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ABSTRACT. In this article, we investigate the quantitative unique continuation properties of complex-valued
solutions to drift equations in the plane. We consider equations of the form ∆u+W ·∇u = 0 in R2, where
W =W1 + iW2 with each W j real-valued. Under the assumptions that W j ∈ Lq j for some q1 ∈ [2,∞], q2 ∈ (2,∞],
and W2 exhibits rapid decay at infinity, we prove new global unique continuation estimates. This improvement
is accomplished by reducing our equations to vector-valued Beltrami systems. Our results rely on a novel order
of vanishing estimate combined with a finite iteration scheme.

1. INTRODUCTION

The goal of this paper is to show that under suitable hypotheses, we may establish a stronger quantification
of the unique continuation properties of complex-valued solutions to drift equations in R2 of the form

−∆u+W ·∇u = 0.(1)

Before describing our main results, we recall a few fundamental concepts in unique continuation theory.
The partial differential equation (PDE) Lu = 0 is said to have the unique continuation property (UCP) if
whenever u is a solution in Ω and u ≡ 0 in an open subset of Ω, then u ≡ 0 in Ω. Going further, the equation
Lu = 0 is said to have the strong unique continuation property (SUCP) if whenever u is a solution in Ω

and u vanishes to infinite order at some point x0 ∈ Ω (in an appropriate sense), then u ≡ 0 in Ω. Therefore,
whenever we are in a setting where the SUCP holds, it makes sense to ask the following question:

What is the fastest rate of decay that a non-trivial solution can have?

This local quantity is referred to as the order of vanishing and can be interpreted as a quantification of the
SUCP. A related global object is the rate of decay at infinity, a quantity that distinguishes between trivial and
non-trivial entire solutions based on their asymptotic behavior. Other topics of study in unique continuation
theory include doubling indices and nodal (zero) sets of solutions. We refer the reader to [LM16, Log18a,
Log18b] for recent progress in these related directions. Our current work is related to Landis’ conjecture,
which seeks to determine the optimal rate of decay at infinity for solutions to Schrödinger equations. As
briefly described above, order of vanishing estimates are interesting on their own, but these quantities also
serve as an important tool in our study of quantitative unique continuation at infinity properties.

In the late 1960s, E. M. Landis [KL88] conjectured that if u is a bounded solution to

(2) ∆u−Vu = 0

in Rn, where V is a bounded function and |u(x)| ≲ exp
(
−c |x|1+

)
, then u ≡ 0. This conjecture was later

disproved by Meshkov [Mes92] who constructed non-trivial functions u and V that solve ∆u −Vu = 0
in R2, where V is bounded and |u(x)| ≲ exp

(
−c |x|4/3

)
. Meshkov also proved the following qualitative
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unique continuation result: If ∆u−Vu = 0 in Rn, where V is bounded and |u(x)| ≲ exp
(
−c |x|4/3+

)
, then

necessarily u ≡ 0.
In their work on Anderson localization [BK05], Bourgain and Kenig established a quantitative version of

Meshkov’s result. As a first step in their proof, they used three-ball inequalities derived from a Carleman es-
timates to establish order of vanishing estimates for local solutions to Schrödinger equations. Then, through
a scaling argument, they showed that if u and V are bounded, and u is normalized so that |u(0)| ≥ 1, then
for sufficiently large values of R,

inf
|x0|=R

∥u∥L∞(B1(x0))
≥ exp(−CR4/3 logR).

Since 4
3 > 1, the constructions of Meshkov, in combination with the qualitative and quantitative unique

continuation theorems just described, indicate that Landis’ conjecture cannot be true for complex-valued
solutions at least in R2. However, Landis’ conjecture still remains open in the general real-valued case.

In recent years, there has been a surge of activity surrounding Landis’ conjecture in the real-valued planar
setting. The breakthrough article [KSW15] proved a quantitative form of Landis’ conjecture under the
assumption that the zeroth-order term satisfies V ≥ 0 a.e. Subsequent papers established analogous results
in the settings with variable coefficients [DKW17] and singular lower order terms [KW15, DW20]. More
recently, it has been shown that this theorem still holds when V− exhibits rapid decay at infinity [DKW19],
and when V− exhibits slow decay at infinity [Dav19a].

The work in [KW15] focuses on quantitative Landis-type theorems for real-valued solutions to drift
equations in the plane of the form (1). One of the main theorems in [KW15] shows that if W ∈ Lq for some
q ∈ [2,∞] and u is a real-valued, bounded, normalized solution to (1), then whenever R is sufficiently large,
it holds that

(3) inf
|z0|=R

∥u∥L∞(B1(z0))
≥

{
exp
(
−CR1− 2

q logR
)

if q > 2
R−C if q = 2

.

In contrast, the article [DZ18] contains quantitative Landis-type theorems for complex-valued solutions
to elliptic equations in the plane. The related theorem in [DZ18] for drift equations shows that if W ∈ Lq

for some q ∈ (2,∞] and u is a complex-valued, bounded, normalized solution to (1), then whenever R is
sufficiently large, it holds that

(4) inf
|z0|=R

∥u∥L∞(B1(z0))
≥ exp

(
−CR2 logR

)
.

By comparing the results of (3) and (4), we see that the rate of decay significantly improves when we restrict
to the real-valued setting. In particular, the presence of an imaginary part of W drastically affects the rate of
decay of solutions. This current paper is motivated by our desire to understand and quantify the effect that
the complex part of W has on the rate of decay at infinity.

In [Dav14] and [LW14], the authors investigated the quantitative unique continuation properties of so-
lutions to elliptic equations with lower order terms that exhibit pointwise decay at infinity. The results in
[Dav14] and [LW14] imply that if W ∈ L∞ exhibits rapid enough polynomial decay at infinity and u is a
complex-valued, bounded, normalized solution to (1), then whenever ε > 0 and R is sufficiently large, it
holds that

(5) inf
|z0|=R

∥u∥L∞(B1(z0))
≥ exp

(
−R1+ε

)
.

We initiated this project with the belief that we could somehow combine the results described by (3), (4),
and (5). As described in Theorem 1 below, this is in fact true is we assume that the complex part of W
exhibits significant exponential decay at infinity in an appropriate sense that we will quantify.

In order to further understand the motivation for the current setting, we will describe the techniques that
led to the estimates in (3), (4), and (5). Carleman estimate techniques were used in [DZ18], while Carleman
estimates were combined with iterative arguments in [Dav14, LW14] to prove (4) and (5), respectively.
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Such techniques have been used to prove many other results related to Landis’ conjecture, see for example
[BK05, DZ19, Dav19b]. The Carleman method is applicable in any dimension and, in some cases, it gives
rise to optimal bounds in the complex-valued setting. Since Carleman estimates do not distinguish between
real and complex values, a different approach was used in [KW15] to prove (3), where the focus was on
real-valued solutions and equations in the plane. The proofs in [KSW15, KW15, DKW17, DW20, DKW19,
Dav19a] center around the relationship between second-order elliptic equations in the plane and Beltrami
equations. In suitable settings, one can use a second-order PDE to generate a Beltrami equation, a first-order
elliptic equation in the complex plane. The similarity principle for solutions to the Beltrami equation, along
with Hadamard’s three-circle theorem, leads to a three-ball inequality similar to the one derived in [BK05].
However, these new three-ball inequalities gives the precise exponents that could not be achieved with a
direct Carleman approach.

In this article, by viewing complex-valued drift equations as systems of real-valued drift equations, we
have found a way to combine many of the ideas mentioned above. First we show that (1) can be realized
as a system of real-valued drift equations. Then we show that such real-valued systems can be reduced to
vector-valued Betrami equations. Instead of invoking a similarity principle for these systems (as we did in
[DKW19]), we rely on Lp −L2 Carleman estimates for the operator ∂̄ (similar to those that were previously
developed in [DLW19]) to give rise to our three-ball inequalities. The three-ball inequality is then used
to establish the order of vanishing result. If the complex part of the potential function decays sufficiently
quickly, then a scaling argument combined with repeated applications of the order of vanishing estimate
gives rise to our quantitative unique continuation at infinity estimates.

Before stating the main result of this article, we describe the kinds of potential functions that we will work
with. Assume that there exist q1 ∈ [2,∞], q2 ∈ (2,∞], c0,δ0 > 0 so that W =W1 + iW2, where Wi : R2 → R2

for i = 1,2, and

∥W1∥Lq1 (R2) ≤ 1(6)

∥W2∥Lq2 (B1(z0))
≤ exp

(
−c0 |z0|

1− 2
q1
+δ0
)

∀z0 ∈ R2.(7)

In particular, the real part of W satisfies the same hypotheses as it did in [KW15], while the complex part of
W must decay exponentially at a rate that depends on the properties of the real part of W .

Now we may state the main result of this article. The following theorem is quantitative unique continua-
tion at infinity estimate for solutions to (1), or a Landis-type theorem for complex-valued drift equations.

