2, i.e. the minimal number of sets in a
covering of KGkf by subsets of ∥·∥2-diameter not exceeding ε [Lif12, Section 10.1]. In view of
(2.13), we see that there exists an absolute constant C∗ > 1, which is independent of k and
j, such that σj ≤ C∗ for all j ∈ N. For any b =

∑∞
j=1 bjej ∈ KGkf , using the characterization

of HGkf , we have that |bj| ≤ τjσj ≲ exp
(
−3j

1
2 log j

)
, in other words, KGkf is contained in

the infinite rectangle
∞∏
j=1

[
−C exp

(
−3j

1
2 log j

)
, C exp

(
−3j

1
2 log j

)]
for some constant C > 0 which is independent of k. Given any 0 < ε ≤ 1/e, we see that

C exp
(
−3j

1
2 log j

)
<

1

2
ε for all j > J(ε),

where J(ε) is the smallest integer satisfying

C exp
(
−3J

1
2 log J

)
<

1

2
ε.

Therefore, it suffices to construct an ε/2 cover for the following J(ε)-dimensional cube

X =

J(ε)∏
j=1

[
−C exp

(
−3j

1
2 log j

)
, C exp

(
−3j

1
2 log j

)]
.

On the other hand, it is enough to cover this set by considering a regular lattice with distance
ε/(2

√
J(ε)) between adjacent vertices. Consequently, we obtain that

N
(
X, ∥·∥eucl,

ε

2

)
≤

J(ε)∏
j=1

2C exp
(
−3j

1
2 log j

)
ε/(2

√
J)

=

(
C ′
√
J(ε)

ε

)J(ε)

exp

(
−

J∑
j=1

j
1
2 log j

)

≤

(
C ′
√
J(ε)

ε

)J(ε)

and thus the metric entropy [Lif12, Section 10.1] of (X, ∥·∥eucl) is given by

logN
(
X, ∥·∥eucl,

ε

2

)
≲ J

(
log J + log

(
ε−1
))

≲ (J
1
2 log J)2 + J log(ε−1) ≲

(
log
(
ε−1
))3

since
log
(
ε−1
)
≃ J

1
2 log J ≳ 1.
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Finally, we can use [KL93, Theorem 2] (see also [Lif12, Section 11.7] for similar results) and
the bound for the first term in ϕGkf0(ε) obtained above to derive (7.5). □

We now ready to prove Theorem 3.3 by modifying the ideas in [Ray13, Proposition 3.5].

Proof of Theorem 3.3. For ρ > 3
2
, we write ρ = s + t + u for some s > 0, t > 1, and

u > 1
2
. We take

(7.7) εN = εN(k) :=

(
(logN)3

N

) 1
2

and choose kN = kN(k) be the smallest integer satisfying

(7.8) k−s
N exp

(
−3k

1
2
N log kN

)
≃ εN =

(
(logN)3

N

) 1
2

.

Then we can see that Nε2N = (logN)3 and

(7.9) (logN)3 ≃ Nε2N ≃ (− log εN)
3 ≃

(
k

1
2
N log kN

)3
≳ kN ,

which verifies the first condition of (5.12a) with ℓ1(k) = ℓ1, where ℓ1 is some general constant,
independent of k.

In order to fulfill the second condition of (5.12a), choosing ℓ2(k) = 1 and in view of (2.14)
and (7.7), we have

ξN(k) :=
εN
σkN

≲


k

4
3 εN if kN <

(
k− 3

2

)2

,

k
4
3 exp

(
3k

1
2
N log kN

)
εN if kN ≥

(
k− 3

2

)2

,

≃


k

4
3

(
(logN)3

N

) 1
2

if kN <

(
k− 3

2

)2

,

k
4
3k−s

N if kN ≥
(
k− 3

2

)2

.

It is readily seen that

exp
(
−k

11
20
N

)
≲ k−s

N exp
(
−3k

1
2
N log kN

)
≃
(
(logN)3

N

) 1
2

≲ N− 1
4 ,

which gives

(7.10) kN ≳ (logN)
20
11 .

Applying Lemma 7.1 with ε = 1√
2
εN and by (7.9), we obtain that ϕGkf0(εN) ≤ Nε2N provided

0 < εN ≲ 1. Now we use (7.3) to see that

ΠN

(
f ∈ H1 : ∥Gkf −Gkf0∥ ≤

√
2εN

)
≥ e−

1
2
Nε2N ,

which verifies the small-ball condition (5.12d) with h(k) = 1
2
.

