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Abstract. In this work, we consider the inverse problem of determining an unknown po-
tential in a subdiffusion equation from its solution using a nonparametric Bayesian approach.
Our aim is to establish the consistency of the posterior distribution with Gaussian priors.
To do so, we need some key estimates of the forward problem. For the forward problem,
we have to overcome the fact that the solution of the subdiffusion equation is less regular
than that of the classical heat equation. The main ingredient is the maximum principle for
the subdiffusion equation. We show that the posterior contracts to the ground truth at a
polynomial rate.
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1. Introduction

In this paper, we study the inverse problem of recovering an unknown potential function
of a subdiffusion equation from observations of a solution using Bayesian approach. Here
the subdiffusion phenomenon is modeled by the fractional time derivative. The fractional
time derivative can be used to describe particle sticking and trapping phenomena [BBMW01,
BTM+04, SBMB03]. There are two kinds of fractional time derivatives commonly studied
in literature, Riemann-Liouville derivative and Caputo derivative. They are not equal in
general, but are equivalent up to an inhomogeneous term containing the initial condition
of the function, see (2.4) or [MS19, (2.33)]. In this work, we will consider the subdiffusion
equation governed by the Riemann-Liouville derivative. For such subdiffusion equation, the
main interest of the proposed inverse problem is to establish the consistency property of
the posterior distribution by proving that the posterior contracts to the true parameter.
In particular, we derive a polynomial contraction rate as the sample size increases. This
work can be viewed as an extension of [Kek22] for the parabolic equation to the subdiffusion
equation, see also [GN20] for related results for the elliptic equation. To this end, we need
some key estimates of the forward problem. Here, unlike the probability method based on the
Feynman-Kac representations used in [GN20, Kek22], the main ingredient is the maximum
principle for the subdiffusion equation due to the insufficient regularity of the solution.

1.1. Mathematical setup. Let d ∈ N and let O be a bounded open domain in Rd with
smooth boundary ∂O. Fix any T > 0, we write OT := (0, T )×O and (∂O)T := (0, T )× ∂O.
We fix parameters M0 > 0 and 0 < θ < 1. For each f = f(x) ∈ C1(O) with 0 < f < M0 in
O, under some appropriate regularity assumptions on the source h = h(t, x), the boundary
g = g(t, x) and the initial conditions u0 = u0(x) (here u0 and g satisfy some compatibility
conditions), let u = uf be the solution to the following initial-boundary value problem (IBVP)
for the subdiffusion equation with the fractional time derivative of order θ:

(1.1)


∂θt (u(t, x)− u0(x))−∆u(t, x) + f(x)u(t, x) = h(t, x) in OT ,
u = g on (∂O)T ,
u(0, ·) = u0 in O,

where ∂θt denotes the Riemann-Liouville derivative of order θ (see Section 2.1 below). The use
of u(x, t)− u0 in the first term of (1.1) allows us to formulate the IBVP by a Hilbert-space-
setting. We will explain the adoption of this term in detail later. It should be emphasized
that the IBVP (1.1) is only understood formally here. We will explain the precise definition
of ∂θt and the IBVP (1.1), as well as the well-posedness results, in Section 3 below. In this
work, we are interested in the recovery of f from the knowledge of the unique solution u = uf
of (1.1).

If we additionally assume that minO u0 > 0, min(∂O)T g > 0 and h(t, x) is sufficiently large,
then the maximum principle guarantees that uf > 0 in OT , see (3.12), and hence from (1.1)
one can reconstruct f from the formula

(1.2) f(x) =
h(t, x)− ∂θt (uf (t, x)− u0(x)) + ∆uf (t, x)

uf (t, x)
for x ∈ O a.e.,

for any fixed 0 < t < T . It is helpful to remark that, for the heat equation considered
in [Kek22], the corresponding classical solution can be explicitly written in terms of the
Feynman-Kac formula. The positivity of the solution with positive potential f then follows
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from the solution formula. For the case of subdiffusion equation, due to the insufficient
regularity of the solution uf to (1.1), uf > 0 is ensured by the maximum principle. We
also want to point out that the maximum principles in different formulations were proved
and used in [BKT18, Luc09a, Luc09b, Luc10, Luc11, LY17, LY18, LY19, Zac08]. For the
subdiffusion equation (1.1), but with the Robin boundary conditions, the maximum principles
were derived in [LY23]. On the other hand, a maximum principle for the time-fractional
transport equations was proved in [LSY22]. Furthermore, a maximum principle for more
general space- and time-space-fractional PDE has been derived in [KT21].

We would like to study the inverse problem of determining the potential function f by
measuring uf in OT . In practice, however, it is not feasible to measure uf at all points
(t, x) ∈ OT . Instead, we measure uf at (t, x) (referred to as sample) randomly and derive a
“good” estimate of f by increasing the number of samples, and the inverse problem is then
addressed through a Bayesian procedure. For the general approach of the Bayesian method
in infinite-dimensional models, we refer readers to the monographs [GN21, Nic23]. On the
other hand, the coefficient determination problem in the subdiffusion equation by suitable
measurements of its corresponding solution from a PDE perspective can be found in [KR23,
Chapter 10]. To streamline the presentation, we will explain the Bayesian method to inverse
problems in detail in later sections. Before describing the statistical model, we first introduce
some notations.

1.2. Notations. We recall some notations and function spaces used in our previous work
[FKW24a]. Throughout this paper, we shall use the symbol ≲ and ≳ for inequalities holding
up to a universal constant. For two real sequences (aN) and (bN), we say that ≃ if both
aN ≲ bN and bN ≲ aN for all sufficiently large N . For a sequence of random variables ZN
and a real sequence (aN), we write ZN = OPr(aN) if for all ϵ > 0 there exists Mϵ < ∞
such that for all N large enough, Pr(|ZN | ≥ MϵaN) < ϵ. Denote L(Z) the law of a random
variable Z. We also denote a ∨ b = max{a, b} for all a, b ∈ R.

Organization of the paper. We first introduce measurement model and state main the-
orems (Theorem 2.6, Theorem 2.8, Theorem 2.11, Theorem 2.13 and Theorem 2.14) in Sec-
tion 2. Then we prove the well-posedness of the IBVP (2.12) in Section 3 and study the
properties of the solution to the subdiffusion equation, especially its regularity in Section 4.
We prove main theorems in Section 5. Finally, we make some conclusions in Section 6.

2. Measurement model and theorems

2.1. Riemann-Liouville fractional derivative. In order to make the paper self-contained,
we first recall some results on the fractional time derivatives proved in [LY17, LY23], see also
the monographs [Jin21, KRY20]. We begin with the classical Caputo fractional derivative
dθtw(t) for 0 < θ < 1 defined by

(2.1) dθtw(t) :=
1

θ(1− θ)

∫ t

0

(t− s)−θ
dw

ds
(s) ds for all w ∈ 0C

1([0, T ]),

where 0C
1([0, T ]) := {w ∈ C1([0, T ]) : w(0) = 0}. It is possible to extend the Caputo frac-

tional derivative in weak sense.
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Let us first define some fractional Sobolev spaces:

Hθ(0, T ) :=



Hθ(0, T ), 0 < θ <
1

2
,{

w ∈ H
1
2 (0, T ) :

∫ T

0

|w(t)|2

t
dt < ∞

}
, θ =

1

2
,{

w ∈ Hθ(0, T ) : w(0) = 0
}
,

1

2
< θ < 1,

with corresponding norms given by

∥w∥Hθ(0,T ) :=


∥w∥Hθ(0,T ), θ ̸= 1

2
,(

∥w∥2
H

1
2 (0,T )

+

∫ T

0

|w(t)|2

t
dt

) 1
2

, θ =
1

2
,

where

∥w∥Hθ(0,T ) :=

(
∥w∥2L2(0,T ) +

∫ T

0

∫ T

0

|w(t)− w(s)|2

|t− s|1+2θ
dt ds

) 1
2

.

Remark 2.1. As pointed out in the correction of [LY23], the space Hθ(0, T ) is the closure
of 0C

1([0, T ]) with respect to the norm ∥·∥Hθ(0,T ), not with respect to the norm ∥·∥Hθ(0,T ), see
also [KRY20, Lemma 2.2].

Next, for each θ > 0, we define the Riemann-Liouville fractional integral operator

(Jθw)(t) :=
1

Γ(θ)

∫ t

0

(t− s)θ−1w(s) ds, 0 < t < T.

In view of [KRY20, Theorems 2.1 and 2.2], one can see that

(2.2) Jθ : L2(0, T ) → Hθ(0, T ) is a bijection,

and its inverse
∂θt := (Jθ)−1 : Hθ(0, T ) → L2(0, T )

induces an equivalent norm for Hθ(0, T ) in the sense that

(2.3) C−1∥∂θtw∥L2(0,T ) ≤ ∥w∥Hθ(0,T ) ≤ C∥∂θtw∥L2(0,T ) for all w ∈ Hθ(0, T ),

for some constant C > 0, which is independent of w. Moreover, by [KRY20, Theorem 2.4],
we have

(2.4) ∂θtw = dθtw for all w ∈ 0C
1([0, T ]).

In fact, ∂θt is nothing but the Riemann-Liouville fractional derivative:

∂θtw =
d

dt
(J1−θw) for all w ∈ Hθ(0, T ).

We remark that ∂θt is the smallest closed extension of dθt in Hθ(0, T ) [KRY20, Theorem 2.5].
Later we will also need the following version of coercivity inequality:

Lemma 2.2 ([KRY20, Theorem 3.3(ii)]). For each T > 0, one has∫ T

0

⟨∂θt u(t, ·), u(t, ·)⟩ dt ≥
T−θ

2θ(1− θ)
∥u∥2L2(0,T ;L2(O))
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for all u ∈ Hθ(0, T ;H
−1(O)) ∩ L2(0, T ;H1

0 (O)). Here ⟨·, ·⟩ denotes the duality pair between
H−1(O) and H1

0 (O).

