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Abstract

In this paper, we derive a local Carleman estimate for the complex second
order elliptic operator with Lipschitz coefficients having jump discontinuities.
Combing the result in [B1.] and the arguments in [ ], we present an ele-
mentary method to derive the Carleman estimate under the optimal regularity
assumption on the coefficients.

1 Introduction

Carleman estimates are important tools for proving the unique continuation property
for partial differential equations. Additionally, Carleman estimates have been suc-
cessfully applied to study inverse problems and controllability of partial differential
equations. Most of Carleman estimates are proved under the assumption that the
leading coefficients possess certain regularity. For example, for general second or-
der elliptic operators, Carleman estimates were proved when the leading coefficients
are at least Lipschitz [Ho3]. In general, the Lipschitz regularity assumption is the
optimal condition for the unique continuation property to hold in R™ with n > 3
(see counterexamples constructed by Plis [’] and Miller [M]). Therefore, Carleman
estimates for second order elliptic operators with general discontinuous coefficients
are most likely not valid. Nonetheless, recently, in the case of coefficients having
jump discontinuities at an interface with homogeneous or non-homogeneous trans-
mission conditions, one can still prove useful Carleman estimates, see, for example,
Le Rousseau-Robbiano [LR 1], [LR2], Le Rousseau-Lerner [l.1], and [ ].
Above mentioned results are proved for real coefficients. In many real world
problems, the case of complex-valued coefficients arises naturally. The modeling
of the current flows in biological tissues or the propagation of the electromagnetic
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waves in conductive media are typical examples. In these cases, the conductivities are
complex-valued functions. On the other hand, in some situations, the conductivities
are not continuous functions. For instance, in the human body, different organs have
different conductivities. Therefore, to model the current flow in the human body,
it is more reasonable to consider an anisotrotopic complex-valued conductivity with
jump-type discontinuities | ].

With potential applications in mind, our goal in this paper is to derive a Car-
leman estimate for the second order elliptic equations with complex-valued leading
coefficients having jump-type discontinuities. Although such a Carleman estimate
has been derived in [Bl], we want to remark that the method used in [B1], also
in [LR1], [LR2], and [LL], are based on the technique of pseudodifferential operators
and hence requires C'*° coefficients and interface; while the method in | ]
(and its parabolic counterpart, [['V]) relies on the Fourier transform and a version of
partition of unity which requires only Lipschitz coefficients and O interface. Hence,
the main purpose of the paper is to extend the method in [ |, [F'V] to second
order elliptic operators with complex-valued coefficients. It is important to point out
that even though second order elliptic operators with complex-valued coefficients can
be written as a coupled second order elliptic system with real coefficients, neither the

method in [LR 1], [LR2], [LL] nor that in | ] can be applied to coupled elliptic
systems. Therefore, we need to work on operators with complex-valued coefficients
directly.

Our strategy to derive the Carleman estimate consists of two major steps. In
the first step, we treat second order elliptic operators with constant complex coeffi-
cients. Based on [B1], by checking the strong pseudoconvexity and the transmission
conditions in a neighborhood of a fixed point at the interface, we can derive a Car-
leman estimate for second order elliptic operators with constant complex coefficients
from [BL, Theorem 1.6]. We would like to mention that the result in [B1] is stated
for quite general complex coefficients, but here we can only verify the transmission
condition with our choice of weight functions for complex coefficients having small
imaginary parts. So in this paper we will consider this case. In the second step, we
extend the Carleman estimate to the operator with non-constant complex coefficients
with small imaginary parts. This method in this step is taken from the argument
in | , Section 4]. The key tool is a version of partition of unity.

Furthermore, in the second step, we need an interior Carleman estimate for sec-
ond order elliptic operators having Lipschitz leading coefficients and with the weight
function .. An interior Carleman estimate was proved in | , Theorem 8.3.1], but
for operators with C! leading coefficients. Another interior estimate was established
in [ , Proposition 17.2.3] for operators with Lipschitz leading coefficients, but with
a different weight function. Hérmander remarked in [Hol] (page 703, line 7-8) that
”Inspection of proof of Theorem 8.3.1 in [[Hol] shows that only Lipschitz continu-
ity was actually used in the proof.” But, as far as we can check, there is no formal
proof of this statement in literature. To make the paper self contained, we would like
give a detailed proof of interior Carleman estimate for second order elliptic opera-



tor with Lipschitz leading coefficients and with a rather general weight function, see
Proposition 4.1. This interior Carleman estimate may be useful on other occasions.

In this paper, we present a detailed and elementary derivation of the Carleman es-
timate for the second order elliptic equations with complex-valued coefficients having
jump-type discontinuities following our method in | |. Having established the
Carleman estimate, we then can apply the ideas in | | to prove a three-region
inequality and those in [("\W] to prove a three-ball inequality across the interface.
With the help of the three-ball inequality, we can study the size estimate problem
for the complex conductivity equation following the ideas in | ]. We will present
these quantitative uniqueness results and the application to the size estimate in the
forthcoming paper.

The paper is organized as follows. In Section 2, we introduce notations that will
be used in the paper and the statement of the theorem. In Section 3, we derive a
Carleman estimate for the operator having discontinuous piecewise constant coeffi-
cients. This Carleman estimate is a special case of [B1., Theorem 1.6]. Therefore, the
main task of Section 3 is to check the transmission condition and the strong pseu-
doconvexity condition. Finally, the main Carleman estimate is proved in Section 4.
The key ingredient is a partition of unity introduced in | ).

2 Notations and statement of the main theorem

We will state and prove the Carleman estimate for the case where the interface is
flat. Since our Carleman estimate is local near any point at the interface, for general
CY! interface, it can be flatten by a suitable change of coordinates. Moreover, the
transformed coefficients away from the interface remain Lipschitz. Define Hy = xgn
where R} = {(2/,2,,) € R"" X Rz, Z 0} and xgr is the characteristic function of
R?. In places we will use equivalently the symbols 0, V and D = —iV to denote the
gradient of a function and we will add the index 2’ or z,, to denote gradient in R™"!
and the derivative with respect to z, respectively. We further denote 0, = 0/0xy,
Dg = —iag, and 8@ = 8/8&
Let uy € C*°(R™). We define

u=Hyu, + H u_ = ZHiui,
+

hereafter, we denote ), ay = a; +a_, and

L(z,Dyu =Y Hydiv(Ay(2)Vuy), (2.1)
+
where
Ai(z) = {a}tj(x)}zjzl = {a?j(x’,xn)}zjzl, reR" Yz, eR (2.2)
is a Lipschitz symmetric matrix-valued function. Assume that
azfj(m) = a;f}(:v), VUj=1,--+n, (2.3)
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and furthermore
a;tj(x) = Mg(:v) - iij]E.(x), (2.4)

where (MZ) and (NZ) are real-valued matrices and v > 0. We further assume that
there exist A\g, Ag > 0 such that for all £ € R” and = € R™ we have

Xolé? < MF(2)€ - € < Agl¢]? (2.5)

and

Xolél? < N*(z)€ - € < Aol (2.6)

In the paper, we consider Lipschitz coefficients A, i.e., there exists a constant My > 0
such that
|As(z) — AL(y)| < Molz — yl. (2.7)

To treat the transmission conditions, we write
ho(2') := uy(2',0) —u_(2',0), V 2’ € R"} (2.8)

hi(2") == Ay (2',0)Vuy (z/,0) - v — A_(2/,0)Vu_(2',0) - v, ¥V 2/ € R*  (2.9)
where v = e,,.