Theorem 1. Assume that for some q1 ∈ [2,∞], q2 ∈ (2,∞], c0,δ0 > 0, W = W1 + iW2 : R2 → C2 satisfies
(6) and (7). Let u : R2 → C be a solution to (1) that is bounded and normalized in the sense that for some
t0 ∈ [1,2],

|u(z)| ≤ exp
(

C0 |z|
1− 2

q1

)
(8)

∥∇u∥Lt0 (B1(0)) ≥ 1,(9)

where t0 < 2 when q1 = 2. Then for any ε > 0 and any R ≥ R̃(R0,C0,q1,q2,c0,δ0, t0,ε), it holds that

(10) inf
|z0|=R

∥u∥L∞(B1(z0))
≥ exp

(
−R1+ε

)
.

Remark. The value R0 that appears in this theorem belongs to (0,1/e) and is a byproduct of the Carleman
estimate that is used in our proofs.

Compared to the results of [KW15], this rate of decay estimate is more rapid. That is, when we allow for
a non-trivial complex part of the potential, even a rapidly decaying part, the order of vanishing jumps from
1− 2

q1
to any value greater than 1. On the flipside, this rate of decay is a great improvement over the results

of [DZ18] since the power is far below 2. In summary, when we consider equations with a rapidly-decaying
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complex part of the potential, the resulting rate of decay for solutions falls in between the rates for equations
with a purely real potential and equations with a singular complex potential.

This theorem and the Landis-type results in [Dav19a] and [DKW19] all give the same bound for the
rate of decay at infinity. In both [Dav19a] and [DKW19], the setting is real-valued and the zeroth-order
potential, V , has a negative part that decays at infinity. In [DKW19], we assume that V− = max{−V,0}
exhibits (rapid) exponential decay at infinity, quantitatively similar to the assumption that has been placed
on W2 in the current article. In both the current article and [DKW19], we reduce our PDE to a Beltrami
system of equations in which the multiplying factor is a 2×2 off-diagonal matrix. To ensure that the non-
trivial entries of the matrix are small enough for our techniques to work, we assume that some part of the
potential (V− in [DKW19], W2 here) is exponentially small. The same unique continuation estimate was
shown to hold in [Dav19a] when V− exhibits (slow) polynomial decay at infinity. There, it is observed that
if V− decays polynomially at infinity, then a positive multiplier exists and can be used to transform the PDE
into a scalar-valued Beltrami equation. By avoiding the vector-valued setting, we don’t need to impose any
further decay conditions on the potential functions. In the current setting, we don’t see how to avoid the
vector-valued setting, either with the introduction of a positive multiplier or through some other technique.
As such, we impose the condition that W2 exhibits rapid decay at infinity.

To prove our global theorem, we rely on the following order of vanishing estimate. Although this theorem
serves as an important tool in the proof of our first result, it also provides a quantification of the strong unique
continuation property for local solutions to (1). Furthermore, since this theorem allows the real part of W
to belong to L2 instead of L2+, then this result serves as an improvement over other known results in this
direction, see for example [DZ18, Corollary 1]. An alternative order of vanishing theorem appears below
within Section 3.

Theorem 2. Let d ∈ (1,2]. Assume that for some q1 ∈ [2,∞] and q2 ∈ (2,∞],
∥∥Wj

∥∥
Lq j (Bd)

≤ M j for j = 1,2.
Let u be a solution to (1) in Bd that satisfies

∥u∥L∞(Bd)
≤ Ĉ.(11)

If q1 > 2 and we assume that

∥∇u∥L2(B1)
≥ ĉ,(12)

then for any z0 ∈ B1 and any r sufficiently small,

(13) ∥∇u∥L2(Br(z0))
≥ r

C2[1+Mµ2
2 exp(C3M1)]+ c

logd

{
C1M1+log

[
C2Ĉ(1+M2)

ĉ
√

d−1

]}
,

where µ2 =
2q2

q2−2 , C1 =C1 (R0,q1), C2 =C2 (R0,q2), C3 =C3 (R0,q1,q2), and c is universal.
If q1 = 2 and we assume that for some t0 ∈ [1,2),

∥∇u∥Lt0 (B1)
≥ ĉ,(14)

then for any z0 ∈ B1, any r sufficiently small, any q ∈ (2,q2), any t ∈
(

max
{

q
q−1 , t0

}
,2
)

, and any t1 ∈ (t,2],

(15) ∥∇u∥Lt1 (Br(z0))
≥ r

C2[1+Mµ

2 exp(C3M2
1)]+

c
logd

{
C1M2

1+log
[

C2Ĉ(1+M2)
ĉ
√

d−1

]}
,

where µ = tq
tq−q−t , C1 =C1 (R0,q, t0, t, t1), C2 =C2 (R0,q2,q, t), C3 =C3 (R0,q2,q), and c is universal.

Remark. If W2 ≡ 0, then M2 = 0 and we recover results on the order of vanishing estimates and the decay
rates at infinity (a real version of Theorem 1) from [KW15]. As such, this theorem may be interpreted as a
complex perturbation of the real-valued result.

The article is organized as follows. In the next section, Section 2, three-ball inequalities for general
vector-valued Beltrami systems are used to prove order-of-vanishing estimates for solutions to such equa-
tions. Section 3 shows how the drift equation (1) may be reduced to a vector-valued Beltrami equation.
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Using these new presentations, we prove the order of vanishing results given by Theorems 2 and 5. Section
4 shows how Theorem 1 follows from Theorem 2 through rescaling combined with iteration. When q1 > 2,
we must use the alternative order of vanishing estimate described by Theorem 5 to initiate the iterative pro-
cess. As such, this section has been divided into two parts, corresponding to the proof for q1 > 2 and the
proof for q1 = 2. The Carleman estimates that are crucial to the proof in Section 2 are presented in Section 5.

Acknowledgement. Part of this research was carried out while the first author was visiting the National
Center for Theoretical Sciences (NCTS) at National Taiwan University. The first author wishes to the thank
the NCTS for their financial support and their kind hospitality during her visit to Taiwan.

2. ESTIMATES FOR GENERAL BELTRAMI SYSTEMS

Here we use three-ball inequalities derived from Carleman estimates to prove order of vanishing estimates
for solutions to 2-vector equations of the form

(16) ∂̄ v⃗ = G⃗v,

where v⃗ = (v1,v2) is some 2-vector and G is a 2×2 matrix function. This is the major tool in proving our
order of vanishing estimates for drift equations. The following Carleman estimate for first order operators
is crucial to the arguments. For a very similar estimate, we refer the reader to [DLW19, Theorem 3.1].

Theorem 3. Let p ∈ (1,2]. There exists R0 ∈ (0,1/e) so that for any τ sufficiently large and any u ∈
C∞

c (BR0 \{0}), it holds that

(17) τ
β

∥∥∥(r logr)−1 e−τφ(r)u
∥∥∥

L2(BR0)
≤C

∥∥∥r1−2/p (logr)e−τφ(r)
∂̄u
∥∥∥

Lp(BR0)
,

where φ (r) = logr+ 1
2 log(logr)2, β = 1− 1

p , and C =C (p,R0).

The technical proof of this theorem appears below in Section 5. For now, we use this Carleman estimate
to prove the following lower bound, which is the main result of this section.

Theorem 4. Let a∈ (1,2]. Define v= |v1|+ |v2|, where v⃗ is a 2-vector solution to (16) in Ba with ∥G∥Lq(Ba)
≤

M for some q ∈ (2,∞]. Assume that for some t ∈
(

q
q−1 ,2

]
and some ĉ ≤ 1 ≤ Ĉ, ∥v∥Lt(B1)

≥ ĉ and ∥v∥Lt(Ba)
≤

Ĉ. Then for any r0 sufficiently small and any b ∈ (1,a), it holds that

∥v∥Lt(Br0)
≥ r

C(1+Mµ )+c log
(

CĈ
ĉ

)
/ logb

0 ,

where µ = tq
tq−q−t , C =C (q, t,R0), and c is universal.

Remark. The theorem gives the best result (i.e. minimizes µ) when we choose t = 2. However, for technical
reasons, there will be situations where we need t < 2. Therefore, we present the very general result and
choose t appropriately in the proofs of our order of vanishing theorems.

Proof. Choose r0 sufficiently small and b ∈ (1,a). Let K1 = {r0/2 ≤ |z| ≤ r0}, K2 = {r0 ≤ |z| ≤ b}, and
K3 = {b ≤ |z| ≤ a}. Set K = K1 ∪ K2 ∪ K3 ⊂ Ba \ {0} and define χ ∈ C∞

0 (K) where χ ≡ 1 on K2 and
supp∇χ = K1 ∪K3. Define u⃗ = χ v⃗, where v⃗ is the solution to ∂̄ v⃗ = G⃗v.