2.2. Precise formulation of the IBVP. Here we would like to state conditions on g
and u0 before discussing the well-posedness of the IBVP (1.1). To begin, we define some
parabolic Hölder norms. For each parameter ϑ ∈ (0, 1] and set A ⊂ R × Rd, we say that
u ∈ C1+ϑ/2,2+ϑ(A) if u satisfies

∥u∥C1+ϑ/2,2+ϑ(A) := ∥∂tu∥L∞(A) + [∂tu]ϑ/2,ϑ +
∑
|α|≤2

(
∥∂αu∥L∞(OT ) + [∂αu]ϑ/2,ϑ

)
< ∞,

where

[v]ϑ/2,ϑ = sup
(t1,x1) ̸=(t2,x2)∈A

|v(t1, x1)− v(t2, x2)|
(|t1 − t2|+ |x1 − x2|2)ϑ/2

.

Assume for simplicity that

(2.5) g ∈ C∞((∂O)T ) and u0 ∈ C∞(O),

where (∂O)T = [0, T ]× ∂O. In addition, g and u0 satisfy the following compatibility condi-
tions:

(2.6) g(0, x) = u0(x) and ∂tg(0, x)−∆u0(x) = 0, ∀ x ∈ ∂O.

For given g and u0 satisfying regularity and compatibility conditions stated above, there
exists a unique solution wg ∈ C1+ϑ/2,2+ϑ(OT ) solving

(2.7) ∂twg −∆wg = 0 in OT , wg = g on (∂O)T , wg(0, ·) = u0(·) in O
and for each ϑ ∈ (0, 1]

(2.8) ∥wg∥C1+ϑ/2,2+ϑ(OT ) ≤ C(∥g∥C1+ϑ/2,2+ϑ((∂O)T ) + ∥u0∥C2+ϑ(O)),

where C depends on T,O, d, ϑ, see, for example, [Kry96, Theorem 10.4.1] or [Lun95, Theo-
rem 5.1.15]. To utilize the maximum principle, in addition to the regularity and compatibility
conditions (2.5), (2.6), we further assume that there exists c > 0 such that

(2.9) g(t, x) ≥ c, ∀ (t, x) ∈ (∂O)T and u0(x) ≥ c, ∀ x ∈ O.

Then it follows from the classical maximum principle that wg satisfies

wg(t, x) ≥ c, ∀ (t, x) ∈ OT .

To handle the inverse problem, we assume that the source function h ∈ L2(0, T ;L2(O))
satisfies

(2.10) h(t, x) ≥ ∂θt (wg(t, x)− wg(0, x))−∆wg(t, x) +M0wg(t, x), ∀ (t, x) ∈ OT a.e.

Condition (2.10) is used to guarantee the unique solution u of (1.1) satisfying u > 0 in OT ,
in order to make sense of the reconstruction formula (1.2).

To discuss the well-posedness of IBVP, we need to refine the estimate (2.8) in terms of
Sobolev norms. In view of (2.3), let us denote Hθ(0, T ;L

2(O)) the Hilbert space equipped
with the norm

∥v∥Hθ(0,T ;L2(O)) := ∥∂θt v∥L2(OT ).

From (2.7), we see that
∂t(wg − u0) = ∂twg = ∆wg in OT .
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Thus, for each 0 ≤ r < 1/2, we have
∥wg − u0∥H1+r(0,T ;L2(O)) ≤ C∥∂t(wg − u0)∥Hr(0,T ;L2(O)) = C∥∆wg∥Hr(0,T ;L2(O))

= C

(
∥∆wg∥2L2(OT ) +

∫ T

0

∫ T

0

∥∆wg(t, ·)−∆wg(s, ·)∥2L2(O)

|t− s|1+2r
dt ds

) 1
2

≤ CT,O

∥wg∥2C1,2(OT ) + sup
0<t,s<T,x∈Ω

|∆wg(t, x)−∆wg(s, x)|2

|t− s|

<∞ since 0 ≤ r < 1/2︷ ︸︸ ︷∫ T

0

∫ T

0

1

|t− s|2r
dt ds


1
2

≤ CT,O∥wg∥C 3
2 ,3(OT )

≤ C,

with C = C(T,O, g, u0), where we used ϑ = 1 in (2.8). In other words, we obtain that, for
0 ≤ r < 1/2,

(2.11) ∥wg − u0∥H1+r(0,T ;L2(O)) + ∥wg∥L2(0,T ;H2r+2(O)) ≤ C

for some positive constant C depending on T,O, g, and u0.
Given g, u0 satisfy (2.5) and (2.6). Let f ∈ L∞(O) with f ≥ 0 a.e., and h ∈ L2(0, T ;L2(O)).

We now formulate the IBVP (1.1) as follows (see [KRY20, Chapter 4]):

(2.12a) ∂θt (u(t, x)− u0(x))−∆u(t, x) + f(x)u(t, x) = h(x, t), in H−1(O), t ∈ (0, T ),

(2.12b) u(·, t)− wg(·, t) ∈ H1
0 (O), t ∈ (0, T ),

(2.12c) u− u0 ∈ Hθ(0, T ;L
2(O)).

In the case of 1
2

< θ < 1, by the Sobolev embedding Hθ(0, T ) ⊂ Hθ(0, T ) ⊂ C[0, T ],
(2.12c) implies u− u0 ∈ C([0, T ], L2(O)) and thus u(0, x) = u0(x) is satisfied in the sense of
limt→0 ∥u(·, t)− u0(·)∥L2(O) = 0.

2.3. The statistical model. Here we assume that given certain potential function f , uf is
the unique solution to (2.12). We will consider the value of uf (t, x) for (t, x) ∈ OT and we
write the forward opeartor G : L∞(O) → L2(0, T ;H1(O)) given by

(2.13) G(f) := uf .

It is more convenient that we randomly choose N ∈ N points Zi := (ti, xi) (at which the
solution uf is measured) from the uniform distribution on OT , that is, for N ∈ N,

(2.14) {Zi}Ni=1
iid∼ µ, µ =

dt× dx

T |O|
,

where dx, dt are the Lebesgue measures in Rd, R1, respectively, and |O| is the volume of O.
We will prove in Lemma 3.3 below that uf is continuous on OT under some suitable conditions
(see also (4.3b) below), and one can evaluate the forward operator (2.13) pointwise, i.e.,

G(f)(Zi) := uf (ti, xi)

where (ti, xi) is a realization of Zi. Now we consider the measurement model with a fixed
noise level σ > 0

(2.15) Yi = G(f)(Zi) + σWi, {Wi}Ni=1
iid∼ N (0, 1),
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where N (0, 1) denotes the standard normal distribution. We also assume that W (N) :=
{Wi}Ni=1 and Z(N) := {Zi}Ni=1 are independent. We are interested in the inference of f from
the observational data (Y (N), Z(N)) with Y (N) := {Yi}Ni=1.

We now introduce the space of parameters. For integer β ≥ 2 and M0 > 1, let

(2.16) Fβ
M0

=
{
f ∈ Hβ(O) : 0 < f < M0, f |∂O = 1, ∂jνf

∣∣
∂O = 0, 1 ≤ j ≤ β − 1

}
,

where ∂ν is the normal derivative in the sense of [LM72a, Theorem 9.4, Chapter 1]. To have
more flexibility of choosing priors, we will re-parametrize the potential function f . Although
we follow the general approach of [AN19, GK20, GN20, Kek22, NvdGW20], the limited
regularity of the solution necessitates adopting our method based on the maximum principle
(rather than the Feynman-Kac representations), which in turn requires the use of a link
function as in [FKW24a], differing from that in [Kek22].

Assumption 2.3 (link function). Assume that Φ satisfies
(i) Φ : (−∞,∞) → (0,M0), Φ(0) = 1, Φ′(z) > 0 for all z;
(ii) for any k ∈ N

sup
−∞<z<∞

|Φ(k)(z)| < ∞.

Given any link function Φ as in Assumption 2.3, following the argument as in [NvdGW20],
the parameter space can be realized as (this only requires assumptions (i) and (ii))

(2.17) Fβ
M0

:= {Φ ◦ F : F ∈ Hβ
0 (O)}.

Accordingly, we can define the reparametrized forward map by

(2.18) G(F ) := G(Φ ◦ F ) for all F ∈ Hβ
0 (O),

where G is the map given in (2.13). Therefore, the model (2.15) can be regarded as a special
case of

(2.19) Yi = G(F )(Zi) + σWi for i = 1, · · · , N .

The random vectors (Yi, Zi) on R×OT are then iid with laws denoted by PiF with Radon-
Nikodym density

(2.20) pF (y, z) :=
dPiF

dy × dµ
(y, z) =

1√
2πσ2

exp

(
−(y − G(F )(z))2

2σ2

)
for all y ∈ R, z ∈ OT , where dy denotes the Lebesgue measure on R. By slightly abusing
the notation, we write PNF = ⊗N

i=1PiF for the joint law of (Yi, Zi)
N
i=1 on RN × (OT )

N , and
EiF ,ENF denote the corresponding expectation operators of PiF ,PNF , respectively. We assign a
prior on the parameter space F by a Borel probability measure Π supported on the Banach
space C(O). Since the map (F, (y, z)) 7→ pF (y, z) can be shown to be jointly measurable, the
posterior distribution Π(·|Y (N), Z(N)) of F |Y (N), Z(N) arising from the model (2.19) equals
to

(2.21) Π(B|Y (N), Z(N)) =

∫
B
eℓ

N (F ) dΠ(F )∫
C(O)

eℓN (F ) dΠ(F )

for any Borel set B ⊂ C(O), where

ℓN(F ) = − 1

2σ2

N∑
i=1

(Yi − G(F )(Zi))
2
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is the joint log-likelihood function (up to a constant).

2.4. Main results. In this work, we are interested in the frequentist property of the posterior
distribution (2.21) in the sense that the observation data (Y (N), Z(N)) are generated through
the model (2.17)–(2.19) of law PNf0 corresponding to “ground truth” f0. From now on, we
consider d = 2, 3 in the rest of paper.

2.4.1. Rescaled Gaussian priors. The aim here is to show that the posterior distribution
arising from rescaled Gaussian priors concentrates near f0 and to derive a bound on the rate
of contraction as in [FKW24a, GN20, Kek22]. We now describe explicitly Gaussian priors
introduced in [FKW24a, GN20, Kek22].