Let us now introduce the weight function. Let ¢ be

n) ‘= n 2 27 n 2 07
o) = { PHEn) = aein m;/ = (2.10)
o_(x,) = a_x, + Bz /2, x, <0,

where ay, a_ and [ are positive numbers which will be determined later. In what
follows we denote by ¢, and ¢_ the restriction of the weight function ¢ to [0, +00)
and to (—oo,0) respectively. We use similar notation for any other weight functions.
For any € > 0 let

bola) = plen) = S’ (2.11)

and let
ps(x) == s(61x), & >0. (2.12)
For a function h € L*(R"), we define

iL(fl,l’n) — / h(l’/,xn)eimlf dl’/, 5/ e R 1
Rn—1
As usual we denote by H'/2(R"~!) the space of the functions f € L*(R""!) satisfying

| Jelfepie <o

with the norm

umhww=/ (1+ €)1 ()P (2.13)
Rn—1
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Moreover we define

Fly)P2 1/2
1/2 Rn-1 = [/ / " dydx] )
Rn—1 JRn—1 ?J|

and recall that there is a positive constant C, dependmg only on n, such that

[ UFERAE < (1R <€ [ IO,
so that the norm (2.13) is equivalent to the norm || f| 2@mn-1) + [f]1/2,rn-1. We use
the letters C, Cy, C1, - - - to denote constants. The value of the constants may change
from line to line, but it is always greater than 1.
We will denote by B..(z') the (n —1)-ball centered at 2/ € R"~! with radius r > 0.
Whenever ' = 0 we denote B = B.(0). Likewise, we denote B,.(x) be the n-ball
centered at € R" with radius r > 0 and B, = B,(0).

Theorem 2.1 Let u and Ay(zx) satisfy (2.1)-(2.9). There exist oy, _, 3,00, 70, Yo
and C depending on Ao, Ao, My such that if v < vy, § < 0y and T > C, then

ZZTS Qk/ iy P20 e dx’danrZZTS Qk/ Db (2!, 0)[22450) g

+ k=0 + k=0 Rr =t
+ ZT T¢)5 1/2 Rn—1 + Z Td)éiu:t O)]%/Q,R”71

= (Z / (£, D) ()P 05+ da dy + [ COmJR s
R%

D ) (- O) s + 7 /

Rn—1

|h0 |262T¢5 (I/,O)dx/ 4T / ‘hl |262T¢6(x/’0)dx/

Rn—l
(2.14)
where u = Hyuy + H u_, ux € C*(R") and suppu C By, X [=07rq, 610], and ¢5 is
given by (2.12).

Remark 2.2 Estimate (2.14) is a local Carleman estimate near x, = 0. As men-
tioned above, by flattening the interface, we can derive a local Carleman estimate
near a CY interface from (2.14). Nonetheless, an estimate like (2.14) is sufficient
for some applications such as the inverse problem of estimating the size of an inclu-
sion by one pair of boundary measurement (see, for example, | D).

3 Carleman estimate for operators with constant
coefficients

The purpose of this section is to derive (2.14) for L(z, D) with discontinuous piecewise
constant coefficients. More precisely, we derive (2.14) for Ly(D), where Ly(D) is
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obtained from L(z, D) by freezing the variable x at (z(,0). Without loss of generality,
we take (z(,0) = (0,0) = 0 and thus

Lo(D)u = L(0,D)u = Hypdiv(As(0)Vus).
+

Since Ly has piecewise constant coefficients, to prove (2.14), we will apply [31., The-
orem 1.6]. So the task here is to verify the strong pseudoconvexity and transmission
conditions for operator £y with the weight function given in (2.11).

To streamline the presentation, we define €y := {z,, < 0},Qy := {z,, > 0}. On
each side of the interface, we have complex second order elliptic operators. We denote

Po= > al)DD;, k=12,

1<j,6<n

where ag) = a,; and af) = azj. Here we denote ag;) = ag;) (0). Corresponding to

(2.3)-(2.6), we have ’

k k
ay) = aly, (3.1)
k k . k
agj) = Me(j) + WNé(j)a (3.2)
Mol€]? < MWE - ¢ < Agl¢P?, (3.3)
Xolé]> < NWeg . ¢ < Agl¢)2. (3.4)

Since some computations in the verification of the transmission conditions are useful
in proving the strong pseudoconvexity condition, we will begin with the discussion
of the transmission conditions at the interface {z,, = 0}.

3.1 Transmission conditions
We consider the natural transmission conditions that use the interface operators
L= (-1 = (D" Y al)D,
1<j<n

that correspond to the continuity of the solution and of the normal flux, respectively.
We now write the weight function

€

Yele) = pla) - Sl (35
where

(2,) o1(zn), x, <0

Ty) =

4 902(‘1‘71)7 L, Z 07

and )

or(xy) = agr, + §B$i



with ag, a9 > 0 (corresponding to a_ and «y in (2.10), respectively) and g > 0.
Notice that ¢ is smooth in €2y, {25 and is continuous across the interface. Then we
have

0,---,0,01), x,<0

Ve (0) = { (0. .0.09), z,>0.

Following the notations and the calculations in [BL, Section 1.7.1], we have for

W= (075”1/77—) with 6/: (617"' 7571—1) %O,y:en and )\EC,

by, (w0, A) = (1)

and
25w, A) = (DR a® (1A +i70,,1:(0)) + (=1)F Y al) (& +i10,,1.(0))
1<j<n~1
= (-DFaB (1N +ira) + (-DF DY alle.
1<j<n—-1

The principal symbols of Py, k = 1,2, can be written as
(k)

pe(€) = a®((E+ Y "ﬂ —LE) + bi(€)), (3.6)
1<j<n—1 nn
where
be(€) = (@¥)2 N (o al) —all)al?)e;. (3.7)
1<,j<n—1

We also need to introduce the principal symbol of the conjugate operators

2® ,
P (@, 2) = al) | (1A + 70, 6-(0) + Z ~ig (& 1 i70:,0:(0)))
€+ im00.(0)] (3.8)
(k)
—a® (DA it + S SEe) + ().