As in the proof of Theorem 3.2, for f ∼ N (0,Λ), we write

(7.11) ∥PkN (f)− f∥1 = sup
h∈B0

GN(h),
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where B0 is a weak ∗ dense subset of {h ∈ H1 : ∥h∥1 ≤ 1} and GN is the Gaussian process

GN(h) = ⟨h, PkN (f)− f⟩1 =
∞∑

j=kN+1

τjζj⟨h, φj⟩1,

where {ζk} are iid standard normal random variables. Applying Jenson’s inequality to the
bias gives

(7.12)

E∥PkN (f)− f∥1 ≤

(
∞∑

j=kN+1

τ 2j

) 1
2

≃

(
∞∑

j=kN+1

j−2s−2t−2u exp
(
−6j

1
2 log j

)) 1
2

≲ k−s−t
N exp

(
−3k

1
2
N log kN

)( ∞∑
j=1

j−2u

)1/2

≲ k−s−t
N exp

(
−3k

1
2
N log kN

)
,

where we used the fact 2u > 1. For the variance estimate, observe that for any h ∈ B0,

(7.13)
EGN(h)

2 =
∞∑

j=kN (k)+1

τ 2j |⟨h, φj⟩1|2 ≤ τ 2kN (k)+1∥h∥21 ≤ τ 2kN (k)

≲ k−2s−2t
N exp

(
−6k

1
2
N log kN

)
.

In view of (7.11), (7.12) and (7.13), applying the version of Borell’s inequality for the supre-
mum of Gaussian process shown in [Led01, page 134] (also see [Ray13, (4.1)]) yields

P
(
∥PkN (f)− f∥1 ≥ x+ C1k

−s−t
N exp

(
−3k

1
2
N log kN

))
≤ P

(
∥PkN (k)(f)− f∥1 − E∥PkN (k)(f)− f∥1 ≥ x

)
= P

(
sup
h∈B0

GN(h)− E sup
h∈B0

GN(h) ≥ x

)

≤ exp

(
− x2

2 suph∈B0
EGN(h)2

)
≤ exp

−
k2s+2t
N exp

(
6k

1
2
N log kN

)
2C2

x2

 for all x > 0.

We now substitute x = k−s−t
N exp

(
−3k

1
2
N log kN

)√
2C2L

√
Nε2N into the inequality above

and using (7.10) to derive that

(7.14)

P

∥PkN (f)− f∥1 ≥ C3

(√
2C2L+ C1

)((logN)6−
40
11

t

N

) 1
2


≤ P

(
∥PkN (f)− f∥1 ≥ C3

(√
2C2L+ C1

)
k−t
N

√
Nε2N

)
≤ P

(
∥PkN (f)− f∥1 ≥ C3

(√
2C2L

√
Nε2N + C1

)
k−t
N εN

)

≤ P

∥PkN (f)− f∥1 ≥
(√

2C2L
√
Nε2N + C1

)
k−t
N

≃εN︷ ︸︸ ︷
k−s
N exp

(
−3k

1
2
N log kN

)
≤ exp

(
−LNε2N

)
.
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Recall from above, (2.13) implies that there exists an absolute constant C∗ > 1, which is
independent of k and j, such that σj ≤ C∗ for all j ∈ N. We then see that for t > 1

ξN(k) ≥ C−1
∗

(
(logN)3

N

) 1
2

≥ C3

(√
2C2L+ C1

)((logN)6−
40
11

t

N

) 1
2

and thus

(7.15) P (∥PkN (f)− f∥1 ≥ ξN(k)) ≤ e−LNεN (k)2 .

Choosing ℓ4(k) = 1 and considering

SN :=
{
f ∈ H1 : ∥PkN (k)(f)− f∥1 ≤ ξN(k)

}
,

then, from (7.15), (5.12c) is satisfied with

M(k) =
√
2L+ 1 + ℓ1 +M0(k).

On the other hand, note that

(7.16)
∥PkN (f0)− f0∥21 =

∞∑
j=kN+1

j−2s exp
(
−6j

1
2 log j

)
j2s exp

(
6j

1
2 log j

)
|f0,j|2

≤ k−2s
N exp

(
−6k

1
2
N log kN

)
∥f0∥2Hs

exp
≲ ε2N = σ2

kN (k)ξN(k)
2 ≤ C2

∗ξN(k)
2,

which gives (5.12b) with some ℓ3(k) = ℓ3 = C∗. We now take M0 = ℓ1 + ℓ3 + 1 and compute

M0 = ℓ1 + ℓ3 + 1 > ℓ1 + ℓ3 = ℓ1(k)ℓ2(k) + ℓ3(k),

which satisfies (5.11).
Choosing g(k) = 1 and picking a large number L (L > 5

2
is sufficient), which is independent

of k, Proposition 5.2 implies that

Pf0

(
ΠN

(
f ∈ H1 : ∥f − f0∥1 ≥MξN(k)|Y (N)

)
≥ ϑ

)
≲

1

Nε2N

for all large N and for any positive parameter ϑ > 0. The proof of Theorem 3.3 is now
completed. □
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