Assumption 2.4. Let α > β + d/2, β > 1 + d/2, and H be a Hilbert space continuously
embedded into Hα

0 (O). Assume that Π′ is a centered Gaussian Borel probability measure on
the Banach space C(O) that is supported on a separable measurable linear space of Hβ(O).
Furthermore, let the reproducing-kernel Hilbert space of Π′ be equal to H.

An example that satisfies Assumption 2.4 is constructed from the Whittle-Matérn process.
The following example is given in [GN20, Example 25].

Example 2.5. Let O be an open smooth bounded domain in Rd with d ≥ 2. For α > d/2,
let the Whittle-Matérn process with index set O and smoothness parameter α− d/2 > 0 be
M = {M(x) : x ∈ O}. By [GvdV17, Chapter 11], the RKHS of M is Hα(O). Furthermore,
we can check that M has a version with paths belonging almost surely to Hβ(O) with all
β < α− d/2. If β > 1 + d/2, then by the Sobolev embedding theorem, one can consider M
a C1-smooth version Whittle-Matérn process with RKHS Hα(O). In what follows, we will
assume that F0 ∈ Hα(O) has compact support with supp(F0) = K ⊂ O. Choose a smooth
cut-off function χ ∈ C∞

0 (O) with χ = 1 on K and define M′ = χM. Then Π′ = L(M′) is a
centered Gaussian Borel probability measure supported on C1

0(O) with 1+d/2 < β < α−d/2,
whose RKHS is given by

H = {χF : F ∈ Hα(O)}
and H is continuously embedded into Hα

0 (O) [GN21, Exercise 2.6.5].

For those Π′ given in Assumption 2.4, we consider the rescaled prior

(2.22) ΠN = L(FN), FN =
1

Nd/(4α+4+2d)
F ′, F ′ ∼ Π′,

which again defines a centered Gaussian prior on C(O), and its reproducing-kernel Hilbert
space is still given by H but with norm

∥F∥HN
= Nd/(4α+4+2d)∥F∥H for all F ∈ H.

In light of the link function, we define the push-forward posterior on the potential f by

(2.23) Π̃N

(
·|Y (N), Z(N)

)
:= L(f) with f = Φ ◦ F : F ∼ ΠN

(
·|Y (N), Z(N)

)
,

where ΠN

(
·|Y (N), Z(N)

)
is the posterior arising from observations (Y (N), Z(N)) with prior ΠN

as in (2.21). Our first result shows that the posterior contracts toward the ground truth f0
in L2-prediction risk. Here f0 is given by f0 = Φ ◦ F0, where F0 ∈ Hα(O) with compact
support such that supp(F0) = K ⊂ O as described above.
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Theorem 2.6. Let O be a bounded domain in Rd with smooth boundary ∂O. Assume that g
and u0 satisfy (2.5), (2.6), and (2.9). Let θ ∈ (4

5
, 1) and h ∈ H θ

2
(0, T ;L2(O)) satisfy (2.10).

We consider a rescaled Gaussian prior ΠN given in (2.22) and the base prior F ′ ∼ Π′ satis-
fying Assumption 2.4 with corresponding parameters α, β described there having reproducing
kernel Hilbert space H. Let f0 be the given ground truth described above and the observations
(Y (N), Z(N)) be generated through the model (2.13)–(2.15) with f = f0. Let ΠN

(
·|Y (N), Z(N)

)
be the resulting posterior arising from observations (Y (N), Z(N)). Then for each D > 0, one
can find a positive constant L′ (depending on D) such that

Π̃N

(
f : ∥f − f0∥L2(O) > L′δ

1/3
N |Y (N), Z(N)

)
= OPN

F0
(e−DNδ

2
N ) as N → +∞,

where δN = N−(α+1)/(2α+2+d).

Remark 2.7. The range of θ ∈ (4
5
, 1) implies that θ

2
∈ (1

2
− θ

8
, 1
2
), as required for the estimates

on forward and inverse problems in Section 4. This assumption is crucial for ensuring the
continuity of the solution u to (2.12), which in turn provides pointwise evaluation of the
forward operator (2.13).

To obtain an estimator of the unknown coefficient f , in view of the link function Φ in
Assumption 2.3, it is often convenient to derive an estimator of F . The posterior mean
FN := EΠN

(
F |Y (N), Z(N)

)
of ΠN

(
·|Y (N), Z(N)

)
, which can be approximated numerically by

an MCMC algorithm, is the most natural choice of estimator. From Theorem 2.6 we also
prove a contraction rate for the convergence FN to F0.

Theorem 2.8. Assume that the assumptions of Theorem 2.6 hold. Then there exists a
constant C > 0 such that

PNF0

(
∥FN − F0∥L2(O) > Cδ

1/3
N

)
→ 0 as N → +∞.

As an immediate consequence of (2.23), there exists a constant C ′ > 0 such that

(2.24) PNf0
(
∥Φ ◦ FN − f0∥L2(O) > C ′δ

1/3
N

)
→ 0 as N → +∞.

2.4.2. High-dimensional Gaussian sieve priors. We now describe Gaussian sieve priors in-
troduced in [FKW24a, GN20, Kek22]. Let {Ψℓr : ℓ ≥ −1, r ∈ Zd} be the d-dimensional
compactly supported Daubechies wavelets, which forms an orthonormal basis of L2(Rd). Let
K be a compact subset in O and let Rℓ = {r ∈ Zd : supp (Ψℓr) ∩ K ≠ ∅}. Let K′ be another
compact subset in O such that K ⊊ K′ and let χ ∈ C∞

c (O) be a cut-off function with χ = 1
on K′. For any truncation level j ∈ N and α > 1 + d/2, let the prior Π′

j be given as the law
of the Gaussian random sum

(2.25) Π′
j ≡ Π′

j[α] = L(χFj), Fj =
∑

−1≤ℓ≤j,r∈Rℓ

2−ℓαFℓrΨℓr with Fℓr
iid∼ N (0, 1).

Then Π′
j defines a centered Gaussian prior that is supported on the finite-dimensional space

(2.26) Hj = span{χΨℓr : −1 ≤ ℓ ≤ j, r ∈ Rℓ} ⊂ C(O).

Theorem 2.9. Assume that the rescaled prior ΠN ≡ ΠN [α] is defined as (2.22) with priors
F ′ ∼ Π′

j(N), where the truncation level j(N) ∈ N satisfies 2j(N) ≃ N1/(2α+2+d). Then the
conclusions of Theorem 2.6 and Theorem 2.8 remain valid.
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The proof of Theorem 2.9 only requires minor modification from the proofs of Theorem 2.6
and Theorem 2.8, and all necessary modifications are listed in [GN20, Section 3.2]. We thus
refrain from repeating the argument here, see also [GN20, Proposition 7].

2.4.3. Randomly truncated Gaussian series priors. Now let J be a random truncation level,
which is independent of the random coefficients Fℓr mentioned in (2.25), satisfying the in-
equalities:

Pr (J > j) = e−2jd log 2jd for all j ∈ N, Pr (J = j) ≳ e−2jd log 2jd as j → ∞.

When d = 1, log-Poisson random variable satisfies these tail conditions, and for d > 1 an
example is constructed in [GN20, Example 28]. We now consider the random (conditionally
Gaussian) sum
(2.27) Π = Π′

J ,

where the random sum Π′
j = Π′

J=j is defined as in (2.25). Here we impose a slightly stronger
assumption on the link function.

Assumption 2.10. In addition to Assumption 2.3, the link function Φ further satisfies that
there exists a > 1 such that Φ′(t) ≳ |t|−a when |t| is sufficiently large.

An example of such a link function satisfying the requirements above is demonstrated in
[FKW24b]. Similarly, we consider the push-forward posterior Π̃(·|Y (N), X(N)) mentioned in
(2.23). We are now ready to prove the following theorem.

Theorem 2.11. Let O be a bounded domain in Rd with smooth boundary ∂O. Assume that g
and u0 satisfy (2.5), (2.6), and (2.9). Let θ ∈ (4

5
, 1) and h ∈ H θ

2
(0, T ;L2(O)) satisfy (2.10).

For integer α > 1 + d/2, we consider the random series prior given in (2.27). There exists
a sufficiently large α0 = α0(d, α) > 0 (see (5.9) below) such that the following statement
holds true: Let f0 be the given ground truth satisfying f0 = Φ(F0), F0 ∈ Hα0(O) with
supp (F0) ⊆ K ⊂ O and the observations (Y (N), Z(N)) be generated through the model (2.19)
with F = F0. Denote ΠN

(
·|Y (N), Z(N)

)
the resulting posterior arising from observations

(Y (N), Z(N)). Then for each D > 0, one can find a positive constant L such that

Π̃
(
f : ∥f − f0∥L2(O) > Lξ

1/3
N |Y (N), X(N)

)
= OPN

f0
(e−DNξ

2
N ) as N → ∞,

where ξN = N−(α0+1)/(2α0+2+d) logN .

Similar as in Theorem 2.8, the last contraction theorem also translates into a convergence
result for the posterior mean of F .

Theorem 2.12. Under the hypotheses of Theorem 2.11, let FN := EΠ(F |Y (N), X(N)) be the
mean of Π(·|Y (N), X(N)). Then there exists a constant C > 0 such that

PNF0

(
∥FN − F0∥L2(O) > Cξ

1/3
N

)
→ 0 as N → +∞.

As an immediate consequence of (2.23), there exists a constant C ′ > 0 such that

PNf0
(
∥Φ ◦ FN − f0∥L2(O) > C ′ξ

1/3
N

)
→ 0 as N → +∞.

Likewise, Theorem 2.12 can be proved by following the same line as in the proof of
Theorem 2.8. Note that for the random series prior Π given in (2.27), it also holds that
EΠ∥F∥2L2(O) < ∞. For brevity, we omit the detailed proof here.
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2.4.4. A lower bound on the contraction rate. We now give a lower bound on the contraction
rate for any parameter (ground truth) in F̃α, given below, in the statistical minimax sense.
We define the function space

(2.28) F̃α =

{
f ∈ Cα(O) : inf

x∈O
f(x) ≥ c1, ∥f∥Cα(O) ≤ c2

}
.

for any fixed positive constants 0 < c1 < c2. For simplicity, we consider the specific choice
c1 =

1
2

and c2 =
3
2
. The following theorem gives a lower bound that holds for any estimator

of f , not necessarily the posterior mean mentioned in Theorem 2.8 and Theorem 2.12.