1<j<n—1 aTm

Let us introduce A® B®*) ¢ R for k = 1,2 such that
b(€) = (@) Y (agalf) — ay)a)ee
1<t,j<n—1 (3.9)
— (A(k) _ iB(k))Q,

where A®) > 0. We also denote

O,
Y 56 =EW ir®, (3.10)

1<j<n—1 ann



where E®) F(®) ¢ R. Using (3.8), (3.9), and (3.10), we can write

Doy, = al[(A +iTas + E® +iF@)2 4 (A® — i p@)2
= adP[(A+itay + E® +iF® 1+ (A® —;B®))
(A +itay + E® +iF® —i(A® —iB®))]
= a0 =) = o),
where
o = —E® — B® _j(ray + F® 4 AC M,
o) = —E® £ B® _j(ray + F® — A®),

On the other hand, we can write

Py = aD[(=\ +iray + ED +iFW)? 1 (AD —3BW)2
= ap (A — ity — EW —ip® —H'(A( ) iB(l)))
(A - zml EW —iFW _ (AW — i BO))]
STZ()‘ - ‘71 )()‘ - ‘72 )7
where
o = E® 4 BO 4 j(ray + FO 4+ AW,
Ugl) =0 _ M 4 i(tay + M _ A(l)).

Let us introduce the polynomial

Kig.(w N = [ (=0a).

Im 0§-k)20

Now we state the definition of transmission conditions given in [B1., Definition 1.4].

Definition 3.1 The pair {Pk,ws,T,f, k =1,2, j = 1,2} satisfies the transmission
condition at w if for any polynomials g1(\), g2(N), there exist polynomials Uy (N), Us(N)
and constant ci,co such that

G (N) = ert] g, (W, N) + oty (W, N) + Ut (N Ky, (w, ),
2(\) = artyy (W, N) + eofs  (w, A) + Ua(A) Ko, (w, A).

In order to check the transmission conditions, we need to study the polynomial
K. (w, A). For this reason, we need to determine the signs of the imaginary parts

(k

of the roots o; ) defined above. Note that we can write

br(&) = (1k) Yo a &l — (BY +iF®). (3.11)

Ann 1< j<n—1



Since by, plays an essential role, we be 1n by working some calculations on the matrix
(lk)A k) where A% is the matrix (ae . Let a'f) = |ag§2|ew. Choosing & = e, we
have that

> ag)€k; = > Mgt +iv > NPek;.

1<t,5<n 1<t,5<n 1<t,5<n

Hence, from (3.3), (3.4), we have that

)\0<Re( )<A and Ny <

and so that 6 € [0,7/2). Let us evaluate

(@SN AW = o) (MW + iy N™®)) (cos § — isin 6)
= [l eos OM®) + ysin ONW) +i(— sin OM® + 5 cos N D)),

(3.12)
Using (3.3), (3.4) again, we see that for £ € R"
Re ((agm) AW - €) = ag| ™ eos OME - €+ ysinONDE - ] (3.13)
> al¥) |7 Xg(cos O + ysin 0) |€]2. '
In fact, since cos§ = M% |a | U and sinf = v N5 |am| ! while |a7m|2 (M(k)) +
72(]\7,(];?)2, we have
Mz +7*Nin 1472
1a®) |~ (cos 6 4 vy sin ) = i > )\g( +7) = )\_(2). (3.14)
(M2 +2(NG 2~ AL +97) A7
Combining (3.13) and (3.14) implies
k)y—1 4k M2 52
Re ((ap)) " AME -€) = Tolel* = Aulel (3.15)
Now let us write
Ml < Re((a ““)‘vﬂ’“)& )
=Re[ Y _ ggg] +2 Z @Lg] + &7 (3.16)

1<l,j<n—1 nn 1<j<n—1 nn
=62+ 200" ()6, + bV (€),
where
(k) aff> k k k
b(E) =Re( Y. —Lg) =Re(BM +iF®) = E®

1<j<n—1 ann



and
(k)

W) =Re( Y "Dk,

1<t,j<n—1 nn

Substituting &, = &, = —b(()k) (&) into (3.16) gives
M€+ [€nf?) < € — 26 (€)E, + P (€) = — (b5 (€)? + b (&),

which implies
(k)

MEP<Re( Y ) - B (3.17)

1<f,j<n—1 Gnn

Putting (3.11) and (3.17) together gives

(k)

/ Y
Re (by(20,€)) = Re (1@;_1 ﬁﬁe&) — (BW)? + (FW)? (3.18)

> M|E]2+ (F™)2 > 0.
The following lemma guarantees the positivity of A®).

Lemma 3.1 Assume that (3.3) and (3.4) hold. Then

AG >\ [R e 4 [P0 > |FO| (3.19)

Prooffrom (3.9), it is easy to see that

2 2
A®) = Re /by = | LYY

2 Y

where a = Re by and b = Im b,. We have from (3.18) that a > 0 and thus

AW > Vaz el + (F0) > 70|

O
Lemma 3.1 implies
Im 052) = —(Tay+ FP + A®) = —7rqy — F® — A®) (3.20)
< —tag — |[FO| - F® < —71ay < 0 '
and
Im a§” =7a;+ FY + AV > ray + FO + |[FO| > 70y > 0. (3.21)
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We are now ready to check the transmission condition defined in Definition 3.1.
Being able to satisfy this condition depends on the degree of K, and Ky, , that
is, on the number of roots with negative imaginary parts.

Case 1. . has two roots in {Imz < 0}, i.e,, —Tag — F® + A® < 0 in view of
(3.20). In this case, we have that

Ky, =1, while K;, has degreelor2 (note (3.21)).
Since 13, (w,\) =1 and

(2)
an-
.. (W, A) = all(A +iTas + Z (—2])5]‘),

1<j<n—1 dnn

for any ¢o(\), we simply choose
UQ()\) = QQ()\) — Cl%,iﬂs — CQigﬂﬂs'
On the other hand, we have #] , (w,\) = —1 and
a(l)
o @A) = al)A —itan = Y —5E)).
1<j<n—1 al

Then for any polynomial ¢;()\), we choose U;(A) to be the quotient of the division
between ¢; and K,y . The remainder term is equal to city e T 02t2¢ with suitable
C1, Ca.

Case 2. Assume that Im 02 ) >0 and Im 02 ) >0, ie.,
—Tay — FO 4 AP >0, 710+ FO - AD >

Then K, 4, has degree 2 and K5, has degree 1. In order to avoid this case, we need
to be sure that if —ray — F® 4+ A® >0, then 7oy + FM — AM < 0, that is,

Tay + F® — AP < 0= 70, + FV — AW <.
This can be achieved by assuming that

0y AC _ O /

Recall that A® — F®) > 0k =1,2. We remark that all A® and F® are homoge-
neous of degree 1 in ¢'. Hence (3.22) holds provided
A@ _ p@®@)
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Hence, if we assume (3.23), then the transmission condition is satisfied.
Case 3. Each symbol has exactly one root in {Imz < 0}, i.e.,
Ta; + FY — AW <0, —7ray — F® + A® > 0.
In this case, we have
Kip = (A =0"), Koy = (A= a3,
Given polynomials g;(\), g2(\), there exist Uy (), U2(A) such that

a(A) =Ui(N) Ky g, + Gus
@ (A) = Us(N) Kap. + o,

where ¢1, ¢> are constants in A. The transmission condition is satisfied if there exists
constants fu1, o, ¢1, ¢o so that

