Advanced Algebra I

TRANSCENDENTAL EXTENSION

Before we move on to the transcendental extension. We first com-
plete the proof of the Corollary of last time.

Corollary 0.1. Let F//K be an algebraic extension with char(K) =
p # 0. We have

(1) If F/K is separable, then F = KFP" for each n > 1.

(2) If F/K s finite and F = KF?, then F/K is separable.

(3) In particular, uw € F is separable over K if and only if K (uP) =
K(u).

Note that F? is not necessarily an extension over K. So is F?". But
we can take K FP", which is an extension over K.

Proof. We first suppose that F'/K is finite, hence finitely generated.
Write F' = K(uy,...,u,). It’s clear that there is N > 1 such that
uw?" € S. Hence FP" C S, therefore, KF?" C S.

We claim that S = KF?". To see this, one notices that F is purely
inseparable over K F' pN, so is S purely inseparable over KF »" . And
on the other hand, S is separable over K, so is over KF' »" . Hence
S =KF".

For (1), if F/K is separable and finite, then we have F = KF?".
However, in the proof, one can choose N to be arbitrary large. More
precisely, one has F' = KFP" for all N > Nj. By looking at the
inclusion

F=KF" cKFP"'c..c KFP C F.

One has F = KFP" for all n > 1.

Suppose now that F//K is separable but not necessarily finite. For
any u € F', we consider Iy := K (u) which is separable and finite over
K. Thus u € Fy = KF!" ¢ KF?" for all n > 1. This proves (1).

We now prove (2). If F = KF?, then F = K(KFP)Y = KF?.
Inductively, one has I = KFP" for all n > 1. Since we have show that
S = KF?P" | it follows that F = S.

Apply the statement to a single element. We consider F' = K (u).
FP C KP(u?) C K(uP) . Indeed, KF? = K(uP). By (2), if K(u) =
K (uP), then u is separable. By (1), if u is separable, then K (u)
K(uP).

0l

We now start our discussion on transcendental extension. The main
purpose is to show that the concept of transcendental degree, which is
the cardinality of transcendental basis, can be well-defined. Moreover,

transcendental degree is a good candidate for defining dimension.
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Definition 0.2. Let F'/K be an extension. S C F is said to be al-
gebraically dependent (over K) if there is ann > 1 and an f # 0 €
Klxq,...,x,] such that f(s1,...,s,) = 0 for some s1,...,s,. Roughly
speaking, some element of S satisfy a non-zero algebraic relation f
over K.

S is said to be algebraically independent over K if it’s not alge-
braically dependent over K.

Example 0.3. For any u € F, {u} is algebraically dependent over K
if and only if u is algebraic over K.

Example 0.4. In the extension K(xy,...,x,)/K, S = {x1,...,z,} is
algebraically independent over K.

The following theorem says that finitely generated purely transcen-
dental extension are just rational function fields.

Theorem 0.5. If {s1,..., 8.} C F is algebraically independent over K.
Then K(s1,...,8n) = K(x1, ..., Ty).

Proof. We consider the homomorphism 6 : K[z1, ..., z,| — K|s1, ..., $p].
6 is surjective by definition. It’s injective because {si,...,s,} C F is
algebraically independent. Then # induces an isomorphism on quotient
fields. O

One notices that the notion of being algebraic independent is an
analogue of being linearly independent. Therefore, one can try to define
the notion of ”basis” and ”dimension” in a similar way.

Definition 0.6. S C F is said to be a transcendental basis of F/K if
S is a mazimal algebraically independent set. In other words, for all
u€ F—S, SU{u} is algebraically dependent.

We will then define the transcendental degree to be the cardinality of
a transcendental basis (in a analogue of dimension). In order to show
that this is well-defined. We need to work harder.

Proposition 0.7. Let S C F be an algebraically independent set over
K andu € F—K(S). Then SU{u} is algebraically independent if and
only if u is transcendental over K(S).