Theorem 2.13 (see also (5.12) below). Assume that g, u0 satisfy (2.5), (2.6), and h ∈
L2(0, T ;L2(O)). Let (Y (N), Z(N)) be observations generated through the model (2.13)–(2.15)
with f ∈ F̃α. For each α > d/2, one has

inf
f̂N

sup
f∈F̃α

ENf ∥f̂N − f∥L2(O) ≥
1

2
N− α

2α+2+d for all sufficiently large N ,

where the infimum is taken over all measurable functions f̂N = f̂N(Y
(N), Z(N)).

By further refining the proof of Theorem 2.13, we can also obtain the following result.

Theorem 2.14. If all assumptions in Theorem 2.13 hold, then there exists c > 0 such that
for each sufficiently small constant ϵ > 0 one has

lim inf
f̂N

sup
f∈F̃α

PNf
(
∥f̂N − f∥L2(O) > cN− α

2α+2+d

)
≥ 1− ϵ as N → ∞

where the infimum is taken over all measurable functions f̂N = f̂N(Y
(N), Z(N)).

One may naturally ask that it is possible to find an estimator in Theorem 2.6, Theorem 2.8
and Theorem 2.11 with a faster contraction rate. Here, Theorem 2.14 gives a negative answer:
it is not possible to find an estimator f̂N of f which contracts with a contraction rate faster
than N− α

2α+2+d . There remains a gap between the contraction rate δ
1/3
N = α+1

3(2α+2+d)
from

Theorem 2.6 and the rate α
2α+2+d

from Theorem 2.13, likely due to methodological limitation.

2.5. Related results and remarks. Our study is inspired by the results in [GN20] (for
elliptic equations) and [Kek22] (for parabolic equations), both of which focus on local prob-
lems. In the local setting, employing smoother Gaussian priors yields smoother forward
maps. Consequently, the Hölder exponent in the inverse stability estimate approaches 1 as
the solution’s smoothness increases. This, in turn, leads to faster posterior contraction to-
ward the ground truth when smoother priors are used. However, when the true parameter
lies within the reproducing kernel Hilbert space (RKHS) of the prior, overly smooth priors
may lead to under-fitting in the inference process.

In contrast, time-fractional and spatial-fractional equations such as those involving the
fractional Laplacian (−∆)s with 0 < s < 1, exhibit intrinsically limited regularity of solu-
tions. As a result, the stability estimates for the corresponding inverse problems cannot be
improved by increasing the smoothness of the prior, leading to inherently slower posterior
contraction rates. The key challenge in analyzing nonlocal equations lies in addressing this
limited regularity. Moreover, while [GN20, Kek22] rely on Feynman-Kac representations to
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study solutions, our approach is based instead on the maximum principle. We believe this al-
ternative strategy is more adaptable for handling the regularity challenges posed by nonlocal
models.

For the purpose of uncertainty quantification, consistency alone is not sufficient. The
ultimate objective is to establish a Bernstein-von Mises (BvM) theorem, which describes the
asymptotic shape of the posterior distribution. However, it is well known that the BvM
theorem does not generally hold in infinite-dimensional settings. Recent progress has been
made in the semiparametric context for local PDEs, e.g., [Nic20, Nic24]. Extending these
results to the nonlocal setting remains an open and compelling direction for future research.

3. Well-posedness of the IBVP

We now want to prove the well-posedness of the IBVP (2.12). Recall that wg is the solution
of (2.7) with given g and u0 satisfying (2.5) and (2.6). First, we observe that

(3.1) wg(t, x)− wg(0, x) = wg(t, x)− u0(x) ∈ Hθ(0, T ;H
2(O)).

By writing v(t, x) = uf (t, x)− wg(t, x), we see that

(3.2)


∂θt v(t, x)−∆v(t, x) + f(x)v(t, x)

= h(t, x)− ∂θt (wg(t, x)− wg(0, x)) + ∆wg(t, x)− f(x)wg(t, x)
in OT ,

v ∈ H1
0 (O), t ∈ (0, T ),

v ∈ Hθ(0, T ;L
2(O)).

Note that, thanks to (3.1), it is easy to see that v ∈ Hθ(0, T ;L
2(O)) if and only if u− u0 ∈

Hθ(0, T ;L
2(O)). Based on this observation, we now able to proof the following lemma.

Lemma 3.1. Let 0 < θ < 1 and T > 0. Assume that g and u0 satisfy (2.5) and (2.6).
Let f ∈ L∞(O), f ≥ 0 a.e., and h ∈ L2(0, T ;L2(O)). Then, for each auxiliary parameter
ϑ ∈ (0, 1], there exists a unique solution uf solving (2.12) and the following estimate holds

(3.3) ∥uf∥L2(0,T ;H1(O)) ≤ C(1+∥f∥L∞(O))(∥h∥L2(0,T ;L2(O))+∥g∥C1+ϑ/2,2+ϑ((∂O)T )+∥u0∥C2+ϑ(O)),

where C > 0 depends on θ, ϑ, T,O, but are independent of f .

Proof. In view of [KRY20, Theorem 4.2], there exists a unique solution v satisfying (3.2)
and by Lemma 2.2, (2.8), we have

T−θ

2θ(1− θ)
∥v∥2L2(0,T ;L2(O)) + ∥v∥2L2(0,T ;H1(O))

≤
∫ T

0

⟨∂θt v(t, ·), v(t, ·)⟩ dt+
∫ T

0

∫
O
|∇v|2dxdt+

∫ T

0

∫
O
f |v|2dxdt

=

∫ T

0

∫
O
(h− ∂θt (wg − wg(0, ·)) + ∆wg − fwg)vdxdt

≤ C(1 + ∥f∥2L∞(O))(∥h∥L2(0,T ;L2(O)) + ∥g∥C1+ϑ/2,2+ϑ((∂O)T ) + ∥u0∥C2+ϑ(O))
2

+
T−θ

4θ(1− θ)
∥v∥2L2(0,T ;L2(O)),

which implies

∥v∥L2(0,T ;H1(O)) ≤ C(1 + ∥f∥L∞(O))(∥h∥L2(0,T ;L2(O)) + ∥g∥C1+ϑ/2,2+ϑ((∂O)T ) + ∥u0∥C2+ϑ(O)),
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and thus uf := v + wg is the solution of (2.12) satisfying

∥uf∥L2(0,T ;H1(O)) ≤ C(1 + ∥f∥L∞(O))(∥h∥L2(0,T ;L2(O)) + ∥g∥C1+ϑ/2,2+ϑ((∂O)T ) + ∥u0∥C2+ϑ(O)).

It is important to point out that all constants C above depend on θ, T,O, but are independent
of f . □

Remark 3.2. It should be noted that it follows directly from [KRY20, Theorem 4.2] that
if f ∈ C1(O), then there exists a unique v ∈ L2(0, T ;H2(O) ∩ H1

0 (O)) ∩ Hθ(0, T ;L
2(O))

satisfying (3.2) and there exists a constant C > 0 such that

∥v∥Hθ(0,T ;L2(O)) + ∥v∥L2(0,T ;H2(O))

≤ C(1 + ∥f∥L∞(O))(∥h∥L2(0,T ;L2(O)) + ∥g∥C1+ϑ/2,2+ϑ((∂O)T ) + ∥u0∥C2+ϑ(O)).

Hence, the solution uf will satisfy a similar estimate. However, here the constant C depends
on f implicitly. In our inverse problem, we need a regularity estimate of uf with explicit
dependence of ∥f∥L∞(O). This is why we derive the weaker estimate (3.3).

Next, we would like to discuss the improvement of the time regularity of the solution uf .

Lemma 3.3. Let T > 0, 0 < θ < 1. Assume that g and u0 satisfy (2.5), (2.6). Also, suppose
f ∈ C1(O) with f ≥ 0. Let θ′ ∈ (1

2
− θ

8
, 1
2
) and h ∈ Hθ′(0, T ;L

2(O)). Then the solution
uf ∈ C([0, T ];C(O)) of (3.2) satisfies

(3.4) ∥uf∥L∞(OT ) ≤ C(1 + ∥f∥2L∞(O))(1 + ∥h∥Hθ′ (0,T ;L
2(O)))

with C independent of f , but depends on g and u0.

Proof. From (2.11) and (wg(t, ·) − u0(·))|t=0 = 0, we can see that wg(t, x) − u0(x) ∈
Hα(0, T ;L

2(O)) whenever 0 < α < 3/2. Note that θ + θ′ < 1 + θ′ < 3/2, thus wg(t, x) −
wg(0, x) = wg(t, x) − u0(x) ∈ H1+θ′(0, T ;L

2(O)) ⊂ Hθ+θ′(0, T ;L
2(O)). From (2.7) we see

that ∂θ
′
t ∆wg = ∂1+θ′

t wg ∈ L2(OT ), where we have used the norm equivalence (2.3).
As above, let v(t, x) = u(t, x)− wg(t, x), recall (3.2)

(3.5)



∂θt v(t, x)−∆v(t, x) + f(x)v(t, x)

= h(t, x)− ∂θt (wg(t, x)− wg(0, x)) + ∆wg(t, x)− f(x)wg(t, x)

=: h̃(t, x),

in OT ,

v ∈ H1
0 (O), t ∈ (0, T ),

v ∈ Hθ(0, T ;L
2(O)).

Now observe that ∂θ
′
t h̃ ∈ L2(0, T ;L2(O)). Next, by the similar idea in the proof of [Yam22,

Theorem 12], we consider the equation

(3.6)


∂θtw(t, x)−∆w(t, x) + f(x)w(t, x) = ∂θ

′

t h̃(t, x) in OT ,

w ∈ H1
0 (O), t ∈ (0, T ),

w ∈ Hθ(0, T ;L
2(O)).