G =By, + oty +ofl,,
62 = M2K27¢5 + Cltnge + 02%71/)87

namely,
¢ = (A — Ug)) —a+ 02‘1%172(/\ —iray — BEW — iF(l)) (3.24)
G = pa(A — 08?) + ¢1 + c2a® (N + ity + B 4 iF®), .
System (3.24) is equivalent to
Ha + 02617(11,”) =0
(2) —
fo + caa, =0
N (3.25)

mai” +c1+ cza%(z#al + D 4 iF(l)) — g

- MQU?) +c1+ 020/7(1272<Z’7—062 +E@ 4 z'F(Q)) — G
System (3.25) has a unique solution if and only if the matrix

1 0 0 o)
o 1 0 d?
01 G
_‘752) I G

with ¢; = a%lyz(iﬂ)zl + B W) ¢ = a'? (iTog + E® +4iF®) is nonsingular. We
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compute

1 0 o 1 0 ol
detT =det [0 1 @ | —det| 0 1 o?
()—(” G ol 0 G

=G +057a) — G +ofaf)

—aP(itay + E® +iF® — E@ 1 B® _jra, —iF® + ¢A<2>)
+aWD(—itay — EY —iF® 4+ EO 4+ BO 4 jray +iF® 4 5AW)

=a?(B® +iA®) 4+ o()(BW 4-7AW),

Therefore, if
agrz (3(2) + iA(2)) 4 a(l)(B(l) + iA(l)) 7& (), (326)

nn

then the transmission condition holds.
We now verify (3.26). In the real case where al),aly) are positive real numbers,

it is easy to see that
@ AD 4 o) AD <

and thus (3.26) holds.

For the complex case, we want to show that there exists 79 > 0 such that if v < 7,
then (3.26) is satisfied. Let u = A® 4+4iB® and vy, = iup = —B® + A% We will
consider uy, and vy as vectors in R2, ie., up = (A% B®) v = ut = (—=B® AR,
Let a'f) = n®) + ivs®) for n®) 5 € R. By the ellipticity conditions (3.3), (3.4), we
have

Ao <) < Ay, N <00 < A,

Notice that detT = 0 if and only if
(' +iyd®)(B® +iA®) + (nV) +iy6W)(BW 4 40)) =0,

ie.,
(77(2)3(2) AP A® L W BA) _ 451 A0 )
+i(nP AP 4+ 45 B 4y AW 4 451 BW) = 0,

which is equivalent to

4@ A _p® g
2 1) — ~52) 1)
n® <B(2)) + (3(1)) =0 ( A©@ ) + 0 < AW > (3.27)
or simply
nPuy + nWuy = 6Py + 76y, (3.28)

Recall that A®) > | | > 0. Therefore, in the real case v§*) = 0, then (3 27)
will never be satisfied. If B®) and B® have the same sign, that is, either B®) > 0
or B¥) <0 for k = 1,2, (3.28) can not hold. To see this, let us consider B*) > 0,
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k =1,2. Then uq, us are in the first quadrant of the plane and v;, v5 are in the second
quadrant of the plane. The sets

Cu = {(nPuy + nWuy : 9™ >0}, C, = {10P vy + vy - 46® > 0}

can only intersect at the original. Same thing happens if B*) < 0 for k =1, 2.
The only case we need to investigate is when B and B® have different signs.

For example, let us assume
BW >0, B® <.

Even in this case, the intersection between C, and C, is non-trivial if the angle ¢
between u; and wuy is less than 7/2. Note that u; is the first quadrant and wus is in
the fourth quadrant. So the angle between u; and wus is less than 7. We would like
to show that (3.28) cannot hold for ¢ € [7/2,7) if we choose 7y small enough.

Note that in this case cos ¢ < 0. To do so, we estimate ||7®ug+nMu;|| from below
and [|6@vy 4+ 6Ww;|| from above. We now discuss the estimate of ||§ vy + §M, |
from above. Compute

16w + 6@ wy || = (8P)2[(AP)? + (BH)’] + (60)*[(AV)* + (BW)?]
+26W5@(—B@ A@)) . (—BW_ AM)
= (8P [(A®)? + (B + (6P [(AW)* + (BW)?] - (3.29)
+2505O[AY? 4 (BN 4 (B con
< (0@P[(AD)? + (BH)?] + (0W)[(A)? + (BY)?).
In view of (3.9) and (3.11), we have

o
(AP 4 (BW? = bl = | > 58 — (BW +iFW)?)

1<f,j<n—1 ann
(k

<IN GG+ I(EW +iF®),

1<0,j<n—1 ann

(3.30)

By (3.3), (3.4), and (3.12), we can obtain

k)
| Z KJ 555]'2 _ ’ (k)é‘ . 5’2 (Wlth 5 = (flao))

1<t,j<n—1 ann

= |a{®) |2|0089M(k£ £+781n6N Ve &+ i(—sinOMPE - € 4+ ycos INPE - €)

= [al) [P [(MWe - €)% + 7 (N Ve - €)7)
A (1 +~%)IE* 71 4
BT IETO R

where we have used the estimate

o1+ < o] < Ao(1+~2)"? (3.31)
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in deriving the inequality above. We thus obtain

(k)
Y Mael < AP (3.32)

1<t,j<n—1 ann
Furthermore, we can estimate

(%) (k)

. an'
E® 4O (3 Do 3 D
1<j<n—1 dnn 1<j<n—1 ash,
( 2 2
A2 4+ (3.33)
(Y 1P s B ey
1<j<n—1 al) 0 v
= (n— DA
Substituting (3.32), (3.33) into (3.30) gives
(k)\2 (k) 1/2 N2 < AQ 112
(AW +(BW)? < (7 + (n = DATHIEP < VIR (3.34)
A3
It follows from (3.29) and (3.34) that
6P vy + 6Wey||2 < 2A2n \g . (3.35)

0 )\2
Next, we want to estimate |[n®@uy + nWu, || from below. As above, we have

1z + n 0|2 = GPPRAD) + (BAP]+ (VR(AD) + (BOY

20 AD + (BOFPADE + (BOP cong. )

Recall that B; > 0, By < 0. Thus,

AW AR L p)pBE)
[(A®)2 + (B 2>) ]1/2[(A< )2+ (BW)?)/2
AM A |B ||B(2)|
[(A®))2 + (B ) ]1/2[(A< )2+ (BW)?)/2

1 — |1BW||B@)]
A1) A2

(+ Gae+ Gmyve

cos ¢ =

Notice that by (3.19) and (3.35)

BY| _ APR+(BOR _ Voglel  ang g
Ay = A N

15




It is readily seen that the function

1—ay

ﬂxﬂ):vﬂ+nﬁ¢1+y2

defined on (z,y) € [0,As] X [0, Ao] attains its minimum at z = y = \,. Hence, we
have <
1—A

cos ¢ > 2 — 1+ —.