Since q ∈ (2,∞], then for any t ∈
(

q
q−1 ,2

]
we have that p := qt

q+t ∈ (1,2]. For each j, set ũ j (z) = u j

(
a

R0
z
)

so that supp ũ j ⊂ BR0 \ {0}. Then we may apply the Carleman estimate described by Theorem 3 with p as
5



chosen to each ũ j. With ũ = |ũ1|+ |ũ2| and K̃ = R0
a K⊂ BR0 \{0}, we see that

τ
β

∥∥∥(r logr)−1 e−τφ(r)ũ
∥∥∥

L2(K̃)
≤ τ

β
∑

j=1,2

∥∥∥(r logr)−1 e−τφ(r)ũ j

∥∥∥
L2(K̃)

≤C ∑
j=1,2

∥∥∥r1−2/p (logr)e−τφ(r)
∂̄ ũ j

∥∥∥
Lp(K̃)

,

where r = |z| and β = 1− 1
p = 1− 1

t −
1
q = µ−1. Define ρ (z) = R0

a |z|= R0
a r. An application of Hölder (since

t ≤ 2) and a change of variables shows that

τ
β

∥∥∥(ρ logρ)−1 e−τφ(ρ)u
∥∥∥

Lt(K)
≤C ∑

j=1,2

∥∥∥ρ
1−2/p (logρ)e−τφ(ρ)

∂̄u j

∥∥∥
Lp(K)

,(18)

where C depends on q, t, R0.
Note that by (16)

∂̄u j = ∂̄ χv j +χ∂̄v j = ∂̄ χv j +χ ∑
k=1,2

g jkvk = ∂̄ χv j + ∑
k=1,2

g jkuk.

This equation combined with Hölder’s inequality shows that for each j = 1,2,∥∥∥ρ
1−2/p (logρ)e−τφ(ρ)

∂̄u j

∥∥∥
Lp(K)

≤ ∑
k=1,2

∥∥∥ρ
1−2/p (logρ)e−τφ(ρ)g jkuk

∥∥∥
Lp(K)

+
∥∥∥ρ

1−2/p (logρ)e−τφ(ρ) |∇χ|v j

∥∥∥
Lp(K1∪K3)

≤ ∑
k=1,2

∥∥g jk
∥∥

Lq(K)

∥∥∥ρ
1−1/p (logρ)

∥∥∥2

L∞(K)

∥∥∥(ρ logρ)−1 e−τφ(ρ)uk

∥∥∥
Lt(K)

+∥ρ |∇χ|∥L∞(K1)

∥∥∥ρ
−2/q

∥∥∥
Lq(K1)

∥∥∥ρ
−2/t (logρ)e−τφ(ρ)v j

∥∥∥
Lt(K1)

+∥∇χ∥L∞(K3)

∥∥∥ρ
1−2/q

∥∥∥
Lq(K3)

∥∥∥ρ
−2/t (logρ)e−τφ(ρ)v j

∥∥∥
Lt(K3)

.

A computation shows that
∥∥ρ1−1/p (logρ)

∥∥2
L∞(K)

, ∥ρ |∇χ|∥L∞(K1)
,
∥∥ρ−2/q

∥∥
Lq(K1)

, and ∥∇χ∥L∞(K3)

∥∥ρ1−2/q
∥∥

Lq(K3)

are bounded by constants depending on R0 and q. Combining the previous inequality with (18) then shows
that

τ
β

∥∥∥(ρ logρ)−1 e−τφ(ρ)u
∥∥∥

Lt(K)
≤CM

∥∥∥(ρ logρ)−1 e−τφ(ρ)u
∥∥∥

Lt(K)
+C

∥∥∥ρ
−2/t (logρ)e−τφ(ρ)v

∥∥∥
Lt(K1∪K3)

.

If τ ≥ (2CM)µ , then the first term may be absorbed into the left to get∥∥∥e−(τ+1)φ(ρ)v
∥∥∥

Lt(K2)
≤
∥∥∥e−(τ+1)φ(ρ)

χv
∥∥∥

Lt(K)
≤
∥∥∥e−(τ+1)φ(ρ)u

∥∥∥
Lt(K)

≤Cρ
1−2/t
0 (logρ0)

2
∥∥∥e−(τ+1)φ(ρ)v

∥∥∥
Lt(K1)

+C (logR0)
2
∥∥∥e−(τ+1)φ(ρ)v

∥∥∥
Lt(K3)

,

where we have used the definition of φ and introduced ρ0 := R0r0/a. Replacing τ +1 with τ and assuming
that τ ≥C (1+Mµ), it holds that

∥v∥Lt({r0≤|x|≤1}) ≤eτφ(R0/a)
∥∥∥e−τφ(ρ)v

∥∥∥
Lt(K2)

≤Ceτφ(R0/a)
[

ρ
1−2/t
0 (logρ0)

2
∥∥∥e−τφ(ρ)v

∥∥∥
Lt(K1)

+(logR0)
2
∥∥∥e−τφ(ρ)v

∥∥∥
Lt(K3)

]
≤Cρ

1−2/t
0 (logρ0)

2 eτφ(R0/a)

eτφ(ρ0/2)
∥v∥Lt(K1)

+C (logR0)
2 eτφ(R0/a)

eτφ(R0b/a)
∥v∥Lt(K3)

.
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Adding ∥v∥Lt(Br0)
to both sides of the inequality shows that

∥v∥Lt(B1)
≤Cρ

1−2/t
0 (logρ0)

2 eτ(φ(R0/a)−φ(ρ0/2)) ∥v∥Lt(Br0)
+C (logR0)

2 eτ(φ(R0/a)−φ(R0b/a)) ∥v∥Lt(Ba)
.

Define κ = φ(R0b/a)−φ(R0/a)
φ(R0b/a)−φ(ρ0/2) and set

τ0 =
κ

φ (R0b/a)−φ (R0/a)
log

 (logR0)
2 ∥v∥Lt(Ba)

ρ
1−2/t
0 (logρ0)

2 ∥v∥Lt(Br0)

 .
If τ0 ≥C (1+Mµ), then the above computations are valid with this choice of τ and we see that

∥v∥Lt(B1)
≤C
[
ρ

1−2/t
0 (logρ0)

2 ∥v∥Lt(Br0)

]κ [
(logR0)

2 ∥v∥Lt(Ba)

]1−κ

.

On the other hand, if τ0 <C (1+Mµ), then

∥v∥Lt(B1)
≤ ∥v∥Lt(Ba)

≤ exp [C (1+Mµ)(φ (R0b/a)−φ (ρ0/2))]ρ0
1−2/t

(
logρ0

logR0

)2

∥v∥Lt(Br0)
.

Adding the previous two inequalities and invoking the assumptions that ĉ ≤ ∥v∥Lt(B1)
and ∥v∥Lt(Ba)

≤ Ĉ
shows that

ĉ ≤ I+Π,

where

I =C
[
ρ

1−2/t
0 (logρ0)

2 ∥v∥Lt(Br0)

]κ [
(logR0)

2 Ĉ
]1−κ

Π = exp [C (1+Mµ)(φ (R0b/a)−φ (ρ0/2))]ρ1−2/t
0

(
logρ0

logR0

)2

∥v∥Lt(Br0)
.

On one hand, if I ≤ Π, then ĉ ≤ 2Π so that

∥v∥Lt(Br0)
≥ ĉ

2
ρ0

2/t−1
(

logR0

logρ0

)2

exp [C (1+Mµ)(φ (ρ0/2)−φ (R0b/a))]

Assuming that r0 ≪ R0,
φ (ρ0/2)−φ (R0b/a)≥ c logr0

and then

∥v∥Lt(Br0)
≥Cĉ(logR0)

2rC(1+Mµ )
0 .(19)

On the other hand, if Π ≤ I, then

ĉ ≤ 2C
[
ρ

1−2/t
0 (logρ0)

2 ∥v∥Lt(Br0)

]κ [
(logR0)

2 Ĉ
]1−κ

.

Raising both sides to 1
κ

shows that

∥v∥Lt(Br0)
≥ Ĉρ

2/t−1
0

(
logR0

logρ0

)2
[

2CĈ (logR0)
2

ĉ

]−1/κ

.

As above, for any r0 ≪ R0, − 1
κ
= φ(ρ0/2)−φ(R0b/a)

φ(R0b/a)−φ(R0/a) ≥
c logr0
logb and then

∥v∥Lt(Br0)
≥ Ĉ(logR0)

2r
c log

[
2CĈ(logR0)

2

ĉ

]
/ logb

0 .(20)

Combining (19) and (20) leads to the conclusion of Theorem 4. □
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3. ORDER OF VANISHING ESTIMATES

This section contains the proofs of our order of vanishing results, Theorem 2 in the introduction and
Theorem 5 below. The idea underlying our proofs is that we can reduce the PDE given in (1) to a first-order
Beltrami equation. The novelty here is that the resulting equation is a vector equation instead of a scalar
equation as it was in [KSW15] and [KW15]. More specifically, we will show that the elliptic PDE described
by (1) is equivalent to an equation of the form (16).