By Lemma 3.1 (with ϑ = 1), there exists a unique solution w solving (3.6) and satisfying

(3.7) ∥w∥L2(0,T ;H1(O)) ≤ C(1 + ∥f∥L∞(O))∥∂θ
′

t h̃∥L2(0,T ;L2(O)),
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where C is independent of f (from (3.3)). Next, we can check that Jθ′w is the unique solution
to (3.5). Indeed, let us denote ṽ = Jθ

′
w. Then, from (2.2) and the last condition of (3.6), one

has ṽ ∈ Hθ+θ′(0, T ;L
2(O)). Moreover, in view of Remark 3.2, w ∈ L2(0, T ;H2(O)∩H1

0 (O)).
Using [Yam22, Proposition 5 (ii)], we obtain that

J−θṽ = Jθ
′
(J−θw).

Also, we can see that
−∆ṽ + fṽ = Jθ

′
(−∆w + fw).

Consequently, we obtain from the first equation of (3.6) that

J−θṽ −∆ṽ + fṽ = Jθ
′
(J−θ′w −∆w + fw) = Jθ

′
(∂θ

′

t h̃) = h̃.

In other words, v := ṽ solves (3.5) and, by (3.7), v satisfies

(3.8)
∥v∥Hθ′ (0,T ;H

1(O)) ≤ C(1 + ∥f∥L∞(O))∥∂θ
′

t h̃∥L2(0,T ;L2(O))

≤ C(1 + ∥f∥L∞(O))(1 + ∥h∥Hθ′ (0,T ;L
2(O))),

where C is independent of f , but depends on g and u0.
Estimate (3.8) immediately implies

(3.9) ∥uf∥Hθ′ (0,T ;H
1(O)) ≤ C(1 + ∥f∥L∞(O))(1 + ∥h∥Hθ′ (0,T ;L

2(O))),

where C > 0 is independent of f . This estimate will be useful later on.
We would now show that the regularity of v in (3.5) can be improved. We rewrite (3.5) as

(3.10)



∂θt v(t, x)−∆v(t, x)

= h(t, x)− ∂θt (wg(t, x)− wg(0, x))

+ ∆wg(t, x)− f(x)wg(t, x)− f(x)v(t, x),

in OT ,

v ∈ H1
0 (O), t ∈ (0, T ),

v ∈ Hθ(0, T ;L
2(O)).

Applying [Yam22, Theorem 12] to (3.10) and using (3.8) implies that v ∈ Hθ′(0, T ;H
2(O) ∩

H1
0 (O)) ∩Hθ+θ′(0, T ;L

2(O)) and

(3.11)

∥v∥Hθ+θ′ (0,T ;L
2(O)) + ∥v∥Hθ′ (0,T ;H

2(O))

≤ C∥h− ∂θt (wg − wg(0, ·)) + ∆wg − fwg − fv∥Hθ′ (0,T ;L
2(O))

≤ C(1 + ∥f∥2L∞(O))(1 + ∥h∥Hθ′ (0,T ;L
2(O))),

where the constant C > 0 is independent of f .
For any parameter θ′′ ∈ (0, 1), from (3.11), we can use the interpolation theorem in [KRY20,

Section 4.2.1] (applying to ∂θ
′
t v) to derive that

∥v∥Hθθ′′+θ′ (0,T ;H
2−2θ′′ (O)) ≤ C(1 + ∥f∥2L∞(O))(1 + ∥h∥Hθ′ (0,T ;L

2(O))).

Choosing θ′ ∈ (1
2
− θ

8
, 1
2
) and θ′′ = 1

4
− ϵ for small ϵ > 0 gives

θθ′′ + θ′ >
θ

4
− θϵ+

1

2
− θ

8
=

1

2
+

θ

8
− θϵ >

1

2
, 2− 2θ′′ >

3

2
.

When d = 1, 2, 3, the Sobolev embedding theorem implies that v ∈ C([0, T ];C(O)) and thus

∥v∥L∞(OT ) ≤ C(1 + ∥f∥2L∞(O))(1 + ∥h∥Hθ′ (0,T ;L
2(O))),
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which, in turn, gives uf = u ∈ C([0, T ];C(O)) and

∥uf∥L∞(OT ) ≤ C(1 + ∥f∥2L∞(O))(1 + ∥h∥Hθ′ (0,T ;L
2(O)))

with C independent of f , but depends on g and u0. □

We close this section by proving a useful maximum principle for uf when the source function
h satisfies an appropriate lower bound. In addition to the regularity and compatibility
conditions (2.5), (2.6), we further assume that there exists c > 0 such that

g(t, x) ≥ c, ∀ (t, x) ∈ (∂O)T and u0(x) ≥ c, ∀ x ∈ O.

Then the classical maximum principle for the heat equation yields

wg(t, x) ≥ c for all (t, x) ∈ OT .

Assume further that the source function h ∈ L2(0, T ;L2(O)) satisfies

h(t, x) ≥ ∂θt (wg(t, x)− wg(0, x))−∆wg(t, x) +M0wg(t, x), ∀ (t, x) ∈ OT a.e.

Then, by the (weak) maximum principle in [LY17, Theorem 2.1], v of (3.5) satisfies

v(t, x) ≥ 0 for all (t, x) ∈ OT a.e.

which implies

(3.12) uf (t, x) ≥ c for all (t, x) ∈ OT ,

for all f ∈ C(O) with ∥f∥L∞(O) ≤ M0.

4. Estimates on forward and inverse problems

Given h ∈ L2(0, T ;L2(O)), g and u0 satisfying (2.5) and (2.6). Let fj ∈ L∞(O) with
0 ≤ fj a.e. in O for j = 1, 2. Denote ufj the solution of (2.12) corresponding to fj. Then we
can see that

(4.1)


∂θt (uf1 − uf2)−∆(uf1 − uf2) + f1(uf1 − uf2)

= −(f1 − f2)uf2
in OT ,

(uf1 − uf2) ∈ H1
0 (O), t ∈ (0, T ),

(uf1 − uf2) ∈ Hθ(0, T ;L
2(O)).

Applying Lemma 3.1 and estimate (3.3) implies

(4.2)

∥uf1 − uf2∥L2(0,T ;L2(O))

≤ ∥uf1 − uf2∥L2(0,T ;H1(O))

≤ C(1 + ∥f1∥L∞(O))∥(f1 − f2)uf2∥L2(0,T ;L2(O))

≤ C(1 + ∥f1∥L∞(O))∥uf2∥L2(0,T ;H1(O))∥f1 − f2∥(H1(O))∗

≤ C(1 + ∥f1∥2L∞(O) ∨ ∥f2∥2L∞(O))∥f1 − f2∥(H1(O))∗ ,

where C depends on T , d, O, ∥h∥L2(0,T ;L2(O)), g, u0, but is independent of f .
In order to apply the method in [GN20] (or [FKW24a]), we will need to verify the following

conditions.
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Proposition 4.1. Let T > 0, 0 < θ < 1 and assume that g and u0 satisfy (2.5), (2.6). Let
h ∈ Hθ′(0, T ;L

2(O)) for some θ′ ∈ (1
2
− θ

8
, 1
2
). For any integer β > 1+d/2, consider f ∈ Fβ

M0

and define G(F ) by (2.18). Then one has

(4.3a) ∥G(F1)− G(F2)∥L2(OT ) ≲ (1 + ∥F1∥2C1(O) ∨ ∥F2∥2C1(O))∥F1 − F2∥(H1(O))∗

for all F1, F2 ∈ Hβ
0 (O). In addition, one has

(4.3b) ∥G∥Hβ
0 (O)→L∞(OT ) ≡ sup

F∈Hβ
0 (O)

∥G(F )∥L∞(OT ) < ∞.

Proof of Proposition 4.1. Let f1, f2 ∈ Fβ
M0

and f1 = Φ(F1), f2 = Φ(F2) for some
F1, F2 ∈ Hβ

0 (O). Combining (4.2) and [NvdGW20, Lemma 29 (6.4)] immediately yields that

∥G(F1)− G(F2)∥L2(OT ) ≤ C(1 + ∥Φ(F1)∥2L∞(O) ∨ ∥Φ(F2)∥2L∞(O))∥Φ(F1)− Φ(F2)∥(H1(O))∗

≤ C(1 + ∥F1∥2C1(O) ∨ ∥F2∥2C1(O))∥F1 − F2∥(H1(O))∗ .

On the other hand, when d = 2, 3, (4.3b) is an easy consequence of (3.4) in Lemma 3.3. □

Next, we will derive a Hölder-type stability estimate for the inverse problem similar to
those in [Kek22, Proposition 10] and [NvdGW20, Lemma 28]. The main idea is based on the
maximum principle given in (3.12). We begin with the following simple lemma.

Lemma 4.2. Suppose that g and u0 satisfy (2.5), (2.6), and (2.9). Let h ∈ L2(0, T ;L2(O))
satisfy (2.10), and 0 ≤ f1 ≤ M0, 0 ≤ f2 ≤ M0 a.e. in O. Denote uf1 , uf2 the solutions of
(2.12) corresponding to f = f1, f2, respectively. Then we have

(4.4)
∥f1 − f2∥L2(O)

≤ C
(
1 + ∥f2∥L∞(O)

) (
∥uf1 − uf2∥Hθ(0,T ;L2(O)) + ∥uf1 − uf2∥L2(0,T ;H2(O))

)
,

for some constant C > 0, which is independent of f1 and f2.