1+ A3 1+ A3

Now (3.36) gives

I 4+ |
> P[AP) + (B + (0P (AV) + (BOY]
2
2P (AR) 4 (BOPPEAD) 4 (B4 )
2
= (VA + (BOPI — ()2 [(AD) + (BO)2)° (3.37)
4
SV PAD)? + (BE)AD)? + (B2
14 M3
~ 4
> 4~ A(l)A(Q)Ag > _ )\1|§l|2>\2 _ 4~ )\_g
14+ A3 1+ M3 1+ A2A3

€17

Hence, in view of (3.35), (3.37), if we choose

VaN
7o =75 1 AL’
Ag\/nAg + n?Ag

(3.38)

then for v < 7y we have
17 ug + Wy [ > 216 0y + 6wy |,

In other words, (3.28) cannot hold (i.e., detT" # 0), and equivalently, (3.26) is satisfied.
In conclusion, we have shown that

Theorem 3.2 Assume that agf) have properties (3.1)-(3.4). Moreover, the number -y
in (3.2) satisfies v < o, where vy is defined in (3.38). Let 1. be given by (3.5) with
aq, g satisfying (3.23). The { Py, wE,T,g', k=1,2, j =1,2} satisfies the transmission
condition at 0.

3.2 Strong pseudoconvexity

Here we want to check the strong pseudoconvexity condition for the operator £, and
the weight function ¥.(z) in By N Qy and By N Qy for some small 6" > 0. Even
though L, is represented by P in ), k = 1,2, it is not necessary to discuss the
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strong pseudoconvexity condition for P; and P, separately. We suppress the index k
in notations and denote the symbol
Z a;&ek;

1<j6<n

with ag; = My; + 47Ny and consider the weight function

Vo(a) = am, + Sak = f'|

2

In view of the definition of ¢.(x) in (2.10), a here represents either oy = ay or
a1 = a_. Hence, we have that

(0j9:(2))j—1 = Vie(z) = (—e2’, a + Bay,)
and

@ = V00 = (5 5. (3.9

The strong pseudoconvexity condition reads that in By, if

p(f + Zvae(l’)) =0,
(&, 7) #0, Vio(z) #0, x€ By,

then
Q(z,&,7) = Z (9@1#5 )0¢, p(§ 4 1TV (1)) 0e,p(§ + iTV e (2))
£,j=1
4 %Im Z 0,p(€ + TV (2)) 06 p(E T TV (@) (3.40)
= Z Of = ()0, p(€ + itV ()0, p(€ +iTVe(2)) > 0
l,5=1
(see [Hol]).
We now write
p(§ +iTVi.)
= Z aej (& + 1m0 ) (& + iT0p1)e)
1<l,j<n
= > ay&l+2i Y an(roite) — Y ag(T0b) (T05):).
1<0,5<n 1<2,5<n 1<ti<n

Hence p(¢ + i7V).) = 0 implies
D ag(ro) (o) = Y anbls 2 Y ag&(rop.) (3.41)

1<tj<n 1<,j<n 1<,j<n

17



By (3.2)-(3.4), we have

‘ Z ag](Tagws Tang \/1+’7 A0|Tv¢5 .

1<lj<n

From this estimate, we obtain from (3.41) that

V1 + 2|7V |? 2‘ > anbli+2 Y ay&(rop)

1<t,j<n 1<t,j<n

>V/T+72Aol€]? — 20/T + VAol |7V
1+ 2)\ 1—|—
> T et = YAE N0 e o VIHPA0 G

(3.42)

which leads to oA
I(SI2 (Ao +—)| V.. (3.43)

By (3.43) and exchanging the roles of £ and 7V, in (3.42), we thus conclude that
there exist positive constants C4, Csy, depending on Ay, Ay such that

Cil¢] < [7VY.| < Gof¢] (3.44)

whenever p(§ +iT7V,) = 0.
As in (3.6) and (3.7), we can write

PE) = aml(n+ Y e 4 b(E),

1<j<n—1 ™"

where
1

b(f/> = — Z (afjarm - anfa”j)&éj'

a
nn 1< j<n—1

Similar to (3.9) and (3.10), we further express

b(&') = (A(€) —iB(£)), (3.45)

with A(£') > 0 and .
Sie = B(E) +iF(), (3.46)

1<j<n—1 """

where E(&'), F(¢') € R.
To verify that (3.40) for x near 0, we first derive an estimate of Q(0,£,7). At
x =0, we have 0;1.(0) =0, 1 <j <n—1and 0,.(0) = o, i.e,

E+itVY(0) = (¢, &, +iTa).

18



Thus, we can rewrite

p(§+iTVY(0)) = p(& +itae,) = apn (& — 01)(En — 02), (3.47)

where

— E-B—i FtA
{01 i(ta + F + A), (3.48)

oy =—FE+B—i(ta+F—A).
From now on we suppress the dependence of coefficients at 0 if there is no danger of

causing confusion.
By (3.39), we have that

QO,&,7)=—c Y |0ep(& +iTae,)]” + BlOe,p(€ + iTae, )|,
1<j<n—1
where for 1 <j<n-—1
Oe,p(§ +iTae,) =2 Z agi&e + an;(&n +iTa)
1<¥<n-—1

and
Oe,p(§ +iTae,) =2 Y amée + aun(& + iTa).

1<0<n—1

Therefore, we can write

Qe ==4e 3 | D ane+ an(én+ira)

1<j<n—-1 1</<n—-1

‘ 2

) (3.49)
+4p Z am&e + ann (& + iTa0)
1<t<n—1
It follows from (3.47) and (3.48) that p(§ + iTae,) = 0 if and only if
ént+ita=—FE—B—i(F+A) (3.50)
or
& +itTa=—E+ B —i(F—A). (3.51)

Therefore, if p(§+iTae,) = 0, then the second term in (3.49) can be further simplified
as

T . 2
Y ket amlGa+ira)| =leml| D e+ (6 +iTa)
1<e<n—1 1<tan—1 & (3.52)
= |an[*|E + iF + (& + i70) [ = |an,[*(A* + B?),
where we have used (3.46), (3.50) or (3.51). Combining (3.45), (3.46), (3.50) or
(3.51), we have that

[6n +imal S|E|+[B|+ [F|+]A] < CA[¢], (3.53)
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which implies

Z ‘ Z ari&e + anj (& +iTa) : < CA3|E2 (3.54)

1<j<n—1 1<l<n-1
Putting (3.49), (3.52), and (3.54) together gives
Q(0,&,7) > 4Ban,|*(A* 4+ B?) — 4eCAo[¢' . (3.55)
Recall the estimate (3.19) in Lemma 3.1
A2 = NP+ PP = MIEP.
Using this estimate in (3.55) and choosing ¢ sufficiently small leads to
Q0,6,7) > 4(BMAS — eCAo)[¢'* > 2B NGE'?,
whenever p(§ + iTae,) = 0. Furthermore, (3.53) implies
€ +irae|* < (1+ CPAGIET,
and it follows that if p(¢ + iTae,) = 0 then
Q(0,&,7) > CBIE + itae,|. (3.56)
In conclusion, we have shown that
(& 71) e{(&T) e S:p&+irae,) =0} = Q0,&,7) >0, (3.57)

where S := {(§,7) € R"" . |¢)2 + 72 = 1}.