If u = u1 + iu2, then the drift equation (1) is equivalent to the system

(21)
{

∆u1 =W1 ·∇u1 −W2 ·∇u2
∆u2 =W1 ·∇u2 +W2 ·∇u1.

Recall that ∂̄ = ∂

∂ z̄ =
1
2

(
∂

∂x + i ∂

∂y

)
and ∂ = ∂

∂ z =
1
2

(
∂

∂x − i ∂

∂y

)
. Using the natural association between 2-

vectors and complex values, i.e. (a,b)∼ a+ ib, we define

Wk (u j) =

{
1
4

(
Wk +Wk

∂̄u j
∂u j

)
if ∂u j ̸= 0

0 otherwise

so that
4Wk (u j)∂u j =Wk∂u j +Wk∂̄u j = 2ℜWk∂u j =Wk ·∇u j.

Then the system (21) may be rewritten as{
∂̄ ∂u1 −W1 (u1)∂u1 =−W2 (u2)∂u2

∂̄ ∂u2 −W1 (u2)∂u2 =W2 (u1)∂u1.

If we define

(22) v⃗ =
[

∂u1
∂u2

]
and G =

[
W1 (u1) −W2 (u2)
W2 (u1) W1 (u2)

]
,

then the system of equations described by (21) is equivalent to (16).
The following theorem is an alternative order of vanishing estimate. Although Theorem 2 is our main

order of vanishing estimate, we will use the following result to initiate the proof of Theorem 1 in the setting
where q1 > 2. This proof is also interesting because it demonstrates how we make use of the Beltrami
representation in a simpler setting.

Theorem 5. Assume that for some q ∈ (2,∞], ∥W∥Lq(B2)
≤ M. Let u be a solution to (1) in B2 that satisfies

(11) with d = 2 and (12). Then for any r sufficiently small,

(23) ∥∇u∥L2(Br)
≥ rC(1+Mµ )+c log

[
CĈ(1+M)

ĉ

]
,

where µ = 2q
q−2 , C =C (q,R0).

Remark. An application of the Cacciopoli inequality as in (24) below allows us to replace the L2-norm of
the gradient on the lefthand side with the L∞-norm of the function itself. After such a reduction, this result
is essentially the same as the order of vanishing result from [DZ19, Corollary 1]. The proof that we present
here is different.

Remark. Consider the case with q = ∞. Then µ = 2 and we obtain the well-known order of vanishing
estimate for drift equations, see for example [Dav14].

Remark. This theorem differs from Theorem 2 and, at first glance, it may appear that this theorem is
stronger because of the absence of an exponential dependence in the bound. However, this theorem doesn’t
cover the case of q1 = 2. Moreover, if M2 ≪ M1, then the bound that we obtain in Theorem 2 is better than
this one. In a sense, our new result may be interpreted as a perturbation of the order of vanishing results for
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real-valued solutions to drift equations that appeared in [KW15]. This theorem holds for complex-valued
equations.

Proof. If we define v⃗ and G as in (22), then equation (16) holds in B2. With v = |v1|+ |v2|, we see that
v ∼ |∇u|. Therefore, it follows from (12) that ∥v∥L2(B1)

≳ ĉ. By the assumption on W and the fact that∣∣Wj (uk)(z)
∣∣ ≤ ∣∣Wj (z)

∣∣ for all z, we see that ∥G∥Lq(B2)
≤ CM. A standard integration by parts argument

shows that whenever ∆u =W ·∇u in BR, where W ∈ Lq (BR) for some q ∈ [2,∞],

(24) ∥∇u∥L2(Br)
≤C

[(
1− r

R

)−1/2
+R1− 2

q ∥W∥Lq(BR)

]
∥u∥L∞(BR)

.

Combining (24) with (11) then implies that ∥v∥L2(B3/2) ≤ Ĉ (1+M). An application of Theorem 4 with t = 2
and a = 3/2 shows that

∥∇u∥L2(Br(x0))
≳ ∥v∥L2(Br(x0))

≥ rC(1+Mµ )+c log
[

CĈ(1+M)
ĉ

]
,

as required. □

Returning to the Beltrami system from (22) and the preceding line, we take an alternative approach and
define

(25) v j = ∂u je−T(W1(u j)) for each j = 1,2,

where we use the notation T = TBd to denote the Cauchy-Pompeiu operator on Bd . Then

∂̄v j = ∂̄

(
∂u je−T(W1(u j))

)
=
[
∂̄ ∂u j −W1 (u j)∂u j

]
e−T(W1(u j))

= (−1) j W2

(
u ĵ

)
∂u ĵe

−T(W1(u j)) = (−1) j W2

(
u ĵ

)
eT [W1(u ĵ)−W1(u j)]v ĵ,

where ĵ = j±1. If we introduce the vector notation

(26) v⃗ =
[

v1
v2

]
and G =

[
0 −W2 (u2)eT [W1(u2)−W1(u1)]

W2 (u1)e−T [W1(u2)−W1(u1)] 0

]
,

then (16) holds. This is the representation that will be used in the proof of our order of vanishing estimate
described by Theorem 2.

Before proving that theorem, we establish an Lq-bound for the matrix G given in (26). To do this, we have
to recall some properties of T . Let ω ∈ Lq for some q ∈ [2,∞] satisfy ∥ω∥Lq(Bd)

≤ M. The Cauchy-Pompeiu
transform of ω is defined as

T ω(z) =
1
π

ˆ
Bd

ω(ξ )

ξ − z
dξ .

If q > 2, then T (ω) ∈ L∞ with ∥T ω∥L∞(Bd)
≤CM, where C depends on q and d. Otherwise, if q = 2, then

T (ω) ∈W 1,2 with
∥T ω∥W 1,2(Bd)

= ∥T ω∥L2(Bd)
+∥∇T ω∥L2(Bd)

≤CM.

For further analysis of T ω in the setting where q = 2, we recall the following lemma from [KW15].

Lemma 6 (cf. Lemma 3.3 in [KW15]). Set h = T ω for some ω ∈ L2 (Bd) with ∥ω∥L2(Bd)
≤ M. For s > 0

and 0 < r ≤ d, it holds that

(27)
 

Br

exp(s|h|)≤Cr−sCM exp(sCM+ s2CM2),

where we denote
 

Br

f = |Br|−1
ˆ

Br

f .

Now we can show that G is bounded in Lq for some q ∈ (2,q2].
9



Lemma 7. Assume that d ∈ (1,2] and for some q1 ∈ [2,∞] and q2 ∈ (2,∞],
∥∥Wj

∥∥
Lq j (Bd)

≤ M j for j = 1,2.
Define the matrix function G as in (26). Set q = q2 if q1 > 2 and otherwise choose q ∈ (2,q2). Then

∥G∥Lq(Bd)
≲ M2 exp(CMα

1 ) ,

where α = 1 if q1 > 2 and α = 2 otherwise.

Proof. Recall that G j j = 0 and G j ĵ = (−1) j W2

(
u ĵ

)
e(−1) ĵT [W1(u2)−W1(u1)]. Since

∣∣Wj (uk)(z)
∣∣≤ ∣∣Wj (z)

∣∣ for
all z, then Wj ∈ Lq j implies that Wj (uk) ∈ Lq j as well with the same norm.

If q1 > 2, then
∥T [W1 (u2)−W1 (u1)]∥L∞(Bd)

≤CM1

and then
∥G∥Lq2 (Bd)

≤ M2 exp(CM1) .

If q1 = 2, choose q ∈ (2,q2) and set s = qq2
q2−q . An application of the Hölder inequality shows that∥∥∥G j ĵ

∥∥∥
Lq(Bd)

=
∥∥∥W2

(
u ĵ

)
e(−1) ĵT [W1(u2)−W1(u1)]

∥∥∥
Lq(Bd)

≤ ∥W2∥Lq2 (Bd)

∥∥∥eT [W1(u2)−W1(u1)]
∥∥∥

Ls(Bd)

≤Csd2/sM2

( 
Bd

exp(s |T [W1 (u2)−W1 (u1)]|)
)1/s

≤Csd−CM1M2 exp
(
CM1 + sCM2

1
)
,

where the last step invokes Lemma 6. The conclusion follows. □

Now we prove the new order of vanishing estimate described by Theorem 2.

Proof of Theorem 2. Define v⃗ and G as in (25) and (26) so that equation (16) holds in Bd . Choose 1 < b <
a < d so that b− 1 ≃ a− b ≃ d − a. Then logb ≃ logd and a− b ≃ d − 1. Set v = |v1|+ |v2|. In order to
keep track of the dependencies in the constants, we’ll use a subscript notation within this proof.