Proof. From the reconstruction formula (1.2), we can write

(4.5)

T 1/2∥f1 − f2∥L2(O) = ∥f1 − f2∥L2(OT )

=

∥∥∥∥∂θt (uf1 − u0)−∆uf1
uf1

− ∂θt (uf2 − u0)−∆uf2
uf2

∥∥∥∥
L2(OT )

≤
∥∥∥∥∂θt (uf1 − uf2)−∆(uf1 − uf2)

uf1

∥∥∥∥
L2(OT )

+ ∥(u−1
f1

− u−1
f2
)(∂θt (uf2 − u0)−∆uf2)∥L2(OT )

≤ c−1
(
∥∂θt (uf1 − uf2)∥L2(OT ) + ∥∆(uf1 − uf2)∥L2(OT )

)
+ ∥(u−1

f1
− u−1

f2
)f2uf2∥L2(OT )

+ ∥(u−1
f1

− u−1
f2
)h∥L2(OT ),

where we used the maximum principle (3.12) in the first term of the last inequality. Again,
by (3.12), we can see that

(4.6)
∥(u−1

f1
− u−1

f2
)f2uf2∥L2(OT ) = ∥u−1

f1
(uf2 − uf1)f2∥L2(OT )

≤ c−1∥f2∥L∞(O)∥uf1 − uf2∥L2(OT )
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and

(4.7)

∥(u−1
f1

− u−1
f2
)h∥L2(OT ) = ∥u−1

f1
u−1
f2
(uf2 − uf1)h∥L2(OT )

≤ c−2∥(uf2 − uf1)h∥L2(OT ) = c−2

(∫ T

0

∥(uf2 − uf1)(t, ·)h∥2L2(O) dt

)1/2

≤ c−2∥h∥L2(O)

(∫ T

0

∥uf2 − uf1(t, ·)∥2L∞(O) dt

)1/2

≤ Cc−2∥h∥L2(O)

(∫ T

0

∥uf2 − uf1(t, ·)∥2H2(O) dt

)1/2

= Cc−2∥h∥L2(O)∥uf1 − uf2∥L2(0,T ;H2(O))

where we have used the continuous embedding H2(O) ⊂ L∞(O) since d = 2, 3. Combining
(4.5), (4.6), (4.7), (2.3) yields (4.4). □

Proposition 4.3. Assume that g and u0 satisfy (2.5), (2.6), and (2.9). Let h ∈
H θ

2
(0, T ;L2(O)) satisfy (2.10), and f1, f2 ∈ C1(O) with 0 ≤ f1 ≤ M0, 0 ≤ f2 ≤ M0 in

O. Then we have

(4.8) ∥f1 − f2∥L2(O) ≤ C (1 +M0) (1 + ∥f1∥4/3C1(O) ∨ ∥f2∥4/3C1(O))∥uf1 − uf2∥
1/3

L2(OT ),

where C depends on T , d, O, ∥h∥H θ
2
(0,T ;L2(O)), g, u0, but is independent of both f1 and f2.

Remark 4.4. Using the link function Φ, (4.8) can be re-phrased as

∥Φ ◦ F1 − Φ ◦ F2∥L2(O) ≤ C(1 + ∥F1∥4/3C1(O) ∨ ∥F2∥4/3C1(O))∥G(F1)− G(F2)∥1/3L2(OT ),

where C depends on the quantities described above and M0.

Proof of Proposition 4.3. The proof mainly utilize the linear estimate in Lemma 4.2
and the interpolation relation in [LM72b, (2.6)–(2.7)].

Step 1: Interpolation with respect to time variable. On the other hand, we write (4.1) as

(4.9)


∂θt (uf1 − uf2)−∆(uf1 − uf2) = f2uf2 − f1uf1 in OT ,

(uf1 − uf2) ∈ H1
0 (O), t ∈ (0, T ),

(uf1 − uf2) ∈ Hθ(0, T ;L
2(O)).

From [Yam22, Theorem 12] and estimate (3.9), it follows that, for each 0 < θ0 < 1/2, we can
derive

(4.10)

∥uf1 − uf2∥Hθ+θ0
(0,T ;L2(O)) + ∥uf1 − uf2∥Hθ0

(0,T ;H2(O))

≤ C
(
∥f2∥L∞(O)∥uf2∥Hθ0

(0,T ;L2(O)) + ∥f1∥L∞(O)∥uf1∥Hθ0
(0,T ;L2(O))

)
≤ C(1 + ∥f1∥2L∞(O) ∨ ∥f2∥2L∞(O))
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for some constant C > 0, depending on T , d, O, ∥h∥Hθ0
(0,T ;L2(O)), g, u0, but is independent

of f1 and f2. Now applying the interpolation relation in [LM72b, (2.7)] implies

∥uf1 − uf2∥Hθ(0,T ;L2(O)) ≤ ∥uf1 − uf2∥
θ

θ+θ0

Hθ+θ0
(0,T ;L2(O))∥uf1 − uf2∥

θ0
θ+θ0

L2(0,T ;L2(O))

≤ C

(
1 + ∥f1∥

2θ
θ+θ0

L∞(O) ∨ ∥f2∥
2θ

θ+θ0

L∞(O)

)
∥uf1 − uf2∥

θ0
θ+θ0

L2(0,T ;L2(O)).

In particular, taking θ0 =
θ
2
, we obtain

(4.11) ∥uf1 − uf2∥Hθ(0,T ;L2(O)) ≤ C
(
1 + ∥f1∥4/3L∞(O) ∨ ∥f2∥4/3L∞(O)

)
∥uf1 − uf2∥

1/3

L2(0,T ;L2(O)).

Using (4.11) and (3.3), one can derive that

(4.12) ∥uf1 − uf2∥Hθ(0,T ;L2(O)) ≤ C
(
1 + ∥f1∥5/3L∞(O) ∨ ∥f2∥5/3L∞(O)

)
with C depending on T , d, O, ∥h∥H θ

2
(0,T ;L2(O)), g, u0.

Step 2: Interpolation with respect to spatial variables. Taking the gradient on the first equa-
tion in (4.9), and using the interpolation of space-time Sobolev spaces as in [KRY20, Sec-
tion 4.2.1], one can estimate

(4.13)

∥∇∆(uf1 − uf2)∥L2(0,T ;L2(O))

≤ ∥uf1 − uf2∥Hθ(0,T ;H1(O))

+ C(1 + ∥f1∥C1(O) ∨ ∥f2∥C1(O))
(
∥uf1∥L2(0,T ;H1(O)) + ∥uf2∥L2(0,T ;H1(O))

)
≤ ∥uf1 − uf2∥

1/2

H3θ/2(0,T ;L
2(O))∥uf1 − uf2∥

1/2

Hθ/2(0,T ;H
2(O))

+ C(1 + ∥f1∥C1(O) ∨ ∥f2∥C1(O))
(
∥uf1∥L2(0,T ;H1(O)) + ∥uf2∥L2(0,T ;H1(O))

)
.

Furthermore, in the right-hand side of (4.13), we apply (4.10) with θ0 = θ
2

to its first term
and using (3.3) to its second term to get

(4.14) ∥∇∆(uf1 − uf2)∥L2(0,T ;L2(O)) ≤ C(1 + ∥f1∥2C1(O) ∨ ∥f2∥2C1(O)),

where C > 0 is independent of f1 and f2. On the other hand, by the first equation of (4.9),
we have

(4.15)

∥∆(uf1 − uf2)∥L2(0,T ;L2(O))

≤ ∥uf1 − uf2∥Hθ(0,T ;L2(O)) + ∥f1∥L∞(O)∥uf1∥L2(0,T ;L2(O))

+ ∥f2∥L∞(O)∥uf2∥L2(0,T ;L2(O))

≤ C(1 + ∥f1∥2L∞(O) ∨ ∥f2∥2L∞(O)),

where C depends on T , d, O, ∥h∥H θ
2
(0,T ;L2(O)), g, u0. In (4.15), we have used (4.12) and (3.3).

Putting together (4.14) and (4.15) yields

(4.16) ∥∆(uf1 − uf2)∥L2(0,T ;H1(O)) ≤ C(1 + ∥f1∥2C1(O) ∨ ∥f2∥2C1(O)).

Observe that uf1 − uf2 ∈ H1
0 (O). Notice that, for each integer k ≥ 2, −∆ : Hk(O) ∩

H1
0 (O) → Hk−2(O) is an isomorphism and thus (−∆)−1 : Hk−2(O) → Hk(O) ∩ H1

0 (O),
for example, see [GT01, Theorem 8.13]. Thus, it follows from (4.16) that uf1 − uf2 ∈
L2(0, T ;H3(O)) and

(4.17) ∥uf1 − uf2∥L2(0,T ;H3(O)) ≤ C(1 + ∥f1∥2C1(O) ∨ ∥f2∥2C1(O)),
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where C > 0 is independent of f1 and f2. Next, by the interpolation inequality [LM72b,
(2.6)], we have

(4.18)
∥uf1 − uf2∥L2(0,T ;H2(O)) ≤ C∥uf1 − uf2∥

2/3

L2(0,T ;H3(O))∥uf1 − uf2∥
1/3

L2(0,T ;L2(O))

≤ C
(
1 + ∥f1∥4/3C1(O) ∨ ∥f2∥4/3C1(O)

)
∥uf1 − uf2∥

1/3

L2(0,T ;L2(O)).

Finally, Proposition 4.3 follows easily from Lemma 4.2, (4.11), and (4.18). □

5. Proof of theorems

We first recall the general contraction rate in [GN20, Theorem 14] without specifying to
the operator (2.13). The statement of the theorem is modified to fit into our setting here.

Lemma 5.1. Let F ⊂ L2(O) be endowed with the trace Borel σ-field of L2(O), and consider
a Borel-measurable forward map G : F → L2(D), where D is a bounded measurable subset of
Rm with m ≥ 1. For F0 ∈ F , we are given noisy discrete measurement of G(F0) over a grid
of points drawn uniformly at random on D as in the model (2.15). We further assume that
supF∈F∥G(F )∥L∞(D) < +∞ and there exist β, γ, κ, τ ≥ 0 such that

∥G(F1)− G(F2)∥L2(D) ≲
(
1 + ∥F1∥γCτ (O) ∨ ∥F2∥γCτ (O)

)
∥F1 − F2∥(Hκ(O))∗

for all F1, F2 ∈ Hβ
0 (O)∩F . For integer α > β + d/2, β > τ + d/2 with τ ≥ 1, we consider a

Gaussian prior ΠN constructed in (2.22) with base prior F ′ ∼ Π′ satisfying Assumption 2.4
with reproducing-kernel Hilbert space H. Let ΠN

(
·|Y (N), Z(N)

)
be the resulting posterior

arising from observations (Y (N), Z(N)) as in (2.21). If F0 ∈ H, then for each D > 0 there
exists a sufficiently large L > 0 such that

ΠN

(
F : ∥G(F )− G(F0)∥L2(D) > LδN |Y (N), Z(N)

)
= OPN

F0
(e−DNδ

2
N ) as N → +∞,

where δN = N−(α+κ)/(2α+2κ+d) and there exists a sufficiently large M such that

(5.1) ΠN

(
F : ∥F∥Cτ (O) > M |Y (N), X(N)

)
= OPN

F0
(e−DNδ

2
N ) as N → +∞.

We now proof Theorem 2.6 as an application of Lemma 5.1.