Now we recall the following elementary theorem. Let X be a compact subset of
RY and F,G : X — R be two continuous functions, then the following two statements
are equivalent:

(i) F(x)=0,Vz e X = G(x) > 0.
(ii) There exist positive constants Cy, Cy such that C1G(x) + |F(z)| > Co, V z € X.
With the help of this theorem, (3.57) is equivalent to

CiQ(0,€,7) + |p(§ +iTae,)| > Cs (3.58)

for all (§,7) € S. Thanks to (3.58), we can estimate

CiQ(z,€,7) + [p(§ + irVie(z))| = C1Q(0,&, 7) + [p(€ + iTaen)| + R(z, €, 7)
> CQ+R<I,§,T),
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where

R(m7£a7—) = Cl[Q(x7€7T) - Q(ngﬂ—)] + |p(€ + Zvaa(m>>| - |p(§ + iTaen”'

Observe that R(0,&,7) =0 for (§,7) € S. Since R is continuous, there exists a small
number ¢’ > 0 such that o
2

‘R($,€7 )l < 7

for all z with |z[ < ¢" < 75 and ({,7) € S. In other words, we have that

C1Q(x,&,7) + p(§ +iTVie(z))| 2 = (3.59)
in {Jz| <¢'} x S. By the elementary theorem stated above, (3.59) is equivalent to
p(§ + TV (2)) =0, Vx € By, (,7) €S
= Q(2,§,7) >0,V € By, (§7) €S,

which immediately implies the strong pseudoconvexity condition near 0 in view of
the homogeneity of p and @ in (§, 7).

Having verified the strong psudoconvexity in a neighborhood of 0 and the trans-
mission conditions at 0, we can derive a Carleman estimate with weight v.(x) for the
operator L.

Theorem 3.3 [B1,, Theorem 1.6] Assume that coefficients A+ (0) satisfy conditions
(3.1)-(3.4). There exist ay,c_, 3,€0,7%,70 and C, depending on X\, Ao, such that if
e<eg, ¥ <7, 7>C, then

2273 2k/ by Petries derZZTs 2k/ Dby (2!, 0)[ 2620 g

+ k=0 + k=0
+ Z T 6T¢5(~,0 Ui 1/2 Rn—1 + Z szs iUi 0)]1/2’Rn—1
+

<C ( / |Lo(D) (us)? o=@ 4 [T COROR b (3.60)
+

+[Dx/(ew6héo))(-, O)]f/Qan_l + 7'3/ |héo)|2627¢5(””0)dx + 7'/
Rn—l

Rn—1

|h§0) |2€2T’I,Z)E(:E,0)dx> ‘
foru=H,uy+H u_, uy € C*°(R") and suppu C B), X [—ro, 1], and
W) = wy (2!, 0) — u_(2,0), Vo' € R,

(') = A, (0)Vuy (2,0) - en — A_(0)Vu_(2',0) - e,, V& € R* 1,
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4 Derivation of the Carleman estimate

This section is devoted to the derivation of the Carleman estimate (2.14) following the
ideas used in | |. We first introduce the partition of unity given in | ].
For any 7 > 0 and 2’ € R"~', denote the (n—1)-cube Q,(2') = {y € R"~' : [yj—2f| <
r,j=1,2,--- ,n—1}. Let ¥y € C§°(R) such that

0<dy<1, suppvy C(—3/2,3/2) and Uy(t) =1 fort € [—1,1]. (4.1)
Let 9(z') = Jg(z1) - - - Jo(xp_1), so that

supp 9 C523/2 (0) and 9(2') =1 for 2’ € Q1(0),

where @@ denotes the interior of the set Q. Given p > 1 and g € Z"!, we define

and

Thus, we can see that

supp Vg, CQ3/9, (37;) - Q2/u<x;>

and
|Dk199nu‘ < Cluk<XQ3/2H($'g) - XQ1/H(%))> k=0,1,2, (4.2)

where C| > 1 depends only on n.
Notice that, for any g € Z"1,

card ({g' € Z"" : supp ¥y, Nsupp ¥, # 0}) =5""". (4.3)

Thus, we can define

Iu(a’) = Y g >1, o €R™ (4.4)
gezn—1
By (4.2), we get that )
|DF9,| < Coplk, (4.5)
where Cy > 1 depends on n. Define
779,#(33/> = ﬁg,u(x/)/ﬁu(x/)a s Rn_la (4.6)

then we have that

dogezn-ilgn =1, = €R",
Supp g, C Q3/2u(37;) - QZ/#(%)a (4.7)
|Dk779,u’ S C3l'l’kXQ3/2H(:E’g)7 k= 07 17 27
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where C3 > 1 depends on n.

We will first extend (3.60) to operators with leading coefficients depending on
the vertical variable x,,. To do so, we need to derive an interior Carleman estimate
for second order elliptic operators having Lipschitz leading coefficients and with the
weight function .. To derive such Carleman estimate, we define the n-cube K =

{z = (21, - ,2,) : |7j] < R,1 <j <n} for R > 0. Let us denote
P(z,D)= > aj(x)D3
1<j6<n

and its symbol p(z,§) = >, <, aje(2)€;€. Assume that for all 1 < j,¢ < n and

T,y € Ky,
Cng(.T) = aej(ﬂﬁ),
|aje(x)] <A,
|aje(z) — aje(y)| < Molz —yl,
Ip(z,€)| > AE?, VEeR™,

where A, A > 0. Let ¢(z) € C*(K;) be real-valued and satisfy |[Vp(x)| # 0 for all
x € K;. We denote

(4.8)

S(z,y:€,7) Z 0750 (2)0e,p(y, € + iV () e, p(y, € + iTVip(x))

£,5=1
for z,y € K1, £ € R*, 7 > 0.
Proposition 4.1 Assume that the following condition holds:
p(0, & +iTp(0)) =
(& 7) # (0,0)

Then there exist R € (0,1], & € (0,1], Co > 1, 1 > 1, depending on X, A, Mo, ||¢]|c2(q1)»
such that

O} = 5(0,0;¢,7) > 0. (4.9)

Z an 2|OZ/’D%IQ 210 g < Oo/|P (6x, D)ul*e™Wdz, (4.10)

|| <2

VUEC80<;(R),TZT0,O<5§50.