Assume first that q1 > 2. We see from (12) and Hölder’s inequality that

ĉ ≤ ∥∇u∥L2(B1)
≤ ∥∇u1∥L2(B1)

+∥∇u2∥L2(B1)
=
∥∥∥eT (W1(u1))v1

∥∥∥
L2(B1)

+
∥∥∥eT (W1(u2))v2

∥∥∥
L2(B1)

≤
∥∥∥eT (W1(u1))

∥∥∥
L∞(B1)

∥v1∥L2(B1)
+
∥∥∥eT (W1(u2))

∥∥∥
L∞(B1)

∥v2∥L2(B1)
≤ exp(Cq1M1)∥v∥L2(B1)

.

It follows that ∥v∥L2(B1)
≥ ĉexp(−Cq1M1). Similarly,

∥v∥L2(Ba)
≤
∥∥∥e−T (W1(u1))∇u1

∥∥∥
L2(Ba)

+
∥∥∥e−T (W1(u2))∇u2

∥∥∥
L2(Ba)

≤ exp(Cq1M1)∥∇u∥L2(Ba)

≤

(√
d

d −a
+Cq1M1 +Cq2M2

)
exp(Cq1M1)∥u∥L∞(Bd)

≤
Ĉ (1+Cq2M2)√

d −1
exp(Cq1M1) ,

where we have applied the interior estimate described by (24) and the upper bound from (11). Since Lemma
7 shows that ∥G∥Lq2 (Bd)

≤ M2 exp(Cq1M1), then an application of Theorem 4 with t = 2 shows that

∥v∥L2(Br(x0))
≥ r

Cq2

{
1+[M2 exp(Cq1 M1)]

µ2
}
+ c

logd

{
Cq1 M1+log

[
CĈ(1+Cq2 M2)

ĉ
√

d−1

]}
.

Since ∥v∥L2(Br)
≤ exp(Cq1M1)∥∇u∥L2(Br)

, then we can rearrange to reach the conclusion of the theorem for
the case q1 > 2.
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Now we consider q1 = 2. Choose q ∈ (2,q2) and t ∈
(

max
{

q
q−1 , t0

}
,2
)

, then define t ′ < ∞ to satisfy
1
t0
= 1

t +
1
t ′ . It follows from the lower bound in (14) and Hölder’s inequality that

ĉ ≤ ∥∇u∥Lt0 (B1)
≤ ∥∇u1∥Lt0 (B1)

+∥∇u2∥Lt0 (B1)

≤
∥∥∥eT (W1(u1))

∥∥∥
Lt′ (B1)

∥v1∥Lt(B1)
+
∥∥∥eT (W1(u2))

∥∥∥
Lt′ (B1)

∥v2∥Lt(B1)
≤ exp

(
Ct ′M2

1
)
∥v∥Lt(B1)

,

where we have applied Lemma 6. Similarly,

∥v∥Lt(Ba)
≤
∥∥∥e−T (W1(u1))∇u1

∥∥∥
Lt(Ba)

+
∥∥∥e−T (W1(u2))∇u2

∥∥∥
Lt(Ba)

≤ exp
(
CtM2

1
)
∥∇u∥L2(Ba)

≤

(√
d

d −a
+C2M1 +Cq2M2

)
exp
(
CtM2

1
)
∥u∥L∞(Bd)

≤
Ĉ (1+Cq2M2)√

d −1
exp
(
CtM2

1
)
.

Since Lemma 7 implies that ∥G∥Lq(Bd)
≤ M2 exp

(
Cq,q2M2

1
)
, then an application of Theorem 4 with our

choice of t shows that

∥v∥Lt(Br(x0))
≥ r

Cq,t

{
1+[M2 exp(Cq,q2 M2

1)]
µ
}
+ c

logd

{
Ct,t0 M2

1+log
[

Cq,t Ĉ(1+Cq2 M2)
ĉ
√

d−1

]}
,

where µ = tq
tq−q−t . Since ∥v∥Lt(Br)

≤ exp
(
Ct,t1M2

1
)
∥∇u∥Lt1 (Br)

for any t1 > t, then we reach the conclusion
of the theorem after further simplifications. □

4. UNIQUE CONTINUATION AT INFINITY ESTIMATES

Here we use Theorem 2 combined with an iterative argument to prove Theorem 1. Our arguments are
similar to those that appear in [DKW19] and [Dav19a], which were inspired by the work of [Dav14] and
[LW14]. We prove the theorem for q1 > 2 and q1 = 2 in slightly different ways, and therefore divide this
section accordingly.

4.1. The case of q1 > 2. The proof of the theorem relies on an iteration scheme. Therefore, we begin by
presenting two propositions that are instrumental to this argument. The first proposition gives the initial
estimate, while the second gives the iterative step. The initial estimate is as follows.

Proposition 8 (Initial estimate). Assume that for some q1,q2 ∈ (2,∞], c0,δ0 > 0, W =W1 + iW2 : R2 → C2

satisfies (6) and (7). Let u : R2 → C be a solution to (1) for which (8) and (9) hold. For any ε0 > 0 and any
S ≥ Sb (R0,C0,c0,q1,q2,δ0, t0,ε0), it holds that

inf
|z0|=S

∥∇u∥L2(B1/2(z0)) ≥ exp(−Sα) ,(28)

where α = 2q̂(q̌−2)
q̌(q̂−2) + ε0 with q̂ = min{q1,q2} and q̌ = max{q1,q2}.

Proof. Let ε0 > 0 be given. Assume that S is sufficiently large with respect to R0, C0, c0, q1, q2, δ0, t0, ε0 as
we will specify below. Choose z0 ∈ R2 so that |z0|= S−1. Define

ũ(z) = u(z0 +Sz)

W̃ (z) = SW (z0 +Sz) .

Then ∆ũ−W̃ ·∇ũ = 0 in B2. Assumption (6) implies that∥∥∥W̃1

∥∥∥
Lq1 (B2)

≤ S
(ˆ

R2
|W1 (z0 +Sz)|q1 dz

)1/q1

= S1− 2
q1 ,
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while (7) implies that ∥W2∥Lq2 (R2) ≤ A(c0,δ0), from which it follows that∥∥∥W̃2

∥∥∥
Lq2 (B2)

≤ S
(ˆ

R2
|W2 (z0 +Sz)|q2 dz

)1/q2

≤ AS1− 2
q2 .

We see that ∥∥∥W̃∥∥∥
Lq̂(B2)

≤
∥∥∥W̃1

∥∥∥
Lq̂(B2)

+
∥∥∥W̃2

∥∥∥
Lq̂(B2)

≤Cq̂,q1

∥∥∥W̃1

∥∥∥
Lq1 (B2)

+Cq̂,q2

∥∥∥W̃2

∥∥∥
Lq2 (B2)

≤Cq̂,q1S1− 2
q1 +Cq̂,q2AS1− 2

q2 .

Moreover, ∥ũ∥L∞(B2)
≤ exp

[
C0 (3S)1− 2

q1

]
and from (9) we have

ct0 ∥∇ũ∥L2(B1)
≥ ∥∇ũ∥Lt0 (B1)

≥ S∥∇u∥Lt0 (B1(0)) ≥ S.

Observe that

log

{
exp
[
C0 (3S)1− 2

q1

] 1+Cq̂,q1S1− 2
q1 +Cq̂,q2AS1− 2

q2

S

}
≤CS1− 2

q1 .

Since q̂ > 2, then an application of Theorem 5 shows that

∥∇u∥L2(B1/2(z0)) =
1
S
∥∇ũ∥L2(B1/2S) ≥

(
1

2S

)C

(
Cq,q1 S

q1−2
q1 +Cq,q2 AS

q2−2
q2

) 2q̂
q̂−2

≥ exp
(
−CS

2q̂(q̌−2)
q̌(q̂−2) logS

)
,

where we have assumed that S is large with respect to C0, q1, q2, and A. Assuming further that S is so large
that C logS ≤ Sε0

(
1− 1

S

)α , we see that (28) holds, as required. □

Now we present the proposition which will be repeatedly applied in the proof of Theorem 1 when q1 > 2.

Proposition 9 (Iterative estimate). Assume that for some q1,q2 ∈ (2,∞], c0,δ0 > 0, W =W1+ iW2 : R2 →C2

satisfies (6) and (7). Let u : R2 → C be a solution to (1) for which (8) holds. Let ε > 0, ε1 ∈
(

0, δ0
1− 2

q1
+δ0

)
.

Suppose that for any S ≥ Sr (R0,C0,c0,q1,q2,δ0,ε1,ε), there exists an α > 1+ ε so that

inf
|z0|=S

∥∇u∥L2(B1/2(z0)) ≥ exp(−Sα) .(29)

With R = S+
(S

2

) 1
1−ε1 − 1

2 and β =

{
α − α−1

2 ε1 if α (1− ε1)> 1− 2
q1

1− 2
q1
+2ε1 otherwise

, it holds that

(30) inf
|z1|=R

∥∇u∥L2(B1/2(z1)) ≥ exp
(
−Rβ

)
.