Proof of Theorem 2.6. First of all, it follows from Proposition 4.1 that the conditions
in Lemma 5.1 are satisfied with τ = 1, κ = 1, and γ = 2. Hence, there exists a sufficiently
large L > 0 such that

ΠN

(
F : ∥G(F )− G(F0)∥L2(O) > LδN |Y (N), Z(N)

)
= OPN

F0
(e−DNδ

2
N ) as N → +∞,

where δN = N−(α+1)/(2α+2+d) and, furthermore, there exists a sufficiently large M such that

ΠN

(
F : ∥F∥C1(O) > M |Y (N), X(N)

)
= OPN

F0
(e−DNδ

2
N ) as N → +∞.

Now, by Remark 4.4, we can get that

ΠN

(
F : ∥Φ ◦ F − Φ ◦ F0∥L2(O) > L′δ

1/3
N ,

∥F∥C1(O) ≤ M

∣∣∣∣∣Y (N), Z(N)

)
≤ ΠN

(
F : ∥G(F )− G(F0)∥L2(O) > LδN |Y (N), Z(N)

)
= OPN

F0
(e−DNδ

2
N ) as N → +∞.
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In other words,

Π̃N

(
f : ∥f − f0∥L2(OT ) > L′δ

1/3
N |Y (N), Z(N)

)
= ΠN

(
F : ∥Φ ◦ F − Φ ◦ F0∥L2(O) > L′δ

1/3
N |Y (N), Z(N)

)
≤ ΠN

(
F :

∥Φ ◦ F − Φ ◦ F0∥L2(O) > L′δ
1/3
N

∥F∥C1(O) ≤ M

∣∣∣∣∣Y (N), Z(N)

)
+ΠN

(
F : ∥F∥C1(O) > M |Y (N), X(N)

)
= OPN

F0
(e−DNδ

2
N ) as N → +∞,

which implies our theorem. □

We now proceed to prove Theorem 2.8 by modifying the ideas in [GN20, Theorem 6] or
[FKW24a, Theorem 2.6].

Proof of Theorem 2.8. In view of Jensen’s inequality, it is enough to prove that for
C̃ > 0,

(5.2) PNF0

(
EΠN

(
∥F − F0∥L2(O)|Y (N), Z(N)

)
> C̃δ

1/3
N

)
→ 0 as N → +∞.

We split the proof into two parts. Let D > 0 be a constant to be determined later, and let
M be the constant given in Lemma 5.1.

In the first part, we estimate EΠN

(
∥F − F0∥L2(O)1∥F∥C1(O)>M

|Y (N), Z(N)
)
. By the Cauchy-

Schwartz inequality, it is clear that

EΠN

(
∥F − F0∥L2(O)1∥F∥C1(O)>M

|Y (N), Z(N)
)

≤
√

EΠN

(
∥F − F0∥2L2(O)|Y (N), Z(N)

)√
ΠN

(
F : ∥F∥C1(O) > M |Y (N), Z(N)

)
.

Consequently, from (5.1) (with β = 1) in Lemma 5.1, we see that

(5.3)

PNF0

(
EΠN

(
∥F − F0∥L2(O)1∥F∥C1(O)>M

|Y (N), Z(N)
)
> δ

1/3
N

)

≤ PNF0


√
EΠN

(
∥F − F0∥2L2(O)|Y (N), Z(N)

)
×
√

ΠN

(
F : ∥F∥C1(O) > M |Y (N), Z(N)

)
> δ

1/3
N


≤ PNF0

(√
EΠN

(
∥F − F0∥2L2(O)|Y (N), Z(N)

)
e−

1
2
DNδ2N > δ

1/3
N

)
+ o(1).

Recall from [GN20, Lemmas 16 and 23] that the set

BN :=

{
F : E1

F0

(
log

pF0(Y1, Z1)

pF (Y1, Z1)

)
≤ δ2N ,E1

F0

(
log

pF0(Y1, Z1)

pF (Y1, Z1)

)2

≤ δ2N

}
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satisfies ΠN(BN) ≥ ae−ANδ
2
N for some a,A > 0. On the other hand, using [GN21,

Lemma 7.3.2], we also know that the set

CN =

{∫
BN

N∏
i=1

pF
pF0

(Yi, Zi) dν(F ) ≥ e−2Nδ2N

}
with ν(·) = ΠN(· ∩ BN)

ΠN(BN)

satisfies PNF0
(CN) → 1 as N → +∞. Now from (5.3), it follows that

(5.4)

PNF0

(
EΠN

(
∥F − F0∥L2(O)1∥F∥C1(O)>M

|Y (N), Z(N)
)
> δ

1/3
N

)
≤ PNF0

(
EΠN

(
∥F − F0∥2L2(O)|Y (N), Z(N)

)
eDNδ

2
N > δ

1/6
N , CN

)
+ o(1)

= PNF0


∫
C(O)

∥F − F0∥2L2(O)

∏N
i=1 pF/pF0(Yi, Zi) dΠN(F )

Π(BN)
∫
BN

∏N
i=1 pF/pF0(Yi, Zi) dν(F )

e−DNδ
2
N

> δ
1/6
N

, CN

+ o(1)

≤ PNF0


∫
C(O)

∥F − F0∥2L2(O)

N∏
i=1

pF
pF0

(Yi, Zi) dΠN(F )

> δ
1/6
N ae(D−A−2)Nδ2N

+ o(1).

By Markov’s inequality and Fubini’s theorem, we obtain that (5.4) is bounded above by

δ
−1/6
N a−1e−(D−A−2)Nδ2N

∫
C(O)

∥F − F0∥2L2(O)E
N
F0

(
N∏
i=1

pF
pF0

(Yi, Zi)

)
dΠN(F )

= δ
−1/6
N a−1e−(D−A−2)Nδ2N

∫
C(O)

∥F − F0∥2L2(O) dΠN(F ).

Furthermore, by Fernique’s theorem [GN21, Exercises 2.1.1, 2.1.2 and 2.1.5] one has
EΠN∥F∥2L2(O) < +∞. Taking D > A+ 2, we conclude that

(5.5) PNF0

(
EΠN

(
∥F − F0∥L2(O)1∥F∥C1(O)>M

|Y (N), Z(N)
)
> δ

1/3
N

)
→ 0

as N → +∞.
For the second part, we estimate EΠN

(
∥F − F0∥L2(O)1∥F∥C1(O)≤M |Y (N), Z(N)

)
. Since f =

Φ ◦ F and f0 = Φ ◦ F0, by Assumption 2.3(i), mean value theorem and inverse function
theorem, there exists η lying between f0(x) and f(x) such that

(5.6) |F (x)− F0(x)| =
1

|Φ′(Φ−1(η))|
|f(x)− f0(x)| for all x ∈ O.

Since f, f0 ∈ [Φ(−M),Φ(M)] and ∥F∥C1 ≤ M , we have

|F (x)− F0(x)| ≤
1

min[−M,M ] Φ′ |f(x)− f0(x)| ≲ |f(x)− f(x0)| for all x ∈ O.

Therefore, we see that

EΠN

(
∥F − F0∥L2(O)1∥F∥C1(O)≤M |Y (N), Z(N)

)
≲ EΠ̃N

(
∥f − f0∥L2(O)|Y (N), Z(N)

)
≤ L′δ3N + EΠ̃N

(
∥f − f0∥L2(O)1∥f−f0∥L2(O)>L

′δ3N
|Y (N), Z(N)

)
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where L′ is the constant given in Theorem 2.6. We now repeat the arguments
in the first part, except that replacing the event

{
F : ∥F∥C1(O) > M

}
by the event{

f : ∥f − f0∥L2(O) > L′δ
1/3
N

}
and using Theorem 2.6, to show that

(5.7) PNF0

(
EΠN

(
∥F − F0∥L2(O)1∥F∥C1(O)≤M |Y (N), Z(N)

)
> δ

1/3
N

)
→ 0

as N → +∞. Finally, we combine (5.5) and (5.7) to conclude (5.2) with C̃ = L′ + 1. □

Similar to Lemma 5.1, we now recall the general contraction rate for random series prior
in [GN20, Theorem 19] without specifying to the operator (2.13).

Lemma 5.2. Assume that the assumptions of Lemma 5.1 are satisfied. Let Π be the random
series prior defined in (2.27), and let ΠN

(
·|Y (N), Z(N)

)
be the resulting posterior arising from

observations (Y (N), Z(N)) as in (2.21). Then for each α0 ≥ α and for each F0 ∈ Hα0
0 (O) with

compact support such that supp (F0) ⊂ O and for each D > 0, there exists a sufficiently large
L > 0 such that

ΠN

(
F : ∥G(F )− G(F0)∥L2(D) > LξN |Y (N), X(N)

)
= OPN

F0
(e−DNξ

2
N ),

where ξN = N−(α0+κ)/(2α0+2κ+d) logN . For each j ∈ N, let Hj be the finite-dimensional space
given in (2.26). Furthermore, if we choose j(N) ∈ N satisfying 2j(N) ≃ N1/(2α0+2κ+d), then
we obtain that for sufficiently large M > 0 such that

ΠN

(
F ∈ Hj(N) : ∥F∥Hα ≥ M2j(N)αNξ2N |Y (N), X(N)

)
= OPN

F0
(e−DNξ

2
N ).

As above, we will prove Theorem 2.11 by adapting the ideas in [GN20, Lemma 12].