Proof. In view of the homogeneity in (£,7), (4.9) is equivalent to that there exist
C7 > 0,C5 > 0 such that

Colp(0,& +iTV(0)* + (I€* + 7%)5(0,0:¢,7) = CL(l¢[* + 7%)%, ¥ (¢, 7) € R™.
From (4.8), we can see that there exists R € (0, 1] such that

Colp(y, E+iTVo(a) P+ (€[ +7°)S (2, y: €, 7) = Cr(|EP+72)°, Yo,y € Kg, V¥ (¢, 7) € R,
(4.11)
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where C; > 0, Cy > 0 are independent of z, y. Thanks to (4.11), the Carleman
derived in [Hol, Theorem 8.3.1] holds for

Py, Daju= Y a;(6y)D7 ,u(w),

1<t,j<n

that is,
Z 7_3_2‘04 / ‘D$u|2€27g0(x)dx < 03/ ’P(éy,DI)UPeQTSO(I)dm (412)

o] <2

for all u € C§°(K ), 0 < <1, and 7 > 7y, where C3 and 7; do not depend on 4§ and
y. Note that for fixed §, y, P(dy, D, ) is an operator having constant coefficients.

Now we use the partition of unity introduced above, but with n—1 being replaced
by n. In particular, for h € Z™, we define

h 1
xh:;, = +/eT with TZ;,

where € € (0, 1] will be chosen later. Let u € C§°( K z), in view of the first relation
in (4.7), we have

u(e) =) u@)inu(z),

hezn

where 7, () is defined similarly as in (4.6) with n — 1, g being replaced by n, h,
respectively. Applying (4.12) with y = x;, implies

Z 7_3—2|oc\ / |Dau|2€2ﬂp(:c)dl,

o] <2

<e 30 3 A [ D% ) e (4.13)

heZ™ |a|<2
1
€

§cCg/ |P(dzp, D)(unh,“)|2e2wmdx, V1 > 7 =min{n, -},

where ¢ = ¢(n).
Now we write

|P(0xn, D)(unnu)| < |P(6z, D)(unn,)| + [(P(0xn, D) — P(0x, D)) (unp,)|  (4.14)
and use (4.5), the second inequality of (4.8), to estimate

|P(0x, D)(unn,)| < |P(62, D)ulnn,, + Cah(VeT|Dul + eTlul) Xk, ,, (1) (4.15)
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and

|(P(0n, D) — P(6x, D) (unn)| = | D (aze(5zn) — aze(52)) Dy (un,)]

1<j6<n

S Y lase(0m) — age(62)|| Dyl + 2CA(VETIDul + erlul) Xy 00 (4.16)

1<jt<n
dMy,
<c nh,uT\D ul + 2C3A(Ver|Du| + eT|ul) Xk, (xn)
with ¢ = ¢(n). Here K5/, (zp) denotes the n-cube centered at x;, with length 4/ and

XI,),(xy) 18 the characteristic function of Ky, (zp). Substituting (4.14)-(4.16) into
(4.13) gives

Z 7_372\04 / ‘Dau‘2€2‘rgo(x)dx

|| <2

§C5/|P(5x,D)u|262w("”)dx

62 M?
+ 05{ 0 /|D2u\262w(m)dx +€7'/ | Du?e? @) dz + (67’)2/|u|2627¢(’f)d95}
ET

(4.17)
for all 7 > 75, where C5 > 1. Finally, by choosing e = 1/(2C5) and g = ¢, all terms
inside of the curved brace on the right hand side of (4.17) can be absorbed by its left
hand side and (4.10) follows immediately. O

4.1 Carleman estimate for operators depending on the ver-
tical variable

Here we would like to prove a Carleman estimate for the operator that satisfies
conditions (3.1)-(3.4) but depending only on the x,, variable. That is, we consider

L2y, D)u =Y Hydiv(As(z,)Vuy),

where uy € C*°(R") and suppu C B/ x [—rq, 7], where r( is the number obtained
in Theorem 3.3. Introduce 6 € (0,1) that will be chosen later, define

Gs(x) :=s(6 ) = Ys(6 72, 0 ay),

and consider the scaled operator

L(6x, D)u = " Hidiv(AL(62,) V).
+

Notice that AL (dx,,) satisfies assumptions (3.3), (3.4) and also the Lipschitz condition
|AL(6Z,) — Ar(0xy)| < Mod|Zy, — 4. (4.18)
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Let ¥y € C5°(R) be given as in (4.1). For u > 1 satisfying 2/ < r, we define

nu(xn) = 190(#*/571)7 (4-19)

v (2 x) = nu(zn)u(e’, z,), and z, (2, x,) = (1 — nu(zn))u(@’, x,). (4.20)

Since v, 1 (2,0) = ug(2’,0) and Vo, 1 (2',0) = Vuy(z',0), we have trivially
Vi (2,0) = v, _(2',0) = uy (2, 0) — u_(2/,0) = B (2'), Va' € R (4.21)
and

AL (0)Vo, 1 (2',0) - e, — A_(0)Vu, _(2/,0) - e,

/ / ©), 1 / n—1 (4'22)
=A,(0)Vus(2',0) - e, — A_(0)Vu_(2',0) - e, = hy '(2'), Va' e R".

The aim of this section is to prove a simple version of (2.14):

ZZTB 2k/ s Petrbet e dx+2273 2k/ Dug (o, 0) P2 0) gy

£ k=0 £ k=0 -t
+ZT 67—#}5(.70 'Uz:t 1/2 Rn—1 + Z Td}giu:t 0)]%/2,1@”71

SC(/ |L£(820, D) (us)[? ¥ V=2 @z 4 [em¢=CORO2 o (4.23)
+

HDar (g ) (O p s + 7 /R PO de 47 /R B rh?)r?e?“"f‘”)dw)-

To proceed the proof of (4.23), we first note that supp z, C B, x[—7g, 7o and van-
ishes in the strip R" ! x [— /i 1] It is clear that A4 (dz,,) satisfies (3.3), (3.4) and (2.7).

Moreover, estimate (3.58) 1mphes that the condition (4.9) holds for } 3, ,.,, a; az,(z) D3,
with ¢ = 9. Observe that z, is supported away from x, = 0. Therefore, it follows
from (4.10) in Proposition 4.1 that there exist dy € (0, 1], 7o > 0, and choose a small
ro if necessary, such that

2
> T / DRz, PP Pde < C | |L(0an, D)zl PP d (4.24)
Rn R™

k=0

for all 7 > 79, 0 < 6 < &g, where C' depends on Ag, A\, and M.
Let us denote by LHS(u) the left hand side of inequality (4.23). We have

LHS(u) < (LHS(UN)—FLHS(ZH))

4.25
=2 (LHS V) +Zr3 2’ﬂ/ | D"z, [?e* e @) dy ) (4.25)

k=0
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Then applying (3.60) to v, and using (4.24) leads to
2

LHS(u) <C ( |Lo(D)u,|? 2@ dz + [ COROR o
Rn
D T¢sh(0) .0 2 3 h(O) 2 2T¢g(az’,0)d / 4.96
+ [Dwr (€™ hy ) (-, 0)] jggn—1 + 7 R*1| o |e T (4.26)
—1—7'/ W0 2e2re @ 0) gy 4 |£(5xn,D)zM|262w5($)dx> :
Rn—l Rn