Proof. Define T =
(S

2

) 1
1−ε1 and set d = 1+ S

2T . Let z1 ∈ R2 be such that |z1|= S+T − 1
2 = R. Define

ũ(z) = u(z1 +T z)

W̃ (z) = TW (z1 +T z) .

Then ∆ũ−W̃ ·∇ũ = 0 in Bd . Assumption (6) implies that∥∥∥W̃1

∥∥∥
Lq1 (Bd)

≤ T
(ˆ

R2
|W1 (z1 +T z)|q1 dz

)1/q1

= T 1− 2
q1 ,

while ∥∥∥W̃2

∥∥∥
Lq2 (Bd)

= T
(ˆ

Bd

|W2 (z1 +T z)|q2 dz
)1/q2

= T 1− 2
q2

(ˆ
BT d(z1)

|W2 (z)|q2 dz
)1/q2

.
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We may cover BT d (z1) with N ∼ T 2 balls of radius 1, so it follows from condition (7) that

∥∥∥W̃2

∥∥∥
Lq2 (Bd)

≤ T 1− 2
q2

(
N

∑
j=1

ˆ
B1(z j)

|W2 (z)|q2 dz

)1/q2

≤ T 1− 2
q2

[
N

∑
j=1

exp
(
−q2c0

∣∣z j
∣∣1− 2

q1
+δ0
)]1/q2

≤ T 1− 2
q2

{
cT 2 exp

[
−q2c0

(
S−1

2

)1− 2
q1
+δ0
]}1/q2

≤ exp
(
−c̃0S1− 2

q1
+δ0
)
,

where we have used that each ball is centered a distance of at least S−1
2 from the origin. Moreover,

∥ũ∥L∞(Bd)
≤ exp

[
C0
(3

2 S+2T
)1− 2

q1

]
≤ exp

(
51− 2

q1 C0T 1− 2
q1

)
= exp

(
C̃0T 1− 2

q1

)
and from (29) we see that

with z0 := S z1
|z1| ,

∥∇ũ∥L2(B1)
≥ T ∥∇u∥L2(B1/2(z0)) ≥ exp(−cSα) .

We are now in a position to apply Theorem 2 to the function ũ. Doing so yields

∥∇ũ∥L2(B1/2T (0)) ≥
(

1
2T

)C2

[
1+exp

(
C3T

1− 2
q1 −c̃0µ2S

1− 2
q1

+δ0
)]

+ 2cT
S

[
C̃1T

1− 2
q1 +cSα+exp

(
−c̃0S

1− 2
q1

+δ0
)
+log

(
C2
√

2T
S

)]
,

where C̃1 = C̃0 +C1, µ2 =
2q2

q2−2 and all of the new constants depend on R0, q1, and q2. If S is sufficiently

large in the sense that c̃0µ2S1− 2
q1
+δ0 ≥ C3 (S/2)

1− 2
q1

1−ε1 (which is always possible because of the relationship
between ε1 and δ0), then

∥∇u∥L2(B1/2(z1)) =
1
T
∥∇ũ∥L2(B1/2T (0)) ≥

(
1

2T

)2C2+
2c̃T

S

(
C̃1T

1− 2
q1 +cSα

)
.

If α (1− ε1)> 1− 2
q1

, then Sα > T 1− 2
q1 and then

∥∇u∥L2(B1/2(z1)) ≥ exp
(
−CT α−(α−1)ε1 logT

)
.

If S is sufficiently large in the sense that (S/2)
ε1ε

2(1−ε1) ≥ C
1−ε1

log(S/2), then Rβ ≥ CT α−(α−1)ε1 logT and it
follows that

(31) ∥∇u∥L2(B1/2(z1)) ≥ exp
(
−Rβ

)
.

On the other hand, if α (1− ε1)≤ 1− 2
q1

, then the first term is dominant and

∥∇u∥L2(B1/2(z1)) ≥ exp
(
−CT 1− 2

q1
+ε1 logT

)
.

If S is large enough so that (S/2)
ε1

1−ε1 ≥ C
1−ε1

log(S/2), then we again see that (31) holds. Since z1 ∈R2 with
|z1|= R was arbitrary, (30) has been shown. □

Now we use Proposition 8 followed by repeated applications of Proposition 9 to prove Theorem 1.

The proof of Theorem 1 for q1 > 2. Let ε > 0 be given then choose ε1 ∈
(

0,min
{

δ0
1− 2

q1
+δ0

,
2

q1
+ ε

2

1+ ε

2

})
and

ε0 > 0. Choose S0 ≥ max
{

Sb (R0,C0,c0,q1,q2,δ0, t0,ε0) ,Sr
(
R0,C0,c0,q1,q2,δ0,ε1,

ε

2

)}
, where Sb and Sr

13



are as given in Propositions 8 and 9, respectively. Define α0 = 2q̂(q̌−2)
q̌(q̂−2) + ε0, where q̂ = min{q1,q2} and

q̌ = max{q1,q2}. An application of Proposition 8 shows that

inf
|z|=S0

∥∇u∥L2(B1/2(z)) ≥ exp
(
−Sα0

0

)
.

By assumption, we have that 1+ ε

2 >
1− 2

q1
1−ε1

. Assuming that αk > 1+ ε

2 for k = 0,1, . . ., we are in the first
case of the choice for β from Proposition 9, so we recursively define

αk+1 = αk −
αk −1

2
ε1

Sk+1 = Sk +

(
Sk

2

) 1
1−ε1

− 1
2
.

Then, for each such k, an application of Proposition 9 shows that

inf
|z|=Sk+1

∥∇u∥L2(B1/2(z)) ≥ exp
(
−Sαk+1

k+1

)
.

Observe that |αk −αk+1|> εε1
4 . Therefore, there exists M ∈ N with M ≤ N := ⌈4

(
α0 −1− ε

2

)
/εε1⌉ so that

αM > 1+ ε

2 , while αM+1 ≤ 1+ ε

2 . In particular, for any R ≥ SN+1 ≥ SM+1, it holds that

inf
|z|=R

∥∇u∥L2(B1/2(z)) ≥ exp(−RαM+1)≥ exp
(
−R1+ ε

2

)
.

An application of the Caccioppoli inequality described by (24) shows that

∥∇u∥L2(B1/2(z)) ≤C (1+∥W1∥Lq1 +∥W2∥Lq2 )∥u∥L∞(B1(z)) ≤C∥u∥L∞(B1(z)) ≤ exp
(

R
ε

2

)
∥u∥L∞(B1(z)) ,

assuming that R is sufficiently large with respect to C. Combining the previous two inequalities leads to the
conclusion of the theorem. □

Remark. The careful reader may wonder why we have avoided using the second case of the choice for β ,
i.e., β = 1− 2

q1
+ 2ε1, from Proposition 9 in our iteration scheme. As the initial exponent is greater than

2, then we must always start in the first case. Each repeated application of Proposition 9 will produce an
exponent that is greater than 1. Therefore, the only way to move into the second case of β is by choosing
ε1 so that α (1− ε1) ≤ 1− 2

q1
. Doing so implies that ε1 >

2
q1

, and then the resulting exponent is given by
β = 1− 2

q1
+ 2ε1 > 1+ ε1, which still exceeds 1. In other words, the second case of β doesn’t lead to any

improvements, so we have chosen to avoid using this case.

4.2. The case of q1 = 2. Now we consider the case where W1 belongs to the threshold space, L2. In contrast
to the previous cases where q1 > 2, here we only need to run the iteration process twice.

The proof of Theorem 1 for q1 = 2. Choose q ∈ (2,q2). With ν = 1
4

(
2−max

{
q

q−1 , t0
})

> 0 define t j =

t0 + jν for j = 1,2,3. Define α >
(

1− 2
q2

)
t1q

t1q−q−t1
> 2. For ε ∈ (0,1) as given, define ε0 =

ε

2(α−1) .
Assume that S is sufficiently large with respect to R0, C0, q2, c0, δ0, t0, ε , as well as q, t1, t2, t3, α (which

depend on the other terms), as we will specify below. Choose z0 ∈ R2 so that |z0|= S−1. Define

u0 (z) = u(z0 +Sz)

W0 (z) = SW (z0 +Sz) .

Then ∆u0 −W0 ·∇u0 = 0 in B2. Assumption (6) implies that

∥W0,1∥L2(B2)
≤ S

(ˆ
R2

|W1 (z0 +Sz)|2 dz
)1/2

= 1,

14



while (7) implies that ∥W2∥Lq2 (R2) ≤ A(c0,δ0), from which it follows that

∥W0,2∥Lq2 (B2)
= S

(ˆ
R2

|W2 (z0 +Sz)|q2 dz
)1/q2

≤ AS1− 2
q2 .

Moreover, ∥u0∥L∞(B2)
≤ eC0 and from (9) we see that

∥∇u0∥Lt0 (B1)
≥ S∥∇u∥Lt0 (B1(0)) ≥ S.

An application of Theorem 2 with d = 2 shows that

∥∇u∥Lt2(B1/2(z0)) =
1
S
∥∇u0∥Lt2(B1/2S) ≥

(
1

2S

)C2

1+
(

AS
1− 2

q2

) t1q
t1q−q−t1

eC3

+cC1+c log
[

C2eC0
S

(
1+AS

1− 2
q2

)]

≥ exp
(
−CS

(
1− 2

q2

)
t1q

t1q−q−t1 logS
)
,

where we have assumed that S is large enough to absorb all of the other terms into the dominant one by

making the constant larger. Assuming further that S is so large that C logS ≤ Sα−
(

1− 2
q2

)
t1q

t1q−q−t1
(
1− 1

S

)α , we
see that

∥∇u∥Lt2(B1/2(z0)) ≥ exp
(
−|z0|α

)
whenever |z0|>> 1.(32)

Recalling that ε0 =
ε

2(α−1) , define T =
(S

2

) 1
ε0 and set d = 1+ S

2T . Let z1 ∈ R2 be such that |z1|= S+T −
1
2 = R. With

ũ(z) = u(z1 +T z)

W̃ (z) = TW (z1 +T z) ,

we see that ∆ũ−W̃ ·∇ũ = 0 in Bd . As in the previous proof, assumption (6) implies that
∥∥∥W̃1

∥∥∥
L2(Bd)

≤ 1

while ∥∥∥W̃2

∥∥∥
Lq2 (Bd)

= T
(ˆ

Bd

|W2 (z1 +T z)|q2 dz
)1/q2

= T 1− 2
q2

(ˆ
BT d(z1)

|W2 (z)|q2 dz
)1/q2

.

We may cover BT d (z1) with N ∼ T 2 balls of radius 1, so it follows from condition (7) that

∥∥∥W̃2

∥∥∥
Lq2 (Bd)

≤ T 1− 2
q2

(
N

∑
j=1

ˆ
B1(z j)

|W2 (z)|q2 dz

)1/q2

≤ T 1− 2
q2

[
N

∑
j=1

exp
(
−q2c0

∣∣z j
∣∣δ0
)]1/q2

≤ T 1− 2
q2

{
cT 2 exp

[
−q2c0

(
S−1

2

)δ0
]}1/q2

≤ exp
(
−c̃0Sδ0

)
,

where we have used that each ball is centered a distance of at least S−1
2 from the origin. Moreover,

∥ũ∥L∞(Bd)
≤ eC0 and from (32) we see that with z0 := S z1

|z1| ,

∥∇ũ∥Lt1 (B1)
≥ T ∥∇u∥Lt1(B1/2(z0)) ≥ exp(−cSα) .
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Now we apply the order of vanishing estimate described by Theorem 2 again. With t3 as defined above and
µ = t3q

t3q−q−t3
, we have

∥∇u∥L2(B1/2(z1)) =
1
T
∥∇ũ∥L2(B1/2T)

≥
(

1
2T

)C2[1+exp(C3−c̃0µSδ0)]+ 2cT
S

[
C1+C0+cSα+exp(−c̃0Sδ0)+log

(
C2
√

2T
S

)]

≥ exp
(
−CT 1+(α−1)ε0 logT

)
,

where we have used that S is large enough to absorb all other terms into the dominant one. Further as-

suming that log
(S

2

)
≤ ε0

C

(S
2

) ε

4ε0 = ε

2C(α−1)

(S
2

) α−1
2 shows that C logT ≤ T ε/4 from which it follows that

CT 1+(α−1)ε0 logT ≤ R1+ 3ε

4 . As in the previous proof, if R is sufficiently large, then an application of the
Caccioppoli inequality shows that

∥∇u∥L2(B1/2(z1)) ≤C (1+∥W1∥Lq1 +∥W2∥Lq2 )∥u∥L∞(B1(z1))
≤C∥u∥L∞(B1(z1))

≤ exp
(

R
ε

4

)
∥u∥L∞(B1(z1))

.

It follows that
∥u∥L∞(B1(z1))

≥ exp
(
−R1+ε

)
.

Since z1 was an arbitrary point of sufficient distance to the origin, the conclusion of the theorem follows. □

5. CARLEMAN ESTIMATES

In this section, we prove the Carleman estimate given by Theorem 3. To do this, we rewrite the operator
in polar coordinates then use an eigenvalue decomposition to establish our stated bounds. The techniques
used here are very similar to those that appeared in [DZ19], [DZ18], [Dav19a], [DLW19], and the references
therein.

We use standard polar coordinates in R2\{0} by setting x = r cosθ and y = r sinθ , where r =
√

x2 + y2

and θ = arctan(y/x). With the new coordinate t = logr, we see that

∂x = e−t
(

cosθ
∂

∂ t
− sinθ

∂

∂θ

)
, ∂y = e−t

(
sinθ

∂

∂ t
+ cosθ

∂

∂θ

)
so that

L := 2et−iθ
∂̄ = ∂t + i∂θ .(33)

The eigenvalues of ∂θ are ik, k ∈ Z, with corresponding eigenspace Ek = span{ek}, where ek =
1√
2π

eikθ so

that ∥ek∥L2(S1) = 1. For any v ∈ L2
(
S1
)
, let Pkv = vk denote the projection of v onto Ek. We remark that the

projection operator, Pk, acts only on the angular variables. In particular, Pkv(t,θ) = Pkv(t, ·)(θ). We may
then rewrite the operator L as

L = ∂t − ∑
k∈Z

kPk.(34)

Changing to the variable t = log |z|, the weight function is given by

ϕ(t) = t + 1
2 log t2.

Since our result applies to functions that are supported in BR0 \{0}, then in terms of the new coordinate
t, we study the case when t is sufficiently close to −∞. By a slight modification to the result described by
[DZ18, Lemma 2] (see also [DLW19, Lemma 5.1]), we get the following lemma. For the proof of this result,
we refer the reader to either [DZ18] or [DLW19].
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Lemma 10. Let M,N ∈ N and let {ck} be a sequence of numbers such that |ck| ≤ 1 for all k. For any
v ∈ L2

(
S1
)

and every p ∈ [1,2], we have that∥∥∥∥∥ M

∑
k=N

ckPkv

∥∥∥∥∥
L2(S1)

≤C

(
M

∑
k=N

|ck|2
) 1

p−
1
2

∥v∥Lp(S1) ,(35)

where C =C (p).

The following proposition is crucial to the proof of Theorem 3.

Proposition 11. Let p∈ (1,2]. There exists a t0 < 0 such that for any τ ≫ 1 and any u∈C∞
c
(
(−∞, t0)×S1

)
,

it holds that

(36)
∥∥∥t−1e−τϕ(t)u

∥∥∥
L2(dtdθ)

≤Cτ
−1+ 1

p

∥∥∥te−τϕ(t)L u
∥∥∥

Lp(dtdθ)
,

where C =C (p, t0).

Proof. To prove this lemma, we introduce the conjugated operator Lτ of L , defined by

Lτv = e−τϕ(t)L
(

eτϕ(t)v
)
.

With u = eτϕ(t)v, inequality (36) is equivalent to

(37)
∥∥t−1v

∥∥
L2(dtdθ)

≤Cτ
−1+ 1

p ∥tLτv∥Lp(dtdθ) .

From (33) and (34), the operator Lτ takes the form

(38) Lτ = ∑
k∈Z

(∂t + τϕ
′ (t)− k)Pk = ∑

k∈Z
(∂t + τ + τt−1 − k)Pk.

We first consider p = 2. Since Lτv = ∂tv+ τ
(
1+ t−1)v−∑

k
kvk, then an integration by parts shows that

∥Lτv∥2
L2(dtdθ) =

¨ ∣∣∣∣∣∂tv+ τ
(
1+ t−1)v− ∑

k∈Z
kvk

∣∣∣∣∣
2

dt dθ

=

¨
|∂tv|2 dt dθ +

¨
∑
k

[
τ
(
1+ t−1)− k

]2 |vk|2 dt dθ

+

¨
τ
(
1+ t−1)

∂t |v|2 dt dθ −
¨

∑
k∈Z

k∂t |vk|2 dt dθ ≥ τ
∥∥t−1v

∥∥2
L2(dtdθ)

,

which implies (37) when p = 2.
Now we consider all p ∈ (1,2). Since ∑

k∈Z
Pkv = v, we split the sum into three parts. Let M = ⌈2τ⌉ and

define

Ph
τ = ∑

k>M
Pk, Pl

τ =
M

∑
k=0

Pk, Pn
τ = ∑

k<0
Pk.