Proof of Theorem 2.11. From Lemma 5.2 (with κ = 1 and γ = 2), for each D > 0 and
for each sufficiently large L,M > 0, one has

ΠN(AN |Y (N), X(N)) = 1−OPN
F0
(e−DNξ

2
N ),

where AN = {F ∈ Hj(N) : ∥F∥Hα ≤ M2j(N)α
√
NξN , ∥G(F )− G(F0)∥L2 ≤ LξN}.

We fix any F ∈ Hj(N). In view of [GN20, (B7)], we have ∥F∥Hα ≲ 2j(N)α∥F∥L2 for all
sufficiently large N . Let PHj

be the projection defined in [GN20, (B4)], then we obtain that

(5.8)

∥F∥Hα(O) ≤ ∥F − PHj(N)
(F0)∥Hα(O) + ∥PHj(N)

(F0)∥Hα(O)

= ∥PHj(N)
(F )− PHj(N)

(F0)∥Hα(O) + ∥PHj(N)
(F0)∥Hα(O)

≤ 2j(N)α∥F − F0∥L2(O) + ∥F0∥Hα(O).

Furthermore, for F ∈ AN , the Sobolev embedding theorem gives ∥F∥L∞ ≤ M ′2j(N)α
√
NξN

for some M ′ > 0. Now we use (5.6) and Assumption 2.10 to see that

∥F − F0∥L2(O) ≲ (2j(N)α
√
NξN)

a∥f − f0∥L2(O).

We now apply the inverse estimate in Proposition 4.3 to see that

∥F − F0∥L2(O) ≲ (2j(N)α
√
NξN)

a(1 + ∥f∥4/3Hα(O))∥G(F )− G(F0)∥1/3L2(OT )
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for all F ∈ AN and thus

2j(N)α∥F − F0∥L2(O) ≲ 2j(N)α(2j(N)α
√
NξN)

a+4/3ξ
1/3
N

≃ N
α

2α0+2+d (N
2α+d

2(2α0+2+d) logN)
3a+4

3 N
− α0+1

3(2α0+2+d) (logN)1/3

≃ N
−2(α0+1)+(2α+d)(3a+4)+6α

6(2α0+2+d) (logN)
3a+5

3 .

Now we choose a0 = α0(α, d) sufficiently large such that

(5.9) 2(α0 + 1) > (2α + d)(3a+ 4) + 6α

and consequently from (5.8) we have

∥F∥Hα(O) ≲ 1 +

→ 0 as N → +∞︷ ︸︸ ︷
N

−2(α0+1)+(2α+d)(3a+4)+6α
6(2α0+2+d) (logN)

3a+5
3 for all F ∈ AN .

Thus, we obtain

1−OPN
F0
(e−DNξ

2
N ) = ΠN(AN |Y (N), X(N))

≤ ΠN

(
F ∈ Hj(N) : ∥G(F )− G(F0)∥L2(OT ) ≤ LξN , ∥F∥Hα(O) ≲ 1|Y (N), X(N)

)
.

Finally, from Proposition 4.3, it follows that

Π̃
(
f : ∥f − f0∥L2(O) > Lξ

1/3
N |Y (N), X(N)

)
≤ ΠN

(
∥G(F )− G(F0)∥L2(OT ) ≥ LξN , ∥F∥Hα(O) ≲ 1|Y (N), X(N)

)
+ΠN

(
∥F∥Hα(O) ≳ 1|Y (N), X(N)

)
= OPN

F0
(e−DNξ

2
N ) as N → ∞,

which concludes the theorem. □

We now prove the optimality result in Theorem 2.13 by adopting the proof of [Kek22,
Theorem 8]. The idea is to apply [GN21, Theorem 6.3.2] to reduce the problem of estimating
the lower bound in the whole parameter space into a test problem in a finite subset of F̃α,
see also [Nic20, NvdGW20].

Proof of Theorem 2.13. The central idea in the proof is to construct a finite N− α
2α+2+d -

separated set in F̃α given by (2.28) which is not too small. As described on [Kek22, Page
18], for every j ∈ N, there exist a small constant c > 0 such that nj := c2jd many Daubechies
wavelets {Ψjr}

nj

r=1 have disjoint compact supports in O. Using the Varshamov-Gilbert bound
(see [GN21, Example 3.1.4]), there exists

{bm,· : m = 1, · · · ,Mj} ∈ {−1,+1}nj with Mj ≥ 3nj/4

such that
nj∑
r=1

(bm,r − bm′,r)
2 ≳ nj.

Let κ > 0 a constant to be determined later and define

hm(x) := κ

nj∑
r=1

bmr2
−j(α+d/2)Ψjr(x) for all x ∈ O,

for all m = 0, 1, · · · ,Mj. in view of the support condition of Ψjr, it is clear that supp (hm) ⊂
O. In addition, it is proved on [Kek22, Page 18] that one can choose a sufficiently small
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κ > 0, independent of j, such that ∥hm∥Cα(O) ≤ 1/2 for all m = 1, · · · ,Mj. Let f0 ≡ 1 and
we define

fm := f0 + hm, ∀ m = 1, · · · ,Mj,

which satisfies

∥fm∥Cα(O) ≤ ∥f0∥Cα(O) + ∥hm∥Cα(O) ≤ 3/2 and inf
x∈O

fm ≥ 1− ∥hm∥L∞(O) ≥ 1/2,

that is, {fm}
Mj

m=1 ⊂ F̃α.
Observe that

∥fm − fm′∥2L2(O) = κ22−2j(α+d/2)

nj∑
r=1

(bmr − bm′r)
2 ≳ 2−2j(α+d/2)nj ≃ 2−2jα.

For each N ∈ N, we now choose j = j(N) ∈ N satisfying 2j ≃ N
1

2α+2+d and, hence,

(5.10) ∥fm − fm′∥L2(O) ≳ N− α
2α+2+d

Our next task is to estimate Mj from below to ensure that the set {fm}
Mj

m=1 ⊂ F̃α is not too
small. Based on the Radon-Nikodym density (2.20), the argument carried out in the proof
of [Kek22, Theorem 8] shows that

KL (PNfm ,P
N
f0
) ≃ N∥uf0 − ufm∥2L2(OT ),

where KL(·, ·) is the Kullback-Leibler divergence. Using (4.2), [Kek22, (25)] and the choice
2j ≃ N

1
2α+2+d , we get that

∥uf0 − ufm∥2L2(OT ) ≲ ∥fm − f0∥2(H1(O))∗

≲ ∥hm∥2H−1(Rd) = κ22−2j(α+d/2+1)

nj∑
r=1

1 ≃ κ2N−1nj.

By the definition of Mj, we can see that

(5.11) KL (PNfm ,P
N
f0
) ≤ ϵ log(Mj)

for any small ϵ > 0 (by taking κ sufficiently small).
With slightly abuse of the notation, we write MN = Mj(N), where j = j(N) ∈ N satisfies

2j ≃ N
1

2α+2+d . So far, we have proved that {fm}MN
m=1 is a N− α

2α+2+d -separated set in F̃α in
the sense of (5.10) and is not too small in the sense of (5.11). Finally, applying [GN21,
Theorem 6.3.2] leads to

(5.12) inf
f̂N

sup
f∈F̃α

ENf ∥f̂N − f∥L2(O) ≥ N− α
2α+2+d

√
MN

1 +
√
MN

(
1− 2ϵ−

√
8ϵ

logMN

)
,

which implyies the desired estimate by choosing ϵ small enough and the fact MN → +∞ as
N → +∞. □

For each N ∈ N, let ΨN be any {0, 1, · · · ,MN}-valued measurable function such that

∥f̂N − fψN
∥L2(O) = min

m=0,··· ,MN

∥f̂N − fm∥L2(O).

By carefully inspecting the proof of [GN21, Theorem 6.3.2], we can see that

(5.13) inf
ΨN

max
m=0,··· ,MN

PNfm(ΨN ̸= m) ≥
√
MN

1 +
√
MN

(
1− 2ϵ−

√
8ϵ

logMN

)
,
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for all sufficiently large N , which is slightly stronger than (5.12). We are now give a proof of
Theorem 2.14 based on this observation.

Proof of Theorem 2.14. In view of (5.10), it was proved in [Kek22, Theorem 8] that
(with rN ≃ N− α

2α+2+d )

lim inf
f̂N

sup
f∈F̃α

PNf
(
∥f̂N − f∥L2(O) > cN− α

2α+2+d

)
≥ lim inf

ΨN

max
m=0,··· ,MN

PNfm(ΨN ̸= m).

The theorem follows immediately from above and (5.13). □

6. Conclusions

In this paper, we investigate a Bayesian approach to an inverse problem for a time-fractional
partial differential equation involving the Riemann-Liouville time derivative. The objective is
to recover an unknown potential function from interior measurements of the solution. From a
practical standpoint, such measurements are typically available only at discrete points, which
naturally raises the question of how accurately the unknown function can be estimated. The
Bayesian framework offers a principled way to address this question.

Our first objective is to justify the Bayesian method from a frequentist perspective. Specifi-
cally, we show that when the data is generated from a true underlying potential, the posterior
distributions which are obtained using various commonly employed priors, contract toward
the ground truth at explicit rates as the sample size increases. Because inverse problems
based on interior measurements are mildly ill-posed, in the sense that their stability esti-
mates are of Hölder type, we derive polynomial posterior contraction rates, as expected in
such settings.

A major challenge in analyzing time-fractional equations is the limited regularity of their
solutions. Similar difficulties also arise in spatial-fractional problems, such as those involving
the fractional Laplacian. To address this issue, we employ the maximum principle to establish
positivity of the solution, rather than relying on the Feynman-Kac representation. We believe
this approach is more flexible and may be adapted to a broader class of equations.

For the purpose of uncertainty quantification, posterior consistency alone is not sufficient.
The ultimate goal is to establish a Bernstein-von Mises (BvM) theorem, which characterizes
the limiting shape of the posterior distribution. However, it is well known that the BvM the-
orem does not generally hold in infinite-dimensional settings. Some progress has been made
in the semiparametric regime for local PDEs, e.g., [Nic20, Nic24]. Whether an analogous
result can be established for nonlocal equations remains an open and compelling problem for
future research.
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