By (3.3), (3.4), (4.18) and (4.19) and since p > 1, we can estimate
[Lo(D)vyl
< |L(0zy, D)v,| + |L(024, D)v, — Lo(D)v,,|

20 M,
< |L(6x,, D)ulm, + Mozwuim
+

+C(6Mo + o) > (pl Du| + M2|Ui|)XRn_1X([_g SN[ a])
T T Bow

On the other hand, we have
|L£(62n, D)z,
< [L(0xn, D)ul (1 —1,)

+C(6Mo + o) > (| Dug| + pPlus]) x et ([-2.2]\[1.4])
mn o TR

Putting (4.27), (4.28), and (4.26) together implies

LHS(u) < C4 ( |L(6x,, D)ul® €7@ dg 4 TR) + CyR (4.29)
]Rn

where

e (-, 0 Te 0
Te = [ CORDR pus + Do (™ h) (-, 03 jp s

+7_3 / |h(()0) |2627¢5(z/’0)d(ﬂ/ + 7 / |h50) |2€27—w5(1/’0)d:ﬁ,,
Rn—1 Rn—1

52
R=23 [ prupie+ @Y [ (pusPiespt [ Jua,

(] depends only on Ay and A\g and Cy depends only on Ay, A\g and M.
Now we choose p = y/eT and calculate

1 Cs0° 2, (2 2r¢.
LHS(u) —CoR = —(1-— E | D uy |“e“™= dx
T € + JRY

—1—7'(1—025)2/ | Du |*e*™= dx
+ JRL

C
478 (1 - Tﬁ) |u|?e* ™= dx + Ty, (4.30)
Rn
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where

k=0
7-2 [eTwE("O) ( 1/2 Rn—1 + Z Tws iu:t 0)]%/2,]1@"71 :

1
2273 Qk/ Dus (o, 0) P20 gy
+ Rn— 1
+

By choosing ¢ and ¢ satisfying

1
62 < 2i02 and €< Yo% (4.31)

estimate (4.23) follows easily from (4.29) and (4.30).

4.2 Carleman estimate for operators depending on all vari-
ables

We now want to extend the estimate (4.23) to operators with coefficients depending
also on the variables 2’. To treat this case we proceed exactly as in | , Section
4.2, pp.198-200], that is, we approximate with coefficients depending only on z,,. We
use the partition of unity introduced at the beginning of Section 4 and show that

LHS(u) <C Y LHS (uny,)+ CRy, (4.32)

geznr—1

where we define

2
LHS(u) = Z Z 732k / |Dkui|262T¢5*i(m/’x")dx’dmn
£

k=0 RY
1
P [ D e
+ k=0

+ Z 7_2 [eTwE(.’O) ( 1/2 Rn—1 + Z Tws iu:t O)]%/27Rn71
+

Ry = (e7)'/? Z / @0 (1D, uy (2, 0)2 + | Dyus (2, 0)2 + 72| up (', 0)|?)da’

+ Rn—l
Remind that 7, , is defined in (4.6). Notice that = in (4.25) of | | corresponds
to LHS here.
Asin | , Section 4.3], we introduce some local differential operators that

only depend on x,, in such a way that we can apply estimate (4.23). Let us define

Al (2, ) = Ay (62, 0zy,), (4.33)
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L5z, xn, D)u := H div(A% (', x,)Vuy), 4.34
+

and the transmission conditions

{Qo(x’) = uy(2/,0) —u_(2',0),
01(z') = A% (2/,0)Vui(2/,0) - e, — A% (2/,0)Vu_(2/,0) - e,.

Next, recalling that z, = g/u and g € Z"~', we define
A% () = Al (2, 2,) = As (02, 0y),
Lso(n, D)u =3, Hidiv(AY (x,)Vus).
We notice that A%Y(x,) satisfies assumptions (3.3), (3.4) and also the Lipschitz con-
dition
|Aig(jn) - Aig(xn)l < Mod| 2y — @y

We now apply (4.23) to each summand and add up with respect to g € Z"! to
obtain that
Z LHS(un,,) < C Z dl) +dQ) +d), (4.35)

where

= [ 15yt D)um, )P
dé?;)x —7'3/R » |e7'1115 z',0) Hog#( ’)’2dx’ + [Dm/(eﬂbseo;g,#)(., O)H/anﬂ,

A= [ I P+ [0,
where we set
Qo;gﬁu(x,) = “+(5U/7 O)Wg,n(x/) — U— (x/, 0)779,#(95/) = QO(x/)ngw

Orig.u(7) == Aig(o)v(uﬂh,u) “En — A‘EQ(O)V(U—%,M) " Cn-
We now proceed as in | , Section 4.3, pp.201-204] for the estimates of the
terms dg,i, j =1,2,3in (4.35). For the sake of clarity, we show here the estimate of
the term di). By (3.3), (3.4), (2.7), (4.7) and (4.33) we obtain that

|£5,g (Tn, D)(W?g,#)l
< |£5($I>$n> D)(”Ut],u)’ + |£6($,>$n> D)(ung,u) - E&g(f’fnv D)(ungw)‘
< Mol Lo (@, 2, DYl + Crig > AL (2, ) — A% (2, ) || D |
+
+CXQy () Y, (I Dus] + p[us])

=+
< Mol Ls(a' s 0n DYl + Cxqy ) D (017" 1D + il D] + p?fuue])
+
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which, together with (4.3) and since u = (¢7)/2 > 1, implies

Y d <O | |Ls(a! x, D)ul* T dx + O Ry, (4.36)

gezn—1 R

where

52
R + YRY

Rn

With similar calculations, which are exyhcitly written in the above mentioned pages
of | |, we can estimate d\’), d\) and get

LHS(u) < C’< g |Ls(2, 2, D)ul? ¥ ™Veda + [ewf("o)elﬁﬂwﬂ
_i_[Dxl(eTwseo)(.’O)]%/ZR”1+7_3/ eQTws(x’70)’90<x/)‘2dx/
Rn—1

—I—T/ 2@ 00, ()2 da’ + Rg) : (4.37)
Rn—1

where

52
Ry = _22/ | D?u|? ezwa*idx—l—uQZ/ | Du |* ™o dx
e Ry + JRL

+,U4 |u’2 62T¢sdx—|— (M_|_(525—1)Z/ ’Dui<$,,0)‘2€27¢5(x’0)d$
R™ + Rn—1

+ur Z/ lus (2, 0) 22 =0 qy! 4 (p* + 6227 )Z[ 0L (4 0)]F
T

+82 Z[D(Uiewi‘i)(v 0)]%/2,Rn—1~
+

We now set ¢ = ¢ and choose a sufficiently small dy and a sufficiently large 7y, both
depending on Ay, Ag, My, and n such that if e = § < Jy inequalities (4.31) are satisfied
and if 7 > 79, then R3 on the right hand side of (4.37) can be absorbed by LHS(u).
We finally get the estimate (4.23) by the standard change of variable u(dz’, 0xy,).
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