In order to prove the (37), it suffices to show that for any p ∈ (1,2) and any v ∈C∞
c
(
(−∞, t0)×S1

)
(39)

∥∥t−1P□
τ v
∥∥

L2(dtdθ)
≤Cτ

−1+ 1
p ∥tLτv∥Lp(dtdθ)

for □= h, l,n. The sum of all three inequalities will yield (37), which implies (36).
From (38), we have the first order differential equation

PkLτv =
(
∂t + τϕ

′ (t)− k
)

Pkv.
17



For v ∈C∞
c
(
(−∞, t0)×S1

)
, solving the first order differential equation gives that

(40)
Pkv(t,θ) =−

ˆ
∞

t
ek(t−s)+τ(ϕ(s)−ϕ(t))PkLτv(s,θ)ds

=

ˆ t

−∞

ek(t−s)+τ(ϕ(s)−ϕ(t))PkLτv(s,θ)ds.

We first establish (39) with □ = h using the first line of (40). For k > M ≥ 2τ , if −∞ < t ≤ s ≤ t0 < 0,
then

k(t − s)+ τ (ϕ(s)−ϕ (t)) =−(k− τ) |t − s|+ τ

2
log
(
s2/t2)≤−k

2
|t − s| .

Taking the L2
(
S1
)
-norm in (40) and using this bound gives that

∥Pkv(t, ·)∥L2(S1) ≤
ˆ

∞

−∞

e−
1
2 k|t−s| ∥PkLτv(s, ·)∥L2(S1) ds.

With the aid of (35), we get

∥Pkv(t, ·)∥L2(S1) ≤C
ˆ

∞

−∞

e−
1
2 k|t−s| ∥Lτv(s, ·)∥Lp(S1) ds

for any 1 ≤ p ≤ 2. Applying Young’s inequality for convolution then yields

∥Pkv∥L2(dtdθ) ≤C
(ˆ

∞

−∞

e−
σ

2 k|z|dz
) 1

σ

∥Lτv∥Lp(dtdθ) ≤Ck
1
p−

3
2 ∥Lτv∥Lp(dtdθ) ,

where 1
σ
= 3

2 −
1
p . Squaring and summing up k > M gives that

∑
k>M

∥Pkv∥2
L2(dtdθ) ≤C ∑

k>M
k−3+ 2

p ∥Lτv∥2
Lp(dtdθ) =Cτ

−2+ 2
p ∥Lτv∥2

Lp(dtdθ) ,

where we have used that p > 1 to conclude that the series converges. An application of orthogonality shows
that ∥∥Ph

τ v
∥∥

L2(dtdθ)
≤Cτ

−1+ 1
p ∥Lτv∥Lp(dtdθ)

which implies (39) with □= h.
Now we prove (39) for □= n using the second line of (40). For k < 0, if −∞ < s ≤ t ≤ t0, then

k(t − s)+ τ (ϕ(s)−ϕ (t)) =−(τ − k) |t − s|+ τ log
(

1+
|s− t|
|t|

)
≤−

(
τ

2
− k
)
|t − s| ,

where we have performed a Taylor expansion. Repeating the arguments from above shows that for k < 0,

∥Pkv∥L2(dtdθ) ≤C
(

τ

2
− k
) 1

p−
3
2 ∥Lτv∥Lp(dtdθ) .

Squaring and summing up k < 0 gives that

∑
k<0

∥Pkv∥2
L2(dtdθ) ≤Cτ

−2+ 2
p ∥Lτv∥2

Lp(dtdθ) ,

where we have again used that p > 1 to conclude that the series converges. As in the previous setting, (39)
holds with □= n.

Fix t ∈ (−∞, t0) and set N = ⌈τϕ ′(t)⌉. Recalling that ϕ(t) = t + 1
2 log t2, an application Taylor’s theorem

shows that for all s, t ∈ (−∞, t0)

ϕ(s)−ϕ(t) = ϕ
′(t)(s− t)+

1
2

ϕ
′′(s0)(s− t)2,
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where s0 is some number between s and t. If s > t, then

k(t − s)+ τ (ϕ(s)−ϕ(t))≤−(k−N) |t − s|− τ

2t2 (s− t)2 .(41)

Alternatively, if s ≤ t, then

k(t − s)+ τ (ϕ(s)−ϕ(t))≤−(N −1− k) |t − s|− τ

2s2 (s− t)2 .(42)

For this reason, we split the sum corresponding to □= l and use both representations from (40).
First we consider the values N ≤ k ≤ M. From the first line (40), we sum over k and use the bound from

(41) to get ∥∥∥∥∥ M

∑
k=N

Pkv(t, ·)

∥∥∥∥∥
L2(S1)

≤
ˆ

∞

−∞

∥∥∥∥∥ M

∑
k=N

e−(k−N)|t−s|− τ

2t2
(s−t)2

PkLτv(s, ·)

∥∥∥∥∥
L2(S1)

ds.

With ck = e−(k−N)|t−s|− τ

2t2
(s−t)2

, it is clear that |ck| ≤ 1. Therefore, Lemma 10 is applicable, so we may apply
estimate (35) to obtain∥∥∥∥∥ M

∑
k=N

e−(k−N)|t−s|− τ

2t2
(s−t)2

PkLτv(s, ·)

∥∥∥∥∥
L2(S1)

≤C

(
M

∑
k=N

e−(k−N)|t−s|− τ

2t2
(s−t)2

) 1
p−

1
2

∥Lτv(s, ·)∥Lp(S1)

for all 1 ≤ p ≤ 2. Since
M

∑
k=N

e−2(k−N)|t−s| ≤
∞

∑
k=0

e−2k|t−s| ≤ 1+ |t − s|−1 ,

then ∥∥∥∥∥ M

∑
k=N

Pkv(t, ·)

∥∥∥∥∥
L2(S1)

≤C
ˆ

∞

−∞

e−
ατ

2t2
(s−t)2

(1+ |t − s|−α)∥Lτv(s, ·)∥Lp(S1) ds,

where α = 2−p
2p . Given that

e
ατ

2t2
(s−t)2

≥
√

1+
ατ

t2 (s− t)2 ≥C(t0) |t|−1 (1+ τ
1/2|s− t|),

then, since α > 0, it follows that

e−
ατ

2t2
(s−t)2

≲ |t|(1+ τ
1/2|s− t|)−1.

We see that

(43)

∥∥∥∥∥ M

∑
k=N

Pkv(t, ·)

∥∥∥∥∥
L2(S1)

≤C
ˆ

∞

−∞

(1+ |t − s|−α)|t|∥Lτv(s, ·)∥Lp(S1)

(1+ τ1/2|s− t|)
ds.

For 0 ≤ k ≤ N −1, we use the second line of (40), then sum over k and use the bound from (42) to get∥∥∥∥∥N−1

∑
k=0

Pkv(t, ·)

∥∥∥∥∥
L2(S1)

≤
ˆ

∞

−∞

∥∥∥∥∥N−1

∑
k=0

e−(N−1−k)|t−s|− τ

2s2 (s−t)2

PkLτv(s, ·)

∥∥∥∥∥
L2(S1)

ds.

Arguing as before, we similarly conclude that

(44)

∥∥∥∥∥N−1

∑
k=0

Pkv(t, ·)

∥∥∥∥∥
L2(S1)

≤C
ˆ

∞

−∞

(1+ |t − s|−α)|s|∥Lτv(s, ·)∥Lp(S1)

(1+ τ1/2|s− t|)
ds.

Combining (43) and (44) shows that∥∥t−1Pl
τv(t, ·)

∥∥
L2(S1)

≤C
ˆ

∞

−∞

(1+ |t − s|−α)∥sLτv(s, ·)∥Lp(S1)

(1+ τ1/2|s− t|)
ds.
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Applying Young’s inequality for convolution, we get∥∥∥t−1Pl
β

v
∥∥∥

L2(dtdθ)
≤C

[ˆ
∞

−∞

(
1+ |z|−α

1+ τ1/2|z|

)σ

dz

] 1
σ

∥tLτv∥Lp(S1) ,

where 1
σ
= 3

2 −
1
p . A direct calculation then shows that[ˆ

∞

−∞

(
1+ |z|−α

1+ τ1/2|z|

)σ

dz

] 1
σ

≤Cτ
− 1

2σ
+ α

2 .

Since − 1
2σ

+ α

2 = 1
2p −

3
4 +

1
2p −

1
4 =−1+ 1

p , then we have shown (39) with □= l, thereby completing the
proof of the proposition. □

We now present the proof of Theorem 3.

Proof of Theorem 3. Since e2tdtdθ = dz, then∥∥∥t−1e−τϕ(t)u
∥∥∥

L2(dtdθ)
=
∥∥∥t−1e−τϕ(t)−tuet

∥∥∥
L2(dtdθ)

=
∥∥∥(r logr)−1 e−τφ(r)u

∥∥∥
L2(dz)∥∥∥te−τϕ(t)L u

∥∥∥
Lp(dtdθ)

=
∥∥∥te−τϕ(t)−2t/p2et−iθ

∂̄ue2t/p
∥∥∥

Lp(dtdθ)
= 2

∥∥∥r1−2/p (logr)e−τφ(r)
∂̄u
∥∥∥

Lp(dz)

and the result follows from applying Proposition 11. □
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