Proof. The proof is straightforward. O

Corollary 0.8. S is a transcendental basis of F/K if and only if
F/K(S) is algebraic.

Proof. Suppose that S is a transcendental basis of F/K. If u € F —
K(S), then S U{u} is not algebraically independent. Thus, u is alge-
braic over K (S) by the Proposition.

On the other hand, suppose that F'/K(S) is algebraic. Then for all
u € F— S, u is algebraic over K(S). By the Proposition, S U {u}
is algebraically dependent if u € F' — K(S). In fact, it’s easy to see
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directly that S U {u} is algebraically dependent if v € K(S). Thus S
is a maximal algebraically independent set. U

Corollary 0.9. Let S C F be an subset over such that F/K(S) is
algebraic. Then S contains a transcendental basis.

Proof. By Zorn’s Lemma, there exists a maximal algebraically inde-
pendent subset S” C S. Then K (S) is algebraic over K (S’) and hence
F is algebraic over K(S5"). O

Theorem 0.10. Let S, T be transcendental bases of F//K. If S is finite,
then |T'| = |5)|.

Proof. Let S = {s1,...,s,} and S" := {s9, ..., 8,}. We first claim that
there is an element ¢ € T | say t = t; such that {¢1,ss,...,s,} is a
transcendental basis.

to see this, if every element of T is algebraic over K(S’), then F is
algebraic over K (T') hence over K (S’) which is a contradiction. Thus,
there is an element ¢t € T | say t = t; such that ¢; is transcendental over
K(5"). And hence T" := {t1, S2, ..., S»} is algebraically independent.

By the maximality of S, one sees that s; is algebraic over K(7").
It follows that F' is algebraic over K(t1, 1, ..., S,) and hence algebraic
over K (T"). Therefore, T" is a transcendental basis.

By induction, one sees that there is a transcendental basis {t1, ..., t,} C
T. Thus T = {ty, ..., t, }. O

Theorem 0.11. Let S, T be transcendental bases of F/K. 1If S is
infinite, then |T'| =1S|.

Proof. By the previous theorem, we have |T'| is infinite.

For each s € S, s is algebraic over K(T'). There is a finite subset
T, # () C T containing all coefficients of the minimal polynomial of s.
And hence s is algebraic over K(Ts). Let T" := UgesTs. Since every
u € F'is algebraic over K (.S) and hence algebraic over K (71"). It follows
that 7" =T as T' C T.

Finally, one shows that

T| = | Uses | < [S]IN| = |5].
Since one can similarly have |S| < |T|. We are done. O

With the above two theorem, we can have a well-defined notion of
transcendental degree.

Definition 0.12. Let F/K be an extension. The transcendental degree
of F/K, denoted tr.d.F/K, is the cardinal number |S|, where S is a
transcendental basis.

Theorem 0.13. If F/E and E/K are extensions, then
tr.d F/K = tr.d.F/E+ tr.dE/K.
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Proof. Let S be a transcendental basis of £/K and T be a transcen-
dental basis of F/E. Tt clear that TN E = (), thus T NS = 0. Tt’s
enough to show that S UT is a transcendental basis of F'/K.

Note that E is algebraic over K(.S), so E is algebraic over K(SUT).
It follows that E(T') is algebraic over K (S UT). Together with the
fact that F' is algebraic over E(T'). One sees that F' is algebraic over
K(SUT).

It suffices to show that S U T is algebraically independent. If f is
a non-trivial algebraic relation, i.e. f(sy,..., Sp,t1, ..., t;n) = 0 for some
S; € S, tj eTl. l

Corollary 0.14. Let F\ /K, and Fy/ Ky are extensions and Fy, Fy are
algebraically closed. Then every isomorphism between Ki and Ko can

be extended to an isomorphism between Fy and Fy if tr.d.Fi/K; =
tT.d.FQ/